@AGUPUBLICATIONS

Journal of Geophysical Research

Supporting Information for

Kinematic Rupture Scenarios and Synthetic Displacement Data: An Example Application to the Cascadia Subduction Zone

Diego Melgar¹, Randall J. LeVeque², Douglas S. Dreger¹ and Richard M. Allen¹

¹Seismological Laboratory, University of California Berkeley, Berkeley, CA, USA

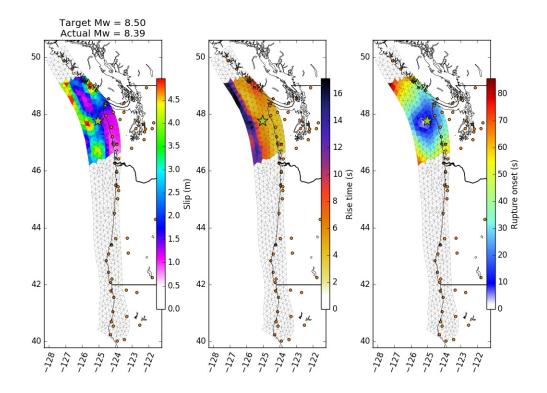
²Department of Applied Math, University of Washington, Seattle, WA, USA

Contents of this file

Figures S1 to S4

Additional Supporting Information

Dataset S1: Plots of the 1300 scenario ruptures Dataset S2: Rupture files, static offset and PGD files, log files, and waveforms for the 1300 scenario ruptures


Both data sets are in the file "Cascadia.zip"

The fakequakes code is a module of the MudPy inversion and modeling code it can be obtained at http://github.com/dmelgarm/MudPy

Introduction

In Dataset S1 we provide plots of each one of the 1300 scenarios in the "plots" folder, in this file readers will find one plot for each scenario event, an example of such a plot is shown in Figure S1. The plots have the total slip from each scenario as well as the rise time at each subfault (column labeled "dura" in the .rupt file associated with each rupture) and the rupture onset time (column labeled "rupture time"). Those figures also include the distribution of stations used to synthesize the waveforms.

In Dataset S2 we also provide detailed information on each of the scenario ruptures as well as the synthesized waveforms at all stations. This data can be collectively found in the file "data", in that folder readers will find one subfolder for each scenario event, labeled Cascadia.oooooo, Cascadia.oooooo1 and so on. Inside each folder there are three summary files that contain information on the scenario rupture, screenshots of these files are in Figures S2-S4. The files end in .log, .rupt, and .offsets. The .log files (Figure S2) contain summary information on the scenario rupture such as magnitude, hypocentral location, centroid location, etc. The .rupt files contain the description of the rupture in a subfault format. The .offsets file contain the static offsets and peak ground displacement (PGD) values at each station. Furthermore we include the waveforms at each station for each rupture in SAC format. Inside each folder there are SAC files for each station and component. For example the files bamf.LYE.sac, bamf.LYN.sac and bamf.LYZ.sac have the waveform data for station bamf and the north, east and up components. Station locations and coordinates are in the "station_info.txt" file

Figure S1. Example summary plot for scenario #531. Plotted are the total slip, rise time and rupture onset times at each subfault. The green star denotes the hypocenter and the orange squares are the GNSS station locations used to synthesize the waveforms. We provide a plot like this one for every one of the 1300 scenario ruptures in the supplementary file cascadia_plots.zip

	_cascadia.000413.log +									
1	Scenario calculated at 2016-05-03 00:40:40 GMT									
2	Project name: Cascadia_final1									
3	Run name: cascadia									
4	Run number: 000413									
5	Velocity model: cascadia.mod									
6	Hurst exponent: 0.75									
7	Corr. length used Lstrike: 54.68 km									
8 9	Corr. length used Ldip: 40.01 km									
9	Slip std. dev.: 0.900 km									
10	Maximum length Lmax: 185.91 km									
11	Maximum width Wmax: 117.02 km									
12	Effective length Leff: 158.03 km									
13	Effective width Weff: 90.11 km									
14	Target magnitude: Mw 8.4000									
15	Actual magnitude: Mw 8.1142									
16	Hypocenter (lon,lat,z[km]): (-126.784215,48.887891,11.17)									
17	Hypocenter time: 2016-09-07T14:42:26.000000Z									
18	Centroid (lon,lat,z[km]): (-126.832184,49.517934,20.07)									
19	Source time function type: dreger									
20										

Figure S2. Example of a rupture summary .log file.

	•	🕨 📄 _cascadia	a.000483.rupt	‡										
1	# N	<pre># No,lon,lat,z(km),strike,dip,rise,dura,ss-slip(m),ds-slip(m),ss_len(m),ds_len(m),rupt_time(s),rigidity(Pa)</pre>												
2	1	-125.237101	46.418952	10.8050	353.00	10.00	0.5	0.00	0.00	0.00	16926.90	16926.90	0.00	3.577392e+10
3	2	-124.977971	46.528374	14.6990	352.00	10.00	0.5	0.00	0.00	0.00	14578.41	14578.41	0.00	4.043200e+10
4	3	-125.143248	46.527428	12.4190	352.00	10.00	0.5	0.00	0.00	0.00	14850.93	14850.93	0.00	4.043200e+10
5	4	-127.501597	49.733148	14.0040	332.00	14.00	0.5	0.00	0.00	0.00	16004.69	16004.69	0.00	4.043200e+10
6	5	-125.172806	46.330382	11.4000	351.00	9.00	0.5	0.00	0.00	0.00	13751.73	13751.73	0.00	3.577392e+10
7	6	-125.221520	46.639212	11.7340	351.00	10.00	0.5	0.00	0.00	0.00	14830.37	14830.37	0.00	4.043200e+10
8	7	-124.233695	45.721955	22.6470	358.00	10.00	0.5	0.00	0.00	0.00	7566.37	7566.37	0.00	4.547664e+10
9	8	-124.025577	40.213135	24.4000	77.00	10.00	0.5	0.00	0.00	0.00	15379.21	15379.21	0.00	4.547664e+10
10	9	-124.771840	47.442103	20.7890	343.00	9.00	0.5	0.00	0.00	0.00	13483.69	13483.69	0.00	4.547664e+10
11	10	-125.348033	46.655639	10.1220	350.00	9.00	0.5	0.00	0.00	0.00	13209.84	13209.84	0.00	3.577392e+10

Figure S3. Example of a rupture description .rupt file. The description of each column is in the file header. The coordinates are for the geometric centroid of each subfault triangle. The column labeled "rise" has dummy values of 0.5, the column labeled "dura" contains the actual rise times of each subfault in seconds. "ss_slip and "ds_slip" contain the values of slip in the strike-slip and dip-slip directions. Positive dip-slip is thrust. The columns "ss_len" and "ds_len" when multiplied together give the correct area for each triangular element.

		🕒 _cascadia.0007	799.offsets 🛟				
1	# Stat:	ion, lon, lat,	N[m], E[m],	Up[m], PGD	[m]		
2	albh	-123.4875	48.3898	-0.015031	-0.016407	-0.020941	0.193686
3	bamf	-125.1351	48.8353	0.001259	0.001806	-0.019200	0.201823
4	bend	-121.3151	44.0571	0.005473	-0.385272	0.014002	1.079888
5	bils	-124.2523	47.5391	-0.017917	-0.021724	-0.041035	0.268774
6	cabl	-124.5600	42.8400	-0.967608	-3.512802	1.079165	4.035741
7	chzz	-123.9800	45.4900	-0.089306	-3.230153	-0.562092	4.414892
8	cski	-122.2355	47.3803	-0.068736	-0.098875	-0.016262	0.422539
9	ddsn	-123.2400	43.1200	0.267554	-2.225357	-0.649884	2.803025
10	eliz	-127.1226	49.8730	0.000082	0.007204	-0.010102	0.165059
11	elsr	-122.7605	47.4975	-0.068328	-0.080913	-0.023908	0.340516
12	grmd	-123.0226	46.7954	-0.221718	-0.340729	-0.079243	0.811138

Figure S4. Example of a static offsets and PGD summary .offsets file. PGD is calculated on the three components of motion as noted in Melgar et al. [2015] equation 1.

References

Melgar et al. (2015), Earthquake magnitude calculation without saturation from the scaling of peak ground displacement, *Geophys. Res. Lett.*, doi:10.1002/2015GL064278