Design, test and demonstration of an inverter for HLFC compressor applications utilizing a Model-Based Systems Engineering approach

<u>Alexander Bismark</u>, Patrick Juchmann, Oliver Bertram DLR - Institute of Flight Systems

Deutscher Luft- und Raumfahrtkongress (DLRK) 2021 Virtual congress 31.08.2021 – 02.09.2021

Agenda

- Motivation & Project Context
- Analysis Process
 - Requirements Definition
 - Functional & Physical Architecture
 - Safety Assessment
- Initial Component Design
 - Motor Characterization
 - Control Scheme and Electronics Design
 - Thermal Considerations
 - Experimental Testbed and Results
- Conclusion & Outlook

Motivation

- Pressure towards reduction of emissions rises
- Hybrid Laminar Flow Control (HLFC) one enabling technology
 - Reduction of emissions
 - Decrease in fuel costs
- Model-Based Systems Engineering (MBSE) gains importance in aerospace industry
- Goals for this work
 - Systematic analysis approach for a inverter design using MBSE
 - Show initial work on the inverter development for a compressor operated on ground

Image adapted from K.S.G. Krishnan

Project Context

- Functions to be performed by Inverter
 - Drive compressor motor
 - Forward monitoring data to control computer (via AFDX)
 - Receive the commanded compressor speed from control computer
- Challenges
 - High power density (> 5 kW on 100 mm x 100 mm x 250 mm)
 - Control of compressor motor (150,000 RPM)
 - Fluid cooling not feasible
 - Aviation certification rules must be met

General Requirements

- CS-25/FAR-25 decisive regulation \rightarrow AMC 25.1309 lists relevant standards to be considered
 - ARP4754A (Development Process) and ARP4761 (Safety Assessment Conduction)
 - DO-160G (Environmental Tests) -> Categorization conducted for the inverter
 - DO-178C (Software Development) and DO-254 (Hardware Development)
- Basic requirements
 - Operation in cruise between FL330 and FL410 (max. ambient temperature -30°C)
 - System shall operate automatically and be unnoticeable to crew during normal operation
 - Fuel savings shall not be considered during fuel planning, Minimum Equipment List shall not be changed
 - Modern aviation concepts shall be followed (Integrated Modular Avionics, More Electric Aircraft)

Functional Decomposition

Aim

- System performs intended functions
- generates generic baseline for solution candidates

Safety Assessment

- Usually not part of systems engineering, but required for certification in aviation
- Required analyses stated in ARP4754A, guidelines for conduction in ARP4761

Functional Hazard Assessment (FHA)			Preliminary System Safety Analysis (PSSA)
 Classifies severity in case of a loss or incorrect function for previously defined functions Inverter-related functions: Monitoring and Air Ingestion Loss of suction not critical (project directive) Category dictates effort for development process 			 ■ Benefit of Fault Tree Analysis (FTA) ✓ Requirements on architecture are set to meet defined failure rate and remove single causes ✓ Check whether current design fulfills safety requirements (literature and manufacturer data) ■ Loss of monitoring not critical itself, but detection and deactivation of compressor must be ensured
Failure Incorrect function of monitoring Loss of monitoring	Effect Sev Operation Cata out of limits, possible rup- ture or fire Operation out of limits, possible rup- ture or fire	phic per FH $= \frac{1 \cdot 10^{-9}}{}$ as-	Critical failures Erroneous Erroneous Sensor Erroneous Sensor 1 Erroneous Sensor 2

Safety Assessment (2)

Zonal Safety Analysis

- Failures arising from same installation area or interference between systems
- Example results: Redundant AFDX bus, separate harnesses for sensors

Particular Risk Analysis

- Failures resulting from external hazards
- Example results: Lightning strike
 protection, Electromagnetic
 Compatibilty (EMC) guidelines

Common Mode Analysis

- Verify independency of failure events in fault tree (PSSA)
- Example results: Dissimilar hardware and software implementation
- Increasing system complexity reveals limits of classical approach (ARP4754A/ARP4761)
 - STPA (Systems-Theoretic Process Analysis) by Nancy Leveson enables a more powerful hazard analysis
 - OMG-published beta version of Risk Analysis and Assessment Modeling Language (RAAML) containing UML libraries, among others for FTA and STPA → formalized integration of safety assessments in SysML
 - Future: Holistic approach using MBSE for development in aviation

Final Requirements Analysis & Solution Architecture

- Prior to development phase, requirements to be checked in their entirety (complete and correct)
- All requirements implemented in model, usage of traceability matrices to specify sources
- HLFC in multidisciplinary surrounding → boundary conditions frequently change, thus adaptation of requirements necessary
- Advantage MBSE: Traceability allows fast identification of affected components and easy verification

Motor Characterization

- Prior to preliminary electronics design, identify inverter design goals and parameterize motor models
- Measurements at varying operating points, stationary and transient
- Results of measurements
 - Base wave identical to mechanical frequency (416.6 Hz) → 1 Pole pair motor
 - Rotor-dependent phase inductance variation → Interior Permanent Magnet Synchronous Motor (IPMSM)
 - 'Align and go' methodology used by manufacturer

Motor Parameter	Value
Pole Pairs [-]	1
Phase Resistance $[\Omega]$	0.205
Phase Inductance [mH]	0.300
Speed Constant [Vs/rad]	0.0013
Phase Voltage max. [V]	100
Phase Current max [A]	17
Speed max. [min ⁻¹]	150,000

Base wave at 25,000 1/min

Base wave at startup

Control Scheme

- Field Oriented Control (FOC) favorable due to
 - Low torque ripple
 - Usage of reluctance torque
 - Constant switching frequency
- Sensorless rotor angle determination
 - No loss moment
 - Reduced system complexity
- Rotor angle estimation based upon Back ElectroMotive Force (BEMF)
 - Specific operating point of compressor at high speeds
 - Utilization of already prevailing measurements
 - Reduced complexity

Control Scheme (2)

- 1 pole pair motor → maximum base wave frequency corresponding to mechanical speed
- Sufficiently high switching frequency to modulate base wave
- PWM frequency set to 100 kHz → 40 pulses per revolution
- Regular sampling shall be applied, meaning new updated duty cycle at every pulse
- Sampling of phase current and voltage values at 1/2-point of pulse
- Switching delays of power module and gate drive circuitry < 200 ns → 2 % reduction of duty cycle
- Current control loop period < 5 μs must be achieved

A – Acquire
B – Calculate Current Control Loop

C – Update Duty Cycle

(not to scale)

Preliminary Electronics Architecture

- 28 VDC low-voltage supply for low-voltage components; 270 VDC power stage supply
- Transceivers for Ethernet, CAN, RS232
- TI C2000 MCU
 - Dual-core architecture enabling partitioned processing of control loop and peripheral tasks
 - Optimized current control loop implementations demonstrated < 1 µs calculation time
- Integrated power stage Infineon CoolSiC
 - Spatial efficiency
 - Thermally enhanced
- Isolated gate drivers
- Inline phase current and voltage measurement circuitry

Thermal Considerations

Preliminary study on fin size for cooling

- Power loss of semiconductors from data sheet: 190 W
- Power module connected to cooling plate (100 mm x 250 mm) with fins, located at inlet airstream of compressor (ca. 10 m/s)
- Boundaries: Ambient air max. -30°C, power module de-rated 120°C
- Estimated temperature rise between junction and heatsink: 49°C
- Determination of heat dissipation by convection (steady-state) $P = 190 [W] = h_c \cdot A \cdot \Delta T = h_c \cdot A \cdot [(120^{\circ}C - 49^{\circ}C) - (-30^{\circ}C)]$
- Simplification: Laminar flow over a flat plate

$$h_c \approx 20 W/(m^2 \cdot K)$$

 $\Rightarrow A = 0.093 m^2$

- Selecting fin thickness of 3 mm and separation of 3 mm → 16 fins with a length of 250 mm and a height of ca. 8.5 mm
- Results validated in Simscape™ model using data sheet information
- Verification will be achieved by tests in a climate chamber

Image Courtesy: Thomas Haase

Slide: 15

Experimental Testbed

- Setup for continuous testing of future electronics
- Proper function of power electronics demonstrated (incorporating Infineon CoolSiC power module)
- Input and output voltages measured → Propagation delay of 160 ns determined, complies with data sheet values
- Testing of control concepts in progress and electronics miniaturization

Conclusion & Outlook

- Systematic approach applied to prepare component development using standards from systems engineering and aviation regulations
 - Detailed analyses for derivation of requirements
 - Functional breakdown and definition of solution architecture
 - Safety assessment according to regulations
- All steps implemented into a model
- Initial work on the inverter development
 - Characterization of the compressor motor
 - Selection of a suitable control concept and preliminary electronics design
 - Preliminary thoughts on cooling concept
 - Experimental testbed built up, first measurements conducted

Outlook

- Miniaturization of current electronics and subsequent testing in climate chamber
- Continuous implementation of all required features

Thank you for your attention!

Contact

Alexander Bismark

Deutsches Zentrum für Luft- und Raumfahrt (DLR). Institute of Flight Systems

Lilienthalplatz 7, 38108 Braunschweig

Alexander.Bismark@dlr.de; +49 (0)531-2953425

Acknowledgement

This project has received funding from the Clean Sky 2 Joint Undertaking (JU) under grant agreement No 945583. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Clean Sky 2 JU members other than the Union.

Disclaimer

The results, opinions, conclusions, etc. presented in this work are those of the author(s) only and do not necessarily represent the position of the JU; the JU is not responsible for any use made of the information contained herein.

