Synthesis and Studies on some Heterocyclic Nitrogen Compounds

A. K. KHALAFALLAH*, A. I. M. KORAIEM, M. A. EL MAGHRABY and H. A. SHINDY

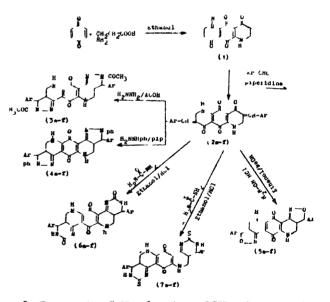
Chemistry Department, Aswan Faculty of Science, Aswan, Egypt

Manuscript received 21 July 1988, revised 10 March 1989, accepted 12 April 1989

Condensation of 4,9-dioxopiperidine [2,3-g]-1,2,3,4,6,7,8,9-octahydroquinolinoquiaone (1) with aromatic aldehydes yielded the corresponding 3,3-bis-benzylidene derivatives (2a-f). Interaction of 2a-f with hydrazines, hydroxylamine, urea and thiourea afforded a new bis(pyrazolino-, 4a-f, 5a-f; isoxazolino- 6a-f; pyrimidine and/or pyrimidine-thione, 7a-f, 8a-f) derivatives, respectively.

N continuation to our previous work on the heterocyclic nitrogen compounds¹⁻⁴ and in view of their various uses⁶, bis-pyrazolines, isoxazoline, pyrimidine and pyrimidine-thiones (3-7a-f) in conjunction with 4,9-dioxopiperidino[2,3-g]hydroquinolinoquinone were prepared.

Results and Discussion


4,9-Dioxopiperidino[2,3-g]-1,2,3,4,6,7,8,9-octahydroquinolinoquinone (1) was prepared by 1,4cyclocondensation reaction of *p*-benzoquinone with β -alanine in ethanol⁶ (Scheme I). The structure of 1 was confirmed by the elemental analysis, ir and pmr spectral data.

Condensation of 1 with the appropriate aromatic aldehydes proceeded smoothly in dry alcohol using piperidine as catalysis to yield the corresponding 3,3-bis-arylideno[2,3-g]-1,2,3,4,6,7,8,9-octahydro-quinolinoquinone (2a-f).

The presence of $<,\beta$ -unsaturated carbonyl group in compounds 2a - f led to their reaction with hydrazines according to the reported methods⁸. Thus, the interaction of 2a - f with hydrazine hydrate in dry alcohol in the presence of glacial acetic acid afforded the corresponding bis-N-acetylpyrazolino[3,4-c, 3,4-c]piperidino[2,3-g]-1,2,3,4,6,7,8,9octahydroquinolinoquinone (3a - f). However, the reaction of 2a - f with phenyl hydrazine gave bis-N-phenylpyrazolino analogues (4a - f) under the influence o piperidine catalysis.

Also, the activation exerted by the carbonyl group on the exocyclic double bond in 2a - f renders them available for the addition of various amino compounds, e.g. hydroxylamine hydrochloride, urea and thiourea. Thus, interaction of 2a - f with two mole-equivalent of hydroxylamine hydrochloride solution gave the corresponding bis-isoxazolino[3,4-c, 3,4-c]-piperidino[2,3-g]-1,2,3,4,6,7,8,9-octahydroquinolino-quinone (5a - f), whereas the interaction of 2a - f with bimolar ratios of urea and/or thiourea in ethanol containing hydrochloric acid gave the correspondent of the interaction of 2a - f with bimolar ratios of urea and/or thiourea in ethanol containing hydrochloric acid gave the correspondent of the

ponding bis-pyrimidine(pyrimidinethione)[3,4-c, 3,4-c]piperidino[2,3-g]-1,2,3,4,6,7,8,9-octahydroquinolmoquinone 6a-f and 8a-f respectively (Scheme 1).

2-7: a. $Ar=C_{e}H_{s}$, b: Ar=p-OOH₃- $C_{e}H_{4}$, c; Ar=p-N(OH₈)₂- $C_{e}H_{4}$, d. Ar=p-OH- $C_{e}H_{4}$, e; Ar=p-OH- $C_{e}H_{4}$, f. Ar=p-NO₂- $C_{e}H_{4}$.

Scheme 1

Structures of compounds 1-7 (Table 1) were confirmed by elemental analysis, ir and pmr spectra.

The antibacterial and antifungal activities of some of the selected compounds, i.e. 2-7 (a, c, f) dissolved in ethylene glycol, were determined using filter paper disc method⁶ against bacteria *Bacillus* stearetherophil and serratia and fungi Aspergillus and Penicillium species. The inhibition zones of all the compounds were found in the range 6-16 mm.

Structure-biological activity relationship of fused pyrazolines, isoxazolines and pyrimidines (3-7)

TABLE 1-PHYSICAL DATA OF COMPOUNDS 2-7*				
Compd.	M.p.**	Yield	Mol.	Colour
no.	۵	%	formula	
2 _a	168	28	C24H18N2O4	Pale brown
2b	150	20	C28H22N2O6	Deep brown
2_{c}	80	63	CanHaeN4O4	Shiny deep brown
2 _d	250	32	C26H18N2O6	Deep brown
2e	140	25	0,6H1,N2O6	Shiny brownish violet
26	113	67	026H16N406	Shiny deep brown
3a	230ª	62	OssHanN.O.	Intense brown
3b	205 ^b	23	C. H. N.O.	Pale brown
3c	2 ! 28	83	Cs H se N O4	Pale yellowish green
3đ	213 ^b	49	Coo Hoc No Oc	Pale brown
3e	195 ^b	25	C28H26N6O6	Deep brown
3f	2708	29	C28H28N8O8	Deep yellowish green
4a	200 ^b	55	CasH. N.O.	Deep brown
4b	188 ^b	62	O40Ha4NaO4	Shiny deep brown
4c	215 ^b	83	042H40N802	Pale brown fine
4d	180 ^b	60	CasHanNaOa	Deep brown
4e	19 0 *	45	CasHaoN604	Deep brown fine
4f	150 ^a	25	CasH28NRO6	Reddish fine
5a	260ª	50	$0_{26}H_{20}N_{4}O_{4}$	Intense brown
5b	250 ^a	35	CasHa NAO.	Pale brown
5c	280ª	22	OsoHaoNsO4	Intense brown
5d	810 ^a	25	C20H20N.O.	Deep brown
5e	245 ^a	27	024H20N406	Shiny pale brown
5f	200ª	20	C26HINOR	Deep brown
6a	280ª	33	C28H22N6O4	Deep brown
6b	225°	27	C ₃₀ H ₂₀ N ₆ O ₆	Intense brown
6c	240 ^b	22	Cs H NO4	Shiny brown
61	190*	37	C2.H22N.O.	Pale brown
6e	212ª	35	C29H22N6O6	Grey
6f	230 ^b	23	C28H20N808	Pale brown
7a	290ª	25	C28H28N68202	Intense brown
7b	220ª	22	C30H28N682O4	Intense brown
7c	227 ^a	20	C, 2H2, N, S2O2	Pale brown
7 d	200 ^в	23	C28H22N882O4	Deep brown
7e	238 ^s	29	C ₃₈ H ₂₂ N ₆ S ₂ O ₄	Shiny brown
7f	250 ^a	20	C28H20N8S2O8	Yellowish green
*All compounds gave satisfactory C, H and N analyses. **Solvent for crystallisation : ^a ethanol : ^b methanol.				

was demonstrated relative to the parent 3,3-bisarylideno-4.9-dioxopiperideno[2.3-g]-1.2,3,4,6,7,8,9-octahydroquinolinoquinones (2a, c, f). Thus, the parent compounds (2a. c, f) are more potent against bacteria (7-16 mm) and fungi (6-10 mm). It is quite obvious that the presence of electron-donating or -withdrawing groups (2c or 2f) increases the activity more than the unsubstituted (2a). Also, inserting a pyrazolino moiety to the parent 2a to give 3 causes lowering in the biological activities. Thus, bis-N-acetylpyrazolino derivatives (3a, c, f) destroy completely the biological activity, but those of bis-N-phenylpyrazolino analogous (4a, c, f) slightly inhibit the activity. On the other hand, insertion of bis-isoxazolino and/or pyrimidino moieties (5-7a, c, f) to the parent compound (2a, c, f) completely destroys the biological activity, while pyrimidinethiono analogous slightly inhibit the activity especially those containing p-NO₂ substituent (7f).

Experimental

All melting points are uncorrected. The ir spectra were recorded on a Perkin-Elmer 127 B spectrophotometer and pmr spectra on a EM 390 (90 MHz) spectrometer. 4,9-Dioxopiperideno [2 3-g] - 1,2,3,4,6,7,8,9-octahydroquinolinoquinone (1): A mixture of p-benzoquinone (3.2 g, 3 mol) and β -alanine (1.7 g, 2 mol) was refluxed in ethanol (40 ml) for 50 h on a waterbath. The reaction mixture was then filtered while hot to remove the unreacted materials. The filterate was poured in ice-water mixture with stirring vigrously for 15 min and left aside for 3.5 h at room temperature. The resulting deep brown solid was filtered, washed several times with water, dried and crystallised from ethanol, (11%), mp. 210° (Found : C, 58.6; H, 4.1; N, 11.4 $C_{12}H_{10}N_{2}O_{4}$ requires : C, 58.5; H, 4.1; N, 11.4%); ν_{max} (KBr) 3 490 (NH', 1 735 (C=O) and 1 610 cm⁻¹ (C=C conj.); 8(DMSO) 5.65 (2H, s, 2NH exchangeable with D₂O), 3.6 (4H, t, 2CH₂ joined to nitrogen) and 3.75 (4H, t, 2CH₂ joined to C=O)⁹.

Bis-arylideno-4,9-dioxopiperideno[2,3-g]-1,2.3,4,6, 7.8.9-octahydroquinolinoquinone (2a - f): A mixture of 1 (02g, 0.01 mol) and the aromatic aldehyde (2 mol) was dissolved in ethanol (20 ml) containing piperidine (1 ml) and refluxed for 29-35 h. The reaction mixture was then filtered while hot, concentrated and allowed to cool at room temperature for overnight. On addition of petroleum ether 60-80°, a resinous material was separated and triturated with water. The resulting solid was filtered, washed several times with water, dried and crystallised from methanol : 2c. ν_{max} (KBr) 3 240-3 500 (NH), 1 600 – 1 665 (C=C conj. with C=O), 1 720 (C=O) and 700 cm⁻¹ (Ar-disubstituted)⁸; δ (DMSO) 6.8–9.8 (8H, m, ArH), 6.5 (2H, s, 2×NH exchangeable with $D_{\bullet}O$), 3.6 (4H, s, 2×CH₂ joined to nitrogen), 6.8 (2H, s, 2×CH olefinic) and 3.1 (12H, s, $4 \times CH_{a}$ joined to nitrogen)⁹.

Bis-N-acetylpyrazolino[3.4-c; 3',4'-c]piperideno-[2, 3-g]-1,2,3,4 6,7,8,9-octahydroquinolinoquinone (3a - f): A mixture of 2a - f (0.01 mol) and hydrazine hydrate (0.02 mol) in ethanol (20 ml) containing acetic acid (1 ml) was refluxed for 19-23 h. The reaction mixture was then filtered while hot, concentrated to one-third of its volume, poured in icewater mixture with vigrous stirring and left overnight at room temperature. The resulting solid was filtered, washed several times with water, dried and crystallised from proper solvent: 3c, ν_{max} (KBr) 3 300-3 450 (NH), 1 520-1 575 (C=N), 1 735-1 745 (C=O) and 700 cm⁻¹ (Ar-disubstituted)⁸; δ (DMSO) 6.95 8.6 (8H, m, ArH), 1.4 (4H, s, 2×CH₂ joined to nitrogen), 3.65 (2H, br, 2×NH exchangeable with D₂O), 3.15 (18H, s, 2×COCH_a, 4×CH_a joined to nitrogen) and 6.85-6.90 (4H, m, pyrazolone protons)⁹.

Bis-N-phenylpyrazolino[3,4-c; 3',4'-c]piperidino-[2,3-g]-1,2,3,4,6,7,8,9-octahydroquinolinoquinone (4a - f): A mixture of 2a - f (0.01 mol) and phenylhydrazine (0.02 mol) was dissolved in ethanol (20 ml) containing piperidine (1 ml) and refluxed for 17-25 h. The reaction mixture was then filtered while hot, concentrated to one-third of its volume, poured in ice-water mixture with stirring for 40 min and left overnight at room temperature.

The resulting solid was washed several times with water, dried and crystallised from the proper water, dried and crystallised from the proper solvent : 4f, ν_{max} (KBr) 3 300 - 3 450 (NH), 1 520 -1 575 (C=N), 1 735 - 1 745 (C=O) and 700 cm⁻¹ (Ar-substitution)⁸ ; δ (DMSO) 6.95 - 8.6 (18H, m, ArH), 1.4 (4H, s, 2×CH₂ joined to nitrogen), 3.65 2H, br, 2×NH exchangeable with D_oO) and 6.85-6.90 (4H, m, pyrazolone protons)[•].

Bis-isoxazolino[3,4-c; 3',4'-c]piperideno[2,3-g]-1,2,3,4,6,7,8,9-octahydroquinolinoquinone (5a - f): A mixture of 2a - f (0.01 mol) and hydroxylamine hydrochloride (0.02 mol) in ethanol (20 ml) containing 2% sodium hydroxide (1 ml) was refluxed for 21-23 h. The reaction mixture was then filtered while hot, the filterate concentrated to onethird of its volume, poured in ice-water mixture with stirring for 15 min and left overnight at room temperature. The resulting solid was washed several times with water, dried and crystallised from ethanol: 5f, ν_{max} (KBr) 3 350-3 400 (NH), 1 540 (C=N), 1 680-1 630 (C=O) and 700 cm⁻¹ (Arsubstitution)*; 3 (DMSO) 8.35-8.75 (8H, m, ArH), 7.8 (4H, m, isoxazolone protons), 3.5 (2H, br, 2×NH exchangeable with $D_{g}O$, 1.2-2.1 (4H, s, $2 \times CH_{g}$ joined to nitrogen)⁹.

Bis-pyrimidino and or pyrimidine thiono[3,4-c; 3'4'-c]piperideno[2,3-g]-1,2,3,4,6,7,8,9-octahydroquinolinoquinone (6a - f, 7a - f): A mixture of an ethanolic solution of 2a - f (0.02 mol), urea and/ or thiourea (4 g) and concentrated hydrochloric acid (20 ml) was refluxed for 12-18 h. The reaction mixture was then filtered while hot, allowed to cool and neutralised with 5N NaOH. The resulting solid was washed several times with water, dried and crystallised from the proper solvent : 6f and 7f, $\nu_{\rm max}$ (KBr) 3 390 - 3 450 (NH), 1 540 (C=N), 1 720 (C=O for pyrimidine) and 1 350 cm⁻¹ (C=S for pyrimidine thione)⁸; δ (DMSO) 6.9-8.4 (8H, m, ArH), 3.1-4.2 (4H, br, $4 \times NH$ exchangeable with $D_{g}O$, 0.6-2.1 (4H, s, 2CH_g joined to nitrogen) and 3.5 (4H, m, pyrimidine protons)⁹.

References

- 1. A. K. KHALAFALLAH, M.Sc. Thesis, Aswan Faculty of
- M. A. EL, MAGHRABY, A. I. M. KORAIKM and A. K. KHALAFALLAH, Asw. Scs. Tech. Bull., 1984, 5, 1.
 M. A. EL, MAGHRABY, A. K. KHALAFALLAH, M. E. 2.
- 8. HASSAN and H. A. SOLEIMAN, J. Indian Chem. Soc.,
- 1986, **63**, 910. 4. M. A. EI, MAGHRABY, A. A. EL ELA, A. K. KHALAYALLAH 2nd E. EL SHAMI, J. Indian Chem. Soc., 1985, 62, 676.
- YAMZOE, Jap. Pat 75 158 543/1975. A. P. CHNTOLRLIA, J. W. NELSON and H. G. KOLLOF, J. Am. Chem. Soc., 1943, 65, 209; M. V. POSTYANOI and E. V. LOGNACHEN, Knov. Tekst. Khim., 1974, 3, 74; 5. S.
- b. V. HOGNACHER, INCO. 1655. 1807, 1914, 5, 14; Monsanto co., Jap. Pat. 7 635 430/1976.
 c. Y. H. LOO, P. S. SERLI, H. H. THORABERY, J. EHRLICH, J. L. MEGUIRE, G. M. SAVAGE and J. C. SYLVESTER, J. Baci, 1945, 50, 701.
 c. LOVEN, BRAWNL and W. T. SUMMERFORD, J. Chem.
- D. LOVEN, BRAWNI, and W. T. SUMMERFORD, J. Chem. Eng. Data, 1966, 11, 264.
 L. J. BELLAMY, "The Infrared Spectra of Complex Mole-cules", 2nd. ed., Methuen, London, 1964.
 F. SCHEIMANN, "Nuclear Magnetic Resonance and Infrared Spectroscopy", 1970, Vol. 1, pp. 41-70.