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Abstract

By proving the existence of a zero-free region for the Riemann zeta-function, de la Vallée-
Poussin was able to bound θ(x) = x + O(x × exp(−c2 ×

√
log x)), where θ(x) is the Chebyshev

function and c2 is a positive absolute constant. Under the assumption that the Riemann hypothe-
sis is true, von Koch deduced the improved asymptotic formula θ(x) = x + O(

√
x × log2 x). We

prove when θ(x) = x + Ω(
√

x × log2 x), then the Riemann hypothesis is false.
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1. Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only
at the negative even integers and complex numbers with real part 1

2 [1]. In mathematics, the
Chebyshev function θ(x) is given by

θ(x) =
∑
p≤x

log p

where p ≤ x means all the prime numbers p that are less than or equal to x. Say Nicolas(pn)
holds provided ∏

q≤pn

q
q − 1

> eγ × log θ(pn).

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, log is the natural logarithm, and pn

is the nth prime number. The importance of this property is:

Theorem 1.1. [2]. Nicolas(pn) holds for all prime numbers pn > 2 if and only if the Riemann
hypothesis is true.

We know the following properties for the Chebyshev function:

Theorem 1.2. [3]. For a positive absolute constant c2:

θ(x) = x + O(x × exp(−c2 ×
√

log x)).
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Theorem 1.3. [4]. If the Riemann hypothesis holds, then

θ(x) = x + O(
√

x × log2 x).

Theorem 1.4. [5]. For 2 ≤ x ≤ 108

θ(x) < x.

We also know that

Theorem 1.5. [6]. If the Riemann hypothesis holds, then e−γ

log x
×

∏
q≤x

q
q − 1

− 1

 < 3 × log x + 5
8 × π ×

√
x

for all numbers x ≥ 13.1.

Let’s define H = γ − B such that B ≈ 0.2614972128 is the Meissel-Mertens constant [7]. We
know from the constant H, the following formula:

Theorem 1.6. [8]. ∑
q

(
log(

q
q − 1

) −
1
q

)
= γ − B = H.

For x ≥ 2, the function u(x) is defined as follows

u(x) =
∑
q>x

(
log(

q
q − 1

) −
1
q

)
.

We use the following theorems:

Theorem 1.7. [9]. For x > −1:
x

x + 1
≤ log(1 + x).

Theorem 1.8. [10]. For x ≥ 1:

log(1 +
1
x

) <
1

x + 0.4
.

Let’s define:

δ(x) =

∑
q≤x

1
q
− log log x − B

 .
Definition 1.9. We define another function:

ϖ(x) =

∑
q≤x

1
q
− log log θ(x) − B

 .
Putting all together yields the proof that the inequality ϖ(x) > u(x) is satisfied for a number

x ≥ 3 if and only if Nicolas(p) holds, where p is the greatest prime number such that p ≤ x.
In this way, we introduce another criterion for the Riemann hypothesis based on the Nicolas
criterion and deduce some of its consequences.
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2. Results

Theorem 2.1. The Riemann hypothesis is true if and only if the inequalityϖ(x) > u(x) is satisfied
for all numbers x ≥ 3.

Proof. In the paper [2] is defined the function:

f (x) = eγ × (log θ(x)) ×
∏
q≤x

q − 1
q

.

We know that f (x) is lesser than 1 when Nicolas(p) holds, where p is the greatest prime number
such that 2 < p ≤ x. In the same paper, we found that

log f (x) = U(x) + u(x)

where U(x) = −ϖ(x) [2]. When f (x) is lesser than 1, then log f (x) < 0. Consequently, we obtain
that

−ϖ(x) + u(x) < 0

which is the same as ϖ(x) > u(x). Therefore, this is a consequence of the theorem 1.1.

Theorem 2.2. If the Riemann hypothesis holds, then

3 × log x + 5
8 × π ×

√
x + 1.2 × log x + 2

+
log x

log θ(x)
> 1

for all numbers x ≥ 13.1.

Proof. Under the assumption that the Riemann hypothesis is true, then we would have∏
q≤x

q
q − 1

< eγ × log x ×
(
1 +

3 × log x + 5
8 × π ×

√
x

)
after of distributing the terms based on the theorem 1.5 for all numbers x ≥ 13.1. If we apply the
logarithm to the both sides of the previous inequality, then we obtain that∑

q≤x

log(
q

q − 1
) < γ + log log x + log

(
1 +

3 × log x + 5
8 × π ×

√
x

)
.

That would be equivalent to∑
q≤x

1
q
+

∑
q≤x

(
log(

q
q − 1

) −
1
q

)
< γ + log log x +

3 × log x + 5
8 × π ×

√
x + 1.2 × log x + 2

where we know that

log
(
1 +

3 × log x + 5
8 × π ×

√
x

)
<

1
8×π×

√
x

3×log x+5 + 0.4

=
3 × log x + 5

8 × π ×
√

x + 0.4 × (3 × log x + 5)

=
3 × log x + 5

8 × π ×
√

x + 1.2 × log x + 2
3



according to theorem 1.8 since 8×π×
√

x
3×log x+5 ≥ 1 for all numbers x ≥ 13.1. We use the theorem 1.6 to

show that ∑
q≤x

(
log(

q
q − 1

) −
1
q

)
= H − u(x)

and γ = H + B. So,

H − u(x) < H + B + log log x −
∑
q≤x

1
q
+

3 × log x + 5
8 × π ×

√
x + 1.2 × log x + 2

which is the same as

H − u(x) < H − δ(x) +
3 × log x + 5

8 × π ×
√

x + 1.2 × log x + 2
.

We eliminate the value of H and thus,

−u(x) < −δ(x) +
3 × log x + 5

8 × π ×
√

x + 1.2 × log x + 2

which is equal to

u(x) +
3 × log x + 5

8 × π ×
√

x + 1.2 × log x + 2
> δ(x).

Under the assumption that the Riemann hypothesis is true, we know from the theorem 2.1 that
ϖ(x) > u(x) for all numbers x ≥ 13.1 and therefore,

ϖ(x) +
3 × log x + 5

8 × π ×
√

x + 1.2 × log x + 2
> δ(x).

Hence,
3 × log x + 5

8 × π ×
√

x + 1.2 × log x + 2
> log log θ(x) − log log x.

Suppose that θ(x) = ϵ × x for some constant ϵ > 1. Then,

log log θ(x) − log log x = log log(ϵ × x) − log log x

= log
(
log x + log ϵ

)
− log log x

= log
(
log x × (1 +

log ϵ
log x

)
)
− log log x

= log log x + log(1 +
log ϵ
log x

) − log log x

= log(1 +
log ϵ
log x

).

In addition, we know that

log(1 +
log ϵ
log x

) ≥
log ϵ

log θ(x)

using the theorem 1.7 since log ϵ
log x > −1 when ϵ > 1. Certainly, we will have that

log(1 +
log ϵ
log x

) ≥
log ϵ
log x

log ϵ
log x + 1

=
log ϵ

log ϵ + log x
=

log ϵ
log θ(x)

.
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Thus,
3 × log x + 5

8 × π ×
√

x + 1.2 × log x + 2
>

log ϵ
log θ(x)

.

If we add the following value of log x
log θ(x) to the both sides of the inequality, then

3 × log x + 5
8 × π ×

√
x + 1.2 × log x + 2

+
log x

log θ(x)
>

log ϵ
log θ(x)

+
log x

log θ(x)

=
log ϵ + log x

log θ(x)

=
log θ(x)
log θ(x)

= 1.

We know this inequality is satisfied when 0 < ϵ ≤ 1 since we would obtain that log x
log θ(x) ≥ 1.

Therefore, the proof is done.

Theorem 2.3. The Riemann hypothesis is false when

θ(x) = x + Ω(
√

x × log2 x).

Proof. If the Riemann hypothesis holds, then

θ(x) = x + O(
√

x × log2 x)

due to the theorem 1.3. Now, suppose there is a real number x ≥ 108 such that θ(x) > x +
√

x ×
log1.9 x. That would be equivalent to

log θ(x) > log(x +
√

x × log1.9 x)

and so,
1

log θ(x)
<

1
log(x +

√
x × log1.9 x)

for all numbers x ≥ 108. Hence,

log x
log θ(x)

<
log x

log(x +
√

x × log1.9 x)
.

If the Riemann hypothesis holds, then

3 × log x + 5
8 × π ×

√
x + 1.2 × log x + 2

+
log x

log(x +
√

x × log1.9 x)
> 1

for those values of x that complies with

θ(x) > x +
√

x × log1.9 x

due to the theorem 2.2. By contraposition, if there exists some number y ≥ 108 such that for all
x ≥ y the inequality

3 × log x + 5
8 × π ×

√
x + 1.2 × log x + 2

+
log x

log(x +
√

x × log1.9 x)
≤ 1

5



is satisfied, then the Riemann hypothesis should be false. Let’s define the function

υ(x) =
3 × log x + 5

8 × π ×
√

x + 1.2 × log x + 2
+

log x

log(x +
√

x × log1.9 x)
− 1.

The Riemann hypothesis would be false when there exists some number y ≥ 108 such that for all
x ≥ y the inequality υ(x) ≤ 0 is always satisfied. We ignore when 2 ≤ x ≤ 108 since θ(x) < x
according to the theorem 1.4. We know that the function υ(x) is monotonically decreasing for
every number x ≥ 108. The derivative of υ(x) is negative for all x ≥ 108. The derivative of υ(x)
is approximately

−

(
0.1875 × (0.3 + π ×

√
x) × (1.66667 + log(x))

x × (0.25 + π ×
√

x + 0.15 × log(x))2

)
+

3

2 × x + 8 × π × x
3
2 + 1.2 × x × log(x)

−

( √
x × log(x) + 1.9 × log1.9(x) + 0.5 × log2.9(x)

x × (
√

x + log1.9(x)) × log2(x +
√

x × log1.9(x))

)
+

1
x × log(x +

√
x × log1.9(x))

.

Indeed, a function υ(x) of a real variable x is monotonically decreasing in some interval if the
derivative of υ(x) is lesser than zero and the function υ(x) is continuous over that interval [11].
It is enough to find a value of y ≥ 108 such that υ(y) ≤ 0 since for all x ≥ y we would have
that υ(x) ≤ υ(y) ≤ 0, because of υ(x) is monotonically decreasing. We found the value y = 108

complies with υ(y) ≤ 0. In this way, we obtain that υ(x) ≤ 0 for every number x ≥ 108.
Consequently, under the assumption that the Riemann hypothesis is true, then

θ(x) < x +
√

x × log1.9 x

for all x ≥ 108. Hence, this implies that the Riemann hypothesis is false when θ(x) = x+Ω(
√

x×
log2 x).
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