
Proceedings of the International Conference on Live Coding, Valdivia, December 2021
https://iclc.toplap.org/2021/

Synerg(e)ia: A Networked Collaborative Live Coding
Environment

Vasilis
Agiomyrgianakis

Iason Svoronos- Kanavas Iannis Zannos Giorgos Diapoulis

Faculty of Music &
Audiovisual Arts,

Department of
Audiovisual Arts Ionian

University
vagiomyr@ionio.gr

Faculty of Music & Audiovisual
Arts, Department of

Ethnomusicology
 Ionian University

jason.skk98@gmail.com

Faculty of Music &
Audiovisual Arts, Ionian
University, Department

of Audiovisual Arts,
Ionian University

iani@ionio.gr

 Interaction Design,
Department of

Computer Science &
Engineering, Chalmers

University of
Technology, University

of Gothenburg
geodia@chalmers.se

ABSTRACT

Synerg(e)ia (Συνέργεια) is an experimental project for networked collaborative live coding practice using
Emacs. The goal of this study is to facilitate remote collaboration among live coders and deliver an attractive
interface that offers code sharing and audio synthesizing on-the-fly. We build an environment that provides
necessary features  of  networked collaborative live coding namely  as  time sharing,  code sharing,  access
control,  communication  facilitation.  Synergia  relies  entirely  on  sharing  code  and  executing  it  on  each
performer’s system in order to produce audio.  Synergia is based on PIVPN technology for server-client
communication that runs on a Raspberry Pi 3. VPN offers an easy and secure access for the users to connect
to the server. Additionally, Synergia uses open-source software such as tmux terminal multiplexer, Emacs,
and  OSCGroups.  It  also  uses  a  variant  version  of  sc-hacks-redux  OscGroups  class  in  SuperCollider  to
manage and send messages to client’s SuperCollider programming environment. While there are numerous
environments  for  collaborative  coding,  Emacs  offers  an  attractive  alternative  for  an  experienced
user/programmer. There is a broad variety of customisation features that may be implemented on Emacs.
Also,  many computer music languages,  like SuperCollider,  Tidal,  Foxdot,  Impromptu and more,  support
Emacs connectivity.  Getting advantage  of  these  features  and functionality our  system may be used for
reproducible research.

1. INTRODUCTION

In the latest years, networked collaborative live coding has been used as a mean to perform and practice on-
the-fly computer music and computer graphics. In networked live coding users can collaborate in real-time
to form shared experiences which may emerge during performance practice and to explore new ways to
communicate during performance practices. There are various examples such as, SuperCopair (de Carvalho
Junior,  Lee  & Essl  2015),  Troop  (Kirkbride,  2017),  Extramuros  by  (Ogborn,  Tsabary,  Jarvis,  Cardenas  &
McLean 2015), flok1, and Estuary (Ogborn & Beverley 2017) among others. Like the above examples, Synergia
is based on the idea of creating an environment that relies on classification criteria for remote network live
coding performances such as those suggested by Barbosa (2003) and Lee & Essl (2014). Networked live coding
(NLC)  may be either synchronous, for instance, peer-to-peer interaction between several users using a peer-
to-peer solution such as Wright’s (2005) Open Sound Control (OSC) and OSCGroups by Bencina (2018), or
asynchronous, for instance, exchanging MIDI files through e-mail (Barbosa, 2003) in the temporal domain,
whereas NLC practices may be either remote or co-located in the spatial domain. Some other features of
NLC are code sharing, access control and communication facilitation. In our work we offer a synchronous
interaction  remotely.  Additionally,  there  is  a  little  research  in  remote  live  coding  that  the  users  can
collaborate using the same live coding interface. For instance, in Troop, flok, Εstuary among others, the
performers  share  the  same  code  in  the  same  window  and  they  can  make  minor  alternations  to  the
environment such as changing theme or colour. However, in Synergia it is offered remote collaboration from

1https://flok.clic.cf/

Copyright Vasilis Agiomyrgianakis, Iason Svoronos-Kanavas, Iannis Zannos, Giorgos Diapoulis This is an open access article distributed under the
terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

https://iclc.toplap.org/2021/


Proceedings of the International Conference on Live Coding, Valdivia, December 2021
https://iclc.toplap.org/2021/

an interface in which any user can make its own customisations. Moreover, Synergia’s interface is easily
accessible. To access the interface you have to connect to the server via SSH using a VPN client. The server
is cross-platform and it is easily accessible from any location (remotely). Our prototype server runs on a
Raspberry Pi 3 model under Linux Debian in which an interface for collaborative Live Coding based on
Emacs editor (Stallman, 1981) has been implemented.  In Synergia all users have access to each others’ live
coding  workspace.  Both  code  and  audio  synthesizing  are  produced  on  each  users’  local  SuperCollider
language  side  (sclang).  This  creates  an  alternative  method  for  broadcasting  sound  that  is  based  on
synthesizing the audio locally through OSC communication as opposed to streaming audio between clients.
In our opinion this model provides synchronous almost real-time interactions between performers. 

2. SYSTEM ARCHITECTURE

Synergia utilizes the PIVPN2 tool to set up a VPN server with a static IP address on a single Raspberry Pi. It's
also critical that it creates VPN profiles with unique IP addresses that can be used by clients to connect to
the Synergia interface and consequently to the OSCGroups server. The VPN server listens on the IP address
with this format (10.8.0.1) and accepts requests from 10.8.0.0/254. When clients connect to the server, they
can  access  the  interface  by  using  SSH  from  their  terminal.  Moreover,  Synergia  runs  Tmux  terminal
multiplexer to deal with concurrent processes such as OSCGroups and Emacs server-client procedures 3. Any
client that can access the Synergia interface can send a code fragment from the server to the connected
nodes (clients) of local sclang via Open Sound Control (OSC). Synergia communicates with SuperCollider
clients using OSCGroups, which allows the clients to transmit and receive data via peer-to-peer messaging.
In Synergia a modified version of the SuperCollider OscGroups class4 is also running in order to maintain
multiple IP addresses from VPN clients connected to the OSCGroups server. The client needs also to install
OSCGroups class into their machine so to send and receive messages. Wherever a live coder evaluates a
SuperCollider code in Synergia interface, the OSCGroups server sends OSC messages to the clients' local
SuperCollider programming language.

3. INTERFACE DESIGN

The concept of Synergia is to motivate people to improvise and to create their layouts using the Emacs
editor.  Synergia’s Emacs configuration comes with SuperCollider (McCartney, 2002), OSCGroups (Bencina,
2018) by default. A future version is expected to include more live coding environments, such as ixi lang
(Magnusson,  2009)  and  Tidal  Cycles  (McLean,  2010).  In  Synergia  environment  all  the  members  of  the
ensemble can use the same live coding environment where every user can generate music. Furthermore,
given that Synergia is configurable and extensible, this may give rise to community engagement which may
encourage collaborative practices. For instance, on Emacs it is very easy to make git commits, which may
facilitate code maintenance and code sharing. Additionally, Synergia is simple to replicate for reproducible
research because it operates on a low budget solution, that is a Raspberry Pi, and its image is open-source
and available on a Github repository.

3.1 USER INTERACTION 

With Emacs server-client mode it is possible to run many SuperCollider workspaces for collaborative live
coding where new files are opened in a running instance of Emacs. Synergia has a default design with
SuperCollider workspaces  for the users  to do live coding and this can be extended to include  more live
coding  Emacs  modes.  The  environment  is  designed  in  such  a  way  to  provide  to  all  users  access  and
permissions  such  as  read,  write  and  execute  code  on  other  users  workspaces.  In  that  way,  direct
communication like having a chat room it  is  also provided. All  users  can watch each  others’  code and
activity during the performance. The idea in Synergia is that all performers can share the same text buffer,
they can create new or they can use the existed SuperCollider workspace buffers. For instance, any user can
create  windows  and  design  their  appearance  onto  the  screen.  They  can  split  windows  vertically or
horizontally to watch other’s users workspaces during the performance. Additionally, users can alternate the

2https://pivpn.io/

3https://www.emacswiki.org/emacs/EmacsClient

4https://github.com/iani/sc-hacks-redux/

Copyright Vasilis Agiomyrgianakis, Iason Svoronos-Kanavas, Iannis Zannos, Giorgos Diapoulis This is an open access article distributed under the
terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

https://iclc.toplap.org/2021/


Proceedings of the International Conference on Live Coding, Valdivia, December 2021
https://iclc.toplap.org/2021/

appearance of their live coding session by customising emacs variables such as fonts, colours, and other
attributes of the text by using control commands (C-x or C-c).  Concurrent evaluation with Emacs control
commands can result in unforeseen problems and crashes. The control key executes various functions in
Emacs  such  as  screen  motion,  buffer  visibility,  multiple  windows,  line  execution,  etc.  This  can  cause
unwanted Emacs behaviour and thus interrupt the live coding session. To address this issue, we made some
modifications on the keyboard mapping. We have bind SuperCollider’s line and block code evaluation to the
Shift key instead of Control key. Thus, one option was to bind Shift-2 keyboard shortcut for line evaluation
and Shift-5 for code block evaluation. Those key combinations are not based on Emacs control commands
like the default control command C-c/C-c for line evaluation in SuperCollider mode.  Figure 1 shows the
Synergia interface with two SuperCollider workspaces during a Live Coding session5. Figure 2 shows some
of the processes running during a live coding session in the Synergia client. The Synergia OscGroups client
binary and SuperCollider workspace along with the SuperCollider post window are shown respectively. 

Figure 1. Example of the Synergia interface during a live coding session.

Figure 2. From left to right: Synergia OSCGroups, Synergia SuperCollider workspace, SuperCollider post 
window.

Moreover,  Synergia  contains  SuperCollider  classes  for  live  coding  such  as  BA  Live  coding  classes 6

(Agiomyrgianakis, 2021). Those classes offer an easy way for a beginner to deal with sound and patterns and
generally with live coding practices in SuperCollider. BA live coding classes also contain a clock mechanism
for synchronisation purposes during live coding. To be able to run BA classes to your SuperCollider  it is
required to install those classes to your machine. Thus, in Synergia if the members of a live coding session

5Youtube video with Synergia live coding session: https://youtu.be/-0LVr4dkgdE

6https://github.com/Vasileios/BA

Copyright Vasilis Agiomyrgianakis, Iason Svoronos-Kanavas, Iannis Zannos, Giorgos Diapoulis This is an open access article distributed under the
terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

https://iclc.toplap.org/2021/


Proceedings of the International Conference on Live Coding, Valdivia, December 2021
https://iclc.toplap.org/2021/

equipped  with  the  same  SuperCollider  setup  they  can  listen  to  the  same  audio  output  during  the
performance.

3.2 ACCESSING SYNERGIA 

To access Synergia you need to have a VPN client service application such Open VPN and to clone the
Synergia GitHub repository7 into your computer. It is also required for the clients having SuperCollider
installed into their machine. The Synergia GitHub source code includes the user manual. Automatic and
manual connections to the Synergia server are available. Shell scripts can be found in the Synergeia GitHub
repository  that  can  automate  the  procedure.  For  example, ‘usr1_oscgroups_sclang’  shell  script  will  run
OscGroupClient and SuperCollider on your machine so to receive OSC messages from the server. With this
configuration the connected clients  can listen to a  live  coding session without  needing to login  to the
Synergia interface via SSH. That means that there is a way for the audience to listen to live coding sessions
with the minimum of effort. Additionally, live coders can login to Synergia interface via SSH by running the
command  ssh user1@10.8.0.1 in  which ‘user1’ is a user in Synergia server and  10.8.0.1  the static internet
protocol (IP) of the server provided by PIVPN.  

4. DISCUSSION 

As mentioned in the introduction, Synergia is being developed through the prism of certain basic principles
of a remote live coding platform as stated by Lee & Essl (2014). At the same time, we are focused on free
software and compatibility. Finally, the ability of the user to customise the platform in any way.  Therefore,
performing using Synergia can sufficiently cover the limitations of distance in the communication process
by means of the network. That applies for both performers and audience. Furthermore, a message in such a
communication  system  has  an  abstract  and  subjective  form  derived  through  the  prism  of  artistic
experimentation. In our case, the transmitter and receiver can be both the performers and audience. More
specifically, performers can transmit various messages through their improvisational musical expression,
assuming that it is a musical live coding performance. In addition, they also receive intuitive feedback from
the audience. Subsequently, the audience receives both musical and optical messages from the performers
and  it  may  also  motivate  emotional  responses  through  their  gestural  manifestations  and  nonverbal-
communication. On Synergia, that is replicated through textual expression, due to the limitation of remote
visual  feedback.  Our  vision  aims  for  a  fully  interactive  live  coding  performance,  where  an  interactive
communication relationship will develop between the performers and the audience. The respective result, in
terms of performance, will be derived on this relationship by replicating, in a sense, the physical act of the
live coding practice. We suggest that with Synergia performers can strengthen the bonds of interaction to
each other.  Firstly, by the general concept of collaborative live coding and secondly by giving them the
chance to "shape" the environment into a desirable and convenient form where the live coding session will
take place. Another important aspect of Synergia is that it can support a live audience. Anyone can attend a
live coding session on Synergia by connecting to the server using OSCGroups and starting a local sclang
process.  A physical  performance requires feedback from the audience and this ability is also important.
Using Synergia audience can send messages from their local sclang process to the performers in real time by
using the VPN configuration.  Although,  the feature of  audience feedback requires improvements in the
terms of accessibility and convenience. Taking that even further, one idea would be to introduce the ability
of interaction between the performers and audience.    Additionally,  most studies in the field of remote
collaborative live coding have only focused on music. The same applies on Synergia. A future goal is to
incorporate visuals and sensor connectivity for interactive performance practices.  We strongly believe that
a greater focus on including telematic performance and visuals in Synergia could offer a significant number
of  expressive  capabilities  to  the  performers.  Potentially,  in  terms  of  visuals  a  limitation  could  be  the
necessity of a graphical interface. Since Synergia is accessible by means of the terminal visuals options are
limited.  For example, one option is to synchronize visuals and audio using Pen8 class in SuperCollider. In
addition, there is a number of implementations of ascii art in openFrameworks9, that can run in the Synergia
environment.  At the same time, we are trying to make Synergia as easily accessible as possible for the users.

7https://github.com/Vasileios/Synergia-Collaborative-Live-coding

8https://doc.sccode.org/Classes/Pen.html

9[https://github.com/tgfrerer/ofxNcurses], [https://github.com/naus3a/ofxConsoleRenderer]

Copyright Vasilis Agiomyrgianakis, Iason Svoronos-Kanavas, Iannis Zannos, Giorgos Diapoulis This is an open access article distributed under the
terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

https://iclc.toplap.org/2021/


Proceedings of the International Conference on Live Coding, Valdivia, December 2021
https://iclc.toplap.org/2021/

Therefore, the question of whether an additional configuration on the user’s local machine regarding visuals
could increase the complexity should be considered.  In our opinion, this work develops and promotes new
techniques and new tools for networked collaborative live coding and interactive audiovisual arts.

Acknowledgments

Special thanks to free software community for making our world better.

REFERENCES

Agiomyrgianakis, Vasilis. 2021. “LiveGloving: Experimental schemes for live coding performances”. International 
Conference DCAC. Corfu. 

Barbosa, Alvaro. 2003. “Displaced Soundscapes: A Survey of Network Systems for Music and Sonic Art Creation”. 
Leonardo Music Journal 13: 53–59.

Bencina, Ross. 2018. “OSCgroups: peer-to-peer Internet OSC multicast without the 
pain”. https://www.rossbencina.com/code/oscgroups, accessed:2021-08-12.

de Carvalho, Junior, Lee A.D, Essl G. 2015. “SuperCopair: Collaborative Live Coding on SuperCollider through the 
Cloud”. In: McLean, Alex and Magnusson, Thor and Ng, Kia and Knotts, Shelly and Armitage, J (ed.) Proceeding of the 
First International Conference on Live Coding. pp. 152-158. ICSRiM, University of Leeds.

Kirkbride, Ryan. 2017. “Troop: A Collaborative Tool for Live Coding”. In: Proceedings of the 14th Sound and Music 
Computing Conference. pp. 104–109.

Lee, Sang Won, and Georg, Essl. 2014b. “Models and Opportunities for Networked Live Coding.” In Proceedings of the 
Live Coding and Collaboration Symposium 2014. Birmingham, United Kingdom.

Magnusson, Thor. 2009. “ixi lang: a live coding programming language for musical performance”. Software, UK. 
http://www.github.com/ixi-thor/ixilang.

McCartney, James. 2002. “Rethinking the Computer Music Language: SuperCollider”. Computer Music Journal 26 (4): 61-
68.

McLean, Alex, and Geraint, Wiggins. 2010. “Tidal—Pattern Language for the Live Coding of Music.” In Proceedings of 
the 7th Sound and Music Computing Conference. Vol. 2010. http://server.smcnetwork.org/files/proceedings/2010/39.pdf.

Ogborn, David, et. al. 2015. “Extramuros: making music in a browser-based, language-neutral collaborative live coding 
environment”. First International Conference on Live Coding. Leeds, UK.

Ogborn, David., & Beverley, J.G. 2017. “Estuary: Browser-based Collaborative Projectional Live Coding of Musical 
Patterns”.

Stallman, Richard, M. 1981. “The Extensible, Customizable, Self-Documenting Display Editor”. ACM Conference on Text 
Processing.

Wright, Matthew. 2005. “Open Sound Control: an enabling technology for musical networking”. Organised Sound 10 
(03): 193.

Copyright Vasilis Agiomyrgianakis, Iason Svoronos-Kanavas, Iannis Zannos, Giorgos Diapoulis This is an open access article distributed under the
terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

https://iclc.toplap.org/2021/

	3.1 USER INTERACTION
	Acknowledgments

