
PhyloInformatics 7: 1-66 - 2005

Relational Database Design and
Implementation for Biodiversity
Informatics

Paul J. Morris

The Academy of Natural Sciences

1900 Ben Franklin Parkway, Philadelphia, PA 19103 USA

Received: 28 October 2004 - Accepted: 19 January 2005

Abstract
The complexity of natural history collection information and similar information within the scope
of biodiversity informatics poses significant challenges for effective long term stewardship of that
information in electronic form. This paper discusses the principles of good relational database
design, how to apply those principles in the practical implementation of databases, and
examines how good database design is essential for long term stewardship of biodiversity
information. Good design and implementation principles are illustrated with examples from the
realm of biodiversity information, including an examination of the costs and benefits of different
ways of storing hierarchical information in relational databases. This paper also discusses
typical problems present in legacy data, how they are characteristic of efforts to handle complex
information in simple databases, and methods for handling those data during data migration.

Introduction

The data associated with natural history
collection materials are inherently complex.
Management of these data in paper form
has produced a variety of documents such
as catalogs, specimen labels, accession
books, stations books, map files, field note
files, and card indices. The simple
appearance of the data found in any one of
these documents (such as the columns for
identification, collection locality, date
collected, and donor in a handwritten
catalog ledger book) mask the inherent
complexity of the information. The
appearance of simplicity overlying highly
complex information provides significant
challenges for the management of natural
history collection information (and other
systematic and biodiversity information) in
electronic form. These challenges include
management of legacy data produced
during the history of capture of natural

history collection information into database
management systems of increasing
sophistication and complexity.

In this document, I discuss some of the
issues involved in handling complex
biodiversity information, approaches to the
stewardship of such information in electronic
form, and some of the tradeoffs between
different approaches. I focus on the very
well understood concepts of relational
database design and implementation.
Relational1 databases have a strong
(mathematical) theoretical foundation

1 Object theory offers the possibility of handling much
of the complexity of biodiversity information in object
oriented databases in a much more effective manner
than in relational databases, but object oriented and
object-relational database software is much less
mature and much less standard than relational
database software. Data stored in a relational DBMS
are currently much less likely to become trapped in a
dead end with no possibility of support than data in an
object oriented DBMS.

1

PhyloInformatics 7: 2-66 - 2005

(Codd, 1970; Chen, 1976), and a wide
range of database software products
available for implementing relational
databases.

Figure 1. Typical paths followed by biodiversity
information. The cylinder represents storage of
information in electronic form in a database.

The effective management of biodiversity
information involves many competing
priorities (Figure 1). The most important
priorities include long term data
stewardship, efficient data capture (e.g.
Beccaloni et al., 2003), creating high quality
information, and effective use of limited
resources. Biodiversity information storage
systems are usually created and maintained
in a setting of limited resources. The most
appropriate design for a database to support
long term stewardship of biodiversity
information may not be a complex highly
normalized database well fitted to the
complexity of the information, but rather
may be a simpler design that focuses on the
most important information. This is not to
say that database design is not important.
Good database design is vitally important
for stewardship of biodiversity information.
In the context of limited resources, good
design includes a careful focus on what
information is most important, allowing
programming and database administration
to best support that information.

Database Life Cycle

As natural history collections data have
been captured from paper sources (such as
century old handwritten ledgers) and have
accumulated in electronic databases, the
natural history museum community has
observed that electronic data need much
more upkeep than paper records (e.g.
National Research Council, 2002 p.62-63).
Every few years we find that we need to
move our electronic data to some new
database system. These migrations are

usually driven by changes imposed upon us
by the rapidly changing landscape of
operating systems and software.
Maintaining a long obsolete computer
running a long unsupported operating
system as the only means we have to work
with data that reside in a long unsupported
database program with a custom front end
written in a language that nobody writes
code for anymore is not a desirable
situation. Rewriting an entire collections
database system from scratch every few
years is also not a desirable situation. The
computer science folks who think about
databases have developed a conceptual
approach to avoiding getting stuck in such
unpleasant situations – the database life
cycle (Elmasri and Navathe, 1994). The
database life cycle recognizes that database
management systems change over time and
that accumulated data and user interfaces
for accessing those data need to be
migrated into new systems over time.
Inherent in the database life cycle is the
insight that steps taken in the process of
developing a database substantially impact
the ease of future migrations.

A textbook list (e.g. Connoly et al., 1996) of
stages in the database life cycle runs
something like this: Plan, design,
implement, load legacy data, test,
operational maintenance, repeat. In slightly
more detail, these steps are:

1. Plan (planning, analysis, requirements
collection).

2. Design (Conceptual database design,
leading to information model, physical
database design [including system
architecture], user interface design).

3. Implement (Database implementation,
user interface implementation).

4. Load legacy data (Clean legacy data,
transform legacy data, load legacy
data).

5. Test (test implementation).
6. Put the database into production use

and perform operational maintenance.
7. Repeat this cycle (probably every ten

years or so).

Being a visual animal, I have drawn a
diagram to represent the database life cycle
(Figure 2). Our expectation of databases
should not be that we capture a large
quantity of data and are done, but rather
that we will need to cycle those data through

2

PhyloInformatics 7: 3-66 - 2005

the stages of the database life cycle many
times.

In this paper, I will focus on a few parts of
the database life cycle: the conceptual and
logical design of a database, physical
design, implementation of the database
design, implementation of the user interface
for the database, and some issues for the
migration of data from an existing legacy
database to a new design. I will provide
examples from the context of natural history
collections information. Plan ahead. Good
design involves not just solving the task at
hand, but planning for long term
stewardship of your data.

Levels and architecture

A requirements analysis for a database
system often considers the network
architecture of the system. The difference
between software that runs on a single
workstation and software that runs on a
server and is accessed by clients across a
network is a familiar concept to most users

of collections information. In some cases, a
database for a collection running on a single
workstation accessed by a single user
provides a perfectly adequate solution for
the needs of a collection, provided that the
workstation is treated as a server with an
uninterruptible power supply, backup
devices and other means to maintain the
integrity of the database. Any computer
running a database should be treated as a
server, with all the supporting infrastructure
not needed for the average workstation. In
other cases, multiple users are capturing
and retrieving data at once (either locally or
globally), and a database system capable of
running on a server and being accessed by
multiple clients over a network is necessary
to support the needs of a collection or
project.

It is, however, more helpful for an
understanding of database design to think
about the software architecture. That is, to
think of the functional layers involved in a
database system. At the bottom level is the
DBMS (database management system [see

3

Figure 2. The Database Life Cycle

PhyloInformatics 7: 4-66 - 2005

glossary, p.64]), the software that runs the
database and stores the data (layered
below this is the operating system and its
filesystem, but we can ignore these for
now). Layered above the DBMS is your
actual database table or schema layer.
Above this may be various code and
network transport layers, and finally, at the
top, the user interface through which people
enter and retrieve data (Figure 29). Some
database software packages allow easy
separation of these layers, others are
monolithic, containing database, code, and
front end into a single file. A database
system that can be separated into layers
can have advantages, such as multiple user
interfaces in multiple languages over a
single data source. Even for monolithic
database systems, however, it is helpful to
think conceptually of the table structures
you will use to store the data, code that you
will use to help maintain the integrity of the
data (or to enforce business rules), and the
user interface as distinct components,
distinct components that have their own
places in the design and implementation
phases of the database life cycle.

Relational Database Design

Why spend time on design? The answer is
simple:

 Poor Design + Time =
Garbage

As more and more data are entered into a
poorly designed database over time, and as
existing data are edited, more and more
errors and inconsistencies will accumulate
in the database. This may result in both
entirely false and misleading data
accumulating in the database, or it may
result in the accumulation of vast numbers
of inconsistencies that will need to be
cleaned up before the data can be usefully
migrated into another database or linked to
other datasets. A single extremely careful
user working with a dataset for just a few
years may be capable of maintaining clean
data, but as soon as multiple users or more
than a couple of years are involved, errors
and inconsistencies will begin to creep into a
poorly designed database.

Thinking about database design is useful for

both building better database systems and
for understanding some of the problems that
exist in legacy data, especially those
entered into older database systems.
Museum databases that began
development in the 1970s and early 1980s
prior to the proliferation of effective software
for building relational databases were often
written with single table (flat file) designs.
These legacy databases retain artifacts of
several characteristic field structures that
were the result of careful design efforts to
both reduce the storage space needed by
the database and to handle one to many
relationships between collection objects and
concepts such as identifications.

Information modeling

The heart of conceptual database design is
information modeling. Information modeling
has its basis in set algebra, and can be
approached in an extremely complex and
mathematical fashion. Underlying this
complexity, however, are two core concepts:
atomization and reduction of redundant
information. Atomization means placing
only one instance of a single concept in a
single field in the database. Reduction of
redundant information means organizing a
database so that a single text string
representing a single piece of information
(such as the place name Democratic
Republic of the Congo) occurs in only a
single row of the database. This one row is
then related to other information (such as
localities within the DRC) rather than each
row containing a redundant copy of the
country name.

As information modeling has a firm basis in
set theory and a rich technical literature, it is
usually introduced using technical terms.
This technical vocabulary include terms that
describe how well a database design
applies the core concepts of atomization
and reduction of redundant information (first
normal form, second normal form, third
normal form, etc.) I agree with Hernandez
(2003) that this vocabulary does not make
the best introduction to information
modeling2 and, for the beginner, masks the
important underlying concepts. I will thus

2 I do, however, disagree with Hernandez'
entirely free form approach to database
design.

4

PhyloInformatics 7: 5-66 - 2005

describe some of this vocabulary only after
examining the underlying principles.

Atomization

1) Place only one concept in each
field.

Legacy data often contain a single field for
taxon name, sometimes with the author and
year also included in this field. Consider
the taxon name Palaeozygopleura
hamiltoniae (HALL, 1868). If this name is
placed as a string in a single field
“Palaeozygopleura hamiltoniae (Hall,
1868)”, it becomes extremely difficult to pull
the components of the name apart to, say,
display the species name in italics and the
author in small caps in an html document:
Palaeozygopleura hamiltoniae
(HALL, 1868), or to
associate them with the appropriate tags in
an XML document. It likewise is much
harder to match the search criteria
Genus=Loxonema and Trivial=hamiltoniae
to this string than if the components of the
name are separated into different fields. A
taxon name table containing fields for
Generic name, Subgeneric name, Trivial
Epithet, Authorship, Publication year, and
Parentheses is capable of handling most
identifications better than a single text field.
However, there are lots more complexities –
subspecies, varieties, forms, cf., near,
questionable generic placements,
questionable identifications, hybrids, and so
forth, each of which may need its own field
to effectively handle the wide range of
different variations of taxon names that can
be used as identifications of collection
objects. If a primary purpose of the data set
is nomenclatural, then substantial thought
needs to be placed into this complexity. If
the primary purpose of the data set is to
record information associated with collection
objects, then recording the name used and
indicators of uncertainty of identification are
the most important concepts.

2) Avoid lists of items in a field.

Legacy data often contain lists of items in a
single field. For example, a remarks field
may contain multiple remarks made at
different times by different people, or a
geographic distribution field may contain a
list of geographic place names. For

example, a geographic distribution field
might contain the list of values “New York;
New Jersey; Virginia; North Carolina”. If
only one person has maintained the data set
for only a few years, and they have been
very careful, the delimiter “;” will separate all
instances of geographic regions in each
string. However, you are quite likely to find
that variant delimiters such as “,” or “ ” or
“:” or “'” or “l” have crept into the data.

Lists of data in a single field are a common
legacy solution to the basic information
modeling concept that one instance of one
sort of data (say a species name) can be
related to many other instances of another
sort of data. A species can be distributed in
many geographic regions, or a collection
object can have many identifications, or a
locality can have many collections made
from it. If the system you have for storing
data is restricted to a single table (as in
many early database systems used in the
Natural History Museum community), then
you have two options for capturing such
information. You can repeat fields in the
table (a field for current identification and
another field for previous identification), or
you can list repeated values in a single field
(hopefully separated by a consistent
delimiter).

Reducing Redundant
Information

The most serious enemy of clean data in
long -lived database systems is redundant
copies of information. Consider a locality
table containing fields for country, primary
division (province/state), secondary division
(county/parish), and named place
(municipality/city). The table will contain
multiple rows with the same value for each
of these fields, since multiple localities can
occur in the vicinity of one named place.
The problem is that multiple different text
strings represent the same concept and
different strings may be entered in different
rows to record the same information. For
example, Philadelphia, Phil., City of
Philadelphia, Philladelphia, and Philly are all
variations on the name of a particular
named place. Each makes sense when
written on a specimen label in the context of
other information (such as country and
state), as when viewed as a single locality

5

PhyloInformatics 7: 6-66 - 2005

record. However, finding all the specimens
that come from this place in a database that
contains all of these variations is not an
easy task. The Academy ichthyology
collection uses a legacy Muse database
with this structure (a single table for locality
information), and it contains some 16
different forms of “Philadelphia, PA, USA”
stored in atomized named place, state, and
country fields. It is not a trivial task to
search this database on locality information
and be sure you have located all relevant
records. Likewise, migration of these data
into a more normal database requires
extensive cleanup of the data and is not
simply a matter of moving the data into new
tables and fields.

The core problem is that simple flat tables
can easily have more than one row
containing the same value. The goal of
normalization is to design tables that enable
users to link to an existing row rather than to
enter a new row containing a duplicate of
information already in the database.

Figure 3. Design of a flat locality table (top) with
fields for country and primary division compared
with a pair of related tables that are able to link
multiple states to one country without creating
redundant entries for the name of that country.
The notation and concepts involved in these
Entity-Relationship diagrams are explained below.

Contemplate two designs (Figure 3) for
holding a country and a primary division (a
state, province, or other immediate
subdivision of a country): one holding
country and primary division fields (with

redundant information in a single locality
table), the other normalizing them into
country and primary division tables and
creating a relationship between countries
and states.

Rows in the single flat table, given time, will
accumulate discrepancies between the
name of a country used in one row and a
different text string used to represent the
same country in other rows. The problem
arises from the redundant entry of the
Country name when users are unaware of
existing values when they enter data and
are freely able to enter any text string in the
relevant field. Data in a flat file locality table
might look something like those in Table 1:

Table 1. A flat locality table.

Locality id Country Primary Division
300 USA Montana
301 USA Pennsylvania
302 USA New York
303 United

States
Massachusetts

Examination of the values in individual rows,
such as, “USA, Montana”, or “United States,
Massachusetts” makes sense and is easily
intelligible. Trying to ask questions of this
table, however, is a problem. How many
states are there in the “USA”? The table
can't provide a correct answer to this
question unless we know that “USA” and
“United States” both occur in the table and
that they both mean the same thing.

The same information stored cleanly in two
related tables might look something like
those in Table 2:

Here there is a table for countries that holds
one row for USA, together with a numeric
Country_id, which is a behind the scenes
database way for us to find the row in the
table containing “USA' (a surrogate numeric

6

Table 2. Separating Table 1 into two related
tables, one for country, the other for primary
division (state/province/etc.).

Country id Name
300 USA
301 Uganda

Primary
Division

id

fk_c_country_id Primary Division

300 300 Montana
301 300 Pennsylvania
302 300 New York
303 300 Massachusetts

PhyloInformatics 7: 7-66 - 2005

primary key, of which I will say more later).
The database can follow the country_id field
over to a primary division table, where it is
recorded in the fk_c_country_id field (a
foreign key, of which I will also say more
later). To find the primary divisions within
USA, the database can look at the
Country_id for USA (300), and then find all
the rows in the primary division table that
have a fk_c_country_id of 300. Likewise,
the database can follow these keys in the
opposite direction, and find the country for
Massachusetts by looking up its
fk_c_country_id in the country_id field in the
country table.

Moving country out to a separate table also
allows storage of a just one copy of other
pieces of information associated with a
country (its northernmost and southernmost
bounds or its start and end dates, for
example). Countries have attributes
(names, dates, geographic areas, etc) that
shouldn't need to be repeated each time a
country is mentioned. This is a central idea
in relational database design – avoid
repeating the same information in more than
one row of a table.

It is possible to code a variety of user
interfaces over either of these designs,
including, for example, one with a picklist for
country and a text box for state (as in Figure
4). Over either design it is possible to
enforce, in the user interface, a rule that
data entry personnel may only pick an
existing country from the list. It is possible
to use code in the user interface to enforce
a rule that prevents users from entering
Pennsylvania as a state in the USA and
then separately entering Pennsylvania as a
state in the United States. Likewise, with
either design it is possible to code a user
interface to enforce other rules such as
constraining primary divisions to those
known to be subdivisions of the selected
country (so that Pennsylvania is not
recorded as a subdivision of Albania).

By designing the database with two related
tables, it is possible to enforce these rules
at the database level. Normal data entry
personnel may be granted (at the database
level) rights to select information from the
country table, but not to change it. Higher
level curatorial personnel may be granted
rights to alter the list of countries in the

country table. By separating out the country
into a separate table and restricting access
rights to that table in the database, the
structure of the database can be used to
turn the country table into an authority file
and enforce a controlled vocabulary for
entry of country names. Regardless of the
user interface, normal data entry personnel
may only link Pennsylvania as a state in
USA. Note that there is nothing inherent in
the normalized country/primary division
tables themselves that prevents users who
are able to edit the controlled vocabulary in
the Country Table from entering redundant
rows such as those below in Table 3.
Fundamentally, the users of a database are
responsible for the quality of the data in that
database. Good design can only assist
them in maintaining data quality. Good
design alone cannot ensure data quality.

It is possible to enforce the rules above at
the user interface level in a flat file. This
enforcement could use existing values in the
country field to populate a pick list of
country names from which the normal data
entry user may only select a value and may
not enter new values. Since this rule is only
enforced by the programing in the user
interface it could be circumvented by users.
More importantly, such a business rule
embedded in the user interface alone can
easily be forgotten and omitted when data
are migrated from one database system to
another.

Normalized tables allow you to more easily
embed rules in the database (such as
restricting access to the country table to
highly competent users with a large stake in
the quality of the data) that make it harder
for users to degrade the quality of the data
over time. While poor design ensures low
quality data, good design alone does not
ensure high quality data.

7

Table 3. Country and primary division tables
showing a pair of redundant Country values.

Country id Name
500 USA
501 United States

Primary
Division id

fk_c_country_id Primary Division

300 500 Montana
301 500 Pennsylvania
302 500 New York
303 501 Massachusetts

PhyloInformatics 7: 8-66 - 2005

Good design thus involves careful
consideration of conceptual and logical
design, physical implementation of that
conceptual design in a database, and good
user interface design, with all else following
from good conceptual design.

Entity-Relationship modeling

Understanding the concepts to be stored in
the database is at the heart of good
database design (Teorey, 1994; Elmasri
and Navathe, 1994). The conceptual design
phase of the database life cycle should
produce a result known as an information
model (Bruce, 1992). An information model
consists of written documentation of
concepts to be stored in the database, their
relationships to each other, and a diagram
showing those concepts and their
relationships (an Entity-Relationship or E-R
diagram,). A number of information models
for the biodiversity informatics community
exist (e.g. Blum, 1996a; 1996b; Berendsohn
et al., 1999; Morris, 2000; Pyle 2004), most
are derived at least in part from the
concepts in ASC model (ASC, 1992).
Information models define entities, list
attributes for those entities, and relate
entities to each other. Entities and
attributes can be loosely thought of as
tables and fields. Figure 5 is a diagram of a
locality entity with attributes for a mysterious
localityid, and attributes for country and
primary division. As in the example above,
this entity can be implemented as a table
with localityid, country, and primary division
fields (Table 4).

Table 4. Example locality data.

Locality id Country Primary Division
300 USA Montana
301 USA Pennsylvania

Entity-relationship diagrams come in a
variety of flavors (e.g. Teorey, 1994). The
Chen (1976) format for drawing E-R

diagrams uses little rectangles for entities
and hangs oval balloons off of them for
attributes. This format (as in the distribution
region entity shown on the right in Figure 6
below) is very useful for scribbling out drafts
of E-R diagrams on paper or blackboard.
Most CASE (Computer Aided Software
Engineering) tools for working with
databases, however, use variants of the
IDEF1X format, as in the locality entity
above (produced with the open source tool
Druid [Carboni et al, 2004]) and the
collection object entity on the left in Figure 6
(produced with the proprietary tool xCase
[Resolution Ltd., 1998]), or the relationship
diagram tool in MS Access. Variants of the
IDEF1X format (see Bruce, 1992) draw
entities as rectangles and list attributes for
the entity within the rectangle.

Not all attributes are created equal. The
diagrams in Figures 5 and 6 list attributes
that have “ID” appended to the end of their
names (localityid, countryid, collection
_objectid, intDistributionRegionID). These
are primary keys. The form of this notation
varyies from one E-R diagram format to
another, being the letters PK, or an
underline, or bold font for the name of the
primary key attribute. A primary key can be
thought of as a field that contains unique
values that let you identify a particular row
in a table. A country name field could be
the primary key for a country table, or, as in
the examples here, a surrogate numeric
field could be used as the primary key.

To give one more example of the
relationship between entities as abstract
concepts in an E-R model and tables in a
database, the tblDistributionRegion entity
shown in Chen notation in Figure 6 could be
implemented as a table, as in Table 5, with
a field for its primary key attribute,
intDistributionRegionID, and a second field
for the region name attribute
vchrRegionName. This example is a portion
of the structure of the table that holds
geographic distribution area names in a
BioLink database (additional fields hold the
relationship between regions, allowing
Pennsylvania to be nested as a geographic
region within the United States nested within
North America, and so on).

8

Figure 5. Part of a flat locality entity. An
implementation with example data is shown below
in Table 4.

PhyloInformatics 7: 9-66 - 2005

Table 5. A portion of a BioLink (CSIRO, 2001)
tblDistributionRegion table.

intDistributionRegionID vchrRegionName
15 Australia
16 Queensland
17 Uganda
18 Pennsylvania

The key point to think about when designing
databases is that things in the real world
can be thought of in general terms as
entities with attributes, and that information
about these concepts can be stored in the
tables and fields of a relational database. In
a further step, things in the real world can
be thought of as objects with properties that
can do things (methods), and these
concepts can be mapped in an object model
(using an object modeling framework such
as UML) that can be implemented with an
object oriented language such as Java. If
you are programing an interface to a
relational database in an object oriented
language, you will need to think about how
the concepts stored in your database relate
to the objects manipulated in your code.
Entity-Relationship modeling produces the
critical documentation needed to understand
the concepts that a particular relational
database was designed to store.

Primary key

Primary keys are the means by which we
locate a single row in a table. The value for
a primary key must be unique to each row.
The primary key in one row must have a
different value from the primary key of every
other row in the table. This property of
uniqueness is best enforced by the

database applying a unique index to the
primary key.

A primary key need not be a single attribute.
A primary key can be a single attribute
containing real data (generic name), a group
of several attributes (generic name, trivial
epithet, authorship), or a single attribute
containing a surrogate key (name_id). In
general, I recommend the use of surrogate
numeric primary keys for biodiversity
informatics information, because we are too
seldom able to be certain that other
potential primary keys (candidate keys) will
actually have unique values in real data.

A surrogate numeric primary key is an
attribute that takes as values numbers that
have no meaning outside the database.
Each row contains a unique number that
lets us identify that particular row. A table of
species names could have generic epithet
and trivial epithet fields that together make a
primary key, or a single species_id field
could be used as the key to the table with
each row having a different arbitrary number
stored in the species_id field. The values
for species_id have no meaning outside the
database, and indeed should be hidden
from the users of the database by the user
interface. A typical way of implementing a
surrogate key is as a field containing an
automatically incrementing integer that
takes only unique values, doesn't take null
values, and doesn't take blank values. It is
also possible to use a character field
containing a globally unique identifier or a
cryptographic hash that has a high
probability of being globally unique as a
surrogate key, potentially increasing the

9

Figure 6. Comparison between entity and attributes as depicted in a typical CASE tool E-R diagram in a
variant of the IDEF1X format (left) and in the Chen format (right, which is more useful for pencil and paper
modeling). The E-R diagrams found in this paper have variously been drawn with the CASE tools xCase
and Druid or the diagram editor DiA.

PhyloInformatics 7: 10-66 - 2005

ease with which different data sets can be
combined.

The purpose of a surrogate key is to provide
a unique identifier for a row in a table, a
unique identifier that has meaning only
internally within the database. Exposing a
surrogate key to the users of the database
may result in their mistakenly assigning a
meaning to that key outside of the database.
The ANSP malacology and invertebrate
paleontology collections were for a while
printing a primary key of their master
collection object table (a field called serial
number) on specimen labels along with the
catalog number of the specimen, and some
of these serial numbers have been copied
by scientists using the collection and have
even made it into print under the rational but
mistaken belief that they were catalog
numbers. For example, Petuch (1989,
p.94) cites the number ANSP 1133 for the
paratype of Malea springi, which actually
has the catalog number ANSP 54004, but
has both this catalog number and the serial
number 00001133 printed on a computer
generated label. Another place where
surrogate numeric keys are easily exposed
to users and have the potential of taking on
a broader meaning is in Internet databases.
An Internet request for a record in a
database is quite likely to request that
record through its primary key. An URL with
a http get request that contains the value for
a surrogate key directly exposes the
surrogate key to the world . For example,
the URL: http://erato.acnatsci.org/wasp/
search.php?species=12563 uses the value
of a surrogate key in a manner that users
can copy from their web browsers and email
to each other, or that can be crawled and
stored by search engines, broadening its
scope far beyond simply being an arbitrary
row identifier within the database.

Surrogate keys come with risks, most
notably that, without other rules being
enforced, they will allow duplicate rows,
identical in all attributes except the
surrogate primary key, to enter the table
(country 284, USA; country 526, USA). A
real attribute used as a primary key will
force all rows in the table to contain unique
values (USA). Consider catalog numbers.
If a table contains information about
collection objects within one catalog number
series, catalog number would seem a logical

choice for a primary key. A single catalog
number series should, in theory, contain
only one catalog number per collection
object. Real collections data, however, do
not usually conform to theory. It is not
unusual to find that 1% or more of the
catalog numbers in an older catalog series
are duplicates. That is, real duplicates,
where the same catalog number was
assigned to two or more different collection
objects, not simply transcription errors in
data capture. Before the catalog number
can be used as the primary key for a table,
or a unique index can be applied to a
catalog number field, duplicate values need
to be identified and resolved. Resolving
duplicate catalog numbers is a non-trivial
task that involves locating and handling the
specimens involved. It is even possible for
a collection to contain real immutable
duplicate catalog numbers if the same
catalog number was assigned to two
different type specimens and these
duplicate numbers have been published.
Real collections data, having accumulated
over the last couple hundred years, often
contain these sorts of unexpected
inconsistencies. It is these sorts of
problematic data and the limits on our
resources to fully clean data to fit theoretical
expectations that make me recommend the
use of surrogate keys as primary keys in
most tables in collections databases.

Taxon names are another case where a
surrogate key is important. At first glance, a
table holding species names could use the
generic name, trivial epithet, and authorship
fields as a primary key. The problem is,
there are homonyms and other such
historical oddities to be found in lists of
taxon names. Indeed, as Gary Rosenberg
has been saying for some years, you need
to know the original genus, species epithet,
subspecies epithet, varietal epithet (or trivial
epithet and rank of creation), authorship,
year of publication, page, plate and figure to
uniquely distinguish names of Mollusks
(there being homonyms described by the
same author in the same publication in
different figures).

Normalize appropriately for your
problem and resources

When building an information model, it is
very easy to get carried away and expand

10

http://erato.acnatsci.org/wasp/
http://erato.acnatsci.org/wasp/search.php?species=12563
http://erato.acnatsci.org/wasp/search.php?species=12563

PhyloInformatics 7: 11-66 - 2005

the model to cover in great elaboration each
tiny facet of every piece of information that
might be related to the concept at hand. In
some situations (e.g. the POSC model or
the ABCD schema) where the goal is to
elaborate all of the details of a complex set
of concepts, this is very appropriate.
However, when the goal is to produce a
functional database constructed by a single
individual or a small programming team, the
model can easily become so elaborate as to
hinder the production of the software
needed to reach the desired goal. This is
the real art of database design (and object
modeling); knowing when to stop.
Normalization is very important, but you
must remember that the ultimate goal is a
usable system for the storage and retrieval
of information.

In the database design process, the
information model is a tool to help the
design and programming team understand
the nature of the information to be stored in
the database, not an end in itself.
Information models assist in communication
between the people who are specifying what
the database needs to do (people who talk
in the language of systematics and
collections management) and the
programmers and database developers who
are building the database (and who speak
wholly different languages). Information
models are also vital documentation when it
comes time to migrate the data and user
interface years later in the life cycle of the
database.

Example: Identifications of
Collection Objects

Consider the issue of handling
identifications that have been applied to
collection objects. The simplest way of
handling this information is to place a single
identification field (or set of atomized
genus_&_higher, species, authorship, year,
and parentheses fields) into a collection
object table. This approach can handle only
a single identification per collection object,
unless each collection object is allowed
more than one entry in the collection object
table (producing duplicate catalog numbers
in the table for each collection object with
more than one identification). In many
sorts of collections, a collection object tends

to accumulate many identifications over
time. A structure capable of holding only
one identification per collection object poses
a problem.

A standard early approach to the problem of
more than one identification to a single
collection object was a single table with
current and previous identification fields.
The collection objects table shown in Figure
7 is a fragment of a typical legacy non-
normal table containing one field for current
identification and one for previous
identification. This example also includes a
surrogate numeric key and fields to hold one
identifier and one date identified.

One table with fields for current and
previous identification allows rules that
restrict each collection object to one record
in the collection object table (such as a
unique index on catalog number), but only
allows for two identifications per collection
object. In some collections this is not a
huge problem, whereas in others this
structure would force a significant
information loss3. A tray of fossils or a
herbarium sheet may each contain a long
history of annotations and changes in
identification produced by different people at
different times. The table with one set of
fields for current identification, another for
previous identification and one field each for
identifier and date identified suffers another
problem – there is no necessary link

3 I chose such a flat structure, with 6 fields for
current identification and 6 fields for original
identification for a database for data capture
on the entomology collections at ANSP. It
allowed construction of a more efficient data
entry interface than a better normalized
structure. Insect type specimens seem to very
seldom have the complex identification
histories typical of other sorts of collections.

11

Figure 7. A non-normal collection object entity.

PhyloInformatics 7: 12-66 - 2005

between the identifications, the identifier,
and the date identified. The database is
agnostic as to whether the identifier was the
person who made the current identification,
the previous identification, or some other
identification. It is also agnostic as to
whether the date identified is connected to
the identifier. Without carefully enforced
rules in the user interface, the date identified
could reflect the date of some random
previous identification, the identifier could be
the person who made the current
identification, and the previous identification
could be the oldest identification of the
collection object, or these fields could hold
some other arbitrary combination of
information, with no way for the user to tell.
We clearly need a better structure.

Figure 8. Moving identifications to a related entity.

We can allow multiple identifications for
each collection object by adding a second
table to hold identifications and linking that
table to the collection object table (Figure
8). These two tables for collection object
and identification can hold multiple
identifications for each collection object if we
include a field in the identification table that
contains values from the primary key of the
collection object table. This foreign key is
used to link collection object records with
identification records (shown by the “Crow's
Foot” symbol in the figure). One naming
convention for foreign keys uses the name
of the primary key that is being referenced
(collection_object_id) and prefixes it with c_
(for copy, thus c_collection_object_id for the

foreign key). If, as in Figure 8, the
identification table holds a foreign key
pointing to collection objects, and a set of
fields to hold a taxon name, then each
collection object can have many
identifications.

This pair of tables (Collection objects and
Identifications, Figure 8) still has lots of
problems. We don't have any way of
knowing which identification is the most
recent one. In addition, the taxon name
fields will contain multiple duplicate values,
so, for example, correcting a misspelling in
a taxon name will require updating every
row in the identification table holding that
taxon name. Conceptually, each collection
object can have multiple identifications, but
each taxon name used in an identification
can be applied to many collection objects.
What we really want is a many to many
relationship between taxon names and
collection objects (Figure 9). Relational
databases can not handle many to many
relationships directly, but they can by
interpolating a table into the middle of the
relationship – an associative entity. The
concepts collection object – identification –
taxon name are good example of an
associative entity (identification) breaking up
a many to many relationship (between
collection objects and taxon names). Each
collection object can have many taxon
names applied to it, each taxon name can
be applied to many collection objects, and
these applications of taxon names to
collection objects occur through an
identification.

In Figure 9, the identification entity is an
associative entity that breaks up the many
to many relationship between species
names and collection objects. The
identification entity contains foreign keys
pointing to both the collection object and
species name entities. Each collection
object can have many identifications, each
identification involves one and only one
species name. Each species name can be
used in many identifications, and each
identification applies to one and only one
collection object.

12

PhyloInformatics 7: 13-66 - 2005

Figure 9. Using an associative entity
(identifications) to link taxon names to collection
objects, splitting the many to many relationship
between collection objects and identifications.

This set of entities (taxon name,
identification [the associative entity], and
collection object) also allows us to easily
track the most recent identification by
adding a date identified field to the
identification table. In many cases with
legacy data, it may not be possible to
determine the date on which an
identification was made, so adding a field to
flag the current identification out of a set of
identifications for a specimen may be
necessary as well. Note that adding a flag
to track the current identification requires
business rules that will need to be
implemented in the code associated with the
database. These business rules may
specify that only one identification for a
single collection object is allowed to be the
current identification, and that the
identification flagged as the current

identification must have either no date or
must have the most recent date for any
identification of that collection object. An
alternative, suggested by an anonymous
reviewer, is to include a link to the sole
current identification in the collection object
table. (That is, to include a foreign key
fk_current_identification_id in
collection_objects, which is thus able to link
a collection object to one and only one
current identification. This is a very
appropriate structure, and lets business
rules focus on making sure that this current
identification is indeed the current
identification).

This identification associative entity sitting
between taxon names and collection objects
contains an attribute to hold the name of the
person who made the identification. This
field will contain many duplicate values as
some people make many identifications
within a collection. The proper way to bring
this concept to third normal form is to move
identifiers off to a generalized person table,
and to make the identification entity a
ternary associative entity linking species
names, collection objects, and identifiers
(Figure 10). People may play multiple roles
in the database (and may be a subtype of a
generalized agent entity), so a convention
for indicating the role of the person in the
identification is to add the role name to the
end of the foreign key. Thus, the foreign
key linking people to identifications could be
called c_person_id_identifier. In another
entity, say handling the concept of
preparations, a foreign key linking to the
people entity might be called
c_person_id_preparator.

The set of concepts Taxon Name,
identification (as three way associative
entity), identifier, and collection object
describes a way of handing the
identifications of collection objects in third
normal form. Person names, collection
objects, and taxon names are all capable of
being stored without redundant repetition of
information. Placing identifiers in a
separate People entity, however, requires
further thought in the context of natural
history collections. Legacy data will contain
multiple similar entries (G. Rosenberg;
Rosenberg, G.; G Rosenberg; Rosenberg;
G.D. Rosenberg), all of which may or may
not refer to the same person. Combining all

13

PhyloInformatics 7: 14-66 - 2005

of these legacy entries into a normalized
person table risks introducing errors of
interpretation into the data. In addition,
adding a generic people table and linking it
to identifiers adds additional complexity and
coding overhead to the database. People is
one area of the database where you need to
think very carefully about the costs and
benefits of a highly normalized design
Figure 11. Cleaning legacy data, the
additional interface complexity, and the
additional code required to implement a
generic person as an identifier, along with
the risk of propagation of incorrect
inferences, may well outweigh the benefits
of being able to handle identifiers in a
generic people entity. Good, well
normalized design is critical to be able to
properly handle the existence of multiple
identifications for a collection object, but
normalizing the names of identifiers may lie
outside the scope of the critical core
information that a natural history museum
has the resources to properly care for, or be
beyond the scope of the critical information

needed to complete a grant funded project.
Knowing when to stop elaborating the
information model is an important aspect of
good database design.

Example extended: questionable
identifications

How does one handle data such as the
identification “Palaeozygopleura hamiltoniae
(HALL, 1868) ?” that contains an indication
of uncertainty as to the accuracy of the
determination? If the question mark is
stored as part of the taxon name (either in a
single taxon name string field, or as an
atomized field in a taxon name table), then
you can expect your list of distinct taxon
names to include duplicate entries for
“Palaeozygopleura hamiltoniae (HALL,
1868)” and for “Palaeozygopleura
hamiltoniae (HALL, 1868) ?”. This is clearly
an undesirable duplication of information.

Thinking through the nature of the
uncertainty in this case, the uncertainty is an

14

Figure 10. Normalized handling of identifications and identifiers. Identifications is an associative entity
relating Collection objects, species names and people.

Figure 11. Normalized handling of identifications with denormalized handling of the people who perfommed
the identifications (allowing multiple entries in identification containing the name of a single identifier).

PhyloInformatics 7: 15-66 - 2005

attribute of a particular identification (this
specimen may be a member of this
species), rather than an attribute of a taxon
name (though a species name can
incorporate uncertain generic placement:
e.g. Loxonema? hamiltoniae with this
generic uncertainty being an attribute of at
least some worker's use of the name). But,
since uncertainty in identification is a
concept belonging to an identification, it is
best included as an attribute in an
identification associative entity (Figure 11).

Vocabulary

Information modeling has a widely used
technical terminology to describe the extent
to which data conform to the mathematical
ideals of normalization. One commonly
encountered part of this vocabulary is the
phrase “normal form”. The term first normal
form means, in essence, that a database
has only one concept placed in each field
and no repeating information within one row,
that is, no repeating fields and no repeating
values in a field. Fields containing the value
“1863, 1865, 1885” (repeating values) or the
value “Paleozygopleura hamiltoniae Hall”
(more than one concept), or the fields
Current_identification and
Previous_identification (repeating fields) are
example violations of first normal form. In
second normal form, primary keys do not
contain redundant information, but other
fields may. That is two different rows of a
table may not contain the same values in
their primary key fields in second normal
form. For example, a collection object table
containing a field for catalog number serving
as primary key would not be able to contain
more than one row for a single catalog
number for the table to be in second normal
form. We do not expect a table of
collection objects to contain information
about the same collection object in two

different rows. Second normal form is
necessary for rational function of a relational
database. For catalog number to be the
primary key of the collection object table, a
unique index would be required to force
each row in the table to have a unique value
for catalog number. In third normal form,
there is no redundant information in any
fields except for foreign keys. A third
normal treatment of geographic names
would produce one and only one row
containing the value “Philadelphia”, and one
and only one row containing the value
“Pennsylvania”.

To make normal forms a little clearer, let's
work through some examples. Table 6 is a
fragment of a hypothetical flat file database.
Table 6 is not in first normal form. It
contains three different kinds of problems
that prevent it from being in first normal form
(as well as other problems related to higher
normal forms). First, the Catalog_number
and identification fields are not atomic.
Each contains more than one concept.
Catalog_number contains the acronym of a
repository and a catalog number. The
identification fields both contain a species
name, rather than separate fields for
components of that name (generic name,
specific epithet, etc...). Second,
identification and previous identification are
repeating fields. Each of these contains the
same concept (an identification). Third,
preparations contains a series of repeating
values.

So, what transformations of the data do we
need to do to bring Table 6 into first normal
form? First, we must atomize, that is, split
up fields until one and only one concept is
contained in each field. In Table 7,
Catalog_number has been split into
repository and catalog_no, identification
and previous identification have been split

15

Table 6. A table not in first normal form.

Catalog_number Identification Previous identification Preparations
ANSP 641455 Lunatia pilla Natica clausa Shell, alcohol
ANSP 815325 Velutina nana Velutina velutina Shell

Table 7. Catalog number and identification fields from Table 6 atomized so that each field now contains
only one concept.

Repository Catalog_no Id_genus Id_sp P_id_gen P_id_sp Preparations
ANSP 641455 Lunatia pilla Natica clausa Shell, alcohol
ANSP 815325 Velutina nana Velutina velutina Shell

PhyloInformatics 7: 16-66 - 2005

into generic name and specific epithet fields.
Note that this splitting is easy to do in the
design phase of a novel database but may
require substantial work if existing data
need to be parsed into new fields.

Table 7 still isn't in in first normal form. The
previous and current identifications are held
in repeating fields. To bring the table to first
normal form we need to remove these
repeating fields to a separate table. To link
a row in our table out to rows that we
remove to another table we need to identify
the primary key for our table. In this case,
Repository and Catalog_no together form
the primary key. That is, we need to know
both Repository and Catalog number in
order to find a particular row. We can now
build an identification table containing genus
and trivial name fields, a field to identify if an
identification is previous or current, and the
repository and catalog_no as foreign keys to
point back to our original table. We could,
as an alternative, add a surrogate numeric
primary key to our original table and carry
this field as a foreign key to our
identifications table. With an identification
table, we can normalize the repeating
identification fields from our original table as
shown in Table 8. Our data still aren't in
first normal form as the preparations field
containing a list (repeating information) of
preparation types.

Table 8. Current and previous identification fields
from Tables 6 and 7 split out into a separate table.
This pair of tables allows any number of previous
identifications for a particular collections object.
Note that Repository and Catalog_no together
form the primary key of the first table (they could
be replaced by a single surrogate numeric key).

Repository (PK) Catalog_no (PK) Preparations
ANSP 641455 Shell, alcohol
ANSP 815325 Shell

Repository Catalog_no Id_genus Id_sp ID_order
ANSP 641455 Lunatia pilla Current
ANSP 641455 Natica clausa Previous
ANSP 815325 Velutina nana Current
ANSP 815325 Velutina velutina Previous

Much as we did with the repeating
identification fields, we can split the
repeating information in the preparations
field out into a separate table, bringing with
it the key fields from our original table.
Splitting data out of a repeating field into
another table is more complicated than

splitting out a pair of repeating fields if you
are working with legacy data (rather than
thinking about a design from scratch). To
split out data from a field that hold repeating
values you will need to identify the delimiter
used to split values in the repeating field (a
comma in this example), write a parser to
walk through each row in the table, split the
values found in the repeating field on their
delimiters, and then write these values into
the new table. Repeating values that have
been entered by hand are seldom clean.
Different delimiters may be used in different
rows (comma or semicolon), delimiters may
be missing (shell alcohol), spacing around
delimiters may vary (shell,alcohol, frozen),
the delimiter might be a data value in some
rows(alcohol, formalin fixed; frozen,
unfixed), and so on. Parsing a field
containing repeating values therefore can't
be done blindly. You will need to assess the
results and fix exceptions (probably by
hand). Once this parsing is complete,
Table 9, we have a set of three tables
(collection object, identification, preparation)
in first normal form.

Table 9. Information in Table 6 brought into first
normal form by splitting it into three tables.

Repository Catalog_no
ANSP 641455
ANSP 815325

Repository Catalog
_no

Id_genus Id_sp ID_order

ANSP 641455 Lunatia pilla Current
ANSP 641455 Natica clausa Previous
ANSP 815325 Velutina nana Current
ANSP 815325 Velutina velutina Previous

Repository Catalog_no Preparations
ANSP 641455 Shell
ANSP 641455 Alcohol

Non-atomic data and problems with first
normal form are relatively common in legacy
biodiversity and collections data (handling of
these issues is discussed in the data
migration section below). Problems with
second normal form are not particularly
common in legacy data, probably because
unique key values are necessary for a
relational database to function. Second
normal form can be a significant issue when
designing a database from scratch and in
flat file databases, especially those
developed from spreadsheets. In second
normal form, each row in a table holds a

16

PhyloInformatics 7: 17-66 - 2005

unique value for the primary key of that
table. A collection object table that is not in
second normal form can hold more than one
row for a single collection object. In
considering second normal form, we need to
start thinking about keys. In the database
design process we may consider candidate
keys – fields that could potentially serve as
keys to uniquely identify rows in a table. In
a collections object table, what information
do we need to know to find the row that
contains information about a particular
collection object? Consider Table 10.
Table 10 is not in second normal form. It
contains 4 rows with information about a
particular collections object. A reasonable
candidate for the primary key in a
collections object table is the combination of
Repository and Catalog number. In Table
10 these fields do not contain unique
values. To uniquely identify a row in Table
10 we probably need to include all the fields
in the table into a key.

Table 10. A collections object table with repeating
rows for the candidate key Repository +
Catalog_no.

Repo
sitory

Catalog_
no

Id_
genus

Id_sp ID_order Preparation

ANSP641455 Lunatia pilla Current Shell
ANSP641455 Lunatia pilla Current alcohol
ANSP641455 Natica clausaPrevious Shell
ANSP641455 Natica clausaPrevious alcohol

If we examine Table 10 more carefully we
can see that it contains two independent
pieces of information about a collections
object. The information about the
preparation is independent of the
information about identifications. In formal
terms, one key should determine all the
other fields in a table. In Table 10,
repository + catalog number + preparation
are independent of repository + catalog
number + id_genus + id species + id order.
This independence gives us a hint on how to
bring Table 10 into second normal form.
We need to split the independent repeating
information out into additional tables so that
the multiple preparations per collection
object and the multiple identifications per
collection object are handled as
relationships out to other tables rather than
as repeating rows in the collections object
table (Table 11).

Table 11. Bringing Table 10 into second normal
form by splitting the repeating rows of preparation
and identification out to separate tables.

Repository Catalog_no
ANSP 641455

Repository Catalog_no Preparation
ANSP 641455 Shell
ANSP 641455 Alcohol

Repository Catalog_
no

Id_
genus

Id_sp ID_
order

ANSP 641455 Lunatia pilla Current
ANSP 641455 Natica clausa Previous

By splitting the information associated with
preparations out of the collection object
table into a preparation table and
information about identifications out to an
identifications table (Table 11) we can bring
the information in Table 10 into second
normal form. Repository and Catalog
number now uniquely determine a row in the
collections object table (which in our limited
example here now contains no other
information.) Carrying the key fields
(repository + catalog_no) as foreign keys
out to the preparation and identification
tables allows us to link the information about
preparations and identifications back to the
collections object. Table 11 is thus now
holding the information from Table 10 in
second normal form. Instead of using
repository + catalog_no as the primary key
to the collections object table, we could use
a surrogate numeric primary key
(coll_obj_ID in Table 12), and carry this
surrogate key as a foreign key into the
related tables.

Table 11 has still not brought the
information into third normal form. The
identification table will contain repeating
values for id_genus and id_species – a
particular taxon name can be applied in
more than one identification. This is a
straightforward matter of pulling taxon
names out to a separate table to allow a
many to many relationship between
collections objects and taxon names
through an identification associative entity
(Table 12). Note that both Repository and
Preparations could also be brought out to
separate tables to remove redundant non-
key entries. In this case, this is probably
best accomplished by using the text value of
Repository (and of Preparations) as the key,

17

PhyloInformatics 7: 18-66 - 2005

and letting a repository table act to control
the allowed values for repository that can be
entered into the collections object tables
(rather than using a surrogate numeric key
and having to follow that out to the
repository table any time you wanted to
know the repository of a collections object).
Herein lies much of the art of information
modeling – knowing when to stop.

Table 12. Bringing Table 11 into third normal form
by splitting the repeating values of taxon names in
identifications out into a separate table.

Repository Catalog_no Coll_obj_ID
ANSP 641455 100

Coll_obj_ID Preparations
100 Shell
100 Alcohol

coll_obj_ID C_taxon_ID ID_order
100 1 Current
100 2 Previous

Taxon_ID Id_genus Id_sp
1 Lunatia pilla
2 Natica clausa

Producing an information model.

An information model is a detailed
description of the concepts to be stored in a
database (see, for example, Bruce, 1992).
An information model should be sufficiently
detailed for a programmer to use it to
construct the back end data storage
structures of the database and the code to
support the business rules used to maintain
the quality of the data. A formal information
model should consist of at least three
components: an Entity-Relationship
diagram, a description of relationship
cardinalities, and a detailed description of
each entity and each attribute. The latter
should include a description of the scope
and nature of the data to be held in each
attribute.

Relationship cardinalities are text
descriptions of the relationships between
entities. They consist of a list of sentences,
one sentence for each of the two directions
in which a relationship can be read. For
example, the relationship between species
names and identifications in the E-R
diagram in could be documented as
follows:

Each species name is used in zero or more
identifications.

Each identification uses one and only one
species name.

The text documentation for each entity and
attribute explains to a programmer the
scope of the entity and its attributes. The
documentation should include particular
attention to limits on valid content for the
attributes and business rules that govern
the allowed content of attributes, especially
rules that govern related content spread
among several attributes. For example, the
documentation of the date attribute of the
species names entity in Figure 11 above
might define it as being a variable length
character string of up to 5 characters
holding a four digit year greater than 1757
and less than or equal to the current year.
Another rule might say that if the authorship
string for a newly entered record already
exists in the database and the date is
outside the range of the earliest or latest
year present for that authorship string, then
the data entry system should raise a
warning message. Another rule might
prohibit the use of a species name in an
identification if the date on a species name
is more recent than the year of a date
identified. This is a rule that could be
enforced either in the user interface or in a
before insert trigger in the database.

Properly populated with descriptions of
entities and attributes, many CASE tools are
capable of generating text and diagrams to
document a database as well as SQL
(Structured Query Language) code to
generate the table structures for the
database with very little additional effort
beyond that needed to design the database.

Example: PH core tables

As an example of an information model, I
will describe the core components of the
Academy's botanical collection, PH
(Philadelphia Herbarium) type specimen
database. This database was specifically
designed for capturing data off of herbarium
sheets of type specimens. The database
itself is in MS Access and is much more
complex than these core tables suggest. In
particular, the database includes tables for
handling geographic information in a more
normalized form than is shown here.

18

PhyloInformatics 7: 19-66 - 2005

The summary E-R diagram of core entities
for the PH type database is shown in Figure
12. The core entity of the model is the
Herbarium sheet, a row in the Herbarium
sheet table represents a single herbarium
sheet with one or more plant specimens
attached to it. Herbarium sheets are being
digitally imaged, and the database includes
metadata about those images. Herbarium
sheets have various sorts of annotations
attached and written on them concerning
the specimens attached to the sheets.
Annotations can include original label data,
subsequent identifications, and various
comments by workers who have examined
the sheet. Annotations can include taxon
names, including discussion of the type
status of a specimen. Figure 12 shows the
entities (and key fields) used to represent
this core information about a herbarium
sheet.

Figure 12. Core tables in the PH type database.

We can describe each of the relationships
between the entities in the E-R diagram in
with a pair of sentences describing the
relationship cardinalities. These sentences
carry the same information as the crows-
foot notations on the E-R diagram, but in a
more readily intelligible form. To borrow
language from the object oriented
programing world, they state how many
instances of an entity may be related to how
many instances of another entity, that is,
how many rows in one table may be related
to rows of another table by matching rows
containing the same values for primary key
(in one table) and foreign key (in the other

table). The text description of relationship
cardinalities can also carry additional
information that a particular case tool may
not include in its notation, such as a limit of
an instance of one entity being related to
one to three instances of another entity.

Relationship cardinalities:

Each Herbarium Sheet contains zero to many
Specimens.

Each Specimen is on one and only one
Herbarium sheet.

Each Specimen has zero to many Annotations.
Each Annotation applies to one and only one

Specimen.

Each Herbarium sheet has zero to many
Images.

Each Image is of one and only one herbarium
sheet.

Each Annotation uses one and only one Taxon
Name.

Each Taxon Name is used in zero to many
Annotations.

Each Annotation remarks on zero to one Type
Status.

Each Type status is found in one and only one
Annotation.

Each Type Status applies to one and only one
Taxon Name.

Each Taxon Name has zero to many Type
Status.

Each Taxon Name is the child of one and only
one Higher Taxon.

Each Higher Taxon contains zero to many
Taxon Names.

Each Higher Taxon is the child of zero or one
Higher Taxon.

Each Higher Taxon is the parent of zero to many
Higher Taxa.

The E-R diagram in describes only the core
entities of the model in the briefest terms.
Each entity needs to be fleshed out with a
text description, attributes, and descriptions
of those attributes. Figure 13 is a fragment
of a larger E-R diagram with more detailed
entity information for the Herbarium sheet
entity. Figure 13 includes the name and
data type of each attribute in the Herbarium
sheet entity. The herbarium sheet entity
itself contains very little information. All of
the biologically interesting information about
a Herbarium sheet (identifications,
provenance, etc) is stored out in related
tables.

19

PhyloInformatics 7: 20-66 - 2005

Figure 13. Fragment of PH core tables E-R
diagram showing Herbarium sheet entity with all
attributes listed.

Entity-relationship diagrams are still only big
picture summaries of the data. The bulk of
an information model lies in the entity
documentation. Examine Figure 13.
Herbarium sheet has an attribute called
Name, and another called Date. From the
E-R diagram itself, we don't know enough
about what sort of information these fields
might hold. As the Date field has a data
type of timestamp, we could guess that it
represents a timestamp generated when a
row is entered into the herbarium sheet
entity, but without further documentation, we
can't know whether this is correct or not.
The names of the attributes Name and Date
are legacies of an earlier phase in the
design of this database, better names for
these attributes would be “Created by” and
“Date created”. Entity documentation is
needed to explain what these attributes are,
what sort of information they should hold,
and what business rules should be applied
to maintain the integrity and validity of that
information. Entity documentation for one
entity in this model, the Herbarium sheet,
follows (in Appendix A) as an example of a
suitable level of detail for entity
documentation. A definition, the domain of
valid values, business rules, and example
values all help describe the nature of the
information intended to go into a table that
implements this entity and can assist in
physical design of the database, design of
the user interface, and in future migrations
of the data (Figure 1).

Physical design

An information model is a conceptual design
for a database. It describes the concepts to
be stored in the database. Implementation
of a database from an information model

involves converting that conceptual design
into a physical design, into a plan for
actually implementing the database in code.
Large portions of the information model
translate very easily into instructions for
building tables. Other portions of an
information model require more thought, for
example, should a particular business rule
be implemented as a trigger, as a stored
procedure, or as code in the user interface.

The vast majority of relational database
software developed since the mid 1990s
uses some variant of the language SQL as
the primary means for manipulating the
database and the information stored within
the database (the clearest introduction I
have encountered to SQL is Celko, 1995b).
Database server software packages (e.g.
MS SQLServer, PostgreSQL, MySQL) allow
direct entry of SQL statements through a
command line client. However, most
database software also provides for some
form of graphical front end that can hide the
SQL from the user (such as MS Access
over the MS Jet engine or PGAccess over
PostgreSQL, or OpenOffice.org, Rekall,
Gnome-db, or Knoda over PostgreSQL or
MySQL). Other database software, notably
Filemaker, does not natively use SQL (this
is no longer true in Filemaker7, which has a
script step for running SQL queries).
Likewise, CASE tools allow users to design,
implement, modify, and reverse engineer
databases through a graphical user
interface, without the need to write SQL
code. While SQL is the language of
relational databases, it is quite possible to
design, implement, and use relational
databases without writing SQL code by
hand.

Even if you aren't going to write SQL
yourself to manipulating data, it is very
helpful to think in terms of SQL. When you
want to ask a question of your data,
consider what query would you write to
answer that question, then think about how
to implement that query in your database
software. This should help lead you to the
desired result set. Note that phrase: result
set. Set is an important word. SQL is a set
based language. Tables with their rows and
columns may look like a spreadsheet. SQL,
however, operates not on individual rows
but on sets. Set thinking is the key to
working with relational databases.

20

PhyloInformatics 7: 21-66 - 2005

Basic SQL syntax

SQL queries serve two distinctly different
purposes. Data definition queries allow you
to create structures for holding your data.
Data definition queries define tables, fields,
indices, stored procedures, and triggers.
On the other hand, data manipulation
queries allow you to add, edit, and view
data. In particular, SELECT queries retrieve
data from the database.

Data definition queries can be used to
create new tables and alter existing tables.
A CREATE TABLE statement simply
provides the information needed to create a
table, such as a table name, a list of field
names, types for each field, constraints to
apply to each field, and fields to index.
Queries to create a very simple collection
object table and to add an index to its
catalog number field are shown below (in
MySQL syntax, see DuBois, 2003; DuBois
et al, 2004). Here I have followed a good
form for readability, placing SQL commands
in upper case, user supplied names for
database elements in lowercase, spacing
the statements out over several lines, and
indenting lines to improve clarity.

CREATE TABLE collection_object (
 collection_object_id INT NOT NULL
 PRIMARY KEY AUTO_INCREMENT,
 acronym CHAR(4) NOT NULL
 DEFAULT “ANSP”,
 catalog_number CHAR(10) NOT NULL
);

CREATE INDEX catalog_number
 ON collection_object(catalog_number);

The create table query above will create a
table for the collection object entity shown in
Figure 14 and the create index query that
follows it will index the catalog number field.
SQL has a very English-like syntax. SQL

uses a small set of commands such as
Create, Select, Update, and Delete. These
commands have a simple, easily
understood syntax yet can be extremely
flexible, powerful, and complex.

Data placed in a table based on the entity in
Figure 14 might look like those in Table 13:

Table 13. Rows in a collection object table

collection_object_id acronym catalog_
number

300 ANSP 34000
301 ANSP 34001
302 ANSP 28342
303 ANSP 100382

SQL comes in a series of subtly different
dialects. There are standards for SQL
[ANSI X3.135-1986, was the first, most
vendors support some subset of SQL-92 or
SQL-99, while SQL:2003 is the latest
standard (ISO/IEC, 2003; Eisenberg et al,
2003)], and most implementations are quite
similar. However, each DBMS implements
a subtly different set of features and their
own extensions of the standard. A SQL
statement in the PostgreSQL dialect to
create a table based on the collection object
entity in Figure 14 is similar, but not quite
identical to the SQL in the MySQL dialect
above:

CREATE TABLE collection_object (
 collection_object_id SERIAL NOT NULL
 UNIQUE PRIMARY KEY,
 acronym VARCHAR(4) NOT NULL
 DEFAULT 'ANSP',
 catalog_number VARCHAR(10) NOT NULL,
);
CREATE INDEX catalog_number
 ON collection_object(catalog_number);

Most of the time, you will not actually write
data definition queries. In DBMS systems
like MS Access and Filemaker there are
handy graphical tools for creating and
editing table structures. SQL server
databases such as MySQL, Postgresql,
and MS SQLServer have command line
interfaces that let you issue data definition
queries, but they also have graphical tools
that allow creation and editing of table
structures without worrying about data
definition query syntax. For complex
databases, it is best to create and maintain
the database design in a separate CASE
tool (such as xCase, or Druid, both used to

21

Figure 14. A collection object entity with a few
attributes.

PhyloInformatics 7: 22-66 - 2005

produce E-R diagrams shown herein, or any
of a wide range of other commercial and
open source CASE tools). Database CASE
tools typically have a graphical user
interface for design, tools for checking the
integrity of the design, and the ability to
convert the design to a set of data definition
queries. Using a CASE tool, one designs
the database, then connects to a data
source, and then has the CASE tool issue
the data definition queries to build the
database. Documentation of the database
design can be printed from the CASE tool.
Subsequent changes to the database
design can be made in the CASE tool and
then applied to the database itself.

The workhorse for most database
applications is data retrieval. In SQL this is
accomplished using the SELECT statement.
Select statements can specify the desired
fields and the criteria to limit the results
returned by a query. MS Access has a very
useful graphical query designer. The
familiar queries you build with this designer
by dragging fields from tables onto the
query design and then adding criteria to limit
the result sets are just SELECT queries
(indeed it is possible to change the query
designer over to SQL view and see the sql
statement you have built with the designer).
For those from the Filemaker world,
SELECT queries are like designing a layout
with the desired fields on it, then changing
over to find view, adding criteria to limit the
find, and then running the find to show your
result set. Here is a simple select statement
to list the species in the genus Chicoreus
present in a taxonomic dictionary file:

SELECT generic_epithet, trivial_epithet
FROM taxon_name
WHERE generic_epithet = “Chicoreus”;

This SQL query will return a result set of
information – all of the generic and trivial
names present in the taxon_name table
where the generic name is Chicoreus.
Remember that the important word here is
“set” (Figure 15). SQL is a set based
language. You should think of this query
returning a single set of information rather
than an iterated list of rows from the source
table. Set based thinking is quite different
from the iterative thinking common to most
programing languages . Behind the scenes,
the DBMS may be walking through rows in

the table, looking up values in indexes, and
all sorts of interesting creative programming
features that are generally of no concern to
the user of the database. SQL provides a
standard interface on top of the details of
exactly how the DBMS is extracting data
that allows you to easily think about sets of
information, rather than worrying about how
to get that information out of its storage
structures.

SELECT queries can ask sophisticated
questions about aggregates of data. The
simplest form of these is a query that
returns all the distinct values in a field. This
sort of query is extremely useful for
examining messy legacy data.

The query below will return a list of the
unique values for country and
primary_division (state/province) from a
locality table, sorted in alphabetic order.

SELECT DISTINCT country, primary_division
FROM locality_table;
ORDER BY country, primary_division;

In legacy data, a query like this will usually
return an interesting list of variations on the
spelling and abbreviation of both country
names and states. In the MS Access query
designer, a property of the query will let you
convert a SELECT query into a SELECT
DISTINCT query, or you can switch the
query designer to SQL view and add the
word DISTINCT to the sql statement.
Filemaker allows you to limit options in a
picklist to distinct values from a field, but
doesn't (as of version 6.1) have a facility for
selecting and displaying distinct values in a
field other than in a picklist.

22

Figure 15. Selecting a set.

PhyloInformatics 7: 23-66 - 2005

Working through an example:
Extracting identifications.

SELECT queries are not limited to a single
table. You can ask questions of data across
multiple tables at once. The usual way of
doing this is to follow a relationship joining
one table to another. Thus, in our
information model for an identification that
has a table for taxon names, another for
collection objects, and an associative entity
to relate the two in identifications (Figure
11), we can create a query that starts in the
collection object table and joins the
identification table to it by following the
primary key to foreign key based
relationship. The query then follows another
relationship out to the taxon name table.
This join from collections objects to
identifications to taxon names provides a list
of the identifications for each collection
object. Given a catalog number, we can
obtain a list of related identifications.

SELECT generic_higher, trivial, author,
 year, parentheses, questionable,
 identifier, date_identified,catalog_number
FROM collections_object
 LEFT JOIN identification
 ON collection_object_id =
 c_collection_object_id
 LEFT JOIN taxon_name
 ON c_taxon_id = taxon_id
WHERE catalog_number = “34000”;

Because SQL is a set based language, if
there is one collection object with the
catalog number 34000 (Table 14) which has
three identifications (Table 15,Table 16),
this query will return a result set with three
rows(Table 17):

Table 14. A collection_object table.

collection_object_id catalog_number
55253325 34000

Table 15. An identification table.

c_collection_
object_id

c_taxonid date_identified

55253325 23131 1902/--/--
55253325 13144 1986/--/--
55253325 43441 1998/05/--

Table 16. A taxon_name table

taxon_id Generic_higher trivial
23131 Murex sp.
13144 Murex ramosus
43441 Murex bicornis

Table 17. Selected result set of joined rows from
collection_object, identification, and taxon_name.

Generic_
higher

trivial date_identified catalog_
number

Murex sp. 1902/--/-- 34000
Murex ramosus 1986/--/-- 34000
Murex bicornis 1998/05/-- 34000

The collection object table contains only one
row with a catalog number of 34000, but the
set produced by joining identifications to
collection objects contains three rows with
the catalog number 34000. SQL is returning
sets of information, not rows from tables in
the database.

We could order this result set by the date
that the collection object was identified, or
by a current identification flag, or both
(assuming the format of the date_identified
field allows for easy sorting in chronological
order):

SELECT generic_higher, trivial, author,
 year, parentheses,
 questionable, identifier,
 date_identified, catalog_number
FROM collections_object
 LEFT JOIN identification
 ON collection_object_id =
 c_collection_object_id
 LEFT JOIN taxon_name
 ON c_taxon_id = taxon_id
WHERE catalog_number = “34000”
ORDER BY current_identification,
 date_identified;

Entity-Relationship diagrams show
relationships connecting entities. These
relationships are implemented in a database
as joins between tables. Joins can be much
more fluid than implied by an E-R diagram.

SELECT DISTINCT
 collections_object.catalog_number
FROM taxon
 LEFT JOIN identification
 ON taxonid = c_taxon id

 LEFT JOIN collection object
 ON c_collections_objectid =

 collections_objectid
WHERE
 taxon.taxon_name = “Chicoreus ramosus”;

The query above is straightforward, it
returns one row for each catalog number
where the object has an identification of
Chicoreus ramosus. We can also write a
query to follow the same join in the opposite

23

PhyloInformatics 7: 24-66 - 2005

direction. Starting with the criterion set on
the taxon table, the query below follows the
joins back to the collections_object table to
see a selected set of catalog numbers.

SELECT collections_object.catalog_number,
 taxon.taxon_name
FROM collections_object
 LEFT JOIN identification
 ON collections_objectid =

 c_collections_objectid
 LEFT JOIN taxon
 ON c_taxonid = taxon id;

Following a relationship like this from the
many side to the one side takes a little more
thinking about. The query above will return
a result set with one row for each taxon
name that is used in an identification, and, if
a collection object has more than one
identification, its catalog number will appear
in more than one row. This is the normal
behavior of a query across a join that
represents a many to one relationship. The
result set will be inflated to include one row
for each selected row on the many side of
the relationship, with duplicate values for the
selected columns on the other side of the
relationship. This also is why the previous
query was a Select Distinct query. If it had
simply been a select query and there were
specimens with more than one identification
of “Chicoreus ramosus”, the catalog
numbers for those specimens would be
duplicated in the result set. Think of
queries as returning result sets rather than
rows from database tables.

Thinking in sets rather than rows is evident
when you perform update queries to alter
data already in the database. In a
programming language, you would think of
iterating through each row in a table,
checking to see if that row matched the
criteria for an update and then applying an
update to that row if it did. You can think of
an SQL update query as simply selecting
the set of records that match your criteria
and applying the update to that set as a
whole (Figure 16, top).

UPDATE species_dictionary
SET genus = “Chicoreus”
WHERE genus = “Chicoresu”;

Nulls and tri-valued logic

Boolean logic with its operations on true and
false is at least vaguely familiar to most of
us. SQL throws in an added twist. It uses
tri-valued logic. SQL expressions may be
true, false, or null. A field may contain a null
value. A null is different from an empty
string or a zero. A character field intended
to hold generic names could potentially
contain “Silurus”, or “Chicoreus”, or
“Palaeozygopleura”, or “” (an empty string),
or NULL as valid values. An integer field
could hold 1, or 5, or 1024, or -1, or 0, or
NULL. Nulls make the most sense in the
context of numeric fields or date fields.
Suppose you want to use an real number
field to hold a measurement of a specimen,
say maximum shell height in a gastropod.
Storing the number in a real number field
will make it easy for you to calculate sums,
means, and perform other mathematical
operations on this field. You are left with a
problem, however, when you don't know
what value to put in that field. Suppose the
specimen in front of you is a slug (with no
shell to measure). What value do you place

24

Figure 16. An SQL update statement should be
thought of as acting on an entire result set at once
(top), rather than walking through each row in the
table, as might be implemented in an iterative
programing language (bottom).

PhyloInformatics 7: 25-66 - 2005

in the shell height field? Zero might make
sense, but won't produce sensible results
for some sorts of calculations. A negative
number, or more broadly a number outside
the range of expected valid values (such as
99 for year in a two digit date field in a
database designed in the 1960s) that you
could use to exclude out of range values
before performing your calculation? Your
perception of the scope of valid values
might not match that of users of the system
(as when the 1960s data survived to 1999).
In our example of values for shell height, if
someone decides that hyperstrophic
gastropods should have negative values of
shell height as they coil up the axis of coiling
instead of down it like normal orthostrophic
gastropods the values -1 and 0 would no
longer fall outside the scope of valid shell
heights. Null is the SQL solution to this
problem. Nulls don't behave as numbers.
Nulls allow you to flag records for which
there is no sensible in range value to place
in a field. Nulls make slightly less sense in
character fields where you can allow explicit
values such as “Not Applicable”, “Unknown”,
or “Not examined” that let you explicitly
record the reason that a value was not
entered in the field. The difficulty in this
case is in maintaining the same value for
the same concept over time, preventing “Not
Applicable” from being entered by some
users and “N/A” by others and “n/a” and “”
by others. Code to help users consistently
enter “Not Applicable”, or “Unknown” can be
embedded in the user interface, but
fundamentally, ensuring consistent data
entry in this form is a matter of careful user
training, quality control procedures, and
detailed documentation.

Nulls make for interesting complications
when it comes time to query the database.
We normally think of expressions in
programs as following some set of rules to
evaluate as either true or false. Most
programing languages have some construct
that lets us take an action if some condition
is met; IF some expression is true
THEN do something. The expression
(left(genus,4) <> “Silu”) would
sensibly seem to evaluate to true for all
cases where the first four characters of the
genus field are not “Silu”. Not so in an SQL
database. Nulls propagate. If an
expression contains a null, the null will
propagate to make result of the whole

expression null. If the value of genus in
some row is null, the expression
left(NULL,4) <> “Silu” will evaluate to null,
not to true or false. Thus the statement
select generic, trivial from taxon_name
where (left(generic,4) <> “silu”) will not
return the expected result set (it will not
include rows where generic=NULL. Nulls
are handled with a function, such as
IsNull(), which can take a null and return a
true or false result. Our query needs to add
a term: select generic, trivial from
taxon_name where (left((generic,4) <>

“silu”) or IsNull(generic)).

Maintaining integrity

In a spreadsheet or a flat file database,
deleting a record is a simple matter of
removing a single row. In a relational
database, removing records and changing
the links between records in related tables
becomes much more complex. A relational
database needs to maintain database
integrity. An important part of maintaining
integrity is knowing what do you do with
related records when you delete a record on
one side of a join. Consider a scenario:
You are cataloging a collection object and
you enter data about it into a database
(identification, locality, catalog number, kind
of object, etc...). You then realize that you
entered the data for this object yesterday,
and you are creating a duplicate record that
you want to delete. How far does the delete
go? You no doubt want to get rid of the
duplicate record in the collection object table
and the identifications attached to this
record, but you don't want to keep following
the links out to the authority file for taxon
names and delete the names of any taxa
used in identifications. If you delete a
collections object you do not want to leave
orphan identifications floating around in the
database unlinked to any collections object.
These identifications (carrying a foreign key
for a collections object that doesn't exist)
can show up in subsequent queries and
have the potential to become linked to new
collections objects (silently adding incorrect
identifications to them as they are created).
Such orphan records, which retain links to
no longer existent records in other tables,
violate the relational integrity of the
database.

When you delete a record, you may or may

25

PhyloInformatics 7: 26-66 - 2005

not want to follow joins (relationships) out to
related tables to delete related records in
those tables. Descriptions of relationships
themselves do not provide clear guidance
on how far deletions should propagate
through the database and how they should
be handled to maintain relational integrity. If
a collection object is deleted, it makes
sense to delete the identifications attached
to that object, but not the taxon names used
in those identifications as they are probably
used to identify other collection objects. If,
in the other direction, a taxon name is
deleted the existence of any identifications
that use that taxon name almost certainly
mean that the delete should fail and the
name should be retained. An operation
such as merging a record containing a
correctly spelled taxon name with a record
containing an incorrectly spelled copy of the
same name should correct any links to the
incorrect spelling prior to deleting that
record.

Relational integrity is best enforced with
constraints, triggers, and code enforcing
rules at the database level (supported by
error handling in the user interface). Some
database languages support foreign key
constraints. It is possible to join two tables
by including a column in one table that
contains values that match the values in the
primary key of another table. It is also
possible to explicitly enforce foreign key
constraints on this column. Including a
foreign key constraint in a table definition
will require that values entered in the foreign
key column match values found in the
related primary key. Foreign key constraints
can also include cascading deletes.
Deleting a row in one table can cascade out
to related tables with foreign key constraints
linked to the first table. A foreign key
constraint on the c_collections_object_id
field of an identification table could cause
deletes from the related collections object
table to cascade out and remove related
rows from the identification table. Support
for such deletion of related rows varies
between database systems.

Triggers are blocks of code in a database
that are executed when particular actions
are performed. An on delete trigger is a
block of code tied to a table in a database
that can fire when a record is deleted from
that table. An on delete trigger for a

collections object could, like a foreign key
constraint, delete related records in an
identification table. Triggers, unlike
constraints, can contain complex logic and
can do more than simply affect related rows.
An on delete trigger for a taxon name table
could check for related records in an
identification table and cause the delete
operation to fail if any related records exist.
An on insert or on update trigger can include
complex format checking and business rule
checking code, and we will see later,
triggers can be very helpful in maintaining
the integrity of hierarchical information
(trees) stored in a database.

Triggers, foreign keys, and other operations
executed on the database server do have a
downside: they involve the processing of
code, and thus reduce the speed of
database operations. In many cases (where
you are concerned about the integrity of the
data), you will want to support these
operations somewhere – either in user
interface code, in a middle layer of business
logic code, or as code embedded in the
database. Embedding rules to support the
integrity of the data in the database (through
triggers and constraints) can be an effective
way of ensuring that all users and clients
that attach to the database have to follow
the same business rules. Triggers can also
simplify client development by reducing the
number of operations the client must
perform to maintain integrity of the data.

User rights & Security

Another important element to
maintaining data quality is control over who
has access to a database. Limits on who is
able to add data and who is able to alter
data are essential. Unrestricted database
access to all and sundry is an invitation to
unusable data. At a minimum, guests
should have select only access to public
parts of the database, data entry personnel
should have limited select and update (and
perhaps delete) rights to parts of the
database, a limited set of skilled users may
be granted update access to tables housing
controlled vocabularies, and only system
administrators should have rights to add
users or alter user privileges. Particular
business functions (such as collection
managers filling loans, curators approving

26

PhyloInformatics 7: 27-66 - 2005

loans, or a registrar approving accessions)
may also require restrictions to limit these
operations on the database to only the
correct users. User rights are best
implemented at the database level.
Database systems include native methods
for restricting user rights. You should
implement rights at this level, rather than
trying to implement a separate privilege
system in the user interface. You will
probably want to mirror the database
privileges in the front end (for example,
hiding administrative menu options from
lower level users), but you should not rely
on code in the front end of a database to
restrict the ability of users to carry out
particular operations. If a database front
end can connect a user to a database
backend with a high privilege level, the
potential exists for users to skip the front
end and connect directly to the database
with a high privilege level (see Morris 2001
for an example of a server wide security risk
introduced by a design that implemented
user access control in the client).

Implementing as joins &
Implementing as views

In many database systems, a set of joins
can be stored as a view of a database. A
view can be treated much like a table.
Users can query a view and get a result set
back. Views can have access rights granted
by the access privilege system. Some
views will accept update queries and alter
the data in the tables that lie behind them.
Views are particularly valuable as a tool for
restricting a class of users to a subset of
possible actions on a subset of the
database and enforcing these restrictions at
the database level. A user can be granted
no rights at all to a set of tables, but given
select access to a view that shows a subset
of information from those tables. An
account that updates a web database by
querying a master database might be
granted select only access to a view that
limits it to just the information needed to
update the web dataset (such as a flat view
of Darwin Core [Schwartz, 2003; Blum and
Wieczorek, 2004] information). Given the
complex joins and very complex structure of
biodiversity information, views are probably
not practical ways to restrict data entry
privileges for most biodiversity databases.
Views may, however, be an appropriate

means of limiting guest access to a read
only view of the data.

Interface design

Simultaneously with the conceptual and
physical design of the back end of a
database, you should be creating a design
for the user interface to access the data.
Existing user interface screens for a legacy
database, paper and pencil designs of new
screens, and mockups in database systems
with easy form design tools such as
Filemaker and MS Access are of use in
interface design. I feel that the most
important aspect of interface design for
databases is to fit the interface to the
workflow, abstracting the user interface
away from the underlying complex data
structures and fitting it to the tasks that
users perform with the data. A typical user
interface problem is to place the user
interface too close to the data by creating
one data entry screen for each table in the
database. In anything other than a very
simple database, having the interface too
close to the data ends up in a bewildering
profusion of pop up windows that leave
users entirely confused about where they
are in data entry and how the current open
window relates to the task at hand.

Figure 17. A picklist control for entering taxon
names.

Consider the control in Figure 17. It allows
a user to select a taxon name (say to
provide an identification of a collection
object) off of a picklist. This control would
probably allow the user to start typing the
taxon name in the control to jump to the
relevant part of a very long picklist. A
picklist like this is a very seductive form
element in many situations. It can allow a
data entry person to make fewer keystrokes
and mouse gestures to enter a particular
item of information than by filling in a set of
fields. It can mask substantial complexity in
the underlying database (the taxon name
might be built from 12 fields or so and the
control might be bound to a field holding a
surrogate numeric key representing a
particular combination). By having users
pick values off of a list you can enforce a
controlled vocabulary and can avoid the
entry of misspelled taxon names and other

27

PhyloInformatics 7: 28-66 - 2005

complex vocabulary. Picklists, however
have a serious danger. If a data entry
person selects the wrong taxon name when
entering an identification from the picklist
above there is no way for anyone to find that
a mistake has been made without having
someone return to the original source for
the information and compare the record
against that source (Figure 18). In
contrast, a misspelled taxon name is usually
easy to locate (by comparison with a
controlled list of taxon names). If data is
entered as text, simple misspellings can be
found, identified, and fixed. Avoid picklists
as sole sources of information.

Figure 18. A picklist being used as the sole
source of locality information.

One option to avoid the risk of unfindable
errors is to entirely avoid the use of picklists
in data entry. Simply exchanging picklists
for text entry controls on forms will result in
the loss of the advantages of picklist
controls; more rapid data entry and, more
importantly, a controlled vocabulary. It is
possible to maintain authority control and
use text controls by writing code behind a
text entry control that will enforce a
controlled vocabulary by querying an
authority file using the information entered in
the text control and throwing an error (and
presenting the user with an error message)
if no match is found in the controlled
vocabulary in the authority file. This
alternative can work well for single word
entries such as generic names, where it is
faster to simply type a name than it is to
open a long picklist, move to the correct
location on the list, and select a value.
Replacing a picklist with a controlled text
box, however, is not a good choice for

complex formated information such as
locality descriptions.

Another option to avoid the risk of
unfindable errors is to couple a picklist with
a text control (Figure 19). A collecting
event could be linked to a locality through a
picklist of localities, coupled with a
redundant text field to enter a named place.
The data entry person needs to make more
than one mistake to create an unfindable
error. To make an unfindable error, the
data entry person needs to select the wrong
value from the picklist, enter the wrong
value in the text box, and have these
incorrect text box value match the incorrect
choice from the picklist (an error that is still
quite conceivable, for example if the data
entry person looks at the label for one

specimen when they are typing in
information about another specimen). The
text box can hold a terminal piece of
information that can be correlated with the
information in the picklist, or a redundant
piece of information that must match a value
on the pick list. A picklist of species names
and a text box for the trivial epithet allow an
error to be raised whenever the trivial
epithet in the text box does not match the
species name selected on the picklist. Note
that the value in the text box need not be
stored as a field in the database if the

28

Figure 19. A picklist and a text box used in
combination to capture and check locality
information. Step 1, the user selects a locality
from the picklist. Step 2, the database looks up
higher level geographic information. Step 3, the
user enters the place name associated with the
locality. Step 4, the database checks that the
named place entered by the user is the correct
named place for the locality they selected off the
picklist.

PhyloInformatics 7: 29-66 - 2005

quality control rules embedded in the
database require it to match the picklist.
Alternately the values can be stored and
used to flag records for later review in the
quality control process.

Design your forms to function without the
need for lifting hands off the keyboard. Data
entry should not require the user to touch
the mouse. Moving to the next control,
pressing a button, moving to the next
record, opening a picklist, and duplicating
information from the previous record, are all
operations that can be done from the
keyboard. Human interface design is a
discipline in its own right, and I won't say
more about it here.

Practical Implementation

Be Pragmatic

Most natural history collections operate in
an environment of highly limited resources.
Properly planning, designing, and
implementing a database system following
all of the details of some of the information
models that have been produced for the
community (e.g. Morris 2000) is a task
beyond the resources of most collections. A
reasonable estimate for a 50 to 100 table
database system includes about 500-1000
stored procedures, more than 100,000 lines
of user interface code, one year of design,
two or more years of programming, a
development team including a database
programmer, database administrator, user
interface programmer, user interface
designer, quality control specialist, and a
technical writer, all running to some
$1,000,000 in costs. Clearly natural history
collections that are developing their own
database systems (rather than using
external vendors or adopting community
based tools such as BioLink [CSIRO, 2001]
or Specify) must make compromises.
These compromises should involve
selecting the most important elements of
their collections information, spending the
most design, data cleanup, and programing
effort on those pieces of information, and
then omitting the least critical information or
storing it in less than third normal form data
structures.

A possible candidate for storage in less than
ideal form is the generalized Agent concept

that can hold persons and institutions that
can be linked to publications as authors,
linked to collection objects as preparators,
collectors, identifiers, and annotators, and
linked to transactions as donors, recipients,
packers, authorizers, shippers, and so forth.
For example, given the focus on collection
objects, using Agents as authors of
publications (through an authorship list
associative entity) may introduce substantial
complications in user interface design, code
to maintain data integrity, and the handling
of existing legacy data that produce costs
far in excess of the utility gained from proper
third normal form handling of the concept of
authors. Conversely, a database system
designed specifically to handle bibliographic
information requires very clean handling of
the concept of Authors in order to be able to
produce bibliographic citations in multiple
different formats (at a minimum, the author
last name and initials need to be atomized
in an author table and they need to be
related to publications through an
authorship list associative entity).
Abandoning third normal form (or higher) in
parts of the database is not a bad thing for
natural history collections, so long as the
decisions to use lower normal forms are
clearly thought out and restricted to the
least important parts of the data.

I chose the example of Agents as a possible
target for reduced database complexity
deliberately. Some institutions and users
will immediately object that a generalized
Agent related to transactions and collection
objects is of critical importance to their data.
Perfect. This is precisely the approach I am
advocating. Identify the most important
parts of your data, and put your time, effort,
design, programing, and data manipulation
into making sure that your database system
is capable of cleanly handling those most
critical areas. Identify the concepts that are
not of critical importance and minimize the
design complexity you allow them to
introduce into your database (recognizing
that problems will accumulate in the quality
of these data). In a setting of limited
resources, we are seldom in a situation
where we can build systems to store all of
the highly complex information associated
with collections in optimum form. This fact
does not, however, excuse us from
identifying the most important information
and applying the best solutions we can to

29

PhyloInformatics 7: 30-66 - 2005

the stewardship of that information.

Approaches to management of
date information

Dates in collection data are generally
problematic as they are often known only to
a level of precision less than a single day.
Dates may be known to the day, or in some
cases to the time of day, but often they are
known only to the month, or to the year, or
to the decade. In some cases, dates are
known to be prior to a particular date (e.g.
the date donated may be known but the
date collected may not other than that it is
sometime prior to the date donated). In
other cases dates are known to be within a
range (e.g. between 1932-June-12 and
1932-July-154); in yet others they are known
to be within a set of ranges (e.g. collected in
the summers of 1852 to 1855). Designing
database structures to be able to effectively
store, retrieve, sort, and validate this range
of possible forms for dates is not simple
(Table 18).

Using a single field with a native date data
type to hold collections date information is
generally a poor idea as date data types
require each date to be specified to the
precision of one day (or finer). Simply
storing dates as arbitrary text strings is
flexible enough to encompass the wide
variety of formats that may be encountered,
but storing dates as arbitrary strings does
not ensure that the values added are valid
dates, in a consistent format, are sortable,
or even searchable.

Storage of dates effectively requires the
implementation of an indeterminate or
arbitrary precision date range data type
supported by code. An arbitrary precision
date data type can be implemented most
simply by using a text field and enforcing a
format on the data allowed into that field (by
binding a picture statement or format
expression to the control used for data entry
into that field or to the validation rules for

4 There is an international standard date and
time format, ISO 8601, which specifies
standard numeric representations for dates,
date ranges, repeating intervals and durations.
ISO 8601 dates include notations like 19 for an
indeterminate date within a century, 1925-03
for a month, 1860-11-5 for a day, and 1932-06-
12/1932-07-15 for a range of dates.

the field). A format like “9999-Aaa-99 TO
9999-Aaa-99” can force data to be entered
in a fixed standard order and form. Similar
format checks can be imposed with regular
expressions. Regular expressions are an
extremely powerful tool for recognizing
patterns found in an expanding number of
languages (perl, PHP, and MySQL all
include support for regular expressions). A
regular expression for the date format above
looks like this: /^[0-9]{4}-[A-Z]{1}[a-
z]{2}-[0-9]{2}(TO [0-9]{4}-[A-
Z]{1}[a-z]{2}-[0-9]{2})+$/. A regular
expression for an ISO date looks like this:
/^[0-9]{2,4}(-[0-9]{2}(-[0-
9]{2})+)+(-[0-9]{4}(-[0-9]{2}(-[0-
9]{2})+)+)+$/. Note that simple patterns
still do not test to see if the dates entered
are valid.

Another date storage possibility is to use a
set of fields to hold start year, end year,
start month, end month, start day, and end
day. A set of such numeric fields can be
sorted and searched more easily than a text
date range field but needs careful planning
of what values are placed in the day fields
for dates for which only the month is known
and other handling of indeterminate
precision.

From a purely theoretical standpoint, using
a pair of native date data type fields to hold
start day and end day is the best way to
hold indeterminate date and date range
information (as 1860 translates to the range
1860-01-01 to 1860-12-31). Native date
data types have native recognition of valid
and invalid values, sorting functions, and
search functions. Implementing dates with
a native date data type avoids the need to
write code to support validation, sorting, and
other things that are needed for dates to
work. Practical implementation of dates
using a native date data type, however,
would not work well as just a pair of date
fields exposed for text entry on the user
interface. Rather than simply typing “1860”
the data entry person would need to stop,
think, type 1860-01-01, move to the end
date field, then hopefully remember the last
day of the year correctly and enter it.
Efficient and accurate data entry would
require a user interface with code capable of
accepting “1860” as a valid entry and storing
it as an appropriate date range. Printing is
also an issue – the output we would expect

30

PhyloInformatics 7: 31-66 - 2005

on a label would be “1860” not “1860-01-01
to 1860-12-31” for cases where the date
was only known to a year, with a range only
printing when the range was the originally
known value. An option to handle this
problem is to use a pair of date fields for
searching and a text field for verbatim data
and printing, though this solution introduces
redundancy and possible accumulation of
errors in the data.

Multiple start and end points (such as
summers of several years) are probably
rare enough values to hold in a separate
text date qualifier field. A free text date
qualifier field, separate from a means of
storing a date range, as a means for
handling these exceptional records would
preserve the data, but introduces a
reduction of precision in searches (as
effective searches could only operate on the
range end points, not the free text qualifier).
Properly handing events that occur within
multiple date ranges requires a separate
entity to hold date information. The added
code and interface complexity needed to
support such an entity is probably an
unnecessary burden to add for most
collections data.

Handling hierarchical
information

Hierarchies are pervasive in biodiversity
informatics. Taxon names, geopolitical
entities, chronostratigraphic units and
collection objects are all inherently
hierarchical concepts – they can all be

represented as trees of information. The
taxonomic hierarchy is very familiar (e.g. a
Family contains Subfamilies which contain
Genera). Collection objects are intuitively
hierarchical in some disciplines. For
example, in invertebrate paleontology a bulk
sample may be cataloged and later split,
with part of the split being sorted into lots.
Individual specimens may be split from
these lots. These specimens may be
composed of parts (paired valves of
bivalves), which can have thin sections
made from them. In addition, derived
objects (such as casts) can be made from
specimens or their parts. All of these
different collection objects may be assigned
their own catalog numbers but are still
related by a series of lot splits and
preparation steps to the original bulk
sample. A bird skin is not so obviously
hierarchical, but skin, skeleton, and frozen
tissue samples from the same bird may be
stored separately in a collection.

Some types of database systems are better
at handling hierarchical information than
others. Relational databases do not have
easy and intuitive ways of storing
hierarchies in a form that is both easy to
access and maintains the integrity of the
data. Older hierarchical database systems
were designed around business hierarchies
and natively understood hierarchies. Object
oriented databases can apply some of the
basic properties of extensible objects to
easily handle hierarchical information.
Object extensions are available for some
relational database management systems

31

Table 18. Comparison of some ways to store date information

Fields data type Issues
Single date field date Native sorting, searching, and validation. Unable to store date

ranges, will introduce false precision into data.
Single date field character Can sort on start date, can handle single dates and date ranges

easily. Needs minimum of pattern or format applied to entry
data, requires code to test date validity.

Start date and end
date fields

two character fields,
6 character fields, or
6 integer fields.

Able to handle date ranges and arbitrary precision dates.
Straightforward to search and sort. Requires some code for
validation.

Start date and end
date fields

two date fields Native sorting and validation. Straightforward to search. Able to
handle date ranges and arbitrary precision. Requires carefully
designed user interface with supporting code for efficient data
entry.

Date table
containing date
field and start/end
field.

date field, numeric
fields, character
field, or character
fields.

Handles single dates, multiple non-continuous dates, and date
ranges. Needs complex user interface and supporting code.

PhyloInformatics 7: 32-66 - 2005

and can be used to store hierarchical
information more readily than in relational
systems with only a standard set of SQL
data types.

There are several different ways to store
hierarchical information in a relational
database. None of these are ideal for all
situations. I will discuss the costs and
benefits of three different structures for
holding hierarchical information in a
relational database: flattening a tree into a
denormalized table, edge representation of
trees, and a tree visitation algorithm.

Denormalized table

A typical legacy structure for the storage of
higher taxonomy is a single table containing
separate fields for Genus, Family, Order
and other higher ranks (Table 19). (Note
that order is a reserved word in SQL [as in
the ORDER BY clause of a SELECT
statement] and most SQL dialects will not
allow reserved words to be used as field or
table names. We thus need to use some
variant such as T_Order as the actual field
name). Placing a hierarchy in a single flat
table suffers from all the risks associated
with non normal structures (Table 20).

Placing higher taxa in a flat table like Table
19 does allow for very easy extraction of the
higher classification of a taxon in a single
query as in the following examples. A flat
file is often the best structure to use for a
read only copy of a database used to power
a searchable website. Asking for the family
to which a particular genus belongs is very
simple:

SELECT family FROM higher_taxonomy
 FROM higher_taxonomy
 WHERE genus = “Chicoreus”;

Likewise, asking for the higher classification

of a particular species is very
straightforward:

SELECT class, t_order, family
 FROM higher_taxonomy
 LEFT JOIN taxon_name
 ON higher_taxonomy.genus =
 taxon_name.genus
 WHERE taxon_name_id = 352;

Edge Representation

Heirarchical information is typically
described in an information model using an
entity with a one to many link to itself
(Figure 20). For example, a taxon entity
with a relationship where a taxon can be the
child of zero or one higher taxon and a
parent taxon can have zero to many child
taxa. (Parent and child are used here in the
sense of computer science description of
trees, where a parent node in the tree can
be linked to several child nodes, rather than
in any genealogical or evolutionary sense).

Taxonomic hierarchies are nested sets and
can readily be stored in tree data structures.
Thinking of the classification of animals as a
tree, Kingdom Animalia is the root node of
the tree. The immediate child nodes under
the root might be the thirty some phyla of
animals, each with their own subphylum,
superclass, or class children. Animalia
could thus be the parent node of the phylum
Mollusca. Following the branches of the
tree down to lower taxa, the terminal nodes

32

Table 19. Higher taxa in a denormalized flat file table

Class T_Order Family Sub Family Genus
Gastropoda Caenogastropoda Muricidae Muricinae Murex
Gastropoda Caenogastropoda Muricidae Muricinae Chicoreus
Gastropoda Caenogastropoda Muricidae Muricinae Hexaplex

Table 20. Examples of problems with a hierarchy placed in a single flat file.

Class T_Order Family Sub Family Genus
Gastropoda Caenogastropoda Muricidae Muricinae Murex
Gastropod Caenogastropoda Muricidae Muricinae Chicoreus
Gastropoda Neogastropoda Muricinae Muricidae Hexaplex

Figure 20. A taxon entity with a join to itself. Each
taxon has zero or one higher taxon. Each taxon
has zero to one lower taxa.

PhyloInformatics 7: 33-66 - 2005

or leaves of the tree would be species and
subspecies. Taxonomic hierarchies readily
translate into trees and trees are very
familiar data structures in computer science.

Storage of a higher classification as a tree is
typically implemented using a table
structure that holds an edge representation
of the tree hierarchy. In an edge
representation, a row in the table has a field
for the current node in the tree and another
field that contains a pointer to the current
node's parent. The simplest case is a table
with two fields, say a higher taxon table
containing a field for taxon name and
another field for parent taxon name.

CREATE TABLE higher_taxon (
 taxon_name char(40) not null
primary_key,
 parent_taxon char(40) not null);

Table 21. An edge representation of a tree

Taxon_name (PK) Higher_taxon
Gastropoda [root]
Caenogastropoda Gastropoda
Muricidae Caenogastropoda
Chicoreus Muricidae
Murex Muricidae

In this implementation (Table 21) you can
follow the parent – child links recursively to
find the higher classification for a genus, or
to find the genera placed within an order.
However, this implementation requires
recursive queries to move beyond the
immediate parent or child of a node. Given
a genus, you can easily find its immediate
parent and its immediate parent's parent.

SELECT t1.taxon_name, t2.taxon_name,
 t2.higher_taxon
FROM higher_taxon as t1
 LEFT JOIN higher_taxon as t2
 ON t1.higher_taxon = t2.taxon_name
WHERE t1.taxon_name = “Chicoreus”;

The query above will return a result set
“Chicoreus”, ”Muricidae”,
”Caenogastropoda” from the data in Table
21. Unfortunately, unless the tree is
constrained to always have the a fixed
number of ranks between every genus and
the root of the tree (and the entry point for a
query is always a generic name), it is not
possible to set up a single query that will
always return the higher classification for a
given generic name. The only way to

effectively query this table is with program
code that recursively issues a series of sql
statements to walk up (or down) the tree by
following the higher_taxon to taxon_name
links, that is, by recursively traversing the
edge representation of the tree. Such code
could be either implemented as a stored
procedure in the database or higher up
within the user interface.

By using the taxon_name as the primary
key, we impose a constraint that will help
maintain the integrity of the tree, that is,
each taxon name is allowed to occur at only
one place in the tree. We can't place the
genus Chicoreus into the family Muricidae
and also place it in the family Turridae.
Forcing each taxon name to be a unique
entry prevents the placement of
anastomoses in the tree. More than just
this constraint is needed, however, to
maintain a clean representation of a
taxonomic hierarchy in this edge
representation. It is possible to store
infinite loops by linking the higher_taxon of
one row to a taxon name that links back to
it. For example (Table 22), if the genus
Murex is in the Muricidae, and the higher
taxon for Muricidae is set to Murex, an
infinite loop is established where Murex
becomes a higher taxon of itself, and Murex
is not linked to the root of the tree.

Table 22. An error in the hierarchy.

Taxon_name (PK) Higher_taxon
Gastropoda [root]
Caenogastropoda Gastropoda
Muricidae Murex
Chicoreus Muricidae
Murex Muricidae

Maintenance of a table containing an edge
representation of a large tree is difficult. It is
easy for program freezing errors such as the
infinite loop in Table 22 to be inadvertently
created unless there is code testing each
change to the table for validity.

The simple taxon_name, higher_taxon
structure has another problem: How do you
print the family to which a specimen belongs
on its label? A solution is to add a rank
column to the table (Table 23).

Selecting the family for a genus then
becomes a case of recursively following the
taxon_name – higher_taxon links back to a
taxon name that has a rank of Family. The

33

PhyloInformatics 7: 34-66 - 2005

pseudocode below (Code Example 1)
illustrates (in an overly simplistic way) how
ranks could work by embedding the logic in
a code layer sitting above the database. It
is also possible to implement rank handling
at the database level in a database system
that supports stored procedures.

Table 23. Edge representation with ranks.

Taxon_name (PK) Higher_taxon Rank
Gastropoda [root] Class
Caenogastropoda Gastropoda Order
Muricidae Caenogastropoda Family
Chicoreus Muricidae Genus
Murex Muricidae Genus

An edge representation of a tree can be
stored as in the examples above using a
taxon name as a primary key. It is also
possible to use a numeric surrogate key
and to store the recursive foreign key for the
parent as a number (e.g.
c_taxon_id_parent). If you are updating a
hierarchical taxonomic dictionary through a
user interface with a code layer between the
user and the table structures, using the
surrogate key values in the recursive foreign

key to identify the parent taxon of the
current taxon is probably a good choice. If
the hierarchical taxonomic dictionary is
being maintained directly by someone who
is editing the file directly, then using the
taxon name as the foreign key value is
probably a better choice. It is much easier
for a knowledgeable person to check a list
of names for consistency than a list of
numeric links. In either case, a table
containing an edge representation of a tree
will require supporting code, either in the
form of a consistency check that can be run
after direct editing of the table or in the form
of a user interface that allows only legal
changes to the table. Without supporting
code, the database itself is not able to
ensure that all rows are placed somewhere
in the tree (rather than being unlinked nodes
or members of infinite loops), and that the
tree is a consistent branching tree without
anastomoses. If a field for rank is included,
code can also check for rank placement
errors such as the inclusion of a class within
a genus.

34

Code Example 1.

// Pseudocode to illustrate repeated queries on edge
// representation table to walk up tree from current
// node to a higher taxon node at the rank of family.
// Note: handles some but not all error conditions.
$root_marker = “[Root]”; // value of higher taxon of root node
$max_traverse = 1000; // larger than any leaf to root path
$rank = “”; // holds rank of parent nodes
$targetName = $initialTarget; // start with some taxon
$counter = 0; // counter to trap for infinite loops
while ($rank <> “Family”) // desired result
 and ($counter < $max_traverse) // errors: infinite loop/no parent
 and ($targetname <> $root_marker) // error: reached root
{
 $counter++; // increment counter
 $sql = “SELECT taxon_name, rank, higher_taxon
 FROM higher_taxon
 WHERE t1.taxon_name = '$targetName'”;
 $results = getresults($connection,$sql);
 if (numberofrows($results)==0)
 {
 // error condition: no parent found for current node
 $counter = $max_traverse; // exploit infinite loop trap
 } else {
 // a parent exists for the current node
 $row = getrow($results);
 $currentname = getcolumn($row, ”taxon_name”);
 $rank = getcolumn($row,”rank”);
 $targetName = getcolumn($row”higher_taxon”);
 } // endif
} // wend

PhyloInformatics 7: 35-66 - 2005

If you wish to know the family placement for
a species, code in this form will be able to
look it up but will require multiple queries to
do so. If you wish to look up the entire
higher classification for a taxon, code in this
form will require as many queries to find the
classification as there are steps in that
classification from the current taxon to the
root of the tree.

To solve the unknown number of multiple
queries problem in an edge representation
of a tree it is possible to store the path from
the current node to the root of the tree
redundantly in a parentage field (Table 24).
Adding this redundancy requires supporting
code, otherwise the data are certain to
become inconsistent. A typical example of
a redundant parentage string can be found
in BioLink's taxonomic hierarchy(CSIRO
2001). BioLink stores core taxon name
information in a table called tblBiota. This
table has a surrogate primary key
intBiotaID, a field to hold the full taxon name
vchrFullName, a recursive foreign key field
containing a pointer to another row in
tblBiota intParentID, and a field that
contains a backslash delimited list of all the
intParentID values from the current node up
to the root node for the tree vchrParentage.
BioLink also contains other fields and sets
of related tables to store additional
information about the current taxon name.

Storing the path from the current node to
the root of the tree (top of the hierarchy) in a
parentage field allows straightforward
selection of the taxonomic hierarchy of any
particular taxon (Code Example 2, below).
One query will extract the taxon name and
its parentage string, the parentage string
can then be split on its delimiter, and this list
of primary key values can be assembled in
a query (e.g. where intBiotaID = 1 or
intBiotaID = 2 or ... order by vchrParentage)
that will return the higher classification of the
taxon. Note that if the field used to store
the parentage is defined as a string field

(with the ability to add an index and rapidly
sort values by parentage), it will have a
length limit in most database systems
(usually around 255 characters) and in
some systems may only sort on the first fifty
or so characters in the string. Thus some
database systems will impose a limit on how
deep a tree (how many nodes in a path to
root) can be stored in a rapidly sortable
parentage string.

Tree Visitation

A different method for storing hierarchical
structures in a database is the tree visitation
algorithm (Celko, 1995a). This method
works by traversing the tree and storing the
step at which each node is entered in one
field and in another field, the step at which
each node is last exited. A table that holds
a tree structure includes two fields (t_left
and t_right [note that “left” and “right” are
usually reserved words in SQL and can't be
used as field names in many database
systems]). To store a tree using these two
fields, set a counter to zero, then traverse
the tree, starting from the root. Each time
you enter a node, increment the counter by
one and store the counter value in the t_left
field. Each time you leave a node for the
last time, increment the counter by one and
store the counter value in the t_right field.
You traverse the tree in inorder5, visiting a
node, then the first of its children, then the
first of its children, passing down until you
reach a leaf node, then go back to the leaf's
parent and visit its next child.

Table 25 holds the classification for 6 taxa.
The tree traversal used to set the left and
right values is shown below in Figure 21.
The value of the counter on entry into a
node is shown in yellow; this is the value
stored in the left field for that node. The
value of the counter on the last exit from a
node is shown in red, this is the value stored

5 As opposed to a preorder or postorder tree
traversal.

35

Table 24. Storing the path from the current node to the root of the tree redundantly in a parentage field,
example shows a subset of fields from BioLink's tblBiota (CSIRO, 2001).

intBiotaID (PK) vchrFullName intParentID vchrParentage
1 Gastropoda /1
2 Caenogastropoda 1 /1/2
3 Muricidae 2 /1/2/3
4 Chicoreus 3 /1/2/3/4
5 Murex 3 /1/2/3/5

PhyloInformatics 7: 36-66 - 2005

in the right field for that node.

 We start at the root of the tree, Gastropoda.
The counter is incremented to one, and the
left value for Gastropoda is set to 1.
Gastropoda has one child,
Caenogastropoda, we increment the
counter, enter that node and set its left
value to two. We proceed down the tree in
this manner until we reach a leaf, Murex.
On entering Murex we increment the
counter, set Murex's left to 5. Since Murex
has no children, we leave it, incrementing
the counter and setting its right value to 6.
We move back to the parent node for
Murex, Muricidae. Muricidae has a child we
haven't visited yet, so we move down into it,
Chicoreus. Entering Chicoreus we
increment the counter and set Chicoreus'
left to 7. Since Chicoreus has no more
children, we leave it, incrementing its
counter and setting its right value to 8. We
step back to Chicoreus' parent, Muricnae.
Since Muricinae has no more children, we
leave it for the last time, incrementing the

36

Code Example 2.

// Pseudocode to illustrate query on edge representation table containing parentage
// string. Uses field names found in BioLink table tblBiota.
// Note: does not handle any error conditions.
// Note: does not include code to place higher taxa in correct order.
$rank = “”;
$targetName = $initialTarget; // Name of the taxon who's parentage you want to find
$sql = “SELECT vchrParentage
 FROM tblBiota
 WHERE vchrFullName = '$targetName'”; // get parentage string
$results = getresults($connection,$sql); // run query on database connection
$row = getrow($results); // get the result set from the query
$parentage = getcolumn($row,”rank”); // get the parentage string
// the parentage string is a list of ids separated by backslashes
@array_parentage = split($parentage,”\”); // split the parentage string into ids
$sql = “SELECT vchrFullName FROM tblBiota WHERE “;
$first=TRUE;
for ($x=1;$x<rowsin(@array_parentage);$x++) {
 // for each id in parentage, build query get the name of the taxon
 if ($first==FALSE) { $sql = $sql + “ and “; }
 // Note: enclosing integer values in quotes in sql queries is usually not
 // required, but is a good programing practice to help prevent sql injection
 // attacks
 $sql = $sql
 + “ intBiotaID = '“
 + @array_parentage[$x] + “'”;
 $first=FALSE;
}
$results = getresults($connection,$sql); // now run assembled query to get names
for ($x=1;$x<rowsin($results);$x++) {
 $row=getrows(results)
 @array_taxa[$x]=getcolumn($row,”vchrFullName”);
}

Table 25. A tree stored in a table using a left right
tree visitation algorithm.

TaxonID (PK) Taxon Name Left Right
1 Gastropoda 1 12
2 Caenogastropoda 2 11
3 Muricidae 3 10
4 Muricinae 4 9
5 Murex 5 6
6 Chicoreus 7 8

Figure 21. Representing the classification of
Murex and Chicoreus as a tree and using a tree
visitation algorithm to map the nodes in the tree.
Values placed in the left field in yellow, values
placed in the right field in red. Data as in Table 25.

PhyloInformatics 7: 37-66 - 2005

counter and storing its value to Muricinae's
right. We keep walking back up the tree,
finally getting back to the root after having
visited each node in the tree.

In comparison to an edge representation,
the tree visitation algorithm has some very
useful properties for selecting data from the
database. The query Select taxon_name
where t_left = 1 will return the root of the
tree. The query Select t_right/2 where t_left
= 1 will return the number of nodes in the
tree. Selecting the higher classification for a
particular node is also fast and easy:

SELECT taxon_name FROM treetable
WHERE t_left < 7 and t_right > 8
ORDER by t_left;

The query above will return the higher
classification for Chicoreus in the example
above. We don't need to know the number
of steps to the root, make recursive queries,
store redundant information or have to worry
about any of the other problematic features
of denormalized or edge visitation
implementations of hierarchies. Selecting
all of the children of a particular node, or all
of the leaf nodes below a particular node
are also very easy queries.

SELECT taxon_name FROM treetable
WHERE t_left > 3 and t_right < 10
 and t_right – t_left = 1
ORDER by t_left;

As grand as the tree visitation algorithm is
for extracting data from a database, it has
its own problems. Except for a very small
tree, it will be extremely hard to create and
maintain the left/right values by hand. You
will probably need code to construct the
left/right values by traversing through an
edge representation of the tree. You will
also need a user interface supported by
code to insert nodes into the tree, delete
nodes, and move nodes. This code base
probably won't be much more complex than
that needed for robust support of an edge
representation of a tree, but you will need to
have such code, while you might be able to
get away without writing it for an edge
representation.

The biggest difficulty with the tree visitation
algorithm is editing the tree. If you wish to
add a single node (say the genus Hexaplex
within the Muricidae in the example above),

you will need to change left and right values
for many, most, or even all of the rows in
the database. In order to obtain a fast
retrieval speed on queries that include the
left and right field in select criteria, you will
probably need to index those fields. An
update to most rows in the table will
essentially mean rebuilding the index for
each of these columns, even if you only
changed one node in the tree. In a single
user database, this will make edits and
inserts on the tree very slow. The situation
will be even worse in a multi-user database.
Updating many rows in a table that contains
a tree will effectively lock the entire table
from access by other users while the update
is proceeding. If the tree is large and
frequently edited table locks will make a the
database effectively unusable.

Unless a table contains very few rows, it will
need to have indexes for columns that are
used to find rows in the table. Without
indexes, retrieval of data can be quite slow.
Efficient extraction of information from a
table that uses tree visitation will mean
adding indexes to the left and right fields.

CREATE UNIQUE INDEX t_left
 ON treetable(t_left);
CREATE UNIQUE INDEX t_right
 ON treetable(t_right);

When a row is added to the table, the
values in the left and right fields will now be
indexed (with the details of how the index is
created, stored, and used depending on the
DBMS). In general, indexes will
substantially increase the storage
requirements for a database. Creating an
index will take some amount of time, and an
index will increase the time needed to insert
a row into a table (Figure 22). Appropriate
indexes dramatically reduce the time
required for a select query to return a result
set.

Indexing

An index allows at DBMS to very rapidly
look up rows from table. An appropriate
choice of fields to index is a very important
aspect of database implementation, and
careful tuning of indexes is an important
database administration task for a large
database. Being able to reduce the time for
a database operation from 10 seconds to 2

37

PhyloInformatics 7: 38-66 - 2005

seconds can change reduce the person
years of effort in a large data capture
operation and make the difference between
completion of a project being feasible or
infeasible. Small improvements in
performance, such as reducing the time for
a query to complete from 2 seconds to less
than one second, will result in a large
increase in efficiency in large scale
(hundreds of thousands of records) data
capture.

The details of how a multi-user DBMS
prevents one user from altering the data
that is being edited by another user, and
how it prevents one user from seeing
inconsistent data from a partially completed
update by another user, are also an
important performance concern for
database implementation and
administration.

An update to a single row will not interfere
with other queries that are trying to select
data from other rows if the table uses row
level locking. If, however, the table applies
locking at the level of database pages
(chunks of data that the database is storing
together as units behind the scenes), then

an update that affects one row may lock out
queries that are trying to access data from
other rows (Figure 23). Some databases
apply table level locking and will lock out all
users until an update has completed. In
some cases, locks can produce deadlocks
where two users both lock each other out of
rows that they need to access to complete a
query.

Because of these locking issues, a tree
visitation algorithm is a poor choice for
storing large trees that are frequently edited
in a multi-user database. It is, however, a
good choice for some situations, such as
storage of many small trees (using
tree_number, t_left, and t_right fields) as
might be used to track collection objects or
for searchable web databases that are not
edited by their users and are infrequently
updated from a master data source. The
tree visitation algorithm is particularly useful
for searchable web databases, as it
eliminates the need for multiple recursive
queries to find data as in edge
representations (a query on joined tables in
MySQL in the example below will find the
children of all taxa that start “Mure”).

38

Figure 22. An index can greatly increase the speed at which data is retrieved from a database, but can slow
the rate of data insertion as both the table and its indexes need to be updated.

Figure 23. Page locks. Many database systems store data internally in pages, and an operation that locks a
row in a page may also lock all other queries trying to access any other row on the same page.

PhyloInformatics 7: 39-66 - 2005

SELECT a.taxon_name, b.taxon_name, b.rank
FROM treetable as a
 LEFT JOIN treetable as b
 ON a.taxonid = b.taxonid
WHERE b.t_left > a.t_left
 and b.t_right < a.t_right
 and b.taxon_name like “Mure%”
ORDER by a.taxon_name, t_left;

Because there are serious performance and
code complexity tradeoffs between various
ways of implementing the storage of
hierarchical information in a relational
database, choosing an appropriate tree
representation for the situation at hand is
quite important. For some situations, a tree
visitation algorithm is an ideal way to handle
hierarchical information, whereas in others it
is a very poor choice. Since single point
alterations to the tree result in large portions
of the table holding the hierarchy being
changed, tree visitation is a very poor
choice for holding large taxonomic
hierarchies that are frequently edited.
However, its fast efficient extraction of data
makes it a very good choice for situations,
such as web databases, where users are
seldom or never altering data, or where
many small distinct trees are being held in
one table.

The storage of trees is a very logical place
to consider supporting data integrity with
stored procedures. A table holding an edge
representation of a tree is not easy to
maintain by hand. Even skilled users can
introduce records that create infinite loops,
and unlinked subtrees (anastomoses,
except those produced by misspellings, can
be prevented by enforcing a unique index
on child names). Murex could be linked to
Murcinae which could be linked to Muricidae
which could be linked by mistake back to
Murex to create an infinite loop. Murex
could be linked to Muricinae, which might by
mistake not be linked to a higher taxon
creating an unlinked subtree. An edge
representation could be supported by an on
insert/update trigger. This trigger could
check to see if each newly inserted or
updated parent has a match to an existing
child (select count(*) from taxon where
child = %newparent) – preventing the
insertion of unlinked subtrees. If an on
insert or on update trigger finds that a
business rule would be violated by the
requested change, it can fail and return an

error message to the calling program. In
most circumstances, such an error message
should propagate back through the user
interface to the user in a form that tells them
what corrective action to take (“You can't
insert Muricinae:Murex yet, you have to link
Muricinae to the correct higher taxon first”)
and in a form that will tell a programmer
exactly where the origin of the error was
(“snaildb_trigger_error_257”).

An on insert and on update trigger on a
table holding an edge representation of a
tree could also check that the parent of
each newly inserted or updated row links to
root without encountering child – preventing
infinite loops. Checking each inserted or
changed record for a parent that is linked up
to the root of the tree would have a higher
cost, as it would require a recursive series
of queries to trace an unknown number of
parent-child links back to the root of the
tree. Decisions on how to store trees and
what code to place where to support the
storage of those trees can have a significant
impact on the performance of a database.
Slow updates may be tolerable in a
taxonomic dictionary that serves as a rarely
edited authority file for a specimen data set,
but be intolerable for regular edits to a
database that is compiling a tree of
taxonomic names and their synonymies.

Triggers are also a very good place to
maintain redundant data that has been
cached in the database to reduce
calculation or lookup time. On insert and on
update triggers can, for example, maintain
parentage strings in tables that store trees
(where they will need to recurse the children
of a node when that node is linked to a new
parent, as this change will need to
propagate down through all the parentage
strings of the child nodes).

Hierarchical information is widespread in
collection data. Therefore, in the process
of beginning the design phase of a database
life cycle, it is worth considering a wider
range of DBMS options than just relational
databases. Some other database systems
are better than relational databases at
native handling of trees and hierarchical
information. Object oriented database
systems should be considered, as they can
include data types and data structures that
are ideal for the storage and retrieval of

39

PhyloInformatics 7: 40-66 - 2005

hierarchical information. However, at the
present time, using an object DBMS rather
than a standard relational DBMS has costs,
particularly poor portability and reduced
availability of support. Relational databases
have a solid well understood mathematical
foundation (Codd, 1970), have widespread
industry support for sql, are not hard to
move data in and out of, and have a wide
range of implementations by many vendors,
including the open source community.
Object databases (and hybrid object support
in relational databases) are still none of
these (thus this paper deals almost entirely
with relational databases).

Data Stewardship

We often state to groups on tours through
natural history collections that “our
specimens are of no value without their
associated data”. We are well used to
thinking of stewardship of our collection
objects and their associated paper records,
but we must also think carefully about the
stewardship of electronic data associated
with those specimens. I will divide data
stewardship into two concepts: 1) Data
security, that is maintaining the data in an
environment where it is safe from malicious
damage and accidental loss Data security
encompasses network security,
administration, pre-planning and risk
mitigation. 2) Data quality control, that is
procedures to assist the users of the
database in maintaining clean and
meaningful data. Data quality control is of
particular importance during data migration,
as we are often performing large scale
transformations of collections records, and
thus need to carefully plan to prevent both
the loss of information and the addition of
new erroneous information. Data
stewardship involves the short term data
security tasks of system administration and
quality control and the long term perspective
of planning for movement of the data
through multiple database lifecycles.

Data Security

Providing carefully planned multiple layers
of security has become an essential part of
maintaining the integrity of electronic data.
Any computer connected to the Internet is a
target for attack, and any computer is a
target for theft. Simply placing a computer

behind a firewall is not, by any means, an
adequate defense for it or its data. Security
requires paranoia, but not just any old
paranoia. Security requires a broad thinking
paranoia. Computer data security, as in the
design of cryptographic systems, depends
on the strength of the weakest link in the
system. Ferguson and Schneier (2003),
discussing cryptographic system design,
provide a very good visual analogy. A
secure system is like the stockade walls of a
fort, but, in the virtual world of computers
and data, it is very easy to become focused
on a single post in that stockade, trying to
build that single post to an infinite height
while not bothering to build any of the rest of
the stockade. An attacker will, of course,
just walk around this single tall post.
Another good analogy for computer security
is that of defense in depth (e.g. Bechtel,
2003). Think of security as involving many
layers, all working together to prevent any
single point of entry from giving easy access
to all resources in the system.

In the collection management community
there is a widespread awareness of the
importance of preplanning for disaster
response. Computer security is little
different. Consider a plausible scenario:
what do you do if you discover that your
web database server is also hosting a child
pornography ftp server? If you are part of a
large institution, you may have an incident
response team you can call on to deal with
the situation. In a small institution, you
might be the most skilled and trained person
available. Preplanning and establishing an
incident response capability (e.g. a team
composed of people from around the
institution with computing and legal skills
who can plan appropriate responses,
compile contact lists, assess the security of
the institution's computing resources, and
respond to computer incidents) is becoming
a standard practice in information
technology.

One of the routine threats for any computer
connected to the Internet is attack from
automated software seeking to exploit
known vulnerabilities in the operating
system, server services, or applications. It
is therefore important to be aware of newly
discovered vulnerabilities in the software
that you are using in your network and to
apply security patches as appropriate (and

40

PhyloInformatics 7: 41-66 - 2005

not necessarily immediately on release of a
patch, Beatte et al., 2002). Vulnerabilities
can also be exploited by malicious hackers
who are interested in attacking you in
particular, but it is much more likely that
your computers will be targets simply
because they are potential resources,
without any particular selection of you as a
target. Maintaining defenses against such
attacks is a necessary component of
systems administration for any computer
connected to the Internet

Threat analysis

Computer and network security covers a
vast array of complex issues. Just as in
other areas of collection management,
assessing the risks to biodiversity and
collections information is a necessary
precursor to effective allocation of resources
to address those risks. Threat analysis is a
comprehensive review and ranking of the
risks associated with computer
infrastructure and electronic data. A threat
analysis of natural history collection data
housed within an institution will probably
suggest that the highest risks are as follows.
Internal and external security threats exist
for biodiversity information and its
supporting infrastructure. The two greatest
threats are probably equipment theft and
non-targeted hacking attacks that seek to
use machines as resources. An additional
severe risk is silent data corruption (or
malicious change) creeping into databases
and not being noticed for years. Risks also
exist for certain rare species. The release
of collecting locality information for rare and
endangered species may be a threat to
those species in the wild. Public distribution
of information about your institution's
holdings of valuable specimens may make
you a target for theft. In addition, for some
collections, access to some locality
information might be restricted by collecting
agreements with landowners and have
contractual limits on its distribution. A threat
analysis should suggest to you where
resources should be focused to maintain the
security of biodiversity data.

Michael Wojcik put it nicely in a post to
Bugtraq. “What you need is a weighted
threat model, so you can address threats in
an appropriate order. (The exact metric is
debatable, but it should probably combine

attack probability, likely degree of damage,
and at a lesser weight the effort of
implementing defense. And, of course,
where it's trivial to protect against a threat,
it's worth adding that protection even if the
threat is unlikely.)” (Wojcik, 2004)

Implementing Security

If you go to discuss database security with
your information technology support people,
and they tell you not to worry because the
machine is behind the firewall, you should
worry. Modern network security, like
navigation, should never rely on any single
method. As the warning on marine charts
goes “The prudent navigator will not rely
solely on any single aid to navigation”, the
core idea in modern computer network
security is defense in depth. Security for
your data should include a UPS, regular
backup, offsite backup, testing backup
integrity and the ability to restore from
backup, physical access control, need
limited access to resources on the network,
appropriate network topology (including
firewalls), encryption of sensitive network
traffic (e.g. use ssh rather than telnet),
applying current security patches to
software, running only necessary services
on all machines, and having an incident
response capability and disaster recovery
plan in place.

Other than thinking of defense in depth, the
most important part of network security is
implementing a rational plan given the
available resources that is based upon a
threat analysis. It is effectively impossible to
secure a computer network against attacks
from a government or a major corporation.
All that network security is able to do is to
raise the barrier of how difficult it will be to
penetrate your network (either electronically
or physically) and increase the resources
that an intruder would need to obtain or alter
your data. Deciding what resources to
expend and where to put effort to secure
your information should be based on an
analysis of the threats to the data and your
computer infrastructure.

While electronic penetration risks do exist
for collections data (such as extraction of
endangered species locality data by illicit
collectors, or a malicious intruder placing a
child pornography ftp site on your web

41

PhyloInformatics 7: 42-66 - 2005

server), the greatest and most immediate
risks probably relate to physical security and
local access control. Theft of computers
and computer components such as hard
drives is a very real risk. The spread of
inhumane “human resources” practices from
the corporate world creates a risk that the
very people most involved in the integrity of
collections data may seek to damage those
data (in practice this is approached much
the same way as the risks posed by
mistakes such as accidentally deleting files
by applying access control, backup, and
data integrity checking schemes). After a
careful threat analysis, three priorities will
probably stand out: control on physical
access to computers (especially servers),
applying access control so that people only
have read/write/delete access to the
electronic resources they need, and by a
well designed backup scheme (including
backup verification and testing of data
restoration).

Hardware

Any machine on which a database runs
should be treated as a server. If that
machine loses power and shuts down, the
database may be left in an inconsistent
state and become corrupt. DBMS software
usually stores some portion of the changes
being made to a database in memory. If a
machine suddenly fails, only portions of the
information needed to make a consistent
change to the data may have been written
to disk. Power failures can easily cause
data corruption. A minimum requirement for
a machine hosting a database (but not a
machine that is simply connecting to a
database server as a client) is an
uninterruptible power supply connected to
the server with a power monitoring card and
with software that is capable of shutting
down services (such as the DBMS) in the
event of a prolonged power failure. In a
brief power outage, the battery in the UPS
provides power to keep the server running.
As the battery starts to run down, it can
signal the server that time is running out,
and software on the server can shut down
the applications on the server and shut
down the server itself. Another level of
protection that may be added to a server is
to use a set of hard disks configured as a
redundant RAID array (e.g. level 5 RAID).
RAID arrays are capable of storing data

redundantly across several hard disks. In
the event that one hard disk in the array
fails, copies of the data stored on it are also
held on other disks in the array, and, when
the failed drive is replaced with a new one,
the redundant data are simply copied back
into place.

Backup

Any threat analysis of biodiversity data will
end up placing backups at or near the top of
the risk mitigation list. A well planned
backup scheme is of vital importance for a
collection database. A good plan arises
directly out of a threat analysis. The rate of
change of information in a database and the
acceptable level of loss of that information
will strongly influence the backup plan.
Each database has different rates of
change, different backup needs and thus
requires a plan appropriate for its needs.
Regardless of how good a backup plan is in
place, no records related to collection
objects data should be held solely in
electronic form. Paper copies of the data
(preferably labels, plus printed catalog
pages) are an essential measure to ensure
the long term security of the data. In the
event of a catastrophic loss of electronic
data, paper records provide an insurance
that the information associated with
collection objects will not be lost.

Backups of electronic data should include
regular on-site backups, regular off-site
transport of backups, making copies on
durable media, and remote off-site
exchanges. The frequency and details of
the backup scheme will depend on the rate
of data entry and the threat analysis
assessment of how much data you are
willing to re-enter in the event of failure of
the database. A large international project
with a high rate of change might mandate
the ability to restore up to the moment of
failure. Such a project might use a backup
scheme using daily full backups, hourly
backups of incremental changes since the
last full backup, and a transaction log that
allows restoration of data from the last
backup to the most recent entry in the
transaction log, requiring the use of a SQL
server DBMS capable of this form of robust
backup. (A transaction log records every
update insert and delete made to the
database and allows recovery from the last

42

PhyloInformatics 7: 43-66 - 2005

incremental backup to the moment of
failure). Such backups might be written
directly on to a tape device by the DBMS, or
they might be written to the hard disk of
another server. This scheme might be
coupled with monthly burns of the backups
to cd, or monthly archiving of a digital
backup tape, and monthly shipment of
copies of these backups to remote sites. At
the other end of the spectrum, a rarely
changed collection database might get one
annual burn to cd along with distribution of
backup copies to an offsite backup store
and perhaps a remote site.

Database backups are different from normal
filesystem backups. In a filesystem backup,
a file on disk is simply copied to another
location (such as onto a backup tape). A
database that is left open and running,
however, needs to have backup copies
made from within the database software
itself. If a DBMS has a database open
during a filesystem backup, a server backup
process that attempts to create backup
copies of the database files by copying them
from disk to another location will most likely
only be able to produce a corrupt
inconsistent copy of the database.
Database management software typically
keeps recent changes to the data in
memory, and does not place the database
files on disk into a consistent state until the
database is closed and the software is
shutdown. In some circumstances, it is
appropriate to shutdown the DBMS and
make filesystem backups of the closed
database files. Backups of data held on a
database server that is running all the time,
however, need to be planned and
implemented from both within the database
management software itself (e.g. storing
backup copies of the database files to disk)
and from whatever process is managing
backups on the server (e.g. copying those
backup files to tape archives). It is also
important not to blindly trust the backup
process. Data verification steps should be
included in the backup scheme to make
sure that valid accurate copies of the data
are being backed up (minor errors in
copying database files can result in corrupt
and unusable backup copies).

Offsite storage of backup copies allows
recovery in the case of local disaster, such
as a fire destroying a server room and

damaging both servers and backup tapes.
Remote storage of backup copies (e.g. two
museums on different continents making
arrangements for annual exchange of
backup copies of data) could be valuable
documentation of lost holdings to the
scientific community in the event of a large
regional disaster.

In developing and maintaining a backup
scheme it is essential to go through the
process of restoring those backups. Testing
and practicing restoration ensures that when
you do have to restore from backup you
know what to do and know that your
recovery plan includes all of the pieces
needed to get you back to a functional
restored database. “Unfortunately servers
do fail, and many an administrator has
experienced problems during the restore
process because he or she had not
practiced restoring databases or did not fully
understand the restore process”
(Linsenbardt and Stigler, 1999 p.272).

With many database systems both the data
in the database and the system or master
database are required to restore a
database. In MySQL, user access rights
are stored in the MySQL database, and a
filesystem backup of one database on a
mysql server will not include user rights.
MS SQL Server likewise suggests creating
a backup of the system database after each
major change to included databases, as well
as making regular backups of each
database. The PostgreSQL documentation
suggests making a filesystem backup of
only the entire cluster of databases on a
server and not trying to identify the files
needed to make a complete filesystem
backup of a single database. “This will not
work because the information contained in
these files contains only half the truth. The
other half is in the commit log files
pg_clog/*, which contain the commit status
of all transactions. A table file is only usable
with this information.” (PostgreSQL Global
Development Group, 2003). Database
backups can be quite complex, and testing
the recovery process is important to ensure
that all the components needed to restore a
functional database are included in the
backup scheme.

43

PhyloInformatics 7: 44-66 - 2005

Access Control

Any person with high level access to a
database can do substantial damage, either
accidentally or on purpose. Anyone with
high level access to a database can do
substantial damage with a simple command
such as DROP DATABASE, or more subtly
through writing a script that gradually
degrades the data in a database. No purely
electronic measures can protect data from
the actions of highly privileged uses.
Database users should be granted only the
minimum privileges they need to do their
work. This principle of minimum privilege is
a central concept in computer security
(Hoglund & McGraw, 2004). Users of a
biodiversity database may include guests,
data entry personnel, curators,
programmers, and system administrators.
Guests should be granted only read (select)
only access, and that only to portions of the
database. Low level data entry personnel
need to be able to enter data, but should be
unable to edit controlled vocabularies (such
as lists of valid generic names), and
probably should not be able to create or
view transactions involving collection objects
such as acquisitions and loans. Higher level
users may need rights to alter controlled
vocabularies, but only system
administrators should have the ability to
grant access rights or create new users.
Database management systems include, to
varying degrees of granularity, the ability to
grant users rights to particular operations on
particular objects in a database. Many
support some form of the SQL command
GRANT rights TO user ON resource. Most
access control is best implemented by
simply using the access control measures
present in the database system, rather than
coding access control as part of the
business rules of a user interface to the
database. Restriction of access to single
records in the database (row level access
control), however, usually needs to be
implemented in higher layers.

Physical access control is also important. If
a database server is placed in some readily
accessible space, a passerby might shut it
down improperly causing database
corruption, unplug it during a disk write
operation causing physical failure of a hard
disk, or simply steal it. Servers are best
maintained in spaces with access limited to

knowledgeable IT personnel, preferably a
server room with climate control, computer
safe fire suppression systems, tightly
restricted access, and video monitoring.

System Administration

Creating new user accounts, deactivating
old user accounts and other such
maintenance of user access rights are tasks
that fall to a database administrator. A few
years ago, such maintenance of rights on
the local machine, managing backups and
managing server loads were the principle
tasks of a system administrator. Today,
defense of the local network has become a
absolutely essential system administration
task. A key part of that defense is
maintaining software with current security
patches. Security vulnerabilities are
continuously brought to light by the
computer security research community.
Long experience with commercial vendors
unresponsive to anything other than public
disclosure has led to a widespread adoption
of an ethical standard practice in the
security community. An ethical security
researcher is expected to notify software
vendors of newly discovered vulnerabilities,
then provide a 30 day grace period for the
vendor to fix the vulnerability, followed by
public release of details of the vulnerability.
Immediate public release of vulnerabilities is
considered unethical as it does not provide
software vendors with any opportunity to
protect people using their software. Waiting
an indefinite period of time for a vendor to
patch their software is also considered
unethical, as this leaves the entire user
community vulnerable without knowing it (it
being the height of hubris for a security
researcher to assume that they are the only
person capable of finding a particular
vulnerability). A 30 day window from vendor
notification to public release is thus
considered a reasonable ethical
compromise that best protects the interests
of the software user community. Some
families of vulnerabilities (such as C strcpy
buffer overflows, and SQL injection) have
proven to be very widespread and relatively
easy to locate in both open and closed
source software. A general perception
among security researchers (e.g. Hoglund
and McGraw, 2004 p.9) is that many
exploits are known in closed circles among
malicious and criminal programmers

44

PhyloInformatics 7: 45-66 - 2005

(leaving all computer systems open to
attack by skilled individuals), and that public
disclosure of vulnerabilities by security
researchers leads to vendors closing
security holes and a general increase in
overall internet and computer security.
These standard practices of the security
community mean that it is vitally important
for you to keep the software on any
computer connected to the Internet up to
date with current patches from the vendor of
each software package on the system.

Installing a patch, however, may break
some existing function in your system. In
an ideal setting, patches are first installed
and tested on a separate testing server (or
local network test bed) and then rolled out
to production systems. In most limited
resource settings (which also tend to lack
the requirement of continuous availability),
patching involves a balance between the
risks of leaving your system unpatched for
several days and the risks of a patch taking
down key components of your system.

Other now essential components of system
administration include network activity
monitoring and local network design.
Network activity monitoring is important for
evaluating external threats, identifying
compromised machines in the internal
network, and identifying internal users who
are misusing the network, as well as the
classical role of simply managing normal
traffic flow on the network. Possible
network components (Figure 24) can
include a border router with firewall limiting
traffic into and out of the network, a network
address translation router sitting between
internal network using private ip address
space and the Internet, firewall software
running on each server limiting accessible
ports on that machine, and a honeypot
connected to border router.

Honeypots are an interesting technique for
system activity monitoring. A honeypot is a
machine used only as bait for attackers.
Any request a honeypot receives is
interpreted as either a scan for
vulnerabilities or a direct attack. Such
requests can be logged and used to
evaluate external probes of the network and
identify compromised machines on the
internal network. Requests logged by a
honeypot can also used to update the
border router's rules to exclude any network

access from portions of the Internet.
Honeypots can also be set up as machines
left open with known vulnerabilities in order
to study hacker behavior, but such use may
raise ethical and legal issues in ways that
using a honeypot simply to identify potential
attackers does not. Monitoring system
activity is, as noted above, a system
administration task that is an important
component of the defense in depth of a
network.

Example: SQL Injection Attacks

One particular serious risk for a database
that is made available for search over the
Internet is sql injection attacks (Anley 2002;
Smith 2002). If a database is providing a
back end for a web search interface, it is
possible for any person on the Internet to
inject malicious queries to the database
using the web interface. In some cases
(such as execution of MS SQLServer stored
procedures that execute shell commands), it
is possible for an attacker to not only alter
data in the database, but to also execute
arbitrary commands on the server with the
privileges of the database software. That is,
it may be possible for an attacker to take
complete control of a server that is providing
a database for search on the web.

Most web searchable databases are set up
by setting up the database in a sql server
(such as MySQL, MS SQLServer, or
PostgreSQL), and writing code to produce
the html for the web search and results
pages in a scripting language (such as PHP,
ASP, or CGI scripts in PERL). A user will fill
in a form with search criteria. This form will
then be submitted to a program in the
scripting language that will take the criteria
provided in the form submission, create an
sql query out of them, submit that query to
the underlying database, receive a result set
back, format that result set as a web page,
and return the resulting html document to
the user. If this system has not been set up
with security in mind, a malicious user may
be able to alter data in the database or even
take control of the server on which the
database is running. The attack is very
simple. An attacker can fill in a field on a
form (such as a genus field) with criteria
such as '; drop database; which could
be assembled into a query by the scripting
language as “SELECT genus, trivial

45

PhyloInformatics 7: 46-66 - 2005

FROM taxon WHERE genus like ' ';
drop database; ' “, a series of three
sql queries that it will then pass on to the
database. The database might interpret the
first command as a valid select statement,
return a result set, see the semicolon as a
separator for the next query, execute that by
dropping (that is, deleting) the database,
see the second semicolon as another
separator, and return an error message for
the third query made up of just a single
quotation mark.

Defense against sql injection attacks
involves following two basic principles of
network security. First, never trust any
information provided to you by users,
especially users over the Internet. Second,
allow users only the minimum access rights
they need. All code that runs behind a web
interface should sanitize anything that might

be provided to it by a user (including hidden
values added to a form, as the source html
of the form is available to the user, and they
are free to alter it to make the submission
say anything they desire). This sanitization
should take the form of disallowing all
characters except those known to be valid
(rather than disallowing a set of known
attacks). The code for the example above
might include a sanitize routine that contains
a command that strips everything except the
letters A to Z (in upper and lower case) from
whatever the user provided as the criteria
for genus. A regular expression pattern for
everything outside this valid range of
characters is: /[^A-Za-z]/, that is match
anything not (^) in the range ([]) A-Z or a-
z. An example (in the web scripting
language PHP) of a function that uses such
a regular expression to sanitize the content
of variables holding information provided

46

Figure 24. A possible network topology with a web accessible database readily accessible to the Internet,
and a master database behind more layers of security. The web accessible copy of a database can be
denormalized and heavily indexed relative to the master database.

PhyloInformatics 7: 47-66 - 2005

over the web that might contain generic and
trivial names is shown below.

function sanitize() {
 global $genus,$trivial;
 $genus ~=
 preg_replace(“/[̂ A-Za-z] ”,””,$genus);
 $trivial ~=
 preg_replace(“/[̂ a-z]/”,””,$trivial);
}

This function uses a regular expression
match that examines the variable $genus
and replaces any characters that are not in
the range A-Z or the range a-z with blank
strings. Thus an attack suppling a value for
$genus of “'; drop database;” would
be sanitized to the innocuous search
criterion “dropdatabase”. Note that the
sanitize function is explicitly listing allowed
values and removing everything else, rather
than just dropping the known dangerous
values of semicolon and single quote. An
attack may evade “exclude the bad” filters
by encoding attack characters so that they
don't appear bad to the filter, but are
decoded an act somewhere beyond the
filter. A single quote might be url encoded
as %27, and would pass unchanged
through a filter that only excludes matches
to the ; and ' characters. Always limit user
input to known good characters, and be
wary when the set of allowed values
extends beyond [A-Za-z0-9]. Tight control
on user provided values is substantially
more difficult when unicode (multi-byte
characters) and characters outside the basic
ASCII character set are involved.

It is also important to limit user rights to the
absolute minimum necessary. If your
scripting language program has an
embedded username and password to allow
it to connect to your database and retrieve
information, you should set up a username
and password explicitly for this task alone,
and grant this user only the minimum select
privileges to the database. The details of
this will vary substantially from one DBMS
to another. In MySQL, the following
commands might be appropriate:

GRANT SELECT
 ON webdb.webtable
 TO phpuser@localhost
 IDENTIFIED BY PASSWORD
 “plaintextpassword”

or to be explicit with the MySQL privilege
tables6:

INSERT INTO user
 (host, user,
 password,
 select_priv, insert_priv,
 update_priv, delete_priv)
 VALUES
 (“localhost”,”phpuser”,
 password(“plaintextpassword”),
 “N”, ”N”, ”N”, “N”);
INSERT INTO db
 (db, user,
 select_priv, insert_priv,
 update_priv, delete_priv)
 VALUES
 (“webdb”, “phpuser”,
 “N”, ”N”, ”N”, “N”);
INSERT INTO tables_priv
 (host, db, user,
 table_name, table_priv)
 VALUES
 (“localhost”,“webdb”, “phpuser”,
 “webtable”, “Select”);

With privileges restricted to select only on
the table you are serving up on the web,
even if an attacker obtains the username
and password that you are using to allow
the scripting language to access the
database (or if they are able to apply an sql
injection attack), they will be limited in the
kinds of further attacks they can perform on
your system. If, however, an attacker can
obtain a valid database password and
username they may be able to exploit
security flaws in the DBMS to escalate their
privileges. Hardcoding a username /
password combination in a web script, a
web scripting function placed off the web
tree, or in a configuration file off the web
tree is generally necessary to allow web
pages to access a database. Any
hardcoded authentication credential
provides a possible target for an internal or
external attacker. Through an error in file
naming or web server configuration, the
source code of a web script placed on the
publicly accessible web tree may become
visible to outside users, exposing any

6 You should empty out the history files for
MySQL or your shell if you issue a command
that embeds a password in it in either a
MySQL query or a shell command, as history
files are potentially accessible by other users.

47

PhyloInformatics 7: 48-66 - 2005

authentication credentials hard coded in that
file. Users on the local file system may be
able to read files placed outside of the web
tree or be able to escalate their privileges to
read configuration files with embedded
passwords. It is thus very important to limit
to the absolute minimum needed privileges
the user rights of any usernames that are
hardcoded outside of the database. In a
DBMS that includes stored procedures, you
should explicitly deny the web user the
rights to run stored procedures (especially in
the case of MS SQLServer, which comes
with built in stored procedures that can
execute shell commands, meaning that any
user who is able to execute stored
procedures can access anything on the
server visible to the user account that the
SQLServer is running under, which ought to
be an account with privileges restricted to
the minimum needed for the operation of the
server). Alternately, run all web operations
through stored procedures, and grant the
web user rights for those stored procedures
and nothing else (tight checking of variables
passed to stored procedures and denial of
rights to do anything other than execute a
small set of stored procedures can assist in
preventing sql injection attacks).

Even if the details of the discussion above
on sql injection attacks seem obscure, as
they probably will if you haven't worked with
web databases and scripting languages, I
hope the basic principle of defense in depth
has come across. The layers of firewall (to
restrict remote access to the server to port
80 [http]) , sanitizing all information
submitted with a form before doing anything
with it, limiting the webuser's privileges on
the sql server, and limiting the sql server's
own privileges all work together to reduce
the ability of attackers to penetrate your
system.

Computer and network security is a
constantly changing and evolving field. It is,
moreover, an important field for all of us
who are running client-server databases,
web serving information out of databases,
or, indeed, simply using computers
connected to the Internet. Anyone with
responsibility over data stored on a
computer connected to the Internet should
be at least working to learn something about
network security practices and issues.
Monitoring network security lists (such as

securityfocus.com's bugtraq list or US-
CERT's technical cyber security alerts)
provides awareness of current issues,
pointers to papers on security and incident
response, and opportunities to learn about
how software can be exploited.

Maintaining Data Quality

The quality of your data are important.
Incorrect data may become permanently
associated with a specimen and might in the
future be used draw incorrect biological
conclusions. While good database design
and good user interface design assist in
maintaining the quality of your data over
time, they are not enough. The day to day
processes of entering and modifying data
must also include quality control procedures
that include roles for everyone involved with
the database.

Quality Control

Quality control on data entry covers a series
of questions: Are literal data captured
correctly? Are inferences correctly made
from the literal data? Are data correctly
captured into the database, with information
being entered into the correct fields in the
correct form? Are links to resources being
made correctly (e.g. image files of
specimens)? Are the data and inferences
actually correct? Some of these questions
can be answered by a proofreader, others
by queries run by a database administrator,
whereas others require the expert
knowledge of a taxonomist. Tools for
quality control include both components
built into the database and procedures for
people to follow in interacting with the
database.

At the database level controls can be added
to prevent some kinds of data entry errors.
At the most basic level, field types in a
database can limit the scope of valid entries.
Integer fields will throw an error if a data
entry person tries to enter a string. Date
fields require a valid date. Most data in
biodiversity databases, however, goes into
string fields that are very loosely
constrained. Sometimes fields holding
string data can be tightly constrained on the
database level, as in fields that are declared
as enumerations (limited in their field
definition to a small set of values). In some

48

PhyloInformatics 7: 49-66 - 2005

cases, atomization can help with control. A
string field for specimen count might be split
into an integer field to hold the count, an
enumerated field to hold the kind of objects
being counted, and a qualifier field.
Constraints in the database can test the
content of one field in a record against
others. A constraint could, for example,
force users to supply a source of a previous
number if they provide a previous number.
Code in triggers that fire on inserts and
updates can force the data entered in a
field to conform to a defined pattern, such
as “####-##-##” for dates in ISO format.
Similar constraints on the scope of data that
will be accepted as valid can be applied at
the user interface level. While these
constraints will trap some data entry errors
(some typographic errors and some data
entry into incorrect fields), the scope of valid
input for a database field will always be
larger than the scope of correct input.
Mistakes will occur on data entry. Incorrect
data will be entered into the database
regardless of the controls placed on data
entry. To have any assurance that the data
entered into a biodiversity database is
accurate, quality control measures beyond
simply controlling data entry and trusting
data entry personnel are necessary.

The database administrator can conduct
periodic review of large numbers of records,
or tools can be built into the database to
allow privileged users to easily review large
blocks of records. The key to such bulk
review of records is to look for outliers. An
easy way to find outliers is to sort columns
and look at top and bottom records to find
obvious out of range values such dates
entered in text fields.

SELECT TOP 10 named_place
 FROM collecting_event
 ORDER BY named_place;

SELECT TOP 10 named_place
 FROM collecting_event
 ORDER BY named_place DESC;

The idea of a review of the top and bottom
of alphabetized lists can be extended to a
broader statistical review of field content for
identification and examination of outliers.
Correlation of information between fields is
a rich source of tests to examine for errors
in data entry. Author, year combinations
where the year is far different from other

years with the same authorship string are
good candidates for review, as are outlying
collector – collecting event date
combinations. Comparison of a table of
bounding latitudes and longitudes for
countries and primary divisions with the
content of country, primary division, latitude,
and longitude fields can be used either as a
control on data entry or as a tool for
examination of outliers in subsequent
review.

Ultimately quality control rests on review of
individual records by knowledgeable
persons. This review is an inherent part of
the use of biological collections by
systematists who examine specimens,
make new identifications, comment on
locality information, and create new labels
or annotations. In the context of biological
collections, these annotations are a living
part of an active working collection. In other
contexts, knowledge of the quality of
records is important for assessing the
suitability of the data for some analysis.

The simplest tool for recording the status of
a record is a field holding the status of a
record. A slightly more complex scheme
holds the current state of the record, who
placed the record into that state, and a time
stamp for that action. Any simple scheme
like this (who last updated, date last
updated, etc), which records status
information in the same table as the data,
suffers all the problems of any sort of flat file
handling of relational data. A database
record can have many actions taken on it by
many different people. A more general
solution to activity tracking holds the activity
information in a separate table, which can
hold records of what actions were taken by
what agents at what times. If a project
needs to credit the actions taken by
participants in the project (how many
species occurrence records has each
participant created, for example), then a
separate activity tracking table is essential.
In some parts of some data sets (e.g.
identifications in a collection), credit for
actions is inherent in the data, in others it is
not. A good general starting place for
recording the status of records is to time
stamp everything. Record who entered a
record when, who reviewed it when, who
modified it how when. Knowing who did
what when can have much more utility than

49

PhyloInformatics 7: 50-66 - 2005

simply crediting work. In some data entry
tasks, an error can easily be repeated over
a set of adjacent records entered by one
data entry person, analogous to an incorrect
catalog number being copied to the top of
the catalog number column on a new page
in a handwritten ledger. If records are
creator and creation time stamped, records
that were entered immediately before and
after a suspect record can be easily
examined for similar or identical errors.
Time stamping also allows for ready
calculation of data entry and review rates
and presentation of rate and review quality
statistics to data entry personnel.

Maintenance of controlled vocabularies
should be tightly regulated. If regular data
entry personnel can edit controlled
vocabularies, they will cease to be
controlled. Dictionary information (used to
generate picklists or to check for valid input)
can be stored in tables to which data entry
personnel are granted select only access,
while a restricted class of higher level users
are granted update, insert, and delete
access. This control can be mirrored in the
user interface, with the higher level users
given additional options for dictionary
editing. If dictionary tables are hard to
correctly maintain (such as tables holding
edge representations of trees through
parent-child links), even advanced and
highly skilled users will make mistakes, so
integrity checks (e.g. triggers that check that
the parent value of a record correctly links it
to the rest of the tree) should be built into
the back end of the database (as skilled
users may well bypass the user interface).

Quality control is a process that involves
multiple people. A well designed data entry
interface cannot ensure the quality of data.
Well trained data entry personnel cannot
ensure the quality of data. Bulk overview of
unusual records by a database
administrator cannot ensure the quality of
data. Random review (or statistical
sampling) of newly created records by the
supervisors of data entry personnel cannot
ensure data quality. Review of records by
specialists cannot ensure data quality.
Only bringing all of these people together
into a quality control process provides an
effective means of quality control.

Separation of original data and
inferences

Natural history collection databases contain
information about several sorts of things.
First, they contain data about specimens:
where they were collected, their
identifications, and who identified them.
Second, they contain inferences about
these data – inferences such as geographic
coordinates added to georeference data that
did not originally include coordinates. Third,
they contain metadata about these
subsequent inferences, and fourth, they
contain transaction data concerning the
source, ownership, permitting, movement,
and disposition of specimens.

Efforts to capture text information about
collection objects into databases have often
involved making inferences about the
original data and adding information (such
as current country names) to aid in the
retrieval of data. Clearly, distinguishing the
original data from subsequent inferences is
usually straightforward for a specialist
examining a collection object. Herbarium
sheets usually contain many generations of
annotations, mammal and bird skins usually
have multiple attached tags, molluscan dry
collections and fossils usually have multiple
sets of labels within a tray. Examining these
paper records of the annotation history of a
specimen usually makes it clear what data
are original and what are subsequent
inferences. In contrast, database records,
unless they include carefully planned
metadata, often present only a single view
of the information associated with a
specimen – not clearly indicating which
portions of that data are original and which
are subsequent inferences.

It is important wherever possible to store an
invariant copy of the original data
associated with a collection object and to
include metadata fields in a database to
indicate the presence and nature of
inferences. For example, a project to
capture verbatim records from a handwritten
catalog can use these data to produce a
normalized database of the collection but
should also store a copy of the original
verbatim records in a simple flat table.
These verbatim records are thus readily
available for examination by someone
wondering about an apparent problem in the

50

PhyloInformatics 7: 51-66 - 2005

data related to a collection object. Likewise,
it is important to include some field structure
to store the source of coordinates produced
in a georeferencing project – and to allow
for the storage and identification of original
coordinates. Most important, I feel, is that
any inferences that are printed onto paper
records associated with specimens need to
be marked as inferences. As older paper
records degrade over time, newer paper
records have the potential of being
considered copies of the data on those
original records unless subsequent
inferences included upon them are clearly
marked as inferences (in the simplest case,
by enclosing inferences in square brackets).

Error amplification

Large complex data sets that are used for
analyses by many users, who often lack a
clear understanding of data quality, are
susceptible to error amplification. Natural
history collection data sets have historically
been used by specialists examining small
numbers of records (and their related
specimens). These specialists are usually
highly aware of the variability in quality of
specimen data and routinely supply
corrections to identifications and
provenance data. Consider, in contrast, the
potential for large data sets of collection
information to be linked to produce, for
example, range maps for species
distributions based on catalog data.
Consider such a range map incorporating
erroneous data points that expand the
apparent range of a species outside of its
true range. Now consider a worker using
these aggregate data as an aid to identifying
a specimen of another species, taken from
outside the range of the first species, then
mistakenly identifying their specimen as a
member of the first species, and then
depositing the specimen in a museum
(which catalogs it and adds its incorrect data
to the aggregate view of the range of the
first species). Data sets that incorporate
errors (or inadequate metadata) from which
inferences can be made, and to which new
data can be added based on those
inferences are subject to error amplification.
Error amplification is a known issue in
molecular sequence databases such as
genbank (Pennisi, 1999; Jeong and Chen,
2001) where incorrect annotation of one

sequence can lead to propagation of the
error as new sequences are interpreted
based on the incorrect annotation and
propagate the error as they are added to the
database. Error amplification is an issue
that we must be extremely careful with as
we begin large scale analysies of linked
collections databases.

Data Migration and Cleanup
Legacy data

Biodiversity informatics data sets often
include legacy data. Many natural history
collections began data entry into early
database systems in the 1970s and have
gone through multiple cycles through
different database systems. Biological data
sets that we encounter were often compiled
with old database tools that didn't effectively
allow the construction of complex relational
databases. Individual scientists with no
training in database design often construct
flat data sets in spreadsheets to manage
results from their research and information
related to their research program. Thus,
legacy data often include a typical set of
inventive approaches to handling relational
information in flat files. Understanding the
design problems that the authors of these
datasets were trying to solve can be a great
help in understanding what appear to be
peculiarities in legacy data. Legacy data
often contain non-atomic data, such as
single taxon name fields, and non-normal
data, such as lists of values in a single field.

In broad terms, legacy data present several
classes of challenges. At one level, simply
porting the data to a new DBMS may not be
trivial. Older DBMS systems may not have
an option to simply export all fields as text,
and newer databases may not have import
filters for those older systems.
Consequently, you may need to learn the
details of data export or data storage in the
older system to extract data in a usable
form. In other cases, export to a newer
DBMS format may be trivial. At another
level, legacy data often contain complex,
poorly documented codings. Understanding
the data that you are porting is very
important as information can be lost or
altered if codings are not properly
interpreted during data migration. At
another level, data contain errors. Any data
set can contain data entry errors. Flat file

51

PhyloInformatics 7: 52-66 - 2005

legacy data sets tend to contain errors that
make export to normal data structures
difficult without extensive cleanup of the
data. Non atomic fields can contain
complex variant combinations of their
components, making parsing difficult.
Fields that contain repeated information
(e.g. Country, State, PrimaryDivision) will
contain many misspellings and variant forms
of what should be identical rows. Cleanup
of large datasets containing these sorts of
issues may be assisted by several sorts of
tools. A mapping table with one field
containing a list of all the unique values
found in one field in the legacy database
and another field containing corrected
values can be used to create a cleaned
intermediate table, which can then be
transformed into a more normal structure.
Scripting languages with pattern matching
capabilities can be used to compare data in
a mapping table with dictionary files and flag
exact matches, soundex matches, and
similarities for human examination. Pattern
matching can also be used to parse out data
in a non-atomic field, with some fields
parsing cleanly with one pattern, others with
another, others with yet another, leaving
some small set of exceptions to be fixed by
a human. Data cleanup is a complex task
that ultimately needs input from highly
knowledgeable specialists in the data, but,
with some thought to data structures and
algorithms, much of the process can be
automated. Examples of problems in data
arising from non-normal storage of
information and techniques for approaching
their migration are given below. A final
issue in data migration is coding a new front
end to replace the old user interface. To
most users of the database, this will be seen
as the migration – replacing one database
with another.

Documentation Problems
A common legacy problem during data
migration is poor documentation of the
original database design. Consider a
database containing a set of three fields for
original genus, original specific epithet, and
original subspecies epithet, plus another
three fields for current genus, current
specific epithet, and current subspecies
epithet, plus a single field for author and
year of publication (Figure 25).

Unless this database was designed and
compiled by a single individual who is still
available to explain the data structures, the
only way to tell whether author and year
apply to the current identification or the
original identification will be to sample a
large number of rows and look up
authorships of the species names in a
reliable source. In a case such as this, you
might well find that the author field had been
put to different purposes by different data
entry people.

A similar problem exists in another typical
design of fields for genus, specific epithet,
subspecific epithet, author, and year. The
problem here is more subtle – values in the
author field for subspecies might apply to
the species name or to the subspecies
name, and untangling errors will require lots
of work or queries against authoritative
nomenclators. Such a problem might also
have produced incorrect printed labels, say
if in this example, the genus, specific
epithet, and author were always printed on
labels, but sometimes the author was filled
in with the author of the subspecies epithet.
These sorts of issues arise not from
problems in the design of the underlying
database, but in its documentation, its user
interface, and in the documentation on data
entry practices and training provided for
data entry personnel. In particular, changes
in the user interface over time, secondary to
weak documentation that did not explain the
business rules of the database clearly
enough to the programmers of replacement
interfaces, can result in inconsistent data.
Given the complexity of nomenclatural and
collections associated information, these
problems might be more likely to be present
in complex databases designed and coded

52

Figure 25. An example legacy collection object
table illustrating typical issues in legacy data.

PhyloInformatics 7: 53-66 - 2005

by computer programmers (with strong
knowledge of database design) than in
simpler, less well designed databases
produced by systematists (with a very
detailed knowledge of the complexity of
biological information).

I will now discuss specific examples of
handling issues in legacy data. I have
selected typical issues that can be found in
legacy data related to the design of the
legacy database. These problems may not
reflect poor design in the legacy database.
The data structures may have been
constrained by the limitations of an earlier
DBMS, the data may have been captured
before database design principles were
understood, or the database may have been
designed for a different purpose.

Data entered in wrong field

A common problem in legacy data is values
that are clearly outside the range of
appropriate values for a field, such as “03-
12-1860” as a value for donor. Values such
as this commonly creep into databases from
accidental entry into the wrong field on a
data entry interface, such as the date
donated being typed into the donor field.

A very useful approach to identifying values
that were entered into the wrong field is to
sort all the distinct values in each field with a
case sensitive alphabetic sort. Values that
are far out of range will often appear at the
top or bottom of such lists (values beginning
with numbers appearing before values
beginning with letters, and values beginning
with lower case letters appearing before
those beginning with upper case letters).
The database can then be searched for
records that contain the strange out of range
values, and these records will often contain
several fields that have had their values
displaced. This displacement may reflect
the organization of fields on the current data
entry layout, or it may reflect some older
data entry screen.

Records from databases that date back into
the 1970s or earlier should be examined
very carefully when values that appear to
have been entered into the wrong field are
found. These errors may reflect blind edits
applied to the database by row number, or
other early data editing methods that
required knowledge of the actual space

occupied by a particular value in a field.
Some early database editing methods had
the potential to cause an edit to overwrite
nearby fields. Thus, when checking values
in very old data sets, examine all fields in a
suspect record, as well as records that may
have been stored in proximity to that record.

Regular expressions can also be used to
search for out of range values existing in
fields. These include simple patterns such
as /^[0-9]{4}$/ which will match a four digit
year, or more elaborate patterns such as
/^(1[789]/20)[0-9]{2}$/ which will match four
digit years from 1700-2099.

A rather more subtle problem can occur
when two text fields that can contain similar
values sit next to each other on the data
entry interface. Species (specific epithet)
and subspecies (subspecific epithet) fields
both contain very similar information and,
indeed, can contain identical values.

Atomization problems

Sometimes legacy datasets include multiple
concepts placed together in a single field. A
common offender is the use of two fields to
hold author, year of publication, and
parentheses. Rows make plain sense for
combinations that use the original genus
(and don't parenthesize the author), but end
up with odd looking data for changed
combinations (Table 26).

Table 26. Parentheses included in author.

Generic name Trivial
epithet

Autho
r

Year of
Publication

Palaeozygopleura hamiltoniae (Hall 1868)

The set of fields in Table 26 works perfectly
well in a report that always prints taxon
name + author + , + year, and can be
relatively straightforwardly scripted to
produce reports that print taxon name +
author + closing parenthesis if author starts
with parenthesis, but make for lots of
complications for other operations (such as
producing a list of unique authors) or asking
questions of the database. Splitting out
parentheses from these fields and storing
them in a separate field is straightforward,
as shown in the following 5 SQL statements
(which add a column to hold a flag to
indicate whether parentheses should be
applied, populate this column, update the
author and year fields to remove

53

PhyloInformatics 7: 54-66 - 2005

parentheses, and check for exceptions).

ALTER TABLE names ADD COLUMN paren
BOOLEAN DEFAULT FALSE;
UPDATE names
 SET paren = TRUE
 WHERE LEFT(author,1)= ”(“;
UPDATE names
 SET author =
 RIGHT(author,LENGTH(author)-1)
 WHERE paren = TRUE;
UPDATE names
 SET year = LEFT(year,LENGTH(year)-1)
 WHERE
 paren = TRUE and RIGHT(year,1)= ”)”;
SELECT names_id, author, year
 FROM names
 WHERE paren=FALSE
 AND (INSTR(author,”(”)>0
 OR INSTR(author,”)”)> 0
 OR INSTR(year,”(”)>0
 OR INSTR(year,”)”)> 0);

Another common offender in legacy data is
a field holding non-atomized taxon names
(Table 27) including author and year.

Table 27. A non-atomic taxon name field holding
a species name with its author, year of
publication, and parentheses indicating that it is a
changed combination.

Taxon Name
Palaeozygopleura hamiltoniae (Hall, 1868)

In manipulating such non-atomic fields you
will need to parse the string content of the
single field into multiple fields (Table 28). If
the names are all simple binomials without
author and year, then splitting such a
species name into generic name and
specific epithet is simple. Otherwise, the
problem can be very complex.

Table 28. Name from Table 27 atomized into
Generic name, specific epithet, author, year of
publication fields and a boolean field (Paren)
used to indicate whether parentheses should be
applied to the author or author and year.

Generic name Specific_
epithet

Author Year Paren

Palaeozygopleura hamiltoniae Hall 1868 TRUE

In some cases you will just need to perform
a particular simple operation once and won't
need to write any code. In other cases you
will want to write code to repeat the
operation several times, make the operation
feasable, or use the code to document the
changes you applied to the data.

One approach to splitting a non-atomic field
is to write a parser that loops through each
row in the dataset, extracts the string
content of the non-atomic field of interest
from one row, splits the string into
components (based on a separator such as
a space, or loops through the string one
character at a time), and examines the
content of each part in an effort to decide
which parts of the string map onto which
concept. Pseudocode for such a parser
can be expressed as:

run query(SELECT TaxonName
 FROM sourceTable)
for each row in result set
 whole bunch of code to

 try to identify and split
 parts of name
 run query(INSERT INTO parsedTable

 (genus, subgenus...))
 log errors in splitting row

next row

Follow this with manual examination of
the results for problems, then fix any
bugs in the parser, and then run the
parser again.... Eventually a point of
diminishing returns will be reached and
you will need to handle some rows
individually by hand.

Writing a parser in this form, especially for
complex data such as species names can
be a very complex and frustrating task.
There are, however, approaches other than
brute force parsing to handing non-atomic
fields. For long term projects, where data
from many different data sources might
need to be parsed, a machine learning
algorithm of some form might be
appropriate. For one shot data migration
problems, exploiting some of the interesting
and useful tools for pattern recognition in
the programmer's toolkit might be of help.
There are, for example, regular expressions.
Regular expressions are a tool for
recognizing patterns found in an expanding
number of languages (perl, PHP, and
MySQL all include support for regular
expressions).

An algorithm and pseudocode for a parser
that exploits regular expressions to match
and split known taxon name patterns might
look something like the following:

54

PhyloInformatics 7: 55-66 - 2005

1) Compile by hand a list of patterns
that match different forms of taxon
names.
 /̂ [A-Z]{1}[a-z]*$/
 maps to field: Generic
 /̂ [A-Z]{1}[a-z]* [a-z]?$/
 maps to fields: Generic, Trivial
 split on “ “
2) Store these patterns in a list

3) for each pattern in list
 run query
 (SELECT taxonName
 WHERE taxonName matches pattern)
 for each row in results
 split name into parts

 following known pattern
 run query
 (INSERT INTO parsedTable
 (genus, subgenus...))
 next row
next pattern

4) By hand, examine rows that didn't have
matching patterns, write new patterns and
run parser again

5) Enter last few unmatched taxon names
by hand

Normalization Problems:
Multiple values in one field

Legacy datasets very often contain fields
that hold multiple repeated pieces of the
same sort of information. These fields are
usually remains of efforts to store one to
many relationships in the flat file format
allowed by early database systems. The
goal in parsing these fields is to split them
into their components and to place these
components into separate rows in a new
table, which is joined to the first in a many to
one relationship.

If users have been consistent in the
delimiter used to separate multiple repeated
components within the field (e.g. semicolon
as a separator in “R1; R2”), then writing a
parser is quite straightforward. Twenty five
to thirty year old data, however, can often
contain inconsistencies, and you will need to
carefully examine the content of these fields
to make sure that the content is consistent.
This is especially true if the text content is
complex and some of the text could contain

the character used as the delimiter.

Parsing consistent data in this form is
usually a simple exercise in splitting the
string on the delimiter (very easy in
languages such as perl that have a split
command, but requiring a little more coding
in others). Pseudocode for such a parser
may look something like this:

run query
 (SELECT Catalog, DictionaryRemarks
 FROM originalTable)
for each row in result set
 split DictionaryRemarks on the

 delimiter “;” into a list of remarks
 for each split remark in list

run query
 (INSERT INTO parsedTable
 (Catalog,Remark)
 VALUES ...)
 next split
 log errors found when splitting row

next row

The parser above could split a field into
rows in a new table as shown in Figure 26.

Figure 26. Splitting a non-atomic Dictionary
Remarks field containing multiple instances of
DictionaryRemarks separated by a semicolon
delimiter into multiple rows in a separate
normalized table.

Normalization Problems:
Duplicate values with
misspellings

If the structures that data are stored in are
not in at least third normal form, they will
allow a field to contain multiple rows
containing duplicate values. A locality table
that contains fields for country and state will
contain duplicate values for country and
state for as many localities as exist in a
single state. Over time, new values entered
by different people, imports from external
data sources, and changes to the database

55

PhyloInformatics 7: 56-66 - 2005

will result in these repeated values not quite
matching each other. Pennsylvania, PA,
and Penn. might all be entries in a
State/Province/Primary Division field.
Likewise, these repeated values can often
include misspellings.

In some cases, these subtle differences and
misspellings pass unnoticed, such as when
a database is used primarily for printing
specimen labels and retrieving information
about single specimens. At other times,
these not quite duplicate values create
serious problems. An example of this
comes from our attempt at ANSP to migrate
the Ichthyology department database from
Muse into BioLink. Muse uses a set of
tables to house information about
specimens, localities, and transactions. It
includes a locality table in second normal
form (the key field for locality number
contains unique values) that has fields for
country, for state or province, and for
named place (which typically contains
duplicate values). In the ANSP fish data,
there were several different spellings of
Pennsylvania and Philadelphia, with at least
12 different combinations of variants of
United States, Pennsylvania, and
Philadelphia. Since BioLink uses a single
geographic hierarchy and uses a graphical
tree browser to navigate through this
hierarchy, it was not possible to import the
ANSP fish data into BioLink and simply use
it. Extensive cleanup of the data would
have been required before the data would
have been usable within BioLink.

Cleanup of misspellings, differences in
punctuation, and other such near duplicate
values is simple but time consuming for
large data sets. The key components are:
first, maintain a copy of the existing legacy
data; second, select a set of distinct values
for a field or several fields into a separate
table; third, map each distinct value onto the
correct value to use in its place; and fourth,
build a new table containing the corrected
values and links to the original literal values.

SELECT DISTICT country, primary_division
FROM locality
ORDER BY country, primary_division;

or, to select and place in a new table:

CREATE TABLE country_primary_map_table
 SELECT DISTICT
 country, primary_division,
 “” as map_country,
 “” as map_primary
 FROM locality
 ORDER BY country, primary_division;

Data in the mapping table produced by the
query above might look like those in Table
29. Country and primary division contain
original data, map_country and
map_primary_division need to be filled in.

Table 29. A table for mapping geographic names
found in legacy data to correct values.

country primary
_division

map_
country

map_primary
_division

USA PA
USA Pennsylvania
US Pennsylvana

The process of filling in the mapping values
in this table can involve both queries and
direct inspection of each row by someone.
This examination will probably involve one
person to examine each row, and others to
help resolve problematic rows. It may also
involve queries to make changes to lots of
rows at once, especially in cases where two
fields (such as country and primary division)
are being examined at once. An example of
a query to set the map values for multiple
different variants of a country name is
shown below. Changes to the country
mapping field could also be applied by
selecting the distinct set of values for
country alone, compiling mappings for them,
and using an intermediate table to compile a
list of unique primary divisions and
countries. Indeed, you will probably want to
work iteratively down the fields of a
hierarchy.

UPDATE country_primary_map_table
 SET map_country = “United States”
 WHERE country = “USA” or country = “US”
 or country = “United States”
 or country =
 “United States of America”;

Ultimately, each row in the mapping table
will need to be examined by a person and
the mapping values will need to be filled in,
as in Table 30.

56

PhyloInformatics 7: 57-66 - 2005

Table 30. A table for mapping geographic names
found in legacy data to correct values.

country primary
_division

Map_
country

map_primary
_division

USA PA United
States

Pennsylvania

USA Pennsylvania United
States

Pennsylvania

US Pennsylvana United
States

Pennsylvania

Planning for future migrations

The database life cycle is a clear reminder
that data in your database will need to be
migrated to a new database some time in
the future. Planning ahead in database
design can help ease these future
migrations. The two most important aspects
of database design that will aid in future
migration are good relational design and
clear documentation of the database.
Clear documentation of the database is
unambiguously valuable. In ten years there
will be questions about the nature of the
data in a database, and the people who
created the database will either be
unavailable or will simply not remember all
the details. Good relational design has
tradeoffs.

Figure 27. Migration costs from databases of
various complexity into a complex normalized
database. Migration into a flat or simple database
will have relatively low costs, but will have the risk
of substantial quality loss in the data over the long
term as data are added and edited.

More complex database designs require
more complex user interface code than
simple database designs. Migrating a
simple database (with all its contained
garbage) into a new simple database is
quite straightforward. Migrating a complex
database will require some substantive work
to replace the user interface (and any code

embedded in the backend) with a working
user interface in the new system. Migrating
a simple database to a new complex
database will require substantial time
cleaning up problems in the data as well as
writing code for a new user interface. This
tradeoff is illustrated in Figure 27.

The architecture of your code can affect the
ease of migration. Some database
management systems are monolithic
(Figure 28). Data, code, and user interface
are all integral parts of the same database.
Other database systems can be
decomposed into distinct layers – the user
interface can be separated from the data,
and the data can easily be accessed
through other means.

A monolithic database system offers very
limited options for either code reuse or
migration. Migration requires either
upgrading to a newer version of the same
DBMS (and then resolving any bugs
introduced into the code by changes made
by the DBMS vendor), or exporting the data
and importing it into an entirely new
database with an entirely new user
interface. In contrast, a layered
architecture can allow the DBMS used to
store the data from user interface
components, meaning that it may be
possible to upgrade a DBMS or migrate to a
new DBMS without having to rewrite the
user interface from scratch, or indeed
without making major changes to the user
interface.

Many relational database management
systems are written to allow easy separation
of the code into layers (Figure 29).

A database server, responsible for
maintaining the integrity of the data, can be

57

Figure 28. Architecture of a monolithic database
management system.

PhyloInformatics 7: 58-66 - 2005

separated from the front end clients that
access the data in that server. The server
stores the data in a central location, while
clients access it (from the local machine or
over a network) to view, add, and alter data.
The server handles all of the storage of the
data, clients display the data through a user
interface. Multiple users spread out over
the world can work on the same database at
the same time, even altering and viewing
the same records. Different clients can
connect to the same database. Clients may
be a single platform application, a cross
platform application, or multiple different
applications (such as a data entry client and
a web database server update script). A
client may be a program that a user installs
on their workstation that contains network
transport and business rules for data entry
built into a fancy graphical user interface. A
client could be a web server application that

allows remote users to query the database
and view result sets through their web
browsers. A design that separates a
database system into layers has
advantages over a monolithic database.
Layers can help in multi-platform support
(clients can be written in a cross platform
language or compiled in different versions
for different operating systems), allow
scaling and distribution of clients [Figure
30], and aid in migration (allowing
independent migration of backend and user
interface components through a common
Application Programing Interface).

Although object oriented programing and
object thinking is a very natural match for
the complex hierarchies of biodiversity data,
I have not discussed object oriented
programing here. One aspect of object
oriented thinking, however, can be of

58

Figure 29. Layers in a database system. A database with server side code can focus on maintaining the
integrity of the data, while the user interface can be separated and connect either locally to the server or
remotely over a network (using various network transport layers). A stable and well defined application
programming interface can allow multiple clients of different sorts to connect to the back end of the database
and allow both client and server code to be altered independently.

PhyloInformatics 7: 59-66 - 2005

substantial help in informing design
decisions about where in a complex
database system business logic code
should go. This aspect is encapsulation.
Encapsulation allows an object to hide (that,
is encapsulate) all of its internal storage
structures and operation from the world.
Encapsulation limits the abilities of the world
to interactions with the information stored in
an instance of an object only through a
narrow window of methods. In object
oriented programming, a code object that
represents real world collections objects
might store a catalog number somewhere
inside it and allow other objects to find or
change that catalog number only through
invocations of methods of the object that
allow the collection_object code object to
apply business rules to the request and only
fulfill it if it meets the requirements of those
rules. Direct reading and writing to the
catalog number would not be possible. The
catalog number for a particular instance of a

collection_object might be obtained with a
call to Collection_object.get_catalog().
Conversely the catalog number for a
particular instance of a a collection_ojbect
might be set with a call to
Collection_object.set_catalog(“452685”).
The set_catalog() method is a block of code
that can test to see if the catalog number it
has been provided is in a valid format, if the
number provided is in use elsewhere, if the
number provided falls within a valid range,
or any other business rules that apply to the
setting of the catalog number of a collection
object. More complex logic could be
embedded in methods such as
collection_object.loan(a_loan).

We can think about the control of
information going into a database as
following a spectrum from uncontrolled to
highly encapsulated. At the uncontrolled
end of the spectrum, if raw SQL commands
can be presented to a database, a

59

Figure 30. BioLink (Windows) and OBIS Toolkit (Java, cross platform) interfaces to a BioLink database on a
MS SQLServer, with a web copy of the database. The separation of user interface and database layers
allowed the OBIS Indo-Pacific Mollusc project to use both BioLink's Windows client and a custom cross-
platform Java application for global (US, France, Australia) distributed data entry.

PhyloInformatics 7: 60-66 - 2005

collection_object table in a database could
have its values changed with a command
such as UPDATE collection_object SET
catalog_number = “5435416”; a
command that will probably have
undesirable results if more than one record
is present. At the other end of the
spectrum, users might be locked out from
direct access to the database tables and
required to interact through stored
procedures such as
sp_collection_object_set_catalog(id,new_ca
talog) which might be invoked somewhere in
the user interface code as
sp_collection_object_set_catalog(“6423500
3”,”42005”). At an intermediate level, direct
SQL query access to the tables is allowed,
but on insert and on update triggers on the
collection_object table apply business rules
to queries that attempt to alter catalog
numbers of collections objects.
Encapsulating the backend of a database
and forcing clients to communicate with it
through a fixed Application Programming
Interface of stored procedures allows
development and migration of backend
database and clients to follow independent
paths.

Conclusion

Biological information is inherently complex.
Management and long term stewardship of
information related to biological diversity is a
challenging task, indeed at times a daunting
task. Stewardship of biodiversity
information relies on good database design.
The most important principles of good
database design are to atomize information,
to reduce redundant information, and to
design for the task at hand. To atomize
information, design tables so that each field
contains only one concept. To reduce
redundant information, design tables so that
each row of each field contains a unique
value. Management of database systems
requires good day to day system
administration. Database system
administration needs to be informed by a
threat analysis, and should employ means

of threat mitigation, such as regular
backups, highlighted by that analysis.
Stewardship of biodiversity information also
requires the long term perspective of the
database life cycle. Careful database
design and documentation of that design
are important not only in maintaining data
integrity during use of a database, but are
also important factors in the ease and extent
of data loss in future migrations (including
reduction of the risk that inferences made
about the data now will be taken at some
future point to be original facts). Good
database design is a necessary foundation,
but the most important factor in maintaining
the quality of data in a biodiversity database
is a quality control process that involves
people with a strong stake in the integrity of
the data.

Acknowledgments

This document had its origins in a
presentation I gave at the Use of Digital
Technology in Museums workshop at
SPNHC in 2003. I would like to thank Tim
White for encouraging me to talk about the
fundamentals of database design using
examples from the domain of natural history
collections information in that workshop.
This paper has been substantially improved
by comments from and discussions with
Susan F. Morris, Kathleen Sprouffske,
James Macklin, and an anonymous
reviewer. Gary Rosenberg has provided
many stimulating discussions over many
years on the management and analysis of
collections and biodiversity data. I would
also like to thank the students in the
Biodiversity Informatics Seminar for the
REU program at ANSP in the summer of
2004 for many fruitful and pertinent
discussions. The PH core tables example
owes much to extensive discussions, design
work and coding with James Macklin. A
large and generous community of open
source programmers have produced a wide
variety of powerful tools for working with
data including the database software
MySQL, and PostgreSQL, and the CASE
tool Druid.

60

PhyloInformatics 7: 61-66 - 2005

References

Anley, C. 2002. Advanced SQL Injection in SQL Server Applications. NGSSoftware Insight
Security Research [WWW PDF Document] URL
http://www.nextgenss.com/papers/advanced_sql_injections.pdf

ASC [Association of Systematics Collections] 1992. An information model for biological
collections. Report of the Biological Collections Data Standards Workshop, 8-24 August
1992. ASC. Washington DC. [Text available at: WWW URL
http://palimpsest.stanford.edu/lex/datamodl.html]

ANSI X3.135-1986. Database Language SQL.

Beatte, S., S. Arnold, C. Cowan, P. Wagle, C. White, and A. Shostack 2002. Timing the
Application of Security Patches for Optimal Uptime. LISA XVI Proceedings p.101-110.
[WWW Document] URL
http://www.usenix.org/events/lisa02/tech/full_papers/beattie/beattie_html/

Beccaloni, G.W., M.J. Scoble, G.S. Robinson, A.C. Downton, and S.M. Lucas 2003.
Computerizing Unit-Level Data in Natural History Card Archives. pp. 165-176 In M.J.
Scoble ed. ENHSIN: The European Natural History Specimen Information Network. The
Natural History Museum, London.

Bechtel, K. 2003. Anti-Virus Defence In Depth. InFocus 1687:1 [WWW document] URL
http://www.securityfocus.com/infocus/1687

Berendsohn, W.G., A. Anagnostopoulos, G. Hagedorn, J. Jakupovic, P.L. Nimis, B.
Valdés, A. Güntsch, R.J. Pankhurst, and R.J. White 1999. A comprehensive
reference model for biological collections and surveys. Taxon 48: 511-562. [Available at:
WWW URL http://www.bgbm.org/biodivinf/docs/CollectionModel/]

Blum, S. D. 1996a. The MVZ Collections Information Model. Conceptual Model. University of
California at Berkeley, Museum of Vertebrate Zoology. [WWW PDF Document] URL
http://www.mip.berkeley.edu/mvz/cis/mvzmodel.pdf and
http://www.mip.berkeley.edu/mvz/cis/ORMfigs.pdf

Blum, S. D. 1996b. The MVZ Collections Information Model. Logical Model. University of
California at Berkeley, Museum of Vertebrate Zoology. [WWW PDF Document] URL
http://www.mip.berkeley.edu/mvz/cis/logical.pdf

Blum, S.D., and J. Wieczorek 2004. DiGIR-bound XML Schema proposal for Darwin Core
Version 2 content model. [WWW XML Schema] URL
http://www.digir.net/schema/conceptual/darwin/core/2.0/darwincoreWithDiGIRv1.3.xsd

Bruce, T.A. 1992. Designing quality databases with IDEF1X information models. Dorset
House, New York. 547pp.

Carboni, A. et al. 2004. Druid, the database manager. [Computer software package distributed
over the Internet] http://sourceforge.net/projects/druid [version 3.5, 2004 July 4]

Celko, J. 1995a. SQL for smarties. Morgan Kaufmann, San Fransisco.

Celko, J. 1995b. Instant SQL Programing. WROX, Birmingham UK.

Chen, P.P-S. 1976. The Entity Relationship Model – Towards a unified view of data. ACM
Transactions on Database Systems. 1(1):9-36.

61

http://sourceforge.net/projects/druid
http://www.mip.berkeley.edu/mvz/cis/logical.pdf
http://www.mip.berkeley.edu/mvz/cis/ORMfigs.pdf
http://www.mip.berkeley.edu/mvz/cis/mvzmodel.pdf
http://www.bgbm.org/biodivinf/docs/CollectionModel/
http://www.usenix.org/events/lisa02/tech/full_papers/beattie/beattie_html/
http://palimpsest.stanford.edu/lex/datamodl.html
http://www.nextgenss.com/papers/advanced_sql_injections.pdf

PhyloInformatics 7: 62-66 - 2005

Codd, E.F. 1970. A Relational Model of Data for Large Shared Data Banks. Communications
of the ACM. 13(6):377-387

Connoly, T., C. Begg, and A. Strachan 1996. Database Systems: A practical approach to
design, implementation and management. Addison Wesley, Harrow, UK.

CSIRO 2001. BioLink 1.0 [Computer software package distributed on CD ROM] CSIRO
Publishing. [Version 2.0 distributed in 2003].

DuBois, P. 2003 [2nd ed.]. MySQL. Sams Publishing, Indiana.

DuBois, P. et al., 2004. Reference Manual for the 'MySQL Database System' [4.0.18] [info doc
file, available from http://www.mysql.com] MySQL AB.

Eisenberg, A., J. Melton, K. Kulkarni, J-E Michels, and F. Zemke 2003. SQL:2003 Has
been Published. Sigmod Record 33(1):119-126.

Elmasri, R. and S.B. Navathe 1994. Fundamentals of Database Systems. Benjamin
Cummings, Redwood City, CA.

Ferguson, N. and B. Scheiner 2003. Practical Cryptography. John Wiley and Sons.

Hernandez, M.J. 2003. Database Design for Mere Mortals. Addison Wesley, Boston.

Hoglund, G. and G. McGraw 2004. Exploiting Software: How to Break Code. Addison Wesley,
Boston. 512pp.

ISO/IEC 9075:2003. Information technology -- Database languages -- SQL --.

Jeong, S.S. and R. Chen 2001. Functional misassignment of genes. Nature Biotechnology.
19:95.

Linsenbardt, M.A., and M.S. Stigler 1999. SQL SERVER 7 Administration. Osborne/McGraw
Hill, Berkeley CA. 680pp.

National Research Council, Committee on the Preservation of Geoscience Data and
Collections 2002. Geoscience Data and Collections: National resources in peril. The
National Academies Press, Washington DC. 108pp.

Morris, P.J. 2000. A Data Model for Invertebrate Paleontological Collections Information.
Paleontological Society Special Publications 10:105-108,155-260.

Morris, P.J. 2001. Posting to taxacom@usobi.org: Security Advisory for BioLink users. Date:
2001-03-02 15:36:40 -0500 [Archived at: http://listserv.nhm.ku.edu/cgi-
bin/wa.exe?A2=ind0103&L=taxacom&D=1&O=D&F=&S=&P=1910]

Pennisi, E. 1999. Keeping Genome Databases Clean and Up to Date. Science 286: 447-450

Petuch, E.J. 1989. New species of Malea (Gastropoda Tonnidae) from the Pleistocene of
Southern Florida. The Nautilus 103:92-95.

PostgreSQL Global Development Group 2003. PostgreSQL 7.4.2 Documentation: 22.2. File
system level backup [WWW Document] URL
http://www.postgresql.org/docs/7.4/static/backup-file.html

62

http://www.postgresql.org/docs/7.4/static/backup-file.html
http://listserv.nhm.ku.edu/cgi-bin/wa.exe?A2=ind0103&L=taxacom&D=1&O=D&F=&S=&P=1910
http://listserv.nhm.ku.edu/cgi-bin/wa.exe?A2=ind0103&L=taxacom&D=1&O=D&F=&S=&P=1910
http://www.mysql.com/

PhyloInformatics 7: 63-66 - 2005

Pyle, R.L. 2004. Taxonomer: A relational data model for handling information related to
taxonomic research. Phyloinformatics 1:1-54

Resolution Ltd. 1998. xCase Professional. [Computer software package distributed on CD
ROM] Jerusalem, RESolution Ltd. [Version 4.0 distributed in 1998]

Schwartz, P.J. 2003. XML Schema describing the Darwin Core V2 [WWW XML Schema] URL
http://digir.net/schema/conceptual/darwin/2003/1.0/darwin2.xsd

Smith, M. 2002. SQL Injection: Are your web applications vulnerable? SpiLabs SPIDynamics,
Atlanta. [WWW PDF Document] URL
http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf

Teorey, T.J. 1994. Database Modeling & Design. Morgan Kaufmann, San Fransisco.

Wojcik, M. 2004. Posting to bugtraq@securityfocus.com: RE: Suggestion: erase data posted to
the Web Date: 2004-07-08 07:59:09 -0700. [Archived at:
http://www.securityfocus.com/archive/1/368351]

63

http://www.securityfocus.com/archive/1/368351
mailto:bugtraq@securityfocus.com
http://digir.net/schema/conceptual/darwin/2003/1.0/darwin2.xsd

PhyloInformatics 7: 64-66 - 2005

Glossary (of terms as used herein).

Accession number: number or alphanumeric identifier assigned to a set of collection objects
that enter the care of an institution together. Used to track ownership and donor of material
held by an institution. In some disciplines and collections, accession number is used to mean
the identifier of a single collection object (catalog number is used for this concept here).

Catalog number: number or alphanumeric identifier assigned to a single collection object to
identify that particular collection object within a collection. Widely referred to as an accession
number in some disciplines.

Collection object: generic term to refer to specimens of all sorts found in collections, refers to
the standard single unit handled within a collection. A collection object can be a single
specimen, a lot of several specimens all sharing the same data, or a part of a specimen of a
particular preparation type. Example collection objects are a mammal skin, a tray of mollusk
shells, an alcohol lot of fish, a mammal skull, a bulk sample of fossils, an alcohol lot of insects
from a light trap, a fossil slab, or a slide containing a gastropod radula. Collection objects can
form a nested hierarchy. An alcohol lot of insects from a light trap could have a single insect
removed, cataloged separately, and then part of a wing could be removed from that specimen,
prepared as an SEM stub, and used to produce a published illustration. Each of these objects
(including derived objects such as the SEM negative) can be treated as a collection object.
Likewise a microscope slide containing many diatoms can be a collection object that contains
other collection objects in the form of identified diatoms at particular x-y coordinates on the slide.

DBMS: Database Management System. Used here to refer to the software responsible for
storage and retrieval of the data. Examples include MS Access, MySQL, Postgresql, MS
SQLServer, and Filemaker. A database would typically be created using the DBMS and then
have a front end written in a development environment provided by the DBMS (as in MS Access
or Filemaker), or written as a separate front end in a separate programming language.

Incident Response Capability: A plan for the response to computer security incidents usually
involving an internal incident response team with preplanned contacts to law enforcement and
external consulting sources to be activated in response to various computer incidents.

Specific epithet: The species word in a binomial species name or polynomial subspecific name.
For example, palmarosae in Murex palmarosae and nodocarinatus in Hesperiturris
nodocarinatus crassus are specific epithets.

Subspecific epithet: The subspecies word in the polynomial name of a subspecies or other
polynomial. For example, crassus in Hesperiturris nodocarinatus crassus is a subspecific
epithet.

Trivial epithet: The lowest rank word in a binomial species name or a polynomial subspecific
name. The specific epithet palmarosae in the binomial species name Murex palmarosae, or the
subspecific epithet crassus in the trinomial subspecies name Hesperiturris nodocarinatus
crassus are trivial epithets.

64

PhyloInformatics 7: 65-66 - 2005

Appendix A: An example of Entity Documentation
Table: Herbarium Sheet

Definition: A Herbarium Sheet. Normally an approximately 11 X 17 inch piece of paper
with one or more plants or parts of plants and labels attached.
Comment: Core table of the Herbarium types database. Some material in herbarium
collection is stored in other physical forms, e.g. envelopes, but concept of herbarium sheet
with specimens that are annotated maps easily to these other forms.
See Also: Specimens, ExHerbariumSpecimenAssociation, Images

Field Summary
Field Sql type PrimaryKey NotNull Default AutoIncrement

Herb Sheet ID Integer X X X

Name Varchar(32) - X [Current User] -

Date Timestamp - - Now -

Verified by Varchar(32) - - Null -

Verification Date Date - - Null -

CaptureNotes Text - - -

VerificationNotes Text - - -

CurrentCollection Varchar(255) - - -

Verified Boolean - X False -

Fields
Name: Herb Sheet ID
Type: Integer
Definition: Surrogate numeric primary key for herbarium sheet.
Domain: Numeric Key
Business rules: Required, Automatic.
Example Value: 528

Name: Name
Type: Varchar(32)
Definition: Name of the person who captured the data on the herbarium sheet.
Domain: Alphabetic, Names of people in Users:Full Name
Business rules: Required, Automatic, Fill from authority list in Users:Full Name using
current login to determine identity of current user when a record is created.

Name: Date
Type: Timestamp
Definition: Timestamp recording the date and time the herbarium sheet data were
captured.
Domain: Timestamp
Business Rules: Required, Automatic. Auto generate when herbarium sheet record is
created, i.e. default to NOW().
Example Value: 20041005:17:43:35UTC
Comment: Timestamp format is dbms dependent, and its display may be system
dependent.

Name: Verified by
Type: text
Definition: Name of the person who verified the herbarium sheet data.
Domain: Alphabetic. Names of people from Users: Full Name
Business Rules: Optional. Automatic. Default to Null. On verification of record, fill with
value from Users: Full Name using current login to identify the current user. Current user

65

PhyloInformatics 7: 66-66 - 2005

must have verification rights in order to verify a herbarium sheet and to enter a value in
this field.
Example Value: Macklin, James

Name: Verification Date
Type: Date
Definition: Date the herbarium sheet data were verified. Should be a valid date since the
inception of the database (2003 and later).
Domain: Date. Valid date greater than the inception date of the database (2003).
Business Rules: Optional. Automatic. Default to Null. On verification of record, fill with
current date. Current user must have verification rights in order to verify a herbarium sheet
and to enter a value in this field. Value must be more recent than value found in
Herbarium Sheet: Date (records can only be verified after they are created).
Example Value: 2004-08-12

Name: CaptureNotes
Type: Text
Definition: Notes concerning the capture of the data on the herbarium sheet made by the
person capturing the data. May be questions about difficult to read text, or other reasons
why the data related to this sheet should be examined by someone more experienced
than the data entry person.
Domain: Free text memo.
Business rules: Manual, Optional.
Example Values: "Unable to read taxon name Q_____ ___ba", "Locality description hard
to read, please check".

Name: VerificationNotes
Type: Text
Definition: Notes made by the verifier of the specimen. May be working notes by verifier
prior to verification of record.
Domain: Free Text Memo.
Business Rules: Manual, Optional. May contain a value even if Verified By and
Verification Date are null.
Example Values: “Taxon name is illegible”, “Fixed locality description”

Name: CurrentCollection
Type: Varchar(255)
Definition: Collection in which herbarium sheet is currently stored. Data entry is currently
for the type collection, with some records being added for material in the general
systematic collection that are imaged to provide virtual loans.
Domain: "PH systematic collection", "PH type collection".
Business Rules: Required, Semimanual, default to "PH type collection". Should data
entry expand to routine capture of data from systematic collection, change to Manual and
allow users to set their own current default value.

Name: Verified
Type: Boolean
Definition: Flag to indicate if data associated with a herbarium sheet has been verified.
Domain: True, False.
Business rules: Required, Semiautomatic. Default to False. Set to true when record is
verified. Set the three fields Herbarium Sheet: Verified, Herbarium Sheet: Verified by, and
Herbarium Sheet: Verification sheet together. Only a user with rights to verify material can
change the value of this field. Once a record has been verified once maintain these three
verification stamps and do not allow subsequent re-verifications to alter this information.

66

	Abstract
	Introduction
	Database Life Cycle
	Levels and architecture

	Relational Database Design
	Information modeling
	Atomization
	1) Place only one concept in each field.
	2) Avoid lists of items in a field.

	Reducing Redundant Information

	Entity-Relationship modeling
	Primary key
	Normalize appropriately for your problem and resources
	Example: Identifications of Collection Objects
	Example extended: questionable identifications
	Vocabulary

	Producing an information model.
	Example: PH core tables

	Physical design
	Basic SQL syntax
	Working through an example: Extracting identifications.
	Nulls and tri-valued logic
	Maintaining integrity

	User rights & Security
	Implementing as joins & Implementing as views

	Interface design

	Practical Implementation
	Be Pragmatic
	Approaches to management of date information
	Handling hierarchical information
	Denormalized table
	Edge Representation
	Tree Visitation

	Indexing

	Data Stewardship
	Data Security
	Threat analysis
	Implementing Security
	Hardware
	Backup
	Access Control
	System Administration
	Example: SQL Injection Attacks

	Maintaining Data Quality
	Quality Control
	Separation of original data and inferences

	Error amplification

	Data Migration and Cleanup
	Legacy data
	Documentation Problems
	Data entered in wrong field
	Atomization problems
	Normalization Problems: Multiple values in one field
	Normalization Problems: Duplicate values with misspellings
	Planning for future migrations

	Conclusion
	Acknowledgments
	References
	Glossary (of terms as used herein).
	Appendix A: An example of Entity Documentation

