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Abstract
The complexity of natural history collection information and similar information within the scope 
of biodiversity informatics poses significant challenges for effective long term stewardship of that 
information in electronic form.  This paper discusses the principles of good relational database 
design,  how  to  apply  those  principles  in  the  practical  implementation  of  databases,  and 
examines  how good  database  design  is  essential  for  long  term  stewardship  of  biodiversity 
information.  Good design and implementation principles are illustrated with examples from the 
realm of biodiversity information, including an examination of the costs and benefits of different 
ways  of  storing  hierarchical  information  in  relational  databases.   This  paper  also  discusses 
typical problems present in legacy data, how they are characteristic of efforts to handle complex 
information in simple databases, and methods for handling those data during data migration. 

Introduction

The data associated with natural history 
collection materials are inherently complex. 
Management of these data in paper form 
has produced a variety of documents such 
as  catalogs, specimen labels, accession 
books, stations books, map files, field note 
files, and card indices.  The simple 
appearance of the data found in any one of 
these documents (such as the columns for 
identification, collection locality, date 
collected, and donor in a handwritten 
catalog ledger book) mask the inherent 
complexity of the information.   The 
appearance of simplicity overlying highly 
complex information provides significant 
challenges for the management of natural 
history collection information (and other 
systematic and biodiversity information) in 
electronic form.   These challenges include 
management of legacy data produced 
during the history of capture of natural 

history collection information into database 
management systems of increasing 
sophistication and complexity.  

In this document, I discuss some of the 
issues involved in handling complex 
biodiversity information, approaches to the 
stewardship of such information in electronic 
form, and some of the tradeoffs between 
different approaches.  I focus on the very 
well understood concepts of relational 
database design and implementation. 
Relational1 databases have a strong 
(mathematical) theoretical foundation 

1  Object theory offers the possibility of handling much 
of the complexity of biodiversity information in object 
oriented databases in a much more effective manner 
than in relational databases, but object oriented and 
object-relational database software is much less 
mature and much less standard than relational 
database software.  Data stored in a relational DBMS 
are currently much less likely to become trapped in a 
dead end with no possibility of support than data in an 
object oriented DBMS.  
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(Codd, 1970; Chen, 1976), and a wide 
range of database software products 
available for implementing relational 
databases.  

Figure 1. Typical paths followed by biodiversity 
information.  The cylinder represents storage of 
information in electronic form in a database.  

The effective management of biodiversity 
information involves many competing 
priorities (Figure 1).  The most important 
priorities include long term data 
stewardship,  efficient data capture (e.g. 
Beccaloni et al., 2003), creating high quality 
information, and effective use of limited 
resources.   Biodiversity information storage 
systems are usually created and maintained 
in a setting of limited resources.   The most 
appropriate design for a database to support 
long term stewardship of biodiversity 
information may not be a complex highly 
normalized database well fitted to the 
complexity of the information, but rather 
may be a simpler design that focuses on the 
most important information.  This is not to 
say that database design is not important. 
Good database design is vitally important 
for stewardship of biodiversity information. 
In the context of limited resources, good 
design includes a careful focus on what 
information is most important, allowing 
programming and database administration 
to best support that information.  

Database Life Cycle

As natural history collections data have 
been captured from paper sources (such as 
century old handwritten ledgers) and have 
accumulated in electronic databases, the 
natural history museum community has 
observed that electronic data need much 
more upkeep than paper records (e.g. 
National Research Council,  2002 p.62-63). 
Every few years we find that we need to 
move our electronic data to some new 
database system.  These migrations are 

usually driven by changes imposed upon us 
by the rapidly changing landscape of 
operating systems and software. 
Maintaining a long obsolete computer 
running a long unsupported operating 
system as the only means we have to work 
with data that reside in a long unsupported 
database program with a custom front end 
written in a language that nobody writes 
code for anymore is not a desirable 
situation.  Rewriting an entire collections 
database system from scratch every few 
years is also not a desirable situation.  The 
computer science folks who think about 
databases have developed a conceptual 
approach to avoiding getting stuck in such 
unpleasant situations – the database life 
cycle (Elmasri and Navathe, 1994).   The 
database life cycle recognizes that database 
management systems change over time and 
that accumulated data and user interfaces 
for accessing those data need to be 
migrated into new systems over time. 
Inherent in the database life cycle is the 
insight that steps taken in the process of 
developing a database substantially impact 
the ease of future migrations.   

A textbook list (e.g. Connoly et al., 1996) of 
stages in the database life cycle runs 
something like this:  Plan, design, 
implement, load legacy data, test, 
operational maintenance, repeat.   In slightly 
more detail, these steps are: 

1. Plan (planning, analysis, requirements 
collection).

2. Design (Conceptual database design, 
leading to information model, physical 
database design [including system 
architecture], user interface design).

3. Implement (Database implementation, 
user interface implementation).

4. Load legacy data (Clean legacy data, 
transform legacy data, load legacy 
data).

5. Test (test implementation).
6. Put the database into production use 

and perform operational maintenance.  
7. Repeat this cycle (probably every ten 

years or so).   

Being a visual animal, I have drawn a 
diagram to represent the database life cycle 
(Figure 2).  Our expectation of databases 
should not be that we capture a large 
quantity of data and are done, but rather 
that we will need to cycle those data through 
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the stages of the database life cycle many 
times.   

In this paper, I will focus on a few parts of 
the database life cycle: the conceptual and 
logical design of a database, physical 
design, implementation of the database 
design, implementation of the user interface 
for the database, and some issues for the 
migration of data from an existing legacy 
database to a new design.  I will provide 
examples from the context of natural history 
collections information.   Plan ahead.  Good 
design involves not just solving the task at 
hand, but planning for long term 
stewardship of your data.  

Levels and architecture

A requirements analysis for a database 
system often considers the network 
architecture of the system.  The difference 
between software that runs on a single 
workstation and software that runs on a 
server and is accessed by clients across a 
network is a familiar concept to most users 

of collections information.  In some cases, a 
database for a collection running on a single 
workstation accessed by a single user 
provides a perfectly adequate solution for 
the needs of a collection, provided that the 
workstation is treated as a server with an 
uninterruptible power supply, backup 
devices and other means to maintain the 
integrity of the database.  Any computer 
running a database should be treated as a 
server, with all the supporting infrastructure 
not needed for the average workstation.   In 
other cases, multiple users are capturing 
and retrieving data at once (either locally or 
globally), and a database system capable of 
running on a server and being accessed by 
multiple clients over a network is necessary 
to support the needs of a collection or 
project.  

It is, however, more helpful for an 
understanding of database design to think 
about the software architecture.  That is, to 
think of the functional layers involved in a 
database system.  At the bottom level is the 
DBMS (database management system [see 
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glossary, p.64]), the software that runs the 
database and stores the data (layered 
below this is the operating system and its 
filesystem, but we can ignore these for 
now).  Layered above the DBMS is your 
actual database table or schema layer. 
Above this may be various code and 
network transport layers, and finally, at the 
top, the user interface through which people 
enter and retrieve data (Figure 29).  Some 
database software packages allow easy 
separation of these layers, others are 
monolithic, containing database, code, and 
front end into a single file.  A database 
system that can be separated into layers 
can have advantages, such as multiple user 
interfaces in multiple languages over a 
single data source.  Even for monolithic 
database systems, however, it is helpful to 
think conceptually of the table structures 
you will use to store the data, code that you 
will use to help maintain the integrity of the 
data (or to enforce business rules), and the 
user interface as distinct components, 
distinct components that have their own 
places in the design and implementation 
phases of the database life cycle.  

Relational Database Design

Why spend time on design?   The answer is 
simple:

 Poor Design + Time = 
Garbage 

As more and more data are entered into a 
poorly designed database over time, and as 
existing data are edited, more and more 
errors and inconsistencies will accumulate 
in the database.  This may result in both 
entirely false and misleading data 
accumulating in the database, or it may 
result in the accumulation of vast numbers 
of inconsistencies that will need to be 
cleaned up before the data can be usefully 
migrated into another database or linked to 
other datasets.   A single extremely careful 
user working with a dataset for just a few 
years may be capable of maintaining clean 
data, but as soon as multiple users or more 
than a couple of years are involved, errors 
and inconsistencies will begin to creep into a 
poorly designed database.  

Thinking about database design is useful for 

both building better database systems and 
for understanding some of the problems that 
exist in legacy data, especially those 
entered into older database systems. 
Museum databases that began 
development in the 1970s and early 1980s 
prior to the proliferation of effective software 
for building relational databases were often 
written with single table (flat file) designs. 
These legacy databases retain artifacts of 
several characteristic field structures that 
were the result of careful design efforts to 
both reduce the storage space needed by 
the database and to handle one to many 
relationships between collection objects and 
concepts such as identifications.   

Information modeling

The heart of conceptual database design is 
information modeling.  Information modeling 
has its basis in set algebra, and can be 
approached in an extremely complex and 
mathematical fashion.  Underlying this 
complexity, however, are two core concepts: 
atomization and reduction of redundant 
information.   Atomization means placing 
only one instance of a single concept in a 
single field in the database.  Reduction of 
redundant information means organizing a 
database so that a single text string 
representing a single piece of information 
(such as the place name Democratic 
Republic of the Congo) occurs in only a 
single row of the database.  This one row is 
then related to other information (such as 
localities within the DRC) rather than each 
row containing a redundant copy of the 
country name.  

As information modeling has a firm basis in 
set theory and a rich technical literature, it is 
usually introduced using technical terms. 
This technical vocabulary include terms that 
describe how well a database design 
applies the core concepts of atomization 
and reduction of redundant information (first 
normal form, second normal form, third 
normal form, etc.)  I agree with Hernandez 
(2003) that this vocabulary does not make 
the best introduction to information 
modeling2 and, for the beginner, masks the 
important underlying concepts.   I will thus 

2 I do, however, disagree with Hernandez' 
entirely free form approach to database 
design.
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describe some of this vocabulary only after 
examining the underlying principles.  

Atomization

1) Place only one concept in each 
field.

Legacy data often contain a single field for 
taxon name, sometimes with the author and 
year also included in this field.   Consider 
the taxon name Palaeozygopleura 
hamiltoniae (HALL, 1868).  If this name is 
placed as a string in a single field 
“Palaeozygopleura hamiltoniae (Hall, 
1868)”, it becomes extremely difficult to pull 
the components of the name apart to, say, 
display the species name in italics and the 
author in small caps in an html document: 
<em>Palaeozygopleura hamiltoniae</em> 
(H<font size=-2>ALL</font>, 1868), or to 
associate them with the appropriate tags in 
an XML document.  It likewise is much 
harder to match the search criteria 
Genus=Loxonema and Trivial=hamiltoniae 
to this string than if the components of the 
name are separated into different fields.   A 
taxon name table containing fields for 
Generic name, Subgeneric name, Trivial 
Epithet, Authorship, Publication year, and 
Parentheses is capable of handling most 
identifications better than a single text field. 
However, there are lots more complexities – 
subspecies, varieties, forms, cf., near, 
questionable generic placements, 
questionable identifications, hybrids, and so 
forth, each of which may need its own field 
to effectively handle the wide range of 
different variations of taxon names that can 
be used as identifications of collection 
objects.  If a primary purpose of the data set 
is nomenclatural, then substantial thought 
needs to be placed into this complexity.  If 
the primary purpose of the data set is to 
record information associated with collection 
objects, then recording the name used and 
indicators of uncertainty of identification are 
the most important concepts.  

2) Avoid lists of items in a field.

Legacy data often contain lists of items in a 
single field.  For example, a remarks field 
may contain multiple remarks made at 
different times by different people, or a 
geographic distribution field may contain a 
list of geographic place names.   For 

example, a geographic distribution field 
might contain the list of values “New York; 
New Jersey; Virginia; North Carolina”.  If 
only one person has maintained the data set 
for only a few years, and they have been 
very careful, the delimiter “;” will separate all 
instances of geographic regions in each 
string.  However, you are quite likely to find 
that variant delimiters such as “,” or  “ ” or 
“:”  or “'” or “l” have crept into the data.  

Lists of data in a single field are a common 
legacy solution to the basic information 
modeling concept that one instance of one 
sort of data (say a species name) can be 
related to many other instances of another 
sort of data.  A species can be distributed in 
many geographic regions, or a collection 
object can have many identifications, or a 
locality can have many collections made 
from it.  If the system you have for storing 
data is restricted to a single table (as in 
many early database systems used in the 
Natural History Museum community), then 
you have two options for capturing such 
information.   You can repeat fields in the 
table (a field for current identification and 
another field for previous identification), or 
you can list repeated values in a single field 
(hopefully separated by a consistent 
delimiter).   

Reducing Redundant 
Information

The most serious enemy of clean data in 
long -lived database systems is redundant 
copies of information.  Consider a locality 
table containing fields for country, primary 
division (province/state), secondary division 
(county/parish), and named place 
(municipality/city).  The table will contain 
multiple rows with the same value for each 
of these fields, since multiple localities can 
occur in the vicinity of one named place. 
The problem is that multiple different text 
strings represent the same concept and 
different strings may be entered in different 
rows to record the same information.  For 
example, Philadelphia, Phil., City of 
Philadelphia, Philladelphia, and Philly are all 
variations on the name of a particular 
named place.  Each makes sense when 
written on a specimen label in the context of 
other information (such as country and 
state), as when viewed as a single locality 
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record.  However, finding all the specimens 
that come from this place in a database that 
contains all of these variations is not an 
easy task.   The Academy ichthyology 
collection uses a legacy Muse database 
with this structure (a single table for locality 
information), and it contains some 16 
different forms of  “Philadelphia, PA, USA” 
stored in atomized named place, state, and 
country fields.   It is not a trivial task to 
search this database on locality information 
and be sure you have located all relevant 
records.  Likewise, migration of these data 
into a more normal database requires 
extensive cleanup of the data and is not 
simply a matter of moving the data into new 
tables and fields.

The core problem is that simple flat tables 
can easily have more than one row 
containing the same value.   The goal of 
normalization is to design tables that enable 
users to link to an existing row rather than to 
enter a new row containing a duplicate of 
information already in the database.

Figure 3. Design of a flat locality table (top) with 
fields for country and primary division compared 
with a pair of related tables that are able to link 
multiple states to one country without creating 
redundant entries for the name of that country. 
The notation and concepts involved in these 
Entity-Relationship diagrams are explained below.

Contemplate two designs (Figure 3) for 
holding a country and a primary division (a 
state, province, or other immediate 
subdivision of a country): one holding 
country and primary division fields (with 

redundant information in a single locality 
table), the other normalizing them into 
country and primary division tables and 
creating a relationship between countries 
and states. 

Rows in the single flat table, given time, will 
accumulate discrepancies between the 
name of a country used in one row and a 
different text string used to represent the 
same country in other rows.  The problem 
arises from the redundant entry of the 
Country name when users are unaware of 
existing values when they enter data and 
are freely able to enter any text string in the 
relevant field.  Data in a flat file locality table 
might look something like those in Table 1:

Table 1.  A flat locality table.

Locality id Country Primary Division
300 USA Montana
301 USA Pennsylvania
302 USA New York
303 United 

States
Massachusetts

Examination of the values in individual rows, 
such as, “USA, Montana”, or “United States, 
Massachusetts” makes sense and is easily 
intelligible.  Trying to ask questions of this 
table, however, is a problem.  How many 
states are there in the “USA”?    The table 
can't provide a correct answer to this 
question unless we know that “USA” and 
“United States”  both occur in the table and 
that they both mean the same thing.  

The same information stored cleanly in two 
related tables might look something like 
those in Table 2:

Here there is a table for countries that holds 
one row for USA, together with a numeric 
Country_id, which is a behind the scenes 
database way for us to find the row in the 
table containing “USA' (a surrogate numeric 

6

Table 2.  Separating Table 1 into two related 
tables, one for country, the other for primary 
division (state/province/etc.).

Country id Name
300 USA
301 Uganda

Primary 
Division 

id

fk_c_country_id Primary Division

300 300 Montana
301 300 Pennsylvania
302 300 New York
303 300 Massachusetts
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primary key, of which I will say more later). 
The database can follow the country_id field 
over to a primary division table, where it is 
recorded in the fk_c_country_id field (a 
foreign key, of which I will also say more 
later).  To find the  primary divisions within 
USA, the database can look at the 
Country_id for USA (300), and then find all 
the rows in the primary division table that 
have a fk_c_country_id of 300.  Likewise, 
the database can follow these keys in the 
opposite direction, and find the country for 
Massachusetts by looking up its 
fk_c_country_id in the country_id field in the 
country table.  

Moving country out to a separate table also 
allows storage of a just one copy of other 
pieces of information associated with a 
country (its northernmost and southernmost 
bounds or its start and end dates, for 
example).   Countries have attributes 
(names, dates, geographic areas, etc) that 
shouldn't need to be repeated each time a 
country is mentioned.  This is a central idea 
in relational database design – avoid 
repeating the same information in more than 
one row of a table.   

It is possible to code a variety of user 
interfaces over either of these designs, 
including, for example, one with a picklist for 
country and a text box for state (as in Figure 
4).   Over either design it is possible to 
enforce, in the user interface, a rule that 
data entry personnel may only pick an 
existing country from the list.  It is possible 
to use code in the user interface to enforce 
a rule that prevents users from entering 
Pennsylvania as a state in the USA and 
then separately entering Pennsylvania as a 
state in the United States.   Likewise, with 
either design it is possible to code a user 
interface to enforce other rules such as 
constraining primary divisions to those 
known to be subdivisions of the selected 
country (so that Pennsylvania is not 
recorded as a subdivision of Albania). 

By designing the database with two related 
tables, it is possible to enforce these rules 
at  the database level.    Normal data entry 
personnel may be granted (at the database 
level) rights to select information from the 
country table, but not to change it.  Higher 
level curatorial personnel may be granted 
rights to alter the list of countries in the 

country table.  By separating out the country 
into a separate table and restricting access 
rights to that table in the database, the 
structure of the database can be used to 
turn the country table into an authority file 
and enforce a controlled vocabulary for 
entry of country names.  Regardless of the 
user interface,  normal data entry personnel 
may only link Pennsylvania as a state in 
USA.  Note that there is nothing inherent in 
the normalized country/primary division 
tables themselves that prevents users who 
are able to edit the controlled vocabulary in 
the Country Table from entering redundant 
rows such as those below in Table 3. 
Fundamentally, the users of a database are 
responsible for the quality of the data in that 
database.  Good design can only assist 
them in maintaining data quality.  Good 
design alone cannot ensure data quality.  

It is possible to enforce the rules above at 
the user interface level in a flat file.  This 
enforcement could use existing values in the 
country field to populate a pick list of 
country names from which the normal data 
entry user may only select a value and may 
not enter new values.  Since this rule is only 
enforced by the programing in the user 
interface it could be circumvented by users. 
More importantly, such a business rule 
embedded in the user interface alone can 
easily be forgotten and omitted when data 
are migrated from one database system to 
another.  

Normalized tables allow you to more easily 
embed rules in the database (such as 
restricting access to the country table to 
highly competent users with a large stake in 
the quality of the data) that make it harder 
for users to degrade the quality of the data 
over time.  While poor design ensures low 
quality data, good design alone does not 
ensure high quality data.  

7

Table 3.  Country and primary division tables 
showing a pair of redundant Country values.

Country id Name
500 USA
501 United States

Primary 
Division id

fk_c_country_id Primary Division

300 500 Montana
301 500 Pennsylvania
302 500 New York
303 501 Massachusetts
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Good design thus involves careful 
consideration of  conceptual and logical 
design, physical implementation of that 
conceptual design in a database, and good 
user interface design, with all else following 
from good conceptual design.  

Entity-Relationship modeling

Understanding the concepts to be stored in 
the database is at the heart of good 
database design (Teorey, 1994;  Elmasri 
and Navathe, 1994).  The conceptual design 
phase of the database life cycle should 
produce a result known as an information 
model (Bruce, 1992).  An information model 
consists of written documentation of 
concepts to be stored in the database, their 
relationships to each other, and a diagram 
showing those concepts and their 
relationships (an Entity-Relationship or E-R 
diagram, ).  A number of information models 
for the biodiversity informatics community 
exist (e.g. Blum, 1996a; 1996b; Berendsohn 
et al., 1999; Morris, 2000; Pyle 2004), most 
are derived at least in part from the 
concepts in ASC model (ASC, 1992). 
Information models define entities, list 
attributes for those entities, and relate 
entities to each other.  Entities and 
attributes can be loosely thought of as 
tables and fields.  Figure 5 is a diagram of a 
locality entity with attributes for a mysterious 
localityid, and attributes for country and 
primary division.  As in the example above, 
this entity can be implemented as a table 
with localityid, country, and primary division 
fields (Table 4). 

Table 4.  Example locality data.

Locality id Country Primary Division
300 USA Montana
301 USA Pennsylvania

Entity-relationship diagrams come in a 
variety of flavors (e.g. Teorey, 1994).    The 
Chen (1976) format for drawing E-R 

diagrams uses little rectangles for entities 
and hangs oval balloons off of them for 
attributes.  This format (as in the distribution 
region entity shown on the right in Figure 6 
below) is very useful for scribbling out drafts 
of E-R diagrams on paper or blackboard. 
Most CASE (Computer Aided Software 
Engineering) tools for working with 
databases, however, use variants of the 
IDEF1X format, as in the locality entity 
above (produced with the open source tool 
Druid [Carboni et al, 2004]) and the 
collection object entity on the left in Figure 6 
(produced with the proprietary tool xCase 
[Resolution Ltd., 1998]), or the relationship 
diagram tool in MS Access.   Variants of the 
IDEF1X format (see Bruce, 1992) draw 
entities as rectangles and list attributes for 
the entity within the rectangle. 

Not all attributes are created equal.  The 
diagrams in Figures 5 and 6 list attributes 
that have  “ID” appended to the end of their 
names (localityid, countryid, collection 
_objectid, intDistributionRegionID).  These 
are primary keys.  The form of this notation 
varyies from one E-R diagram format to 
another, being the letters PK, or an 
underline, or bold font for the name of the 
primary key attribute.   A primary key can be 
thought of as a field that contains unique 
values that let you identify a particular row 
in a table.  A country name field could be 
the primary key for a country table, or, as in 
the examples here, a surrogate numeric 
field could be used as the primary key.   

To give one more example of the 
relationship between entities as abstract 
concepts in an E-R model and tables in a 
database,  the tblDistributionRegion entity 
shown in Chen notation in Figure 6 could be 
implemented as a table, as in Table 5, with 
a field for its primary key attribute, 
intDistributionRegionID, and a second field 
for the region name attribute 
vchrRegionName.  This example is a portion 
of the structure of the table that holds 
geographic distribution area names in a 
BioLink database (additional fields hold the 
relationship between regions, allowing 
Pennsylvania to be nested as a geographic 
region within the United States nested within 
North America, and so on).     

8

Figure 5. Part of a flat locality entity.  An 
implementation with example data is shown below 
in Table 4.
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Table 5. A portion of a BioLink (CSIRO, 2001) 
tblDistributionRegion table.

intDistributionRegionID vchrRegionName
15 Australia
16 Queensland
17 Uganda
18 Pennsylvania

The key point to think about when designing 
databases is that things in the real world 
can be thought of in general terms as 
entities with attributes, and that information 
about these concepts can be stored in the 
tables and fields of a relational database.  In 
a further step, things in the real world can 
be thought of as objects with properties that 
can do things (methods), and these 
concepts can be mapped in an object model 
(using an object modeling framework such 
as UML) that can be implemented with an 
object oriented language such as Java.  If 
you are programing an interface to a 
relational database in an object oriented 
language, you will need to think about how 
the concepts stored in your database relate 
to the objects manipulated in your code. 
Entity-Relationship modeling produces the 
critical documentation needed to understand 
the concepts that a particular relational 
database was designed to store.  

Primary key

Primary keys are the means by which we 
locate a single row in a table.  The value for 
a primary key must be unique to each row. 
The primary key in one row must have a 
different value from the primary key of every 
other row in the table. This property of 
uniqueness is best enforced by the 

database applying a unique index to the 
primary key.  

A primary key need not be a single attribute. 
A primary key can be a single attribute 
containing real data (generic name), a group 
of several attributes (generic name, trivial 
epithet, authorship), or a single attribute 
containing a surrogate key (name_id).   In 
general, I recommend the use of surrogate 
numeric primary keys for biodiversity 
informatics information, because we are too 
seldom able to be certain that other 
potential primary keys (candidate keys) will 
actually have unique values in real data.  

A surrogate numeric primary key is an 
attribute that takes as values numbers that 
have no meaning outside the database. 
Each row contains a unique number that 
lets us identify that particular row.  A table of 
species names could have generic epithet 
and trivial epithet fields that together make a 
primary key, or a single species_id field 
could be used as the key to the table with 
each row having a different arbitrary number 
stored in the species_id field.   The values 
for species_id have no meaning outside the 
database, and indeed should be hidden 
from the users of the database by the user 
interface.   A typical way of implementing a 
surrogate key is as a field containing an 
automatically incrementing integer that 
takes only unique values, doesn't take null 
values, and doesn't take blank values.  It is 
also possible to use a character field 
containing a globally unique identifier or a 
cryptographic hash that has a high 
probability of being globally unique as a 
surrogate key, potentially increasing the 

9

Figure 6. Comparison between entity and attributes as depicted in a typical CASE tool E-R diagram in a 
variant of the IDEF1X format (left) and in the Chen format (right, which is more useful for pencil and paper 
modeling).  The E-R diagrams found in this paper have variously been drawn with the CASE tools xCase 
and Druid or the diagram editor DiA. 
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ease with which different data sets can be 
combined.    

The purpose of a surrogate key is to provide 
a unique identifier for a row in a table, a 
unique identifier that has meaning only 
internally within the database.   Exposing a 
surrogate key to the users of the database 
may result in their mistakenly assigning a 
meaning to that key outside of the database. 
The ANSP malacology and invertebrate 
paleontology collections were for a while 
printing a primary key of their master 
collection object table (a field called serial 
number) on specimen labels along with the 
catalog number of the specimen, and some 
of these serial numbers have been copied 
by scientists using the collection and have 
even made it into print under the rational but 
mistaken belief that they were catalog 
numbers.  For example, Petuch  (1989, 
p.94) cites the number ANSP 1133 for the 
paratype of Malea springi,  which actually 
has the catalog number ANSP 54004, but 
has both this catalog number and the serial 
number 00001133 printed on a computer 
generated label.    Another place where 
surrogate numeric keys are easily exposed 
to users and have the potential of taking on 
a broader meaning is in Internet databases. 
An Internet request for a record in a 
database is quite likely to request that 
record through its primary key.  An URL with 
a http get request that contains the value for 
a surrogate key directly exposes the 
surrogate key to the world .   For example, 
the URL:  http://erato.acnatsci.org/wasp/ 
search.php?species=12563 uses the value 
of a surrogate key in a manner that users 
can copy from their web browsers and email 
to each other, or that can be crawled and 
stored by search engines, broadening its 
scope far beyond simply being an arbitrary 
row identifier within the database.  

Surrogate keys come with risks, most 
notably that, without other rules being 
enforced, they will allow duplicate rows, 
identical in all attributes except the 
surrogate primary key, to enter the table 
(country 284, USA; country 526, USA).  A 
real attribute used as a primary key will 
force all rows in the table to contain unique 
values (USA).  Consider catalog numbers. 
If a table contains information about 
collection objects within one catalog number 
series, catalog number would seem a logical 

choice for a primary key.  A single catalog 
number series should, in theory, contain 
only one catalog number per collection 
object.  Real collections data, however, do 
not usually conform to theory.  It is not 
unusual to find that 1% or more of the 
catalog numbers in an older catalog series 
are duplicates. That is, real duplicates, 
where the same catalog number was 
assigned to two or more different collection 
objects, not simply transcription errors in 
data capture.   Before the catalog number 
can be used as the primary key for a table, 
or a unique index can be applied to a 
catalog number field, duplicate values need 
to be identified and resolved.  Resolving 
duplicate catalog numbers is a non-trivial 
task that involves locating and handling the 
specimens involved.  It is even possible for 
a collection to contain real immutable 
duplicate catalog numbers if the same 
catalog number was assigned to two 
different type specimens and these 
duplicate numbers have been published. 
Real collections data, having accumulated 
over the last couple hundred years, often 
contain these sorts of unexpected 
inconsistencies.   It is these sorts of 
problematic data and the limits on our 
resources to fully clean data to fit theoretical 
expectations that make me recommend the 
use of surrogate keys as primary keys in 
most tables in collections databases.    

Taxon names are another case where a 
surrogate key is important.  At first glance, a 
table holding species names could use the 
generic name, trivial epithet, and authorship 
fields as a primary key.  The problem is, 
there are homonyms and other such 
historical oddities to be found in lists of 
taxon names.  Indeed, as Gary Rosenberg 
has been saying for some years, you need 
to know the original genus, species epithet, 
subspecies epithet, varietal epithet (or trivial 
epithet and rank of creation), authorship, 
year of publication, page, plate and figure to 
uniquely distinguish names of Mollusks 
(there being homonyms described by the 
same author in the same publication in 
different figures).  

Normalize appropriately for your 
problem and resources

When building an information model, it is 
very easy to get carried away and expand 
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the model to cover in great elaboration each 
tiny facet of every piece of information that 
might be related to the concept at hand.  In 
some situations (e.g. the POSC model or 
the ABCD schema) where the goal is to 
elaborate all of the details of a complex set 
of concepts, this is very appropriate. 
However, when the goal is to produce a 
functional database constructed by a single 
individual or a small programming team, the 
model can easily become so elaborate as to 
hinder the production of the software 
needed to reach the desired goal.  This is 
the real art of database design (and object 
modeling); knowing when to stop. 
Normalization is very important, but you 
must remember that the ultimate goal is a 
usable system for the storage and retrieval 
of information.  

In the database design process, the 
information model is a tool to help the 
design and programming team understand 
the nature of the information to be stored in 
the database, not an end in itself. 
Information models assist in communication 
between the people who are specifying what 
the database needs to do (people who talk 
in the language of systematics and 
collections management) and the 
programmers and database developers who 
are building the database (and who speak 
wholly different languages).  Information 
models are also vital documentation when it 
comes time to migrate the data and user 
interface years later in the life cycle of the 
database.   

Example: Identifications of 
Collection Objects

Consider the issue of handling 
identifications that have been applied to 
collection objects.   The simplest way of 
handling this information is to place a single 
identification field (or set of atomized 
genus_&_higher, species, authorship, year, 
and parentheses fields) into a collection 
object table.  This approach can handle only 
a single identification per collection object, 
unless each collection object is allowed 
more than one entry in the collection object 
table (producing duplicate catalog numbers 
in the table for each collection object with 
more than one identification).    In many 
sorts of collections, a collection object tends 

to accumulate many identifications over 
time.  A structure capable of holding only 
one identification per collection object poses 
a problem.

A standard early approach to the problem of 
more than one identification to a single 
collection object was a single table with 
current and previous identification fields. 
The collection objects table shown in Figure 
7 is a fragment of a typical legacy non-
normal table containing one field for current 
identification and one for previous 
identification.  This example also includes a 
surrogate numeric key and fields to hold one 
identifier and one date identified.    

One table with fields for current and 
previous identification allows rules that 
restrict each collection object to one record 
in the collection object table (such as a 
unique index on catalog number), but only 
allows for two identifications per collection 
object.  In some collections this is not a 
huge problem, whereas in others this 
structure would force a significant 
information loss3. A tray of fossils or a 
herbarium sheet may each contain a long 
history of annotations and changes in 
identification produced by different people at 
different times.  The table with one set of 
fields for current identification, another for 
previous identification and one field each for 
identifier and date identified suffers another 
problem – there is no necessary link 

3 I chose such a flat structure, with 6 fields for 
current identification and 6 fields for original 
identification for a database for data capture 
on the entomology collections at ANSP.  It 
allowed construction of a more efficient data 
entry interface than a better normalized 
structure.  Insect type specimens seem to very 
seldom have the complex identification 
histories typical of other sorts of collections.  
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Figure 7. A non-normal collection object entity.
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between the identifications, the identifier, 
and the date identified.  The database is 
agnostic as to whether the identifier was the 
person who made the current identification, 
the previous identification, or some other 
identification.  It is also agnostic as to 
whether the date identified is connected to 
the identifier.  Without carefully enforced 
rules in the user interface, the date identified 
could reflect the date of some random 
previous identification, the identifier could be 
the person who made the current 
identification, and the previous identification 
could be the oldest identification of the 
collection object, or these fields could hold 
some other arbitrary combination of 
information, with no way for the user to tell. 
We clearly need a better structure.

Figure 8. Moving identifications to a related entity.

We can allow multiple identifications for 
each collection object by adding a second 
table to hold identifications and linking that 
table to the collection object table (Figure 
8).  These two tables for collection object 
and identification can hold multiple 
identifications for each collection object if we 
include a field in the identification table that 
contains values from the primary key of the 
collection object table.  This foreign key is 
used to link collection object records with 
identification records (shown by the “Crow's 
Foot” symbol in the figure).  One naming 
convention for foreign keys uses the name 
of the primary key that is being referenced 
(collection_object_id) and prefixes it with c_ 
(for copy, thus c_collection_object_id for the 

foreign key).  If, as in Figure 8,  the 
identification table holds a foreign key 
pointing to collection objects, and a set of 
fields to hold a taxon name, then each 
collection object can have many 
identifications.  

This pair of tables (Collection objects and 
Identifications, Figure 8) still has lots of 
problems.  We don't have any way of 
knowing which identification is the most 
recent one.  In addition, the taxon name 
fields will contain multiple duplicate values, 
so, for example,  correcting a misspelling in 
a taxon name will require updating every 
row in the identification table holding that 
taxon name.    Conceptually, each collection 
object can have multiple identifications, but 
each taxon name used in an identification 
can be applied to many collection objects. 
What we really want is a many to many 
relationship between taxon names and 
collection objects (Figure 9).  Relational 
databases can not handle many to many 
relationships directly, but they can by 
interpolating a table into the middle of the 
relationship – an associative entity.  The 
concepts collection object – identification – 
taxon name are good example of an 
associative entity (identification) breaking up 
a many to many relationship (between 
collection objects and taxon names).  Each 
collection object can have many taxon 
names applied to it, each taxon name can 
be applied to many collection objects, and 
these applications of taxon names to 
collection objects occur through an 
identification.  

In Figure 9, the identification entity is an 
associative entity that breaks up the many 
to many relationship between species 
names and collection objects.  The 
identification entity contains foreign keys 
pointing to both the collection object and 
species name entities.  Each collection 
object can have many identifications, each 
identification involves one and only one 
species name.  Each species name can be 
used in many identifications, and each 
identification applies to one and only one 
collection object.   

12
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Figure 9. Using an associative entity 
(identifications) to link taxon names to collection 
objects, splitting the many to many relationship 
between collection objects and identifications.

This set of entities (taxon name, 
identification [the associative entity], and 
collection object) also allows us to easily 
track the most recent identification by 
adding a date identified field to the 
identification table.   In many cases with 
legacy data, it may not be possible to 
determine the date on which an 
identification was made, so adding a field to 
flag the current identification out of a set of 
identifications for a specimen may be 
necessary as well.  Note that adding a flag 
to track the current identification requires 
business rules that will need to be 
implemented in the code associated with the 
database.  These business rules may 
specify that only one identification for a 
single collection object is allowed to be the 
current identification, and that the 
identification flagged as the current 

identification must have either no date or 
must have the most recent date for any 
identification of that collection object.  An 
alternative, suggested by an anonymous 
reviewer, is to include a link to the sole 
current identification in the collection object 
table.  (That is, to include a foreign key 
fk_current_identification_id in 
collection_objects, which is thus able to link 
a collection object to one and only one 
current identification.  This is a very 
appropriate structure, and lets business 
rules focus on making sure that this current 
identification is indeed the current 
identification).  

This identification associative entity sitting 
between taxon names and collection objects 
contains an attribute to hold the name of the 
person who made the identification.  This 
field will contain many duplicate values as 
some people make many identifications 
within a collection.  The proper way to bring 
this concept to third normal form is to move 
identifiers off to a generalized person table, 
and to make the identification entity a 
ternary associative entity linking species 
names, collection objects, and identifiers 
(Figure 10).  People may play multiple roles 
in the database (and may be a subtype of a 
generalized agent entity), so a convention 
for indicating the role of the person in the 
identification is to add the role name to the 
end of the foreign key.  Thus, the foreign 
key linking people to identifications could be 
called c_person_id_identifier.   In another 
entity, say handling the concept of 
preparations, a foreign key linking to the 
people entity might be called 
c_person_id_preparator.  

The set of concepts Taxon Name, 
identification (as three way associative 
entity), identifier, and collection object 
describes a way of handing the 
identifications of collection objects in third 
normal form.   Person names, collection 
objects, and taxon names are all capable of 
being stored without redundant repetition of 
information.   Placing identifiers in a 
separate People entity, however, requires 
further thought in the context of natural 
history collections.  Legacy data will contain 
multiple similar entries (G. Rosenberg; 
Rosenberg, G.; G Rosenberg; Rosenberg; 
G.D. Rosenberg), all of which may or may 
not refer to the same person.  Combining all 

13
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of these legacy entries  into a normalized 
person table risks introducing errors of 
interpretation into the data.   In addition, 
adding a generic people table and linking it 
to identifiers adds additional complexity and 
coding overhead to the database.  People is 
one area of the database where you need to 
think very carefully about the costs and 
benefits of a highly normalized design 
Figure 11.  Cleaning legacy data, the 
additional interface complexity, and the 
additional code required to implement a 
generic person as an identifier, along with 
the risk of propagation of incorrect 
inferences, may well outweigh the benefits 
of being able to handle identifiers in a 
generic people entity.    Good, well 
normalized design is critical to be able to 
properly handle the existence of multiple 
identifications for a collection object, but 
normalizing the names of identifiers may lie 
outside the scope of the critical core 
information that a natural history museum 
has the resources to properly care for, or be 
beyond the scope of the critical information 

needed to complete a grant funded project. 
Knowing when to stop elaborating the 
information model is an important aspect of 
good database design.    

Example extended: questionable 
identifications

How does one handle data such as the 
identification “Palaeozygopleura hamiltoniae 
(HALL, 1868) ?” that contains an indication 
of uncertainty as to the accuracy of the 
determination?  If the question mark is 
stored as part of the taxon name (either in a 
single taxon name string field, or as an 
atomized field in a taxon name table), then 
you can expect your list of distinct taxon 
names to include duplicate entries for 
“Palaeozygopleura hamiltoniae (HALL, 
1868)” and for  “Palaeozygopleura 
hamiltoniae (HALL, 1868) ?”.  This is clearly 
an undesirable duplication of information.   

Thinking through the nature of the 
uncertainty in this case, the uncertainty is an 
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Figure 10. Normalized handling of identifications and identifiers.  Identifications is an associative entity 
relating Collection objects, species names and people.

Figure 11. Normalized handling of identifications with denormalized handling of the people who perfommed 
the  identifications (allowing multiple entries in identification containing the name of a single identifier).
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attribute of a particular identification (this 
specimen may be a member of this 
species), rather than an attribute of a taxon 
name (though a species name can 
incorporate uncertain generic placement: 
e.g. Loxonema? hamiltoniae with this 
generic uncertainty being an attribute of at 
least some worker's use of the name).  But, 
since uncertainty in identification is a 
concept belonging to an identification, it is 
best included as an attribute in an 
identification associative entity (Figure 11).

Vocabulary

Information modeling has a widely used 
technical terminology to describe the extent 
to which data conform to the mathematical 
ideals of normalization.   One commonly 
encountered part of this vocabulary is the 
phrase “normal form”.  The term first normal 
form means, in essence, that a database 
has only one concept placed in each field 
and no repeating information within one row, 
that is, no repeating fields and no repeating 
values in a field.  Fields containing the value 
“1863, 1865, 1885” (repeating values) or the 
value “Paleozygopleura hamiltoniae Hall” 
(more than one concept), or the fields 
Current_identification and 
Previous_identification (repeating fields) are 
example violations of first normal form.  In 
second normal form, primary keys do not 
contain redundant information, but other 
fields may.  That is two different rows of a 
table may not contain the same values in 
their primary key fields in second normal 
form.   For example, a collection object table 
containing a field for catalog number serving 
as primary key would not be able to contain 
more than one row for a single catalog 
number for the table to be in second normal 
form.   We do not expect a table of 
collection objects to contain information 
about the same collection object in two 

different rows.  Second normal form is 
necessary for rational function of a relational 
database.  For catalog number to be the 
primary key of the collection object table, a 
unique index would be required to force 
each row in the table to have a unique value 
for catalog number.  In third normal form, 
there is no redundant information in any 
fields except for foreign keys.  A third 
normal treatment of geographic names 
would produce one and only one row 
containing the value “Philadelphia”, and one 
and only one row containing the value 
“Pennsylvania”.

To make normal forms a little clearer,  let's 
work through some examples.  Table 6 is a 
fragment of a hypothetical flat file database. 
Table 6 is not in first normal form.  It 
contains three different kinds of problems 
that prevent it from being in first normal form 
(as well as other problems related to higher 
normal forms).  First, the Catalog_number 
and identification fields are not atomic. 
Each contains more than one concept. 
Catalog_number contains the acronym of a 
repository and a catalog number.  The 
identification fields both contain a species 
name, rather than separate fields for 
components of that name (generic name, 
specific epithet, etc...).  Second, 
identification and previous identification are 
repeating fields.  Each of these contains the 
same concept (an identification).  Third, 
preparations contains a series of repeating 
values.  

So, what transformations of the data do we 
need to do to bring Table 6 into first normal 
form?   First, we must atomize, that is, split 
up fields until one and only one concept is 
contained in each field.  In Table 7, 
Catalog_number has been split into 
repository and catalog_no,  identification 
and previous identification have been split 
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Table 6. A table not in first normal form.

Catalog_number Identification Previous identification Preparations
ANSP 641455 Lunatia pilla Natica clausa Shell, alcohol 
ANSP 815325 Velutina nana Velutina velutina Shell

Table 7. Catalog number and identification fields  from Table 6 atomized so that each field now contains 
only one concept.

Repository Catalog_no Id_genus Id_sp P_id_gen P_id_sp Preparations
ANSP 641455 Lunatia pilla Natica clausa Shell, alcohol
ANSP 815325 Velutina nana Velutina velutina Shell
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into generic name and specific epithet fields. 
Note that this splitting is easy to do in the 
design phase of a novel database but may 
require substantial work if existing data 
need to be parsed into new fields.   

Table 7 still isn't in in first normal form.   The 
previous and current identifications are held 
in repeating fields.  To bring the table to first 
normal form we need to remove these 
repeating fields to a separate table.  To link 
a row in our table out to rows that we 
remove to another table we need to identify 
the primary key for our table.  In this case, 
Repository and Catalog_no together form 
the primary key.  That is, we need to know 
both Repository and Catalog number in 
order to find a particular row.  We can now 
build an identification table containing genus 
and trivial name fields, a field to identify if an 
identification is previous or current, and the 
repository and catalog_no as foreign keys to 
point back to our original table.  We could, 
as an alternative, add a surrogate numeric 
primary key to our original table and carry 
this field as a foreign key to our 
identifications table.  With an identification 
table, we can normalize the repeating 
identification fields from our original table as 
shown in Table 8.   Our data still aren't in 
first normal form as the preparations field 
containing a list (repeating information) of 
preparation types.

Table 8.  Current and previous identification fields 
from Tables 6 and 7 split out into a separate table. 
This pair of tables allows any number of previous 
identifications for a particular collections object. 
Note that Repository and Catalog_no together 
form the primary key of the first table (they could 
be replaced by a single surrogate numeric key).

Repository (PK) Catalog_no (PK) Preparations
ANSP 641455 Shell, alcohol
ANSP 815325 Shell

Repository Catalog_no Id_genus Id_sp ID_order
ANSP 641455 Lunatia pilla Current
ANSP 641455 Natica clausa Previous
ANSP 815325 Velutina nana Current
ANSP 815325 Velutina velutina Previous

Much as we did with the repeating 
identification fields, we can split the 
repeating information in the preparations 
field out into a separate table, bringing with 
it the key fields from our original table. 
Splitting data out of a repeating field into 
another table is more complicated than 

splitting out a pair of repeating fields if you 
are working with legacy data (rather than 
thinking about a design from scratch).  To 
split out data from a field that hold repeating 
values you will need to identify the delimiter 
used to split values in the repeating field (a 
comma in this example), write a parser to 
walk through each row in the table, split the 
values found in the repeating field on their 
delimiters, and then write these values into 
the new table.  Repeating values that have 
been entered by hand are seldom clean. 
Different delimiters may be used in different 
rows (comma or semicolon),  delimiters may 
be missing (shell alcohol),  spacing around 
delimiters may vary (shell,alcohol, frozen), 
the delimiter might be a data value in some 
rows(alcohol, formalin fixed; frozen, 
unfixed), and so on.   Parsing a field 
containing repeating values therefore can't 
be done blindly.  You will need to assess the 
results and fix exceptions (probably by 
hand).   Once this parsing is complete, 
Table 9, we have a set of three tables 
(collection object, identification, preparation) 
in first normal form.  

Table 9. Information in Table 6 brought into first 
normal form by splitting it into three tables.

Repository Catalog_no
ANSP 641455
ANSP 815325

Repository Catalog
_no

Id_genus Id_sp ID_order

ANSP 641455 Lunatia pilla Current
ANSP 641455 Natica clausa Previous
ANSP 815325 Velutina nana Current
ANSP 815325 Velutina velutina Previous

Repository Catalog_no Preparations
ANSP 641455 Shell
ANSP 641455 Alcohol

Non-atomic data and problems with first 
normal form are relatively common in legacy 
biodiversity and collections data (handling of 
these issues is discussed in the data 
migration section below).  Problems with 
second normal form are not particularly 
common in legacy data, probably because 
unique key values are necessary for a 
relational database to function.   Second 
normal form can be a significant issue when 
designing a database from scratch and in 
flat file databases, especially those 
developed from spreadsheets.  In second 
normal form, each row in a table holds a 
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unique value for the primary key of that 
table.  A collection object table that is not in 
second normal form can hold more than one 
row for a single collection object.   In 
considering second normal form, we need to 
start thinking about keys.  In the database 
design process we may consider candidate 
keys – fields that could potentially serve as 
keys to uniquely identify rows in a table.  In 
a collections object table, what information 
do we need to know to find the row that 
contains information about a particular 
collection object?  Consider Table 10. 
Table 10 is not in second normal form.  It 
contains 4 rows with information about a 
particular collections object.  A reasonable 
candidate for the primary key in a 
collections object table is the combination of 
Repository and Catalog number.  In Table 
10 these fields do not contain unique 
values.  To uniquely identify a row in Table 
10 we probably need to include all the fields 
in the table into a key.  

Table 10. A collections  object table with repeating 
rows  for the candidate key Repository + 
Catalog_no.

Repo
sitory

Catalog_
no

Id_
genus

Id_sp ID_order Preparation

ANSP641455 Lunatia pilla Current Shell
ANSP641455 Lunatia pilla Current alcohol
ANSP641455 Natica clausaPrevious Shell
ANSP641455 Natica clausaPrevious alcohol

If we examine Table 10 more carefully we 
can see that it contains two independent 
pieces of information about a collections 
object.  The information about the 
preparation is independent of the 
information about identifications.  In formal 
terms,  one key should determine all the 
other fields in a table. In Table 10, 
repository + catalog number + preparation 
are independent of repository + catalog 
number + id_genus + id species + id order. 
This independence gives us a hint on how to 
bring Table 10 into second normal form. 
We need to split the independent repeating 
information out into additional tables so that 
the multiple preparations per collection 
object and the multiple identifications per 
collection object are handled as 
relationships out to other tables rather than 
as repeating rows in the collections object 
table  (Table 11).  

Table 11. Bringing Table 10 into second normal 
form by splitting the repeating rows of preparation 
and identification out to separate tables.  

Repository Catalog_no
ANSP 641455

Repository Catalog_no Preparation
ANSP 641455 Shell
ANSP 641455 Alcohol

Repository Catalog_
no

Id_
genus

Id_sp ID_
order

ANSP 641455 Lunatia pilla Current
ANSP 641455 Natica clausa Previous

By splitting the information associated with 
preparations out of the collection object 
table  into a preparation table and 
information about identifications out to an 
identifications table  (Table 11) we can bring 
the information in Table 10  into second 
normal form.  Repository and Catalog 
number now uniquely determine a row in the 
collections object table (which in our limited 
example here now contains no other 
information.)  Carrying the key fields 
(repository + catalog_no) as foreign keys 
out to the preparation and identification 
tables allows us to link the information about 
preparations and identifications back to the 
collections object.  Table 11  is thus now 
holding the information from Table 10 in 
second normal form.   Instead of using 
repository + catalog_no as the primary key 
to the collections object table, we could use 
a surrogate numeric primary key 
(coll_obj_ID in Table 12), and carry this 
surrogate key as a foreign key into the 
related tables.      

Table 11 has still not brought the 
information into  third normal form.  The 
identification table will contain repeating 
values for id_genus and id_species – a 
particular taxon name can be applied in 
more than one identification.   This is a 
straightforward matter of pulling taxon 
names out to a separate table to allow a 
many to many relationship between 
collections objects and taxon names 
through an identification associative entity 
(Table 12).   Note that both Repository and 
Preparations could also be brought out to 
separate tables to remove redundant non-
key entries.  In this case, this is probably 
best accomplished by using the text value of 
Repository (and of Preparations) as the key, 
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and letting a repository table act to control 
the allowed values for repository that can be 
entered into the collections object tables 
(rather than using a surrogate numeric key 
and having to follow that out to the 
repository table any time you wanted to 
know the repository of a collections object). 
Herein lies much of the art of information 
modeling – knowing when to stop.  

Table 12. Bringing Table 11 into third normal form 
by splitting the repeating values of taxon names in 
identifications out into a separate table.  

Repository Catalog_no Coll_obj_ID
ANSP 641455 100

Coll_obj_ID Preparations
100 Shell
100 Alcohol

coll_obj_ID C_taxon_ID ID_order
100 1 Current
100 2 Previous

Taxon_ID Id_genus Id_sp
1 Lunatia pilla
2 Natica clausa

Producing an information model.

An information model is a detailed 
description of the concepts to be stored in a 
database (see, for example, Bruce, 1992). 
An information model should be sufficiently 
detailed for a programmer to use it to 
construct the back end data storage 
structures of the database and the code to 
support the business rules used to maintain 
the quality of the data.   A formal information 
model should consist of at least three 
components: an Entity-Relationship 
diagram, a description of relationship 
cardinalities, and a detailed description of 
each entity and each attribute.  The latter 
should include a description of the scope 
and nature of the data to be held in each 
attribute.  

Relationship cardinalities are text 
descriptions of the relationships between 
entities.  They consist of a list of sentences, 
one sentence for each of the two directions 
in which a relationship can be read.  For 
example, the relationship between species 
names and identifications in the E-R 
diagram in  could be documented as 
follows: 

Each species name is used in zero or more 
identifications.  

Each identification uses one and only one 
species name. 

The text documentation for each entity and 
attribute explains to a programmer the 
scope of the entity and its attributes.  The 
documentation should include particular 
attention to limits on valid content for the 
attributes and business rules that govern 
the allowed content of attributes, especially 
rules that govern related content spread 
among several attributes.  For example, the 
documentation of the date attribute of the 
species names entity in Figure 11 above 
might define it as being a variable length 
character string of up to 5 characters 
holding a four digit year greater than 1757 
and less than or equal to the current year. 
Another rule might say that if the authorship 
string for a newly entered record already 
exists in the database and the date is 
outside the range of the earliest or latest 
year present for that authorship string, then 
the data entry system should raise a 
warning message.  Another rule might 
prohibit the use of a species name in an 
identification if the date on a species name 
is more recent than the year of a date 
identified.  This is a rule that could be 
enforced either in the user interface or in a 
before insert trigger in the database.  

Properly populated with descriptions of 
entities and attributes, many CASE tools are 
capable of generating text and diagrams to 
document a database as well as SQL 
(Structured Query Language) code to 
generate the table structures for the 
database with very little additional effort 
beyond that needed to design the database. 

Example: PH core tables

As an example of an information model, I 
will describe the core components of the 
Academy's botanical collection, PH 
(Philadelphia Herbarium) type specimen 
database.  This  database was specifically 
designed for capturing data off of herbarium 
sheets of type specimens.  The database 
itself is in MS Access and is much more 
complex than these core tables suggest.   In 
particular, the database includes tables for 
handling geographic information in a more 
normalized form than is shown here.   
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The summary E-R diagram of core entities 
for the PH type database is shown in Figure 
12.  The core entity of the model is the 
Herbarium sheet, a row in the Herbarium 
sheet table represents a single herbarium 
sheet with one or more plant specimens 
attached to it.  Herbarium sheets are being 
digitally imaged, and the database includes 
metadata about those images.  Herbarium 
sheets have various sorts of annotations 
attached and written on them concerning 
the specimens attached to the sheets. 
Annotations can include original label data, 
subsequent identifications, and various 
comments by workers who have examined 
the sheet.  Annotations can include taxon 
names, including discussion of the type 
status of a specimen.   Figure 12 shows the 
entities (and key fields) used to represent 
this core information about a herbarium 
sheet.  

Figure 12. Core tables in the PH type database.

We can describe each of the relationships 
between the entities in the E-R diagram in 
with a pair of sentences describing the 
relationship cardinalities.  These sentences 
carry the same information as the crows-
foot notations on the E-R diagram, but in a 
more readily intelligible form.   To borrow 
language from the object oriented 
programing world, they state how many 
instances of an entity may be related to how 
many instances of another entity, that is, 
how many rows in one table may be related 
to rows of another table by matching rows 
containing the same values for primary key 
(in one table) and foreign key (in the other 

table).  The text description of relationship 
cardinalities can also carry additional 
information that a particular case tool may 
not include in its notation, such as a limit of 
an instance of one entity being related to 
one to three instances of another entity. 

Relationship cardinalities:

Each Herbarium Sheet contains zero to many 
Specimens.

Each Specimen is on one and only one 
Herbarium sheet.

Each Specimen has zero to many Annotations.
Each Annotation applies to one and only one 

Specimen.

Each Herbarium sheet has zero to many 
Images.

Each Image is of one and only one herbarium 
sheet.

Each Annotation uses one and only one Taxon 
Name.

Each Taxon Name is used in zero to many 
Annotations.

Each Annotation remarks on zero to one Type 
Status.

Each Type status is found in one and only one 
Annotation.

Each Type Status applies to one and only one 
Taxon Name.

Each Taxon Name has zero to many Type 
Status.

Each Taxon Name is the child of one and only 
one Higher Taxon.

Each Higher Taxon contains zero to many 
Taxon Names.

Each Higher Taxon is the child of zero or one 
Higher Taxon.

Each Higher Taxon is the parent of zero to many 
Higher Taxa.

The E-R diagram in  describes only the core 
entities of the model in the briefest terms. 
Each entity needs to be fleshed out with a 
text description, attributes, and descriptions 
of those attributes.   Figure 13 is a fragment 
of a larger E-R diagram with more detailed 
entity information for the Herbarium sheet 
entity.   Figure 13 includes the name and 
data type of each attribute in the Herbarium 
sheet entity.  The herbarium sheet entity 
itself contains very little information.  All of 
the biologically interesting information about 
a Herbarium sheet (identifications, 
provenance, etc) is stored out in related 
tables.  
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Figure 13. Fragment of PH core tables E-R 
diagram showing Herbarium sheet entity with all 
attributes listed.

Entity-relationship diagrams are still only big 
picture summaries of the data.  The bulk of 
an information model lies in the entity 
documentation.  Examine Figure 13. 
Herbarium sheet has an attribute called 
Name, and another called Date.  From the 
E-R diagram itself, we don't know enough 
about what sort of information these fields 
might hold.  As the Date field has a data 
type of timestamp, we could guess that it 
represents a timestamp generated when a 
row is entered into the herbarium sheet 
entity, but without further documentation, we 
can't know whether this is correct or not. 
The names of the attributes Name and Date 
are legacies of an earlier phase in the 
design of this database,  better names for 
these attributes would be “Created by” and 
“Date created”.  Entity documentation is 
needed to explain what these attributes are, 
what sort of information they should hold, 
and what business rules should be applied 
to maintain the integrity and validity of that 
information.  Entity documentation for one 
entity in this model, the Herbarium sheet, 
follows (in Appendix A) as an example of a 
suitable level of detail for entity 
documentation.  A definition, the domain of 
valid values, business rules, and example 
values all help describe the nature of the 
information intended to go into a table that 
implements this entity and can assist in 
physical design of the database, design of 
the user interface, and in future migrations 
of the data (Figure 1).  

Physical design

An information model is a conceptual design 
for a database.  It describes the concepts to 
be stored in the database.   Implementation 
of a database from an information model 

involves converting that conceptual design 
into a physical design, into a plan for 
actually implementing the database in code. 
Large portions of the information model 
translate very easily into instructions for 
building tables.  Other portions of an 
information model require more thought, for 
example, should a particular business rule 
be implemented as a trigger, as a stored 
procedure, or as code in the user interface.  

The vast majority of relational database 
software developed since the mid 1990s 
uses some variant of the language SQL as 
the primary means for manipulating the 
database and the information stored within 
the database  (the clearest introduction I 
have encountered to SQL is Celko, 1995b). 
Database server software packages (e.g. 
MS SQLServer, PostgreSQL, MySQL) allow 
direct entry of SQL statements through a 
command line client.   However, most 
database software also provides for some 
form of graphical front end that can hide the 
SQL from the user (such as MS Access 
over the MS Jet engine or PGAccess over 
PostgreSQL, or OpenOffice.org, Rekall, 
Gnome-db, or Knoda over PostgreSQL or 
MySQL).   Other database software, notably 
Filemaker, does not natively use SQL (this 
is no longer true in Filemaker7, which has a 
script step for running SQL queries). 
Likewise, CASE tools allow users to design, 
implement, modify, and reverse engineer 
databases through a graphical user 
interface, without the need to write SQL 
code. While SQL is the language of 
relational databases, it is quite possible to 
design, implement, and use relational 
databases without writing SQL code by 
hand.

Even if you aren't going to write SQL 
yourself to manipulating data, it is very 
helpful to think in terms of  SQL.   When you 
want to ask a question of your data, 
consider what query would you write to 
answer that question, then think about how 
to implement that query in your database 
software.   This should help lead you to the 
desired result set.  Note that phrase: result 
set.  Set is an important word.  SQL is a set 
based language.  Tables with their rows and 
columns may look like a spreadsheet.  SQL, 
however, operates not on individual rows 
but on sets.  Set thinking is the key to 
working with relational databases.  
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Basic SQL syntax

SQL queries serve two distinctly different 
purposes.  Data definition queries allow you 
to create structures for holding your data. 
Data definition queries define tables, fields, 
indices, stored procedures, and triggers. 
On the other hand, data manipulation 
queries allow you to add, edit, and view 
data.  In particular, SELECT queries retrieve 
data from the database.   

Data definition queries can be used to 
create new tables and alter existing tables. 
A CREATE TABLE statement simply 
provides the information needed to create a 
table, such as a table name, a list of field 
names, types for each field, constraints to 
apply to each field, and fields to index. 
Queries to create a very simple collection 
object table and to add an index to its 
catalog number field are shown below (in 
MySQL syntax, see DuBois, 2003; DuBois 
et al, 2004).  Here I have followed a good 
form for readability, placing SQL commands 
in upper case, user supplied names for 
database elements in lowercase, spacing 
the statements out over several lines, and 
indenting lines to improve clarity.  

CREATE TABLE collection_object (
    collection_object_id INT NOT NULL
       PRIMARY KEY AUTO_INCREMENT,
    acronym CHAR(4) NOT NULL 
       DEFAULT “ANSP”,
     catalog_number CHAR(10) NOT NULL
);

CREATE INDEX catalog_number 
  ON collection_object(catalog_number);

The create table query above will create a 
table for the collection object entity shown in 
Figure 14  and the create index query that 
follows it will index the catalog number field. 
SQL has a very English-like syntax.  SQL 

uses a small set of commands such as 
Create, Select, Update, and Delete.  These 
commands have a simple, easily 
understood syntax yet can be extremely 
flexible, powerful, and complex.

Data placed in a table based on the entity in 
Figure 14 might look like those in Table 13:

Table 13. Rows in a collection object table

collection_object_id acronym catalog_
number

300 ANSP 34000
301 ANSP 34001
302 ANSP 28342
303 ANSP 100382

SQL comes in a series of subtly different 
dialects.  There are standards for SQL 
[ANSI X3.135-1986, was the first, most 
vendors support some subset of SQL-92 or 
SQL-99, while SQL:2003 is the latest 
standard (ISO/IEC, 2003; Eisenberg et al, 
2003)], and most implementations are quite 
similar.  However, each DBMS implements 
a subtly different set of features and their 
own extensions of the standard.  A SQL 
statement in the PostgreSQL dialect to 
create a table based on the collection object 
entity in Figure 14 is similar, but not quite 
identical to the SQL in the MySQL dialect 
above:

CREATE TABLE collection_object (
  collection_object_id SERIAL NOT NULL 
     UNIQUE PRIMARY KEY,
  acronym VARCHAR(4) NOT NULL 
     DEFAULT 'ANSP',
  catalog_number VARCHAR(10) NOT NULL,
);
CREATE INDEX catalog_number 
 ON collection_object(catalog_number);

Most of the time, you will not actually write 
data definition queries.  In DBMS systems 
like MS Access and Filemaker there are 
handy graphical tools for creating and 
editing table structures.  SQL server 
databases such as MySQL, Postgresql, 
and MS SQLServer have command line 
interfaces that let you issue data definition 
queries, but they also have graphical tools 
that allow creation and editing of table 
structures without worrying about data 
definition query syntax.  For complex 
databases, it is best to create and maintain 
the database design in a separate CASE 
tool (such as xCase, or Druid,  both used to 
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produce E-R diagrams shown herein, or any 
of a wide range of other commercial and 
open source CASE tools).  Database CASE 
tools typically have a graphical user 
interface for design, tools for checking the 
integrity of the design, and the ability to 
convert the design to a set of data definition 
queries.  Using a CASE tool, one designs 
the database, then connects to a data 
source, and then has the CASE tool issue 
the data definition queries to build the 
database.  Documentation of the database 
design can be printed from the CASE tool. 
Subsequent changes to the database 
design  can be made in the CASE tool and 
then applied to the database itself.  

The workhorse for most database 
applications is data retrieval.   In SQL this is 
accomplished using the SELECT statement. 
Select statements can specify the desired 
fields and the criteria to limit the results 
returned by a query. MS Access has a very 
useful graphical query designer.  The 
familiar queries you build with this designer 
by dragging fields from tables onto the 
query design and then adding criteria to limit 
the result sets are just SELECT queries 
(indeed it is possible to change the query 
designer over to SQL view and see the sql 
statement you have built with the designer). 
For those from the Filemaker world, 
SELECT queries are like designing a layout 
with the desired fields on it, then changing 
over to find view, adding criteria to limit the 
find, and then running the find to show your 
result set.  Here is a simple select statement 
to list the species in the genus Chicoreus 
present in a taxonomic dictionary file:

SELECT generic_epithet, trivial_epithet 
FROM taxon_name 
WHERE generic_epithet = “Chicoreus”; 

This SQL query will return a result set of 
information – all of the generic and trivial 
names present in the taxon_name table 
where the generic name is Chicoreus.  
Remember that the important word here is 
“set” (Figure 15).  SQL is a set based 
language.  You should think of this query 
returning a single set of information rather 
than an iterated list of rows from the source 
table.  Set based thinking is quite different 
from the iterative thinking common to most 
programing languages .  Behind the scenes, 
the DBMS may be walking through rows in 

the table, looking up values in indexes, and 
all sorts of interesting creative programming 
features that are generally of no concern to 
the user of the database.  SQL provides a 
standard interface on top of the details of 
exactly how the DBMS is extracting data 
that allows you to easily think about sets of 
information, rather than worrying about how 
to get that information out of its storage 
structures.  

SELECT queries can ask sophisticated 
questions about aggregates of data.  The 
simplest form of these is a query that 
returns all the distinct values in a field.  This 
sort of query is extremely useful for 
examining messy legacy data.

The query below will return a list of the 
unique values for country and 
primary_division (state/province) from a 
locality table, sorted in alphabetic order. 

SELECT DISTINCT country, primary_division
FROM locality_table;
ORDER BY country, primary_division;

In legacy data, a query like this will usually 
return an interesting list of variations on the 
spelling and abbreviation of both country 
names and states.   In the MS Access query 
designer, a property of the query will let you 
convert a SELECT query into a SELECT 
DISTINCT query, or you can switch the 
query designer to SQL view and add the 
word DISTINCT to the sql statement. 
Filemaker allows you to limit options in a 
picklist to distinct values from a field, but 
doesn't (as of version 6.1) have a facility for 
selecting and displaying distinct values in a 
field other than in a picklist.  
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Working through an example: 
Extracting identifications.

SELECT queries are not limited to a single 
table.  You can ask questions of data across 
multiple tables at once.  The usual way of 
doing this is to follow a relationship joining 
one table to another.  Thus, in our 
information model for an identification that 
has a table for taxon names, another for 
collection objects, and an associative entity 
to relate the two in identifications (Figure 
11), we can create a query that starts in the 
collection object table and joins the 
identification table to it by following the 
primary key to foreign key based 
relationship.  The query then follows another 
relationship out to the taxon name table. 
This join from collections objects to 
identifications to taxon names provides a list 
of the identifications for each collection 
object.  Given a catalog number, we can 
obtain a list of related identifications.

SELECT generic_higher, trivial, author,
  year, parentheses, questionable,
  identifier, date_identified,catalog_number 
FROM collections_object 
  LEFT JOIN identification 
    ON collection_object_id =
       c_collection_object_id 
  LEFT JOIN taxon_name 
    ON c_taxon_id = taxon_id 
WHERE catalog_number = “34000”;

Because SQL is a set based language, if 
there is one collection object with the 
catalog number 34000 (Table 14) which has 
three identifications (Table 15,Table 16), 
this query will return a result set with three 
rows(Table 17):

Table 14. A collection_object table.

collection_object_id catalog_number
55253325 34000

Table 15. An identification table.

c_collection_
object_id

c_taxonid date_identified

55253325 23131 1902/--/--
55253325 13144 1986/--/--
55253325 43441 1998/05/--

Table 16. A taxon_name table

taxon_id Generic_higher trivial
23131 Murex sp.
13144 Murex ramosus
43441 Murex bicornis

Table 17. Selected result set of joined rows from 
collection_object, identification, and taxon_name.

Generic_
higher

trivial .... date_identified catalog_
number

Murex sp. 1902/--/-- 34000
Murex ramosus 1986/--/-- 34000
Murex bicornis 1998/05/-- 34000

The collection object table contains only one 
row with a catalog number of 34000, but the 
set produced by joining identifications to 
collection objects contains three rows with 
the catalog number 34000.  SQL is returning 
sets of information, not rows from tables in 
the database.    

We could order this result set by the date 
that the collection object was identified, or 
by a current identification flag, or both 
(assuming the format of the date_identified 
field allows for easy sorting in chronological 
order):

SELECT generic_higher, trivial, author, 
   year, parentheses,
   questionable, identifier,  
   date_identified, catalog_number
FROM collections_object 
   LEFT JOIN identification 
      ON collection_object_id = 
         c_collection_object_id 
   LEFT JOIN taxon_name 
      ON c_taxon_id = taxon_id 
WHERE catalog_number = “34000”
ORDER BY current_identification, 
         date_identified;

Entity-Relationship diagrams show 
relationships connecting entities.  These 
relationships are implemented in a database 
as joins between tables.  Joins can be much 
more fluid than implied by an E-R diagram. 

SELECT DISTINCT  
   collections_object.catalog_number 
FROM taxon 
  LEFT JOIN identification 
   ON taxonid = c_taxon id 

  LEFT JOIN collection object 
   ON c_collections_objectid = 

       collections_objectid 
WHERE 
  taxon.taxon_name = “Chicoreus ramosus”; 

The query above is straightforward,  it 
returns one row for each catalog number 
where the object has an identification of 
Chicoreus ramosus.   We can also write a 
query to follow the same join in the opposite 
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direction.  Starting with the criterion set on 
the taxon table, the query below  follows the 
joins back to the collections_object table to 
see a selected set of catalog numbers.

SELECT collections_object.catalog_number, 
       taxon.taxon_name 
FROM collections_object 
  LEFT JOIN identification 
   ON collections_objectid = 

       c_collections_objectid 
  LEFT JOIN taxon 
   ON c_taxonid = taxon id;

Following a relationship like this from the 
many side to the one side takes a little more 
thinking about.  The query above will return 
a result set with one row for each taxon 
name that is used in an identification, and, if 
a collection object has more than one 
identification, its catalog number will appear 
in more than one row.   This is the normal 
behavior of a query across a join that 
represents a many to one relationship.  The 
result set will be inflated to include one row 
for each selected row on the many side of 
the relationship, with duplicate values for the 
selected columns on the other side of the 
relationship.  This also is why the previous 
query was a Select Distinct query. If it had 
simply been a select query and there were 
specimens with more than one identification 
of “Chicoreus ramosus”, the catalog 
numbers for those specimens would be 
duplicated in the result set.   Think of 
queries as returning result sets rather than 
rows from database tables.  

Thinking in sets rather than rows is evident 
when you perform update queries to alter 
data already in the database.  In a 
programming language, you would think of 
iterating through each row in a table, 
checking to see if that row matched the 
criteria for an update and then applying an 
update to that row if it did.  You can think of 
an SQL update query as simply selecting 
the set of records that match your criteria 
and applying the update to that set as a 
whole (Figure 16, top).  

UPDATE species_dictionary
SET genus = “Chicoreus”
WHERE genus = “Chicoresu”;

Nulls and tri-valued logic

Boolean logic with its operations on true and 
false is at least vaguely familiar to most of 
us.  SQL throws in an added twist.  It uses 
tri-valued logic.   SQL expressions may be 
true, false, or null.  A field may contain a null 
value.  A null is different from an empty 
string or a zero.   A character field intended 
to hold generic names could potentially 
contain “Silurus”, or “Chicoreus”, or 
“Palaeozygopleura”, or “” (an empty string), 
or NULL as valid values.  An integer field 
could hold 1, or 5, or 1024, or -1, or 0, or 
NULL.  Nulls make the most sense in the 
context of numeric fields or date fields. 
Suppose you want to use an real number 
field to hold a measurement of a specimen, 
say maximum shell height in a gastropod. 
Storing the number in a real number field 
will make it easy for you to calculate sums, 
means, and perform other mathematical 
operations on this field.   You are left with a 
problem, however, when you don't know 
what value to put in that field.  Suppose the 
specimen in front of you is a slug (with no 
shell to measure).  What value do you place 
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thought of as acting on an entire result set at once 
(top), rather than walking through each row in the 
table, as might be implemented in an iterative 
programing language (bottom).
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in the shell height field?   Zero might make 
sense, but won't produce sensible results 
for some sorts of calculations.  A negative 
number, or more broadly a number outside 
the range of expected valid values (such as 
99 for year in a two digit date field in a 
database designed in the 1960s) that you 
could use to exclude out of range values 
before performing your calculation?  Your 
perception of the scope of valid values 
might not match that of users of the system 
(as when the 1960s data survived to 1999). 
In our example of values for shell height, if 
someone decides that hyperstrophic 
gastropods should have negative values of 
shell height as they coil up the axis of coiling 
instead of down it like normal orthostrophic 
gastropods the values -1 and 0 would no 
longer fall outside the scope of valid shell 
heights.   Null is the SQL solution to this 
problem.  Nulls don't behave as numbers. 
Nulls allow you to flag records for which 
there is no sensible in range value to place 
in a field.  Nulls make slightly less sense in 
character fields where you can allow explicit 
values such as “Not Applicable”, “Unknown”, 
or “Not examined”  that let you explicitly 
record the reason that a value was not 
entered in the field.   The difficulty in this 
case is in maintaining the same value for 
the same concept over time, preventing “Not 
Applicable” from being entered by some 
users and “N/A” by others and “n/a” and “” 
by others.    Code to help users consistently 
enter “Not Applicable”, or “Unknown” can be 
embedded in the user interface, but 
fundamentally, ensuring consistent data 
entry in this form is a matter of careful user 
training, quality control procedures, and 
detailed documentation.  

Nulls make for interesting complications 
when it comes time to query the database. 
We normally think of expressions in 
programs as following some set of rules to 
evaluate as either true or false.  Most 
programing languages have some construct 
that lets us take an action if some condition 
is met; IF some expression is true 
THEN do something.    The expression 
(left(genus,4) <> “Silu”) would 
sensibly seem to evaluate to true for all 
cases where the first four characters of the 
genus field are not “Silu”.   Not so in an SQL 
database.  Nulls propagate.  If an 
expression contains a null, the null will 
propagate to make result of the whole 

expression null.  If the value of genus in 
some row is null, the expression 
left(NULL,4) <> “Silu” will evaluate to null, 
not to true or false.   Thus the statement 
select generic,  trivial from taxon_name 
where (left(generic,4) <> “silu”) will not 
return the expected result set  (it will not 
include rows where generic=NULL.  Nulls 
are handled with a function, such as 
IsNull(), which can take a null and return a 
true or false result.   Our query needs to add 
a term: select generic,  trivial from 
taxon_name where (left((generic,4) <> 

“silu”) or IsNull(generic)).

Maintaining integrity

In a spreadsheet or a flat file database, 
deleting a record is a simple matter of 
removing a single row.  In a relational 
database, removing records and changing 
the links between records in related tables 
becomes much more complex.  A relational 
database needs to maintain database 
integrity.  An important part of maintaining 
integrity is knowing what do you do with 
related records when you delete a record on 
one side of a join.  Consider a scenario: 
You are cataloging a collection object and 
you enter data about it into a database 
(identification, locality, catalog number, kind 
of object, etc...).  You then realize that you 
entered the data for this object yesterday, 
and you are creating a duplicate record that 
you want to delete.  How far does the delete 
go?  You no doubt want to get rid of the 
duplicate record in the collection object table 
and the identifications attached to this 
record,  but you don't want to keep following 
the links out to the authority file for taxon 
names and delete the names of any taxa 
used in identifications.   If you delete a 
collections object you do not want to leave 
orphan identifications floating around in the 
database unlinked to any collections object. 
These identifications (carrying a foreign key 
for a collections object that doesn't exist) 
can show up in subsequent queries and 
have the potential to become linked to new 
collections objects (silently adding incorrect 
identifications to them as they are created). 
Such orphan records, which retain links to 
no longer existent records in other tables, 
violate the relational integrity of the 
database.   

When you delete a record, you may or may 

25



PhyloInformatics 7: 26-66 - 2005

not want to follow joins (relationships) out to 
related tables to delete related records in 
those tables.   Descriptions of relationships 
themselves do not provide clear guidance 
on how far deletions should propagate 
through the database and how they should 
be handled to maintain relational integrity.  If 
a collection object is deleted, it makes 
sense to delete the identifications attached 
to that object, but not the taxon names used 
in those identifications as they are probably 
used to identify other collection objects.  If, 
in the other direction, a taxon name is 
deleted the existence of any identifications 
that use that taxon name almost certainly 
mean that the delete should fail and the 
name should be retained.  An operation 
such as merging a record containing a 
correctly spelled taxon name with a record 
containing an incorrectly spelled copy of the 
same name should correct any links to the 
incorrect spelling prior to deleting that 
record.  

Relational integrity is best enforced with 
constraints, triggers, and code enforcing 
rules at the database level (supported by 
error handling in the user interface).  Some 
database languages  support foreign key 
constraints.   It is possible to join two tables 
by including a column in one table that 
contains values that match the values in the 
primary key of another table.  It is also 
possible to explicitly enforce foreign key 
constraints on this column.  Including a 
foreign key constraint in a table definition 
will require that values entered in the foreign 
key column match values found in the 
related primary key.  Foreign key constraints 
can also include cascading deletes. 
Deleting a row in one table can cascade out 
to related tables with foreign key constraints 
linked to the first table.  A foreign key 
constraint on the c_collections_object_id 
field of an identification table could cause 
deletes from the related collections object 
table to cascade out and remove related 
rows from the identification table.  Support 
for such deletion of related rows varies 
between database systems.  

Triggers are blocks of code in a database 
that are executed when particular actions 
are performed.  An on delete trigger is a 
block of code tied to a table in a database 
that can fire when a record is deleted from 
that table.  An on delete trigger for a 

collections object could, like a foreign key 
constraint, delete related records in an 
identification table.  Triggers, unlike 
constraints, can contain complex logic and 
can do more than simply affect related rows. 
An on delete trigger for a taxon name table 
could check for related records in an 
identification table and cause the delete 
operation to fail if any related records exist. 
An on insert or on update trigger can include 
complex format checking and business rule 
checking code, and we will see later, 
triggers can be very helpful in maintaining 
the integrity of hierarchical information 
(trees) stored in a database.  

Triggers, foreign keys, and other operations 
executed on the database server do have a 
downside: they involve the processing of 
code, and thus reduce the speed of 
database operations. In many cases (where 
you are concerned about the integrity of the 
data), you will want to support these 
operations somewhere – either in user 
interface code, in a middle layer of business 
logic code, or as code embedded in the 
database.  Embedding rules to support the 
integrity of the data in the database (through 
triggers and constraints) can be an effective 
way of ensuring that all users and clients 
that attach to the database have to follow 
the same business rules.  Triggers can also 
simplify client development by reducing the 
number of operations the client must 
perform to maintain integrity of the data.   

User rights & Security

Another important element to 
maintaining data quality is control over who 
has access to a database.  Limits on who is 
able to add data and who is able to alter 
data are essential.  Unrestricted database 
access to all and sundry is an invitation to 
unusable data.  At a minimum, guests 
should have select only access to public 
parts of the database, data entry personnel 
should have limited select and update (and 
perhaps delete) rights to parts of the 
database,  a limited set of skilled users may 
be granted update access to tables housing 
controlled vocabularies, and only system 
administrators should have rights to add 
users or alter user privileges.  Particular 
business functions (such as collection 
managers filling loans, curators approving 
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loans, or a registrar approving accessions) 
may also require restrictions to limit these 
operations on the database to only the 
correct users.  User rights are best 
implemented at the database level. 
Database systems include native methods 
for restricting user rights.  You should 
implement rights at this level, rather than 
trying to implement a separate privilege 
system in the user interface.  You will 
probably want to mirror the database 
privileges in the front end (for example, 
hiding administrative menu options from 
lower level users), but you should not rely 
on code in the front end of a database to 
restrict the ability of users to carry out 
particular operations.  If a database front 
end can connect a user to a database 
backend with a high privilege level, the 
potential exists for users to skip the front 
end and connect directly to the database 
with a high privilege level (see Morris 2001 
for an example of a server wide security risk 
introduced by a design that implemented 
user access control in the client).  

Implementing as joins & 
Implementing as views 

In many database systems, a set of joins 
can be stored as a view of a database.  A 
view can be treated much like a table. 
Users can query a view and get a result set 
back.  Views can have access rights granted 
by the access privilege system.  Some 
views will accept update queries and alter 
the data in the tables that lie behind them. 
Views are particularly valuable as a tool for 
restricting a class of users to a subset of 
possible actions on a subset of the 
database and enforcing these restrictions at 
the database level.  A user can be granted 
no rights at all to a set of tables, but given 
select access to a view that shows a subset 
of information from those tables.    An 
account that updates a web database by 
querying a master database might be 
granted select only access to a view that 
limits it to just the information needed to 
update the web dataset (such as a flat view 
of Darwin Core [Schwartz, 2003; Blum and 
Wieczorek, 2004] information).   Given the 
complex joins and very complex structure of 
biodiversity information, views are probably 
not practical ways to restrict data entry 
privileges for most biodiversity databases. 
Views may, however, be an appropriate 

means of limiting guest access to a read 
only view of the data.  

Interface design 

Simultaneously with the conceptual and 
physical design of the back end of a 
database, you should be creating a design 
for the user interface to access the data. 
Existing user interface screens for a legacy 
database, paper and pencil designs of new 
screens, and mockups in database systems 
with easy form design tools such as 
Filemaker and MS Access are of use in 
interface design.   I feel that the most 
important aspect of interface design for 
databases is to fit the interface to the 
workflow, abstracting the user interface 
away from the underlying complex data 
structures and fitting it to the tasks that 
users perform with the data.  A typical user 
interface problem is to place the user 
interface too close to the data by creating 
one data entry screen for each table in the 
database.   In anything other than a very 
simple database, having the interface too 
close to the data ends up in a bewildering 
profusion of pop up windows that leave 
users entirely confused about where they 
are in data entry and how the current open 
window relates to the task at hand.   

Figure 17. A picklist control for entering taxon 
names.

Consider the control in Figure 17.  It allows 
a user to select a taxon name (say to 
provide  an identification of a collection 
object) off of a picklist.  This control would 
probably allow the  user to start typing the 
taxon name in the control to jump to the 
relevant part of a very long picklist.  A 
picklist like this is a very seductive form 
element in many situations.  It can allow a 
data entry person to make fewer keystrokes 
and mouse gestures to enter a particular 
item of information than by filling in a set of 
fields.  It can mask substantial complexity in 
the underlying database (the taxon name 
might be built from 12 fields or so and the 
control might be bound to a field holding a 
surrogate numeric key representing a 
particular combination).  By having users 
pick values off of a list you can enforce a 
controlled vocabulary and can avoid the 
entry of misspelled taxon names and other 
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complex vocabulary.  Picklists, however 
have a serious danger.  If a data entry 
person selects the wrong taxon name when 
entering an identification from the picklist 
above there is no way for anyone to find that 
a mistake has been made without having 
someone return to the original source for 
the information and compare the record 
against that source (Figure 18).   In 
contrast, a misspelled taxon name is usually 
easy to locate (by comparison with a 
controlled list of taxon names).  If data is 
entered as text, simple misspellings can be 
found, identified, and fixed.  Avoid picklists 
as sole sources of information.    

Figure 18. A picklist being used as the sole 
source of locality information.

One option to avoid the risk of unfindable 
errors is to entirely avoid the use of picklists 
in data entry.   Simply exchanging picklists 
for text entry controls on forms will result in 
the loss of the advantages of picklist 
controls; more rapid data entry and, more 
importantly, a controlled vocabulary.   It is 
possible to maintain authority control and 
use text controls by writing code behind a 
text entry control that will enforce a 
controlled vocabulary by querying an 
authority file using the information entered in 
the text control and throwing an error (and 
presenting the user with an error message) 
if no match is found in the controlled 
vocabulary in the authority file.  This 
alternative  can work well for single word 
entries such as generic names, where it is 
faster to simply type a name than it is to 
open a long picklist, move to the correct 
location on the list, and select a value. 
Replacing a picklist with a controlled text 
box, however,  is not a good choice for 

complex formated information such as 
locality descriptions.   

Another option to avoid the risk of 
unfindable errors is to couple a picklist with 
a text control (Figure 19).   A collecting 
event could be linked to a locality through a 
picklist of localities, coupled with a 
redundant text field to enter a named place. 
The data entry person needs to make more 
than one mistake to create an unfindable 
error.   To make an unfindable error, the 
data entry person needs to select the wrong 
value from the picklist, enter the wrong 
value in the text box, and have these 
incorrect text box value match the incorrect 
choice from the picklist (an error that is still 
quite conceivable, for example if the data 
entry person looks at the  label for one 

specimen when they are typing in 
information about another specimen).  The 
text box can hold a terminal piece of 
information that can be correlated with the 
information in the picklist, or a redundant 
piece of information that must match a value 
on the pick list.  A picklist of species names 
and a text box for the trivial epithet allow an 
error to be raised whenever the trivial 
epithet in the text box does not match the 
species name selected on the picklist.  Note 
that the value in the text box need not be 
stored as a field in the database if the 
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Figure 19. A picklist and a text box used in 
combination to capture and check locality 
information.  Step 1, the user selects a locality 
from the picklist.  Step 2, the database looks up 
higher level geographic information.  Step 3, the 
user enters the place name associated with the 
locality.  Step 4, the database checks that the 
named place entered by the user is the correct 
named place for the locality they selected off the 
picklist.
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quality control rules embedded in the 
database require it to match the picklist. 
Alternately the values can be stored and 
used to flag records for later review in the 
quality control process. 

Design your forms to function without the 
need for lifting hands off the keyboard.  Data 
entry should not require the user to touch 
the mouse.   Moving to the next control, 
pressing a button, moving to the next 
record, opening a picklist, and duplicating 
information from the previous record, are all 
operations that can be done from the 
keyboard.  Human interface design is a 
discipline in its own right, and I won't say 
more about it here.  

Practical Implementation

Be Pragmatic 

Most natural history collections operate in 
an environment of highly limited resources. 
Properly planning, designing, and 
implementing a database system following 
all of the details of some of the information 
models that have been produced for the 
community (e.g. Morris 2000) is a task 
beyond the resources of most collections.  A 
reasonable estimate for a 50 to 100 table 
database system includes about 500-1000 
stored procedures, more than 100,000  lines 
of user interface code, one year of design, 
two or more years of programming, a 
development team including a database 
programmer, database administrator, user 
interface programmer, user interface 
designer, quality control specialist, and a 
technical writer, all running to some 
$1,000,000 in costs.  Clearly natural history 
collections that are developing their own 
database systems (rather than using 
external vendors or adopting community 
based tools such as BioLink [CSIRO, 2001] 
or Specify) must make compromises. 
These compromises should involve 
selecting the most important elements of 
their collections information, spending the 
most design, data cleanup, and programing 
effort on those pieces of information, and 
then omitting the least critical information or 
storing it in less than third normal form data 
structures.  

A possible candidate for storage in less than 
ideal form is the generalized Agent concept 

that can hold persons and institutions that 
can be linked to publications as authors, 
linked to collection objects as preparators, 
collectors, identifiers, and annotators, and 
linked to transactions as donors, recipients, 
packers, authorizers, shippers, and so forth. 
For example, given the focus on collection 
objects, using Agents as authors of 
publications (through an authorship list 
associative entity) may introduce substantial 
complications in user interface design, code 
to maintain data integrity, and the handling 
of existing legacy data that produce costs 
far in excess of the utility gained from proper 
third normal form handling of the concept of 
authors.  Conversely, a database system 
designed specifically to handle bibliographic 
information requires very clean handling of 
the concept of Authors in order to be able to 
produce bibliographic citations in multiple 
different formats (at a minimum, the author 
last name and initials need to be atomized 
in an author table and they need to be 
related to publications through an 
authorship list associative entity). 
Abandoning third normal form (or higher) in 
parts of the database is not a bad thing for 
natural history collections, so long as the 
decisions to use lower normal forms are 
clearly thought out and restricted to the 
least important parts of the data.   

I chose the example of Agents as a possible 
target for reduced database complexity 
deliberately.  Some institutions and users 
will immediately object that a generalized 
Agent related to transactions and collection 
objects is of critical importance to their data. 
Perfect.  This is precisely the approach I am 
advocating.  Identify the most important 
parts of your data, and put your time, effort, 
design, programing, and data manipulation 
into making sure that your database system 
is capable of cleanly handling those most 
critical areas.  Identify the concepts that are 
not of critical importance and minimize the 
design complexity you allow them to 
introduce into your database (recognizing 
that problems will accumulate in the quality 
of these data).  In a setting of limited 
resources, we are seldom in a situation 
where we can build systems to store all of 
the highly complex information associated 
with collections in optimum form.  This fact 
does not, however, excuse us from 
identifying the most important information 
and applying the best solutions we can to 
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the stewardship of that information.  

Approaches to management of 
date information

Dates in collection data are generally 
problematic as they are often known only to 
a level of precision less than a single day. 
Dates may be known to the day, or in some 
cases to the time of day, but often they are 
known only to the month, or to the year, or 
to the decade.  In some cases, dates are 
known to be prior to a particular date (e.g. 
the date donated may be known but the 
date collected may not other than that it is 
sometime prior to the date donated).  In 
other cases dates are known to be within a 
range (e.g. between 1932-June-12 and 
1932-July-154); in yet others they are known 
to be within a set of ranges (e.g. collected in 
the summers of 1852 to 1855).   Designing 
database structures to be able to effectively 
store, retrieve, sort, and validate this range 
of possible forms for dates is not simple 
(Table 18).  

Using a single field with a native date data 
type to hold collections date information is 
generally a poor idea as date data types 
require each date to be specified to the 
precision of one day (or finer).   Simply 
storing dates as arbitrary text strings is 
flexible enough to encompass the wide 
variety of formats that may be encountered, 
but storing dates as arbitrary strings does 
not ensure that the values added are valid 
dates, in a consistent format, are sortable, 
or even searchable.   

Storage of dates effectively requires the 
implementation of an indeterminate or 
arbitrary precision date range data type 
supported by code.  An arbitrary precision 
date data type can be implemented most 
simply by using a text field and enforcing a 
format on the data allowed into that field (by 
binding a picture statement or format 
expression to the control used for data entry 
into that field or to the validation rules for 

4 There is an international standard date and 
time format, ISO 8601, which specifies 
standard numeric representations for dates, 
date ranges, repeating intervals and durations. 
ISO 8601 dates include notations like 19 for an 
indeterminate date within a century,  1925-03 
for a month, 1860-11-5 for a day, and 1932-06-
12/1932-07-15 for a range of dates.

the field).   A format like “9999-Aaa-99 TO 
9999-Aaa-99” can force data to be entered 
in a fixed standard order and form.  Similar 
format checks can be imposed with regular 
expressions.  Regular expressions are an 
extremely powerful tool for recognizing 
patterns found in an expanding number of 
languages (perl, PHP, and MySQL all 
include support for regular expressions).   A 
regular expression for the date format above 
looks like this: /^[0-9]{4}-[A-Z]{1}[a-
z]{2}-[0-9]{2}( TO [0-9]{4}-[A-
Z]{1}[a-z]{2}-[0-9]{2})+$/.   A regular 
expression for an ISO date looks like this: 
/^[0-9]{2,4}(-[0-9]{2}(-[0-
9]{2})+)+(-[0-9]{4}(-[0-9]{2}(-[0-
9]{2})+)+)+$/.    Note that simple patterns 
still do not test to see if the dates entered 
are valid.  

Another date storage possibility is to use a 
set of fields to hold start year, end year, 
start month, end month, start day, and end 
day.  A set of such numeric fields can be 
sorted and searched more easily than a text 
date range field but needs careful planning 
of what values are placed in the day fields 
for dates for which only the month is known 
and other handling of indeterminate 
precision.

From a purely theoretical standpoint, using 
a pair of native date data type fields to hold 
start day and end day is the best way to 
hold indeterminate date and date range 
information (as 1860 translates to the range 
1860-01-01 to 1860-12-31).   Native date 
data types have native recognition of valid 
and invalid values, sorting functions, and 
search functions.  Implementing dates with 
a native date data type avoids the need to 
write code to support validation, sorting, and 
other things that are needed for dates to 
work.  Practical implementation of dates 
using a native date data type, however, 
would not work well as just a pair of date 
fields exposed for text entry on the user 
interface.  Rather than simply typing “1860” 
the data entry person would need to stop, 
think, type 1860-01-01, move to the end 
date field, then hopefully remember the last 
day of the year correctly and enter it. 
Efficient and accurate data entry would 
require a user interface with code capable of 
accepting “1860” as a valid entry and storing 
it as an appropriate date range.  Printing is 
also an issue – the output we would expect 
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on a label would be “1860” not “1860-01-01 
to 1860-12-31” for cases where the date 
was only known to a year, with a range only 
printing when the range was the originally 
known value.   An option to handle this 
problem is to use a pair of date fields for 
searching and a text field for verbatim data 
and printing, though this solution introduces 
redundancy and possible accumulation of 
errors in the data.  

Multiple start and end points (such as 
summers of several years) are probably 
rare enough values to hold in a separate 
text date qualifier field.  A free text date 
qualifier field, separate from a means of 
storing a date range, as a means for 
handling these exceptional records would 
preserve the data, but introduces a 
reduction of precision in searches (as 
effective searches could only operate on the 
range end points, not the free text qualifier). 
Properly handing events that occur within 
multiple date ranges requires a separate 
entity to hold date information.  The added 
code and interface complexity needed to 
support such an entity is probably an 
unnecessary burden to add for most 
collections data.  

Handling hierarchical  
information

Hierarchies are pervasive in biodiversity 
informatics.  Taxon names, geopolitical 
entities, chronostratigraphic units and 
collection objects are all inherently 
hierarchical concepts – they can all be 

represented as trees of information.  The 
taxonomic hierarchy is very familiar (e.g. a 
Family contains Subfamilies which contain 
Genera).  Collection objects are intuitively 
hierarchical in some disciplines.  For 
example, in invertebrate paleontology a bulk 
sample may be cataloged and later split, 
with part of the split being sorted into lots. 
Individual specimens may be split from 
these lots.  These specimens may be 
composed of parts (paired valves of 
bivalves), which can have thin sections 
made from them.  In addition, derived 
objects (such as casts) can be made from 
specimens or their parts.  All of these 
different collection objects may be assigned 
their own catalog numbers but are still 
related by a series of lot splits and 
preparation steps to the original bulk 
sample.   A bird skin is not so obviously 
hierarchical, but skin, skeleton, and frozen 
tissue samples from the same bird may be 
stored separately in a collection.   

Some types of database systems are better 
at handling hierarchical information than 
others.  Relational databases do not have 
easy and intuitive ways of storing 
hierarchies in a form that is both easy to 
access and maintains the integrity of the 
data.  Older hierarchical database systems 
were designed around business hierarchies 
and natively understood hierarchies.  Object 
oriented databases can apply some of the 
basic properties of extensible objects to 
easily handle hierarchical information. 
Object extensions are available for some 
relational database management systems 
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Table 18. Comparison of some ways to store date information

Fields data type Issues
Single date field date Native sorting, searching, and validation.  Unable to store date 

ranges, will introduce false precision into data.
Single date field character Can sort on start date, can handle single dates and date ranges 

easily.  Needs minimum of pattern or format applied to entry 
data, requires code to test date validity.

Start date and end 
date fields

two character fields, 
6 character fields, or 
6 integer fields.

Able to handle date ranges and arbitrary precision dates. 
Straightforward to search and sort.   Requires some code for 
validation. 

Start date and end 
date fields

two date fields Native sorting and validation.  Straightforward to search.  Able to 
handle date ranges and arbitrary precision.  Requires carefully 
designed user interface with supporting code for efficient data 
entry.

Date table 
containing date 
field and start/end 
field. 

date field, numeric 
fields, character 
field, or character 
fields.

Handles single dates, multiple non-continuous dates, and date 
ranges.  Needs complex user interface and supporting code.
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and can be used to store hierarchical 
information more readily than in relational 
systems with only a standard set of SQL 
data types.   

There are several different ways to store 
hierarchical information in a relational 
database.  None of these are ideal for all 
situations.   I will discuss the costs and 
benefits of three different structures for 
holding hierarchical information in a 
relational database: flattening a tree into a 
denormalized table,  edge representation of 
trees, and a tree visitation algorithm.  

Denormalized table

A typical legacy structure for the storage of 
higher taxonomy is a single table containing 
separate fields for Genus, Family, Order 
and other higher ranks (Table 19).  (Note 
that order is a reserved word in SQL [as in 
the ORDER BY clause of a SELECT 
statement] and most  SQL  dialects will not 
allow reserved words to be used as field or 
table names.  We thus need to use some 
variant such as T_Order as the actual field 
name).  Placing a hierarchy in a single flat 
table suffers from all the risks associated 
with non normal structures (Table 20).

Placing higher taxa in a flat table like Table 
19 does allow for very easy extraction of the 
higher classification of a taxon in a single 
query as in the following examples.  A flat 
file is often the best structure to use for a 
read only copy of a database used to power 
a searchable website.  Asking for the family 
to which a particular genus belongs is very 
simple:

SELECT family FROM higher_taxonomy
  FROM higher_taxonomy
  WHERE genus = “Chicoreus”;

Likewise, asking for the higher classification 

of a particular species is very 
straightforward:

SELECT class, t_order, family 
  FROM higher_taxonomy
    LEFT JOIN taxon_name 
    ON higher_taxonomy.genus =
       taxon_name.genus
  WHERE taxon_name_id = 352;

Edge Representation

Heirarchical information is typically 
described in an information model using an 
entity with a one to many link to itself 
(Figure 20).  For example,  a taxon entity 
with a relationship where a taxon can be the 
child of zero or one higher taxon and a 
parent taxon can have zero to many child 
taxa.  (Parent and child are used here in the 
sense of computer science description of 
trees, where a parent node in the tree can 
be linked to several child nodes, rather than 
in any genealogical or evolutionary sense).

Taxonomic hierarchies are nested sets and 
can readily be stored in tree data structures. 
Thinking of the classification of animals as a 
tree, Kingdom Animalia is the root node of 
the tree.  The immediate child nodes under 
the root might be the thirty some phyla of 
animals, each with their own subphylum, 
superclass, or class children.  Animalia 
could thus be the parent node of the phylum 
Mollusca.  Following the branches of the 
tree down to lower taxa, the terminal nodes 
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Table 19. Higher taxa in a denormalized flat file table

Class T_Order Family Sub Family Genus
Gastropoda Caenogastropoda Muricidae Muricinae Murex
Gastropoda Caenogastropoda Muricidae Muricinae Chicoreus
Gastropoda Caenogastropoda Muricidae Muricinae Hexaplex

Table 20. Examples of problems with a hierarchy placed in a single flat file. 

Class T_Order Family Sub Family Genus
Gastropoda Caenogastropoda Muricidae Muricinae Murex
Gastropod Caenogastropoda Muricidae Muricinae Chicoreus
Gastropoda Neogastropoda Muricinae Muricidae Hexaplex

Figure 20. A taxon entity with a join to itself.  Each 
taxon has zero or one higher taxon.  Each taxon 
has zero to one lower taxa.
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or leaves of the tree would be species and 
subspecies.  Taxonomic hierarchies readily 
translate into trees and trees are very 
familiar data structures in computer science. 

Storage of a higher classification as a tree is 
typically implemented using a table 
structure that holds an edge representation 
of the tree hierarchy.  In an edge 
representation, a row in the table has a field 
for the current node in the tree and another 
field that contains a pointer to the current 
node's parent.  The simplest case is a table 
with two fields, say a higher taxon table 
containing a field for taxon name and 
another field for parent taxon name.  

CREATE TABLE higher_taxon (
   taxon_name char(40) not null 
primary_key,
   parent_taxon char(40) not null);

Table 21. An edge representation of a tree

Taxon_name (PK) Higher_taxon
Gastropoda [root]
Caenogastropoda Gastropoda
Muricidae Caenogastropoda
Chicoreus Muricidae
Murex Muricidae

In this implementation (Table 21) you can 
follow the parent – child links recursively to 
find the higher classification for a genus, or 
to find the genera placed within an order. 
However, this implementation requires 
recursive queries to move beyond the 
immediate parent or child of a node.  Given 
a genus, you can easily find its immediate 
parent and its immediate parent's parent.  

SELECT t1.taxon_name, t2.taxon_name,   
       t2.higher_taxon 
FROM higher_taxon as t1 
  LEFT JOIN higher_taxon as t2 
    ON t1.higher_taxon = t2.taxon_name 
WHERE t1.taxon_name = “Chicoreus”;

The query above will return a result set 
“Chicoreus”, ”Muricidae”, 
”Caenogastropoda” from the data in Table 
21.   Unfortunately, unless the tree is 
constrained to always have the a fixed 
number of ranks between every genus and 
the root of the tree (and the entry point for a 
query is always a generic name), it is not 
possible to set up a single query that will 
always return the higher classification for a 
given generic name.  The only way to 

effectively query this table is with program 
code that recursively issues a series of sql 
statements to walk up (or down) the tree by 
following the higher_taxon to taxon_name 
links, that is, by recursively traversing the 
edge representation of the tree.   Such code 
could be either implemented as a stored 
procedure in the database or higher up 
within the user interface.    

By using the taxon_name as the primary 
key, we impose a constraint that will help 
maintain the integrity of the tree, that is, 
each taxon name is allowed to occur at only 
one place in the tree.  We can't place the 
genus Chicoreus into the family Muricidae 
and also place it in the family Turridae. 
Forcing each taxon name to be a unique 
entry prevents the  placement of 
anastomoses in the tree.   More than just 
this constraint is needed, however, to 
maintain a clean representation of a 
taxonomic hierarchy in this edge 
representation.   It is possible to store 
infinite loops by linking the higher_taxon of 
one row to a taxon name that links back to 
it.  For example (Table 22), if the genus 
Murex is in the Muricidae, and the higher 
taxon for Muricidae is set to Murex, an 
infinite loop is established where Murex 
becomes a higher taxon of itself, and Murex 
is not linked to the root of the tree.  

Table 22.  An error in the hierarchy.

Taxon_name (PK) Higher_taxon
Gastropoda [root]
Caenogastropoda Gastropoda
Muricidae Murex
Chicoreus Muricidae
Murex Muricidae

Maintenance of a table containing an edge 
representation of a large tree is difficult.  It is 
easy for program freezing errors such as the 
infinite loop in Table 22 to be inadvertently 
created unless there is code testing each 
change to the table for validity.  

The simple taxon_name, higher_taxon 
structure has another problem: How do you 
print the family to which a specimen belongs 
on its label?   A solution is to add a rank 
column to the table (Table 23).

Selecting the family for a genus then 
becomes a case of recursively following the 
taxon_name – higher_taxon links back to a 
taxon name that has a rank of Family.  The 
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pseudocode below (Code Example 1) 
illustrates (in an overly simplistic way) how 
ranks could work by embedding the logic in 
a code layer sitting above the database.  It 
is also possible to implement rank handling 
at the database level in a database system 
that supports stored procedures.    

Table 23.  Edge representation with ranks.

Taxon_name (PK) Higher_taxon Rank
Gastropoda [root] Class 
Caenogastropoda Gastropoda Order
Muricidae Caenogastropoda Family
Chicoreus Muricidae Genus
Murex Muricidae Genus

An edge representation of a tree can be 
stored as in the examples above using a 
taxon name as a primary key.  It is also 
possible to use  a numeric surrogate key 
and to store the recursive foreign key for the 
parent as a number (e.g. 
c_taxon_id_parent).  If you are updating a 
hierarchical taxonomic dictionary through a 
user interface with a code layer between the 
user and the table structures,  using the 
surrogate key values in the recursive foreign 

key to identify the parent taxon of the 
current taxon is probably a good choice.  If 
the hierarchical taxonomic dictionary is 
being maintained directly by someone who 
is editing the file directly, then using the 
taxon name as the foreign key value is 
probably a better choice.  It is much easier 
for a knowledgeable person to check a list 
of names for consistency than a list of 
numeric links.   In either case, a table 
containing an edge representation of a tree 
will require supporting code, either in the 
form of a consistency check that can be run 
after direct editing of the table or in the form 
of a user interface that allows only legal 
changes to the table.  Without supporting 
code, the database itself is not able to 
ensure that all rows are placed somewhere 
in the tree (rather than being unlinked nodes 
or members of infinite loops), and that the 
tree is a consistent branching tree without 
anastomoses.   If a field for rank is included, 
code can also check for rank placement 
errors such as the inclusion of a class within 
a genus.  
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Code Example 1.

// Pseudocode to illustrate repeated queries on edge 
// representation table to walk up tree from current 
// node to a higher taxon node at the rank of family.
// Note: handles some but not all error conditions.
$root_marker = “[Root]”;            // value of higher taxon of root node
$max_traverse = 1000;               // larger than any leaf to root path
$rank = “”;                         // holds rank of parent nodes  
$targetName = $initialTarget;       // start with some taxon
$counter = 0;                       // counter to trap for infinite loops
while ($rank <> “Family”)           // desired result
  and ($counter < $max_traverse)    // errors: infinite loop/no parent
  and ($targetname <> $root_marker) // error: reached root
{
   $counter++;                      // increment counter
   $sql = “SELECT taxon_name, rank, higher_taxon 
           FROM higher_taxon
           WHERE t1.taxon_name = '$targetName'”;
   $results = getresults($connection,$sql);
   if (numberofrows($results)==0) 
   {
      // error condition: no parent found for current node
      $counter = $max_traverse;     // exploit infinite loop trap
   } else {
      // a parent exists for the current node
      $row = getrow($results);
      $currentname = getcolumn($row, ”taxon_name”);
      $rank = getcolumn($row,”rank”);
      $targetName = getcolumn($row”higher_taxon”);
   } // endif
} // wend 
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If you wish to know the family placement for 
a species, code in this form will be able to 
look it up but will require multiple queries to 
do so.  If you wish to look up the entire 
higher classification for a taxon, code in this 
form will require as many queries to find the 
classification as there are steps in that 
classification from the current taxon to the 
root of the tree. 

To solve the unknown number of multiple 
queries problem in an edge representation 
of a tree it is possible to store the path from 
the current node to the root of the tree 
redundantly in a parentage field (Table 24). 
Adding this redundancy requires supporting 
code, otherwise the data are certain to 
become inconsistent.  A typical example of 
a redundant parentage string can be found 
in BioLink's taxonomic hierarchy(CSIRO 
2001).  BioLink stores core taxon name 
information in a table called tblBiota.  This 
table has a surrogate primary key 
intBiotaID, a field to hold the full taxon name 
vchrFullName, a recursive foreign key field 
containing a pointer to another row in 
tblBiota intParentID, and a field that 
contains a backslash delimited list of all the 
intParentID values from the current node up 
to the root node for the tree vchrParentage. 
BioLink also contains other fields and sets 
of related tables to store additional 
information about the current taxon name.

Storing the path from the current node to 
the root of the tree (top of the hierarchy) in a 
parentage field allows straightforward 
selection of the taxonomic hierarchy of any 
particular taxon (Code Example 2, below). 
One query will extract the taxon name and 
its parentage string, the parentage string 
can then be split on its delimiter, and this list 
of primary key values can be assembled in 
a query (e.g. where intBiotaID = 1 or 
intBiotaID = 2 or ... order by vchrParentage) 
that will return the higher classification of the 
taxon.  Note that if the  field used to store 
the parentage is defined as a string field 

(with the ability to add an index and rapidly 
sort values by parentage), it will have a 
length limit in most database systems 
(usually around 255 characters) and in 
some systems may only sort on the first fifty 
or so characters in the string.  Thus some 
database systems will impose a limit on how 
deep a tree (how many nodes in a path to 
root) can be stored in a rapidly sortable 
parentage string.  

Tree Visitation

A different method for storing hierarchical 
structures in a database is the tree visitation 
algorithm (Celko, 1995a).   This method 
works by traversing the tree and storing the 
step at which each node is entered in one 
field and in another field, the step at which 
each node is last exited.   A table that holds 
a tree structure includes two fields (t_left 
and t_right [note that “left” and “right” are 
usually reserved words in SQL and can't be 
used as field names in many database 
systems]).   To store a tree using these two 
fields, set a counter to zero, then traverse 
the tree, starting from the root.  Each time 
you enter a node, increment the counter by 
one and store the counter value in the t_left 
field.  Each time you leave a node for the 
last time, increment the counter by one and 
store the counter value in the t_right field. 
You traverse the tree in inorder5, visiting a 
node, then the first of its children, then the 
first of its children, passing down until you 
reach a leaf node, then go back to the leaf's 
parent and visit its next child.  

Table 25  holds the classification for 6 taxa. 
The tree traversal used to set the left and 
right values is shown below in Figure 21. 
The value of the counter on entry into a 
node is shown in yellow; this is the value 
stored in the left field for that node.  The 
value of the counter on the last exit from a 
node is shown in red, this is the value stored 

5 As opposed to a preorder or postorder tree 
traversal.
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Table 24. Storing the path from the current node to the root of the tree redundantly in a parentage field, 
example shows a subset of fields from BioLink's tblBiota (CSIRO, 2001). 

intBiotaID (PK) vchrFullName intParentID vchrParentage
1 Gastropoda /1
2 Caenogastropoda 1 /1/2
3 Muricidae 2 /1/2/3
4 Chicoreus 3 /1/2/3/4
5 Murex 3 /1/2/3/5
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in the right field for that node. 

 We start at the root of the tree, Gastropoda. 
The counter is incremented to one, and the 
left value for Gastropoda is set to 1. 
Gastropoda has one child, 
Caenogastropoda, we increment the 
counter, enter that node and set its left 
value to two.  We proceed down the tree in 
this manner until we reach a leaf, Murex. 
On entering Murex we increment the 
counter, set Murex's left to 5.  Since Murex 
has no children, we leave it, incrementing 
the counter and setting its right value to 6. 
We move back to the parent node for 
Murex, Muricidae.  Muricidae has a child we 
haven't visited yet, so we move down into it, 
Chicoreus.  Entering Chicoreus we 
increment the counter and set Chicoreus' 
left to 7.  Since Chicoreus has no more 
children, we leave it, incrementing its 
counter and setting its right value to 8.  We 
step back to Chicoreus' parent, Muricnae. 
Since Muricinae has no more children, we 
leave it for the last time, incrementing the 
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Code Example 2. 

// Pseudocode to illustrate query on edge representation table containing parentage
// string.  Uses field names found in BioLink table tblBiota.  
// Note: does not handle any error conditions.
// Note: does not include code to place higher taxa in correct order.
$rank = “”; 
$targetName = $initialTarget;  // Name of the taxon who's parentage you want to find
$sql = “SELECT vchrParentage 
        FROM tblBiota
        WHERE vchrFullName = '$targetName'”;  // get parentage string
$results = getresults($connection,$sql);      // run query on database connection
$row = getrow($results);                      // get the result set from the query
$parentage = getcolumn($row,”rank”);          // get the parentage string
// the parentage string is a list of ids separated by backslashes
@array_parentage = split($parentage,”\”);     // split the parentage string into ids
$sql = “SELECT vchrFullName FROM tblBiota WHERE “;
$first=TRUE;
for ($x=1;$x<rowsin(@array_parentage);$x++) {
    // for each id in parentage, build query get the name of the taxon 
    if ($first==FALSE) { $sql = $sql + “ and “; }
    // Note: enclosing integer values in quotes in sql queries is usually not
    // required, but is a good programing practice to help prevent sql injection 
    // attacks
    $sql = $sql 
           + “ intBiotaID = '“
           + @array_parentage[$x] + “'”;
    $first=FALSE;
}
$results = getresults($connection,$sql); // now run assembled query to get names
for ($x=1;$x<rowsin($results);$x++) {
   $row=getrows(results)
   @array_taxa[$x]=getcolumn($row,”vchrFullName”);
}

Table 25.  A tree stored in a table using a left right 
tree visitation algorithm.

TaxonID (PK) Taxon Name Left Right
1 Gastropoda 1 12
2 Caenogastropoda 2 11
3 Muricidae 3 10
4 Muricinae 4 9
5 Murex 5 6
6 Chicoreus 7 8

Figure 21. Representing the classification of 
Murex and Chicoreus as a tree and using a tree 
visitation algorithm to map the nodes in the tree. 
Values placed in the left field in yellow, values 
placed in the right field in red. Data as in Table 25.
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counter and storing its value to Muricinae's 
right.  We keep walking back up the tree, 
finally getting back to the root after having 
visited each node in the tree.  

In comparison to an edge representation, 
the tree visitation algorithm has some very 
useful properties for selecting data from the 
database.  The query Select taxon_name 
where t_left = 1 will return the root of the 
tree.  The query Select t_right/2 where t_left 
= 1 will return the number of nodes in the 
tree.  Selecting the higher classification for a 
particular node is also fast and easy:

SELECT taxon_name FROM treetable
WHERE t_left < 7 and t_right > 8
ORDER by t_left;

The query above will return the higher 
classification for Chicoreus in the example 
above.   We don't need to know the number 
of steps to the root, make recursive queries, 
store redundant information or have to worry 
about any of the other problematic features 
of denormalized or edge visitation 
implementations of hierarchies.  Selecting 
all of the children of a particular node, or all 
of the leaf nodes below a particular node 
are also very easy queries.  

SELECT taxon_name FROM treetable
WHERE t_left > 3 and t_right < 10 
  and t_right – t_left = 1
ORDER by t_left;  

As grand as the tree visitation algorithm is 
for extracting data from a database, it has 
its own problems.   Except for a very small 
tree, it will be extremely hard to create and 
maintain the left/right values by hand.  You 
will probably need code to construct the 
left/right values by traversing through an 
edge representation of the tree.  You will 
also need a user interface supported by 
code to insert nodes into the tree, delete 
nodes, and move nodes.   This code base 
probably won't be much more complex than 
that needed for robust support of an edge 
representation of a tree, but you will need to 
have such code, while you might be able to 
get away without writing it for an edge 
representation.  

The biggest difficulty with the tree visitation 
algorithm is editing the tree.  If you wish to 
add a single node (say the genus Hexaplex 
within the Muricidae in the example above), 

you will need to change left and right values 
for many, most, or even all of the rows in 
the database.   In order to obtain a fast 
retrieval speed on queries that include the 
left and right field in select criteria, you will 
probably need to index those fields.  An 
update to most rows in the table will 
essentially mean rebuilding the index for 
each of these columns, even if you only 
changed one node in the tree.   In a single 
user database, this will make edits and 
inserts on the tree very slow.  The situation 
will be even worse in a multi-user database. 
Updating many rows in a table that contains 
a tree will effectively lock the entire table 
from access by other users while the update 
is proceeding.  If the tree is large and 
frequently edited table locks will make a the 
database effectively unusable.    

Unless a table contains very few rows, it will 
need to have indexes for columns that are 
used to find rows in the table.  Without 
indexes, retrieval of data can be quite slow. 
Efficient extraction of information from a 
table that uses tree visitation will mean 
adding indexes to the left and right fields.

CREATE UNIQUE INDEX t_left 
   ON treetable(t_left);
CREATE UNIQUE INDEX t_right 
   ON treetable(t_right);

When a row is added to the table, the 
values in the left and right fields will now be 
indexed (with the details of how the index is 
created, stored, and used depending on the 
DBMS).  In general, indexes will 
substantially increase the storage 
requirements for a database.  Creating an 
index will take some amount of time, and an 
index will increase the time needed to insert 
a row into a table (Figure 22).  Appropriate 
indexes dramatically reduce the time 
required for a select query to return a result 
set.   

Indexing

An index allows at DBMS to very rapidly 
look up rows from table.  An appropriate 
choice of fields to index is a very important 
aspect of database implementation, and 
careful tuning of indexes is an important 
database administration task for a large 
database.   Being able to reduce the time for 
a database operation from 10 seconds to 2 
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seconds can change reduce the person 
years of effort in a large data capture 
operation and make the difference between 
completion of a project being feasible or 
infeasible.  Small improvements in 
performance, such as reducing the time for 
a query to complete from 2 seconds to less 
than one second, will result in a large 
increase in efficiency in large scale 
(hundreds of thousands of records) data 
capture.  

The details of how a multi-user DBMS 
prevents one user from altering the data 
that is being edited by another user, and 
how it prevents one user from seeing 
inconsistent data from a partially completed 
update by another user, are also an 
important performance  concern for 
database implementation and 
administration.  

An update to a single row will not interfere 
with other queries that are trying to select 
data from other rows if the table uses row 
level locking.  If, however, the table applies 
locking at the level of database pages 
(chunks of data that the database is storing 
together as units behind the scenes), then 

an update that affects one row may lock out 
queries that are trying to access data from 
other rows (Figure 23).   Some databases 
apply table level locking and will lock out all 
users until an update has completed.  In 
some cases, locks  can produce deadlocks 
where two users both lock each other out of 
rows that they need to access to complete a 
query.  

Because of these locking issues, a tree 
visitation algorithm is a poor choice for 
storing large trees that are frequently edited 
in a multi-user database.   It is, however, a 
good choice for some situations, such as 
storage of many small trees (using 
tree_number, t_left, and t_right fields) as 
might be used to track collection objects or 
for searchable web databases that are not 
edited by their users and are infrequently 
updated from a master data source.  The 
tree visitation algorithm is particularly useful 
for searchable web databases, as it 
eliminates the need for multiple recursive 
queries to find data as in edge 
representations (a query on joined tables in 
MySQL in the example below will find the 
children of all taxa that start “Mure”).
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Figure 22. An index can greatly increase the speed at which data is retrieved from a database, but can slow 
the rate of data insertion as both the table and its indexes need to be updated.

Figure 23. Page locks.  Many database systems store data internally in pages, and an operation that locks a 
row in a page may also lock all other queries trying to access any other row on the same page. 
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SELECT a.taxon_name, b.taxon_name, b.rank
FROM treetable as a 
  LEFT JOIN treetable as b 
    ON a.taxonid = b.taxonid
WHERE b.t_left > a.t_left 
  and b.t_right < a.t_right 
  and b.taxon_name like “Mure%”
ORDER by a.taxon_name, t_left;

Because there are serious performance and 
code complexity tradeoffs between various 
ways of implementing the storage of 
hierarchical information in a relational 
database, choosing an appropriate tree 
representation for the situation at hand is 
quite important.  For some  situations, a tree 
visitation algorithm is an ideal way to handle 
hierarchical information, whereas in others it 
is a very poor choice.  Since single point 
alterations to the tree result in large portions 
of the table holding the hierarchy being 
changed, tree visitation is a very poor 
choice for holding large taxonomic 
hierarchies that are frequently edited. 
However, its fast efficient extraction of data 
makes it a very good choice for situations, 
such as web databases, where users are 
seldom or never altering data, or where 
many small distinct trees are being held in 
one table.  

The storage of trees is a very logical place 
to consider supporting data integrity with 
stored procedures.  A table holding an edge 
representation of a  tree is not easy to 
maintain by hand.  Even skilled users can 
introduce records that create infinite loops, 
and unlinked subtrees (anastomoses, 
except those produced by misspellings, can 
be prevented by enforcing a unique index 
on child names).  Murex could be linked to 
Murcinae which could be linked to Muricidae 
which could be linked by mistake back to 
Murex to create an infinite loop.  Murex 
could be linked to Muricinae, which might by 
mistake not be linked to a higher taxon 
creating an unlinked subtree.  An edge 
representation could be supported by an on 
insert/update trigger.  This trigger  could 
check to see if each newly inserted or 
updated parent has a match to an existing 
child (select count(*) from taxon where 
child = %newparent) – preventing the 
insertion of unlinked subtrees.  If an on 
insert or on update trigger finds that a 
business rule would be violated by the 
requested change, it can fail and return an 

error message to the calling program.  In 
most circumstances, such an error message 
should propagate back through the user 
interface to the user in a form that tells them 
what corrective action to take (“You can't 
insert Muricinae:Murex yet, you have to link 
Muricinae to the correct higher taxon first”) 
and in a form that will tell a programmer 
exactly where the origin of the error was 
(“snaildb_trigger_error_257”).  

An on insert and on update trigger on a 
table holding an edge representation of a 
tree could also check that the parent of 
each newly inserted or updated row links to 
root without encountering child – preventing 
infinite loops.  Checking each inserted or 
changed record for a parent that is linked up 
to the root of the tree would have a higher 
cost, as it would require a recursive series 
of queries to trace an unknown number of 
parent-child links back to the root of the 
tree.  Decisions on how to store trees and 
what code to place where to support the 
storage of those trees can have a significant 
impact on the performance of a database. 
Slow updates may be tolerable in a 
taxonomic dictionary that serves as a rarely 
edited authority file for a specimen data set, 
but be intolerable for regular edits to a 
database that is compiling a tree of 
taxonomic names and their synonymies.   

Triggers are also a very good place to 
maintain redundant data that has been 
cached in the database to reduce 
calculation or lookup time.  On insert and on 
update triggers can, for example, maintain 
parentage strings in tables that store trees 
(where they will need to recurse the children 
of a node when that node is linked to a new 
parent, as this change will need to 
propagate down through all the parentage 
strings of the child nodes).    

Hierarchical information is widespread in 
collection data.   Therefore, in the process 
of beginning the design phase of a database 
life cycle,  it is worth considering a wider 
range of DBMS options than just relational 
databases.  Some other database systems 
are better than relational databases at 
native handling of trees and hierarchical 
information. Object oriented database 
systems should be considered, as they can 
include data types and data structures that 
are ideal for the storage and retrieval of 
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hierarchical information.   However, at the 
present time, using an object DBMS rather 
than a standard relational DBMS has costs, 
particularly poor portability and reduced 
availability of support.  Relational databases 
have a solid well understood mathematical 
foundation (Codd, 1970), have widespread 
industry support for sql, are not hard to 
move data in and out of, and have a wide 
range of implementations by many vendors, 
including the open source community. 
Object databases (and hybrid object support 
in relational databases) are still none of 
these (thus this paper deals almost entirely 
with relational databases).  

Data Stewardship

We often state to groups on tours through 
natural history collections that “our 
specimens are of no value without their 
associated data”.  We are well used to 
thinking of stewardship of our collection 
objects and their associated paper records, 
but we must also think carefully about the 
stewardship of electronic data associated 
with those specimens.   I will divide data 
stewardship into two concepts: 1) Data 
security, that is maintaining the data in an 
environment where it is safe from malicious 
damage and accidental loss  Data security 
encompasses network security, 
administration, pre-planning and risk 
mitigation.  2)  Data quality control, that is 
procedures to assist the users of the 
database in maintaining clean and 
meaningful data.   Data quality control is of 
particular importance during  data migration, 
as we are often performing large scale 
transformations of collections records, and 
thus need to carefully plan to prevent both 
the loss of information and the addition of 
new erroneous information.  Data 
stewardship involves the short term data 
security tasks of system administration and 
quality control and the long term perspective 
of planning for movement of the data 
through multiple database lifecycles.  

Data Security

Providing carefully planned multiple layers 
of security has become an essential part of 
maintaining the integrity of electronic data. 
Any computer connected to the Internet is a 
target for attack, and any computer is a 
target for theft.  Simply placing a computer 

behind a firewall is not, by any means, an 
adequate defense for it or its data.  Security 
requires paranoia, but not just any old 
paranoia.  Security requires a broad thinking 
paranoia.  Computer data security, as in the 
design of cryptographic systems, depends 
on the strength of the weakest link in the 
system.  Ferguson and Schneier (2003), 
discussing cryptographic system design, 
provide a very good visual analogy.  A 
secure system is like the stockade walls of a 
fort, but, in the virtual world of computers 
and data, it is very easy to become focused 
on a single post in that stockade, trying to 
build that single post to an infinite height 
while not bothering to build any of the rest of 
the stockade.  An attacker will, of course, 
just walk around this single tall post. 
Another good analogy for computer security 
is that of defense in depth (e.g. Bechtel, 
2003).  Think of security as involving many 
layers, all working together to prevent any 
single point of entry from giving easy access 
to all resources in the system.  

In the collection management community 
there is a widespread awareness of the 
importance of preplanning for disaster 
response.  Computer security is little 
different.  Consider a plausible scenario: 
what do you do if you discover that your 
web database server is also hosting a child 
pornography ftp server?  If you are part of a 
large institution, you may have an incident 
response team you can call on to deal with 
the situation.  In a small institution, you 
might be the most skilled and trained person 
available.  Preplanning and establishing an 
incident response capability (e.g. a team 
composed of people from around the 
institution with computing and legal skills 
who can plan appropriate responses, 
compile contact lists, assess the security of 
the institution's computing resources, and 
respond to computer incidents) is becoming 
a standard practice in information 
technology.  

One of the routine threats for any computer 
connected to the Internet is attack from 
automated software seeking to exploit 
known vulnerabilities in the operating 
system, server services, or applications.  It 
is therefore important to be aware of newly 
discovered vulnerabilities in the software 
that you are using in your network and to 
apply  security patches as appropriate (and 
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not necessarily immediately on release of a 
patch, Beatte et al., 2002).   Vulnerabilities 
can also be exploited by malicious hackers 
who are interested in attacking you in 
particular, but it is much more likely that 
your computers will be targets simply 
because they are potential resources, 
without any particular selection of you as a 
target.  Maintaining defenses against such 
attacks is a necessary component of 
systems administration for any computer 
connected to the Internet

Threat analysis

Computer and network security covers a 
vast array of complex issues.  Just as in 
other areas of collection management, 
assessing the risks to biodiversity and 
collections information is a necessary 
precursor to effective allocation of resources 
to address those risks.  Threat analysis is a 
comprehensive review and ranking of the 
risks associated with computer 
infrastructure and electronic data.  A threat 
analysis of natural history collection data 
housed within an institution will probably 
suggest that the highest risks are as follows. 
Internal and external security threats exist 
for biodiversity information and its 
supporting infrastructure.  The two greatest 
threats are probably equipment theft and 
non-targeted hacking attacks that seek to 
use machines as resources.   An additional 
severe risk is silent data corruption (or 
malicious change) creeping into databases 
and not being noticed for years.  Risks also 
exist for certain rare species.  The release 
of collecting locality information for rare and 
endangered species may be a threat to 
those species in the wild.  Public distribution 
of information about your institution's 
holdings of valuable specimens may make 
you a target for theft.  In addition, for some 
collections, access to some locality 
information might be restricted by collecting 
agreements with landowners and have 
contractual limits on its distribution.  A threat 
analysis should suggest to you where 
resources should be focused to maintain the 
security of biodiversity data.   

Michael Wojcik put it nicely in a post to 
Bugtraq.  “What you need is a weighted 
threat model, so you can address threats in 
an appropriate order.  (The exact metric is 
debatable, but it should probably combine 

attack probability, likely degree of damage, 
and at a lesser weight the effort of 
implementing defense.  And, of course, 
where it's trivial to protect against a threat, 
it's worth adding that protection even if the 
threat is unlikely.)” (Wojcik, 2004)

Implementing Security 

If you go to discuss database security with 
your information technology support people, 
and they tell you not to worry because the 
machine is behind the firewall, you should 
worry.  Modern network security, like 
navigation, should never rely on any single 
method.  As the warning on marine charts 
goes “The prudent navigator will not rely 
solely on any single aid to navigation”, the 
core idea in modern computer network 
security is defense in depth.   Security for 
your data should include a UPS, regular 
backup, offsite backup, testing backup 
integrity and the ability to restore from 
backup, physical access control, need 
limited access to resources on the network, 
appropriate network topology (including 
firewalls), encryption of sensitive network 
traffic (e.g. use ssh rather than telnet), 
applying current security patches to 
software, running only necessary services 
on all machines, and having an incident 
response capability and disaster recovery 
plan in place.  

Other than thinking of defense in depth, the 
most important part of network security is 
implementing a rational plan given the 
available resources that is based upon a 
threat analysis.  It is effectively impossible to 
secure a computer network against attacks 
from a government or a major corporation. 
All that network security is able to do is to 
raise the barrier of how difficult it will be to 
penetrate your network (either electronically 
or physically) and increase the resources 
that an intruder would need to obtain or alter 
your data.   Deciding what resources to 
expend and where to put effort to secure 
your information should be based on an 
analysis of the threats to the data and your 
computer infrastructure.   

While electronic penetration risks do exist 
for collections data (such as extraction of 
endangered species locality data by illicit 
collectors, or a malicious intruder placing a 
child pornography ftp site on your web 
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server), the greatest and most immediate 
risks probably relate to physical security and 
local access control.   Theft of computers 
and computer components such as hard 
drives is a very real risk.  The spread of 
inhumane “human resources” practices from 
the corporate world creates a risk that the 
very people most involved in the integrity of 
collections data may seek to damage those 
data (in practice this is approached much 
the same way as the risks posed by 
mistakes such as accidentally deleting files 
by applying access control, backup, and 
data integrity checking schemes).  After a 
careful threat analysis, three priorities will 
probably stand out: control on physical 
access to computers (especially servers), 
applying access control so that people only 
have read/write/delete access to the 
electronic resources they need, and by a 
well designed backup scheme (including 
backup verification and testing of data 
restoration).   

Hardware

Any machine on which a database runs 
should be treated as a server.  If that 
machine loses power and shuts down, the 
database may be left in an inconsistent 
state and become corrupt.   DBMS software 
usually stores some portion of the changes 
being made to a database in memory.  If a 
machine suddenly fails, only portions of the 
information needed to make a consistent 
change to the data may have been written 
to disk.  Power failures can easily cause 
data corruption.  A minimum requirement for 
a machine hosting a database (but not a 
machine that is simply connecting to a 
database server as a client) is an 
uninterruptible power supply connected to 
the server with a power monitoring card and 
with software that is capable of shutting 
down services (such as the DBMS) in the 
event of a prolonged power failure.   In a 
brief power outage, the battery in the UPS 
provides power to keep the server running. 
As the battery starts to run down, it can 
signal the server that time is running out, 
and software on the server can shut down 
the applications on the server and shut 
down the server itself.  Another level of 
protection that may be added to a server is 
to use a set of hard disks configured as a 
redundant RAID array (e.g. level 5 RAID). 
RAID arrays are capable of storing data 

redundantly across several hard disks. In 
the event that one hard disk in the array 
fails, copies of the data stored on it are also 
held on other disks in the array, and, when 
the failed drive is replaced with a new one, 
the redundant data are simply copied back 
into place.   

Backup

Any threat analysis of biodiversity data will 
end up placing backups at or near the top of 
the risk mitigation list.  A well planned 
backup scheme is of vital importance for a 
collection database.   A good plan arises 
directly out of a threat analysis.  The rate of 
change of information in a database and the 
acceptable level of loss of that information 
will strongly influence the backup plan. 
Each database has different rates of 
change, different backup needs and thus 
requires a plan appropriate for its needs. 
Regardless of how good a backup plan is in 
place, no records related to collection 
objects data should be held solely in 
electronic form.  Paper copies of the data 
(preferably labels, plus printed catalog 
pages) are an essential measure to ensure 
the long term security of the data.  In the 
event of a catastrophic loss of electronic 
data, paper records provide an insurance 
that the information associated with 
collection objects will not be lost.  

Backups of electronic data should include 
regular on-site backups, regular off-site 
transport of backups,  making copies on 
durable media, and remote off-site 
exchanges.  The frequency and details of 
the backup scheme will depend on the rate 
of data entry and the threat analysis 
assessment of how much data you are 
willing to re-enter in the event of failure of 
the database.  A large international project 
with a high rate of change might mandate 
the ability to restore up to the moment of 
failure.  Such a project might use a backup 
scheme using daily full backups, hourly 
backups of incremental changes since the 
last full backup, and a transaction log that 
allows restoration of data from the last 
backup to the most recent entry in the 
transaction log, requiring the use of a SQL 
server DBMS capable of this form of robust 
backup.  (A transaction log records every 
update insert and delete made to the 
database and allows recovery from the last 
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incremental backup to the moment of 
failure).   Such backups might be written 
directly on to a tape device by the DBMS, or 
they might be written to the hard disk of 
another server.  This scheme might be 
coupled with monthly burns of the backups 
to cd, or monthly archiving of a digital 
backup tape, and monthly shipment of 
copies of these backups to remote sites.  At 
the other end of the spectrum, a rarely 
changed  collection database might get one 
annual burn to cd along with distribution of 
backup copies to an offsite backup store 
and perhaps a remote site.  

Database backups are different from normal 
filesystem backups.  In a filesystem backup, 
a file on disk is simply copied to another 
location (such as onto a backup tape).  A 
database that is left open and running, 
however, needs to have backup copies 
made from within the database software 
itself.   If a DBMS has a database open 
during a filesystem backup, a server backup 
process that attempts to create backup 
copies of the database files by copying them 
from disk to another location will most likely 
only be able to produce a corrupt 
inconsistent copy of the database. 
Database management software typically 
keeps recent changes to the data in 
memory, and does not place the database 
files on disk into a consistent state until the 
database is closed and the software is 
shutdown.  In some circumstances, it is 
appropriate to shutdown the DBMS and 
make filesystem backups of the closed 
database files.  Backups of data held on a 
database server that is running all the time, 
however, need to be planned and 
implemented from both within the database 
management software itself (e.g. storing 
backup copies of the database files to disk) 
and from whatever process is managing 
backups on the server (e.g. copying those 
backup files to tape archives).  It is also 
important not to blindly trust the backup 
process.  Data verification steps should be 
included in the backup scheme to make 
sure that valid accurate copies of the data 
are being backed up (minor errors in 
copying database files can result in corrupt 
and unusable backup copies).  

Offsite storage of backup copies allows 
recovery in the case of local disaster, such 
as a fire destroying a server room and 

damaging both servers and backup tapes. 
Remote storage of backup copies (e.g. two 
museums on different continents making 
arrangements for annual exchange of 
backup copies of data) could be valuable 
documentation of lost holdings to the 
scientific community in the event of a large 
regional disaster.   

In developing and maintaining a backup 
scheme it is essential to go through the 
process of restoring those backups.  Testing 
and practicing restoration ensures that when 
you do have to restore from backup you 
know what to do and know that your 
recovery plan includes all of the pieces 
needed to get you back to a functional 
restored database.   “Unfortunately servers 
do fail, and many an administrator has 
experienced problems during the restore 
process because he or she had not 
practiced restoring databases or did not fully 
understand the restore process” 
(Linsenbardt and Stigler, 1999 p.272).

With many database systems both the data 
in the database and the system or master 
database are required to restore a 
database.  In MySQL, user access rights 
are stored in the MySQL database, and a 
filesystem backup of one database on a 
mysql server will not include user rights. 
MS SQL Server likewise suggests creating 
a backup of the system database after each 
major change to included databases, as well 
as making regular backups of each 
database.   The PostgreSQL documentation 
suggests making a filesystem backup of 
only the entire cluster of databases on a 
server and not trying to identify the files 
needed to make a complete filesystem 
backup of a single database.   “This will not 
work because the information contained in 
these files contains only half the truth. The 
other half is in the commit log files 
pg_clog/*, which contain the commit status 
of all transactions. A table file is only usable 
with this information.”  (PostgreSQL Global 
Development Group, 2003).  Database 
backups can be quite complex, and testing 
the recovery process is important to ensure 
that all the components needed to restore a 
functional database are included in the 
backup scheme.  
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Access Control

Any person with high level access to a 
database can do substantial damage, either 
accidentally or on purpose.  Anyone with 
high level access to a database can do 
substantial damage with a simple command 
such as DROP DATABASE, or more subtly 
through writing a script that gradually 
degrades the data in a database.  No purely 
electronic measures can protect data from 
the actions of highly privileged uses. 
Database users should be granted only the 
minimum privileges they need to do their 
work.  This principle of minimum privilege is 
a central concept in computer security 
(Hoglund & McGraw, 2004).    Users of a 
biodiversity database may include guests, 
data entry personnel, curators, 
programmers, and system administrators. 
Guests should be granted only read (select) 
only access,  and that only to portions of the 
database.  Low level data entry personnel 
need to be able to enter data, but should be 
unable to edit controlled vocabularies (such 
as lists of valid generic names), and 
probably should not be able to create or 
view transactions involving collection objects 
such as acquisitions and loans.  Higher level 
users may need rights to alter controlled 
vocabularies, but  only system 
administrators should have the ability to 
grant access rights or create new users. 
Database management systems include, to 
varying degrees of granularity, the ability to 
grant users rights to particular operations on 
particular objects in a database.   Many 
support some form of the SQL command 
GRANT rights TO user ON resource.  Most 
access control is best implemented by 
simply using the access control measures 
present in the database system, rather than 
coding access control as part of the 
business rules of a user interface to the 
database.   Restriction of access to single 
records in the database (row level access 
control), however,  usually needs to be 
implemented in higher layers.

Physical access control is also important.  If 
a database server is placed in some readily 
accessible space, a passerby might shut it 
down improperly causing database 
corruption, unplug it during a disk write 
operation causing physical failure of a hard 
disk,  or simply steal it.  Servers are best 
maintained in spaces with access limited to 

knowledgeable IT personnel, preferably a 
server room with climate control, computer 
safe fire suppression systems, tightly 
restricted access, and video monitoring.  

System Administration

Creating new user accounts, deactivating 
old user accounts and other such 
maintenance of user access rights are tasks 
that fall to a database administrator.   A few 
years ago, such maintenance of rights on 
the local machine, managing backups and 
managing server loads were the principle 
tasks of a system administrator.  Today, 
defense of the local network has become a 
absolutely essential system administration 
task.  A key part of that defense is 
maintaining software with current security 
patches.   Security vulnerabilities are 
continuously brought to light by the 
computer security research community. 
Long experience with commercial vendors 
unresponsive to anything other than public 
disclosure has led to a widespread adoption 
of an ethical standard practice in the 
security community.  An ethical security 
researcher is expected to notify software 
vendors of newly discovered vulnerabilities, 
then provide a 30 day grace period for the 
vendor to fix the vulnerability, followed by 
public release of details of the vulnerability. 
Immediate public release of vulnerabilities is 
considered unethical as it does not provide 
software vendors with any opportunity to 
protect people using their software.  Waiting 
an indefinite period of time for a vendor to 
patch their software is also considered 
unethical, as this leaves the entire user 
community vulnerable without knowing it (it 
being the height of hubris for a security 
researcher to assume that they are the only 
person capable of finding a particular 
vulnerability).  A 30 day window from vendor 
notification to public release is thus 
considered a reasonable ethical 
compromise that best protects the interests 
of the software user community.    Some 
families of vulnerabilities (such as C strcpy 
buffer overflows,  and SQL injection) have 
proven to be very widespread and relatively 
easy to locate in both open and closed 
source software.    A general perception 
among security researchers (e.g. Hoglund 
and McGraw, 2004 p.9) is that many 
exploits are known in closed circles among 
malicious and criminal programmers 
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(leaving all computer systems open to 
attack by skilled individuals), and that public 
disclosure of vulnerabilities by security 
researchers leads to vendors closing 
security holes and a general increase in 
overall internet and computer security. 
These standard practices of the security 
community mean that it is vitally important 
for you to keep the software on any 
computer connected to the Internet up to 
date with current patches from the vendor of 
each software package on the system.   

Installing a patch, however, may break 
some existing function in your system.   In 
an ideal setting, patches are first installed 
and tested on a separate testing server (or 
local network test bed) and then rolled out 
to production systems.  In most limited 
resource settings (which also tend to lack 
the requirement of continuous availability), 
patching involves a balance between the 
risks of leaving your system unpatched for 
several days and the risks of a patch taking 
down key components of your system.  

Other now essential components of system 
administration include network activity 
monitoring and local network design. 
Network activity monitoring is important for 
evaluating external threats, identifying 
compromised machines in the internal 
network, and identifying internal users who 
are misusing the network, as well as the 
classical role of simply managing normal 
traffic flow on the network.  Possible 
network components (Figure 24) can 
include a border router with firewall limiting 
traffic into and out of the network, a network 
address translation router sitting between 
internal network using private ip address 
space and the Internet, firewall software 
running on each server limiting accessible 
ports on that machine, and a honeypot 
connected to border router. 

Honeypots are an interesting  technique for 
system activity monitoring.  A honeypot is a 
machine used only as bait for attackers. 
Any request a honeypot receives is 
interpreted as either a scan for 
vulnerabilities or a direct attack.  Such 
requests can be logged and used to 
evaluate external probes of the network and 
identify compromised machines on the 
internal network.  Requests logged by a 
honeypot can also used to update the 
border router's rules to exclude any network 

access from portions of the Internet. 
Honeypots can also be set up as machines 
left open with known vulnerabilities in order 
to study hacker behavior, but such use may 
raise ethical and legal issues in ways that 
using a honeypot simply to identify potential 
attackers does not.   Monitoring system 
activity is, as noted above, a system 
administration task that is an important 
component of the defense in depth of a 
network.  

Example: SQL Injection Attacks

One particular serious risk for a database 
that is made available for search over the 
Internet is sql injection attacks (Anley 2002; 
Smith 2002).   If a database is providing a 
back end for a web search interface, it is 
possible for any person on the Internet to 
inject malicious queries to the database 
using the web interface.  In some cases 
(such as execution of MS SQLServer stored 
procedures that execute shell commands), it 
is possible for an attacker to not only alter 
data in the database, but to also execute 
arbitrary commands on the server with the 
privileges of the database software.  That is, 
it may be possible for an attacker to take 
complete control of a server that is providing 
a database for search on the web.  

Most web searchable databases are set up 
by setting up the database in a sql server 
(such as MySQL, MS SQLServer, or 
PostgreSQL), and writing code to produce 
the html for the web search and results 
pages in a scripting language (such as PHP, 
ASP, or CGI scripts in PERL).  A user will fill 
in a form with search criteria.  This form will 
then be submitted to a program in the 
scripting language that will take the criteria 
provided in the form submission, create an 
sql query out of them, submit that query to 
the underlying database, receive a result set 
back, format that result set as a web page, 
and return the resulting html document to 
the user.  If this system has not been set up 
with security in mind, a malicious user may 
be able to alter data in the database or even 
take control of the server on which the 
database is running.    The attack is very 
simple.  An attacker can fill in a field on a 
form (such as a genus field) with criteria 
such as '; drop database; which could 
be assembled into a query by the scripting 
language as “SELECT genus, trivial 
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FROM taxon  WHERE genus like ' '; 
drop database; ' “, a series of three 
sql queries that it will then pass on to the 
database.  The database might interpret the 
first command as a valid select statement, 
return a result set, see the semicolon as a 
separator for the next query, execute that by 
dropping (that is, deleting) the database, 
see the second semicolon as another 
separator, and return an error message for 
the third query made up of just a single 
quotation mark.

Defense against sql injection attacks 
involves following two basic principles of 
network security.    First, never trust any 
information provided to you by users, 
especially users over the Internet.  Second, 
allow users only the minimum access rights 
they need.  All code that runs behind a web 
interface should sanitize anything that might 

be provided to it by a user (including hidden 
values added to a form, as the source html 
of the form is available to the user, and they 
are free to alter it to make the submission 
say anything they desire).  This sanitization 
should take the form of disallowing all 
characters except those known to be valid 
(rather than disallowing a set of known 
attacks).  The code for the example above 
might include a sanitize routine that contains 
a command that strips everything except the 
letters A to Z (in upper and lower case) from 
whatever the user provided as the criteria 
for genus.   A regular expression pattern for 
everything outside this valid range of 
characters is: /[^A-Za-z]/, that is match 
anything not (^)  in the  range ([ ]) A-Z or a-
z.   An example (in the web scripting 
language PHP) of a function that uses such 
a regular expression to sanitize the content 
of variables holding information provided 
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over the web that might contain generic and 
trivial names is shown below.  

function sanitize() {
 global $genus,$trivial;
 $genus ~= 
   preg_replace(“/[̂ A-Za-z] ”,””,$genus);
 $trivial ~=
   preg_replace(“/[̂ a-z]/”,””,$trivial);
}

This function uses a regular expression 
match that examines the variable $genus 
and replaces any characters that are not in 
the range A-Z or the range a-z with blank 
strings.  Thus an attack suppling a value for 
$genus of “'; drop database;” would 
be sanitized to the innocuous search 
criterion “dropdatabase”.   Note that the 
sanitize function is explicitly listing allowed 
values and removing everything else, rather 
than just dropping the known dangerous 
values of semicolon and single quote.  An 
attack may evade “exclude the bad” filters 
by encoding attack characters so that they 
don't appear bad to the filter, but are 
decoded an act somewhere beyond the 
filter.  A single quote might be url encoded 
as %27, and would pass unchanged 
through a filter that only excludes matches 
to the ; and ' characters.  Always limit user 
input to known good characters, and be 
wary when the set of allowed values 
extends beyond [A-Za-z0-9].  Tight control 
on user provided values is substantially 
more difficult when unicode (multi-byte 
characters) and characters outside the basic 
ASCII character set are involved.

It is also important to limit user rights to the 
absolute minimum necessary.  If your 
scripting language program has an 
embedded username and password to allow 
it to connect to your database and retrieve 
information, you should set up a username 
and password explicitly for this task alone, 
and grant this user only the minimum select 
privileges to the database.  The details of 
this will vary substantially from one DBMS 
to another.  In MySQL, the following 
commands might be appropriate:

GRANT SELECT 
  ON webdb.webtable 
  TO phpuser@localhost 
    IDENTIFIED BY PASSWORD   
       “plaintextpassword”  

or to be explicit with the MySQL privilege 
tables6:

INSERT INTO user 
  (host,  user,
   password, 
   select_priv, insert_priv, 
   update_priv, delete_priv )   
 VALUES 
  ( “localhost”,”phpuser”, 
    password(“plaintextpassword”), 
    “N”, ”N”, ”N”, “N” );
INSERT INTO db 
  (db, user, 
   select_priv, insert_priv, 
   update_priv, delete_priv ) 
 VALUES 
   (“webdb”, “phpuser”, 
    “N”, ”N”, ”N”, “N” ); 
INSERT INTO tables_priv 
   (host, db, user, 
    table_name, table_priv ) 
 VALUES 
   (“localhost”,“webdb”, “phpuser”,
    “webtable”, “Select” ); 

With privileges restricted to select only on 
the table you are serving up on the web, 
even if an attacker obtains the username 
and password that you are using to allow 
the scripting language to access the 
database (or if they are able to apply an sql 
injection attack), they will be limited in the 
kinds of further attacks they can perform on 
your system.   If, however, an attacker can 
obtain a valid database password and 
username they may be able to exploit 
security flaws in the DBMS to escalate their 
privileges.   Hardcoding a username / 
password combination in a web script, a 
web scripting function placed off the web 
tree, or in a configuration file off the web 
tree is generally necessary to allow web 
pages to access a database.  Any 
hardcoded authentication credential 
provides a possible target for an internal or 
external attacker.  Through an error in file 
naming or web server configuration, the 
source code of a web script placed on the 
publicly accessible web tree may become 
visible to outside users, exposing any 

6   You should empty out the history files for 
MySQL or your shell if you issue a command 
that embeds a password in it in either a 
MySQL query or a shell command, as history 
files are potentially accessible by other users.
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authentication credentials hard coded in that 
file.  Users on the local file system may be 
able to read files placed outside of the web 
tree or be able to escalate their privileges to 
read configuration files with embedded 
passwords.   It is thus very important to limit 
to the absolute minimum needed privileges 
the user rights of any usernames that are 
hardcoded outside of the database.  In a 
DBMS that includes stored procedures, you 
should explicitly deny the web user the 
rights to run stored procedures (especially in 
the case of MS SQLServer, which comes 
with built in stored procedures that can 
execute shell commands, meaning that any 
user who is able to execute stored 
procedures can access anything on the 
server visible to the user account that the 
SQLServer is running under, which ought to 
be an account with privileges restricted to 
the minimum needed for the operation of the 
server).  Alternately, run all web operations 
through stored procedures, and grant the 
web user rights for those stored procedures 
and nothing else (tight checking of variables 
passed to stored procedures and denial of 
rights to do anything other than execute a 
small set of stored procedures can assist in 
preventing sql injection attacks).       

Even if the details of the discussion above 
on sql injection attacks seem obscure, as 
they probably will if you haven't worked with 
web databases and scripting languages, I 
hope the basic principle of defense in depth 
has come across.   The layers of firewall (to 
restrict remote access to the server to port 
80 [http]) , sanitizing all information 
submitted with a form before doing anything 
with it, limiting the webuser's privileges on 
the sql server, and limiting the sql server's 
own privileges all work together to reduce 
the ability of attackers to penetrate your 
system.  

Computer and network security is a 
constantly changing and evolving field.  It is, 
moreover, an important field for all of us 
who are running client-server databases, 
web serving information out of databases, 
or, indeed, simply using computers 
connected to the Internet.  Anyone with 
responsibility over data stored on a 
computer connected to the Internet should 
be at least working to learn something about 
network security practices and issues. 
Monitoring network security lists (such as 

securityfocus.com's bugtraq list or US-
CERT's technical cyber security alerts) 
provides awareness of current issues, 
pointers to papers on security and incident 
response,  and opportunities to learn about 
how software can be exploited.  

Maintaining Data Quality

The quality of your data are important. 
Incorrect data may become permanently 
associated with a specimen and might in the 
future be used draw incorrect biological 
conclusions.  While good database design 
and good user interface design assist in 
maintaining the quality of your data over 
time, they are not enough.  The day to day 
processes of entering and modifying data 
must also include quality control procedures 
that include roles for everyone involved with 
the database.  

Quality Control

Quality control on data entry covers a series 
of questions:  Are literal data captured 
correctly?  Are inferences correctly made 
from the literal data?   Are data correctly 
captured into the database, with information 
being entered into the correct fields in the 
correct form?  Are links to resources being 
made correctly (e.g. image files of 
specimens)?   Are the data and inferences 
actually correct?   Some of these questions 
can be answered by a proofreader, others 
by queries run by a database administrator, 
whereas others require the expert 
knowledge of a taxonomist.  Tools for 
quality control include both components 
built into the database and procedures for 
people to follow in interacting with the 
database.  

At the database level controls can be added 
to prevent some kinds of data entry errors. 
At the most basic level,  field types in a 
database can limit the scope of valid entries. 
Integer fields will throw an error if a data 
entry person tries to enter a string.  Date 
fields require a valid date.  Most data in 
biodiversity databases, however, goes into 
string fields that are very loosely 
constrained.   Sometimes fields holding 
string data can be tightly constrained on the 
database level, as in fields that are declared 
as enumerations (limited in their field 
definition to a small set of values).  In some 
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cases, atomization can help with control.  A 
string field for specimen count might be split 
into an integer field to hold the count, an 
enumerated field to hold the kind of objects 
being counted, and a qualifier field. 
Constraints in the database can test the 
content of one field in a record against 
others.  A constraint could, for example, 
force users to supply a source of a previous 
number if they provide a previous number. 
Code in triggers that fire on  inserts and 
updates can force the  data entered in a 
field to conform to a defined  pattern, such 
as “####-##-##” for dates in ISO format. 
Similar constraints on the scope of data that 
will be accepted as valid can be applied at 
the user interface level.  While these 
constraints will trap some data entry errors 
(some typographic errors and some data 
entry into incorrect fields), the scope of valid 
input for a database field will always be 
larger than the scope of correct input. 
Mistakes will occur on data entry.  Incorrect 
data will be entered into the database 
regardless of the controls placed on data 
entry.  To have any assurance that the data 
entered into a biodiversity database is 
accurate, quality control measures beyond 
simply controlling data entry and trusting 
data entry personnel are necessary.  

The database administrator can conduct 
periodic review of large numbers of records, 
or tools can be built into the database to 
allow privileged users to easily review large 
blocks of records.  The key to such bulk 
review of records is to look for outliers.   An 
easy way to find outliers is to  sort columns 
and look at top and bottom records to find 
obvious out of range values such dates 
entered in text fields.  

SELECT TOP 10 named_place 
   FROM collecting_event 
   ORDER BY named_place;  

SELECT TOP 10 named_place 
   FROM collecting_event 
   ORDER BY named_place DESC;

The idea of a review of the top and bottom 
of alphabetized lists can be extended to a 
broader statistical review of field content for 
identification and examination of outliers. 
Correlation of information between fields is 
a rich source of tests to examine for errors 
in data entry.  Author, year combinations 
where the year is far different from other 

years with the same authorship string are 
good candidates for review, as are outlying 
collector – collecting event date 
combinations.  Comparison of a table of 
bounding latitudes and longitudes for 
countries and primary divisions with the 
content of country, primary division, latitude, 
and longitude fields can be used either as a 
control on data entry or as a tool for 
examination of outliers in subsequent 
review.  

Ultimately quality control rests on review of 
individual records by knowledgeable 
persons.  This review is an inherent part of 
the use of biological collections by 
systematists who examine specimens, 
make new identifications, comment on 
locality information, and create new labels 
or annotations.  In the context of biological 
collections, these annotations are a living 
part of an active working collection.  In other 
contexts, knowledge of the quality of 
records is important for assessing the 
suitability of the data for some analysis.  

The simplest tool for recording  the status of 
a record is a field holding the status of a 
record.  A slightly more complex scheme 
holds the current state of the record, who 
placed the record into that state, and a time 
stamp for that action.  Any simple scheme 
like this (who last updated, date last 
updated, etc), which records status 
information in the same table as the data, 
suffers all the problems of any sort of flat file 
handling of relational data.  A database 
record can have many actions taken on it by 
many different people.   A more general 
solution to activity tracking holds the activity 
information in a separate table, which can 
hold records of what actions were taken by 
what agents at what times.  If a project 
needs to credit the actions taken by 
participants in the  project (how many 
species occurrence records has each 
participant created, for example), then a 
separate activity tracking table is essential. 
In some parts of some data sets (e.g. 
identifications in a collection), credit for 
actions is inherent in the data, in others it is 
not.    A good general starting place for 
recording the status of records is to time 
stamp everything.  Record who entered a 
record when, who reviewed it when, who 
modified it how when.   Knowing who did 
what when can have much more utility than 
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simply crediting work.  In some data entry 
tasks, an error can easily be repeated over 
a set of adjacent records entered by one 
data entry person, analogous to an incorrect 
catalog number being copied to the top of 
the catalog number column on a new page 
in a handwritten ledger.  If records are 
creator and creation time stamped,  records 
that were entered immediately before and 
after a suspect record can be easily 
examined for similar or identical errors. 
Time stamping also allows for ready 
calculation of data entry and review rates 
and presentation of rate and review quality 
statistics to data entry personnel.  

Maintenance of controlled vocabularies 
should be tightly regulated.  If regular data 
entry personnel can edit controlled 
vocabularies, they will cease to be 
controlled.  Dictionary information (used to 
generate picklists or to check for valid input) 
can be stored in tables to which data entry 
personnel are granted select only access, 
while a restricted class of higher level users 
are granted update, insert, and delete 
access.  This control can be mirrored in the 
user interface, with the higher level users 
given additional options for dictionary 
editing.  If dictionary tables are hard to 
correctly maintain (such as tables holding 
edge representations of trees through 
parent-child links), even advanced and 
highly skilled users will make mistakes, so 
integrity checks (e.g. triggers that check that 
the parent value of a record correctly links it 
to the rest of the tree) should be built into 
the back end of the database (as skilled 
users may well bypass the user interface).  

Quality control is a process that involves 
multiple people.   A well designed data entry 
interface cannot ensure the quality of data. 
Well trained data entry personnel cannot 
ensure the quality of data.  Bulk overview of 
unusual records by a database 
administrator cannot ensure the quality of 
data.  Random review (or statistical 
sampling) of newly created records by the 
supervisors of data entry personnel cannot 
ensure data quality.  Review of records by 
specialists cannot ensure data quality. 
Only bringing all of these people together 
into a quality control process provides an 
effective means of quality control.    

Separation of original data and 
inferences

Natural history collection databases contain 
information about several sorts of things. 
First, they contain data about specimens: 
where they were collected, their 
identifications, and who identified them. 
Second, they contain inferences about 
these data – inferences such as geographic 
coordinates added to georeference data that 
did not originally include coordinates.  Third, 
they contain metadata about these 
subsequent inferences, and fourth, they 
contain transaction data concerning the 
source, ownership, permitting, movement, 
and disposition of specimens.  

Efforts to capture text information about 
collection objects into databases  have often 
involved making inferences about the 
original data and adding information (such 
as current country names) to aid in the 
retrieval of data.   Clearly, distinguishing the 
original data from subsequent inferences is 
usually straightforward for a specialist 
examining a collection object.  Herbarium 
sheets usually contain many generations of 
annotations, mammal and bird skins usually 
have multiple attached tags, molluscan dry 
collections and fossils usually have multiple 
sets of labels within a tray.  Examining these 
paper records of the annotation history of a 
specimen usually makes it clear what data 
are original and what are subsequent 
inferences.   In contrast, database records, 
unless they include carefully planned 
metadata, often present only a single view 
of the information associated with a 
specimen – not clearly indicating which 
portions of that data are original and which 
are subsequent inferences.  

It is important wherever possible to store an 
invariant copy of the original data 
associated with a collection object and to 
include metadata fields in a database to 
indicate the presence and nature of 
inferences.   For example, a project to 
capture verbatim records from a handwritten 
catalog can use these data to produce a 
normalized database of the collection but 
should also store a copy of the original 
verbatim records in a simple flat table. 
These verbatim records are thus readily 
available for examination by someone 
wondering about an apparent problem in the 

50



PhyloInformatics 7: 51-66 - 2005

data related to a collection object.  Likewise, 
it is important to include some field structure 
to store the source of coordinates produced 
in a georeferencing project – and to allow 
for the storage and identification of original 
coordinates.  Most important, I feel, is that 
any inferences that are printed onto paper 
records associated with specimens need to 
be marked as inferences.    As older paper 
records degrade over time, newer paper 
records have the potential of being 
considered copies of the data on those 
original records unless subsequent 
inferences included upon them are clearly 
marked as inferences (in the simplest case, 
by enclosing inferences in square brackets). 

Error amplification

Large complex data sets that are used for 
analyses by many users, who often lack a 
clear understanding of data quality, are 
susceptible to error amplification.  Natural 
history collection data sets have historically 
been used by specialists examining small 
numbers of records (and their related 
specimens).  These specialists are usually 
highly aware of the variability in quality of 
specimen data and routinely supply 
corrections to identifications and 
provenance data.   Consider, in contrast, the 
potential for large data sets of collection 
information to be linked to produce, for 
example, range maps for species 
distributions based on catalog data. 
Consider such a range map incorporating 
erroneous data points that expand the 
apparent range of a species outside of its 
true range.  Now consider a worker using 
these aggregate data as an aid to identifying 
a specimen of another species, taken from 
outside the range of the first species,  then 
mistakenly identifying their specimen as a 
member of the first species, and then 
depositing the specimen in a museum 
(which catalogs it and adds its incorrect data 
to the aggregate view of the range of the 
first species).    Data sets that incorporate 
errors (or inadequate metadata) from which 
inferences can be made, and to which new 
data can be added based on those 
inferences are subject to error amplification. 
Error amplification is a known issue in 
molecular sequence databases such as 
genbank (Pennisi, 1999;  Jeong and Chen, 
2001) where incorrect annotation of one 

sequence can lead to propagation of the 
error as new sequences are interpreted 
based on the incorrect annotation and 
propagate the error as they are added to the 
database.   Error amplification is an issue 
that we must be extremely careful with as 
we begin large scale analysies of linked 
collections databases.  

Data Migration and Cleanup
Legacy data

Biodiversity informatics data sets often 
include legacy data.  Many natural history 
collections began data entry into early 
database systems in the 1970s and have 
gone through multiple cycles through 
different database systems.   Biological data 
sets that we encounter were often compiled 
with old database tools that didn't effectively 
allow the construction of complex relational 
databases.  Individual scientists with no 
training in database design often construct 
flat data sets in spreadsheets to manage 
results from their research and information 
related to their research program. Thus, 
legacy data often include a typical set of 
inventive approaches to handling relational 
information in flat files.  Understanding the 
design problems that the authors of these 
datasets were trying to solve can be a great 
help in understanding what appear to be 
peculiarities in legacy data.   Legacy data 
often contain non-atomic data, such as 
single taxon name fields, and non-normal 
data, such as lists of values in a single field. 

In broad terms, legacy data present several 
classes of challenges.  At one level, simply 
porting the data to a new DBMS may not be 
trivial.  Older DBMS systems may not have 
an option to simply export all fields as text, 
and newer databases may not have import 
filters for those older systems. 
Consequently, you may need to learn the 
details of data export or data storage in the 
older system to extract data in a usable 
form.   In other cases, export to a newer 
DBMS format may be trivial.  At another 
level, legacy data often contain complex, 
poorly documented codings.  Understanding 
the data that you are porting is very 
important as information can be lost or 
altered if codings are not properly 
interpreted during data migration.  At 
another level, data contain errors.   Any data 
set can contain data entry errors.   Flat file 
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legacy data sets tend to contain errors that 
make export to normal data structures 
difficult without extensive cleanup of the 
data.  Non atomic fields can contain 
complex variant combinations of their 
components, making parsing difficult. 
Fields that contain repeated information 
(e.g. Country, State, PrimaryDivision) will 
contain many misspellings and variant forms 
of what should be identical rows.   Cleanup 
of large datasets containing these sorts of 
issues may be assisted by several sorts of 
tools.  A mapping table with one field 
containing a list of all the unique values 
found in one field in the legacy database 
and another field containing corrected 
values can be used to create a cleaned 
intermediate table, which can then be 
transformed into a more normal structure. 
Scripting languages with pattern matching 
capabilities can be used to compare data in 
a mapping table with dictionary files and flag 
exact matches, soundex matches, and 
similarities for human examination.  Pattern 
matching can also be used to parse out data 
in a non-atomic field, with some fields 
parsing cleanly with one pattern, others with 
another, others with yet another, leaving 
some small set of exceptions to be fixed by 
a human.  Data cleanup is a complex task 
that ultimately needs input from highly 
knowledgeable specialists in the data, but, 
with some thought to data structures and 
algorithms, much of the process can be 
automated.  Examples of problems in data 
arising from non-normal storage of 
information and techniques for approaching 
their migration are given below.  A final 
issue in data migration is coding a new front 
end to replace the old user interface.  To 
most users of the database, this will be seen 
as the migration – replacing one database 
with another.  

Documentation Problems
A common legacy problem during data 
migration is poor documentation of the 
original database design.  Consider a 
database containing a set of three fields for 
original genus, original specific epithet, and 
original subspecies epithet, plus another 
three fields for current genus, current 
specific epithet, and current subspecies 
epithet, plus a single field for author and 
year of publication (Figure 25).

Unless this database was designed and 
compiled by a single individual who is still 
available to explain the data structures, the 
only way to tell whether author and year 
apply to the current identification or the 
original identification will be to sample a 
large number of rows and look up 
authorships of the species names in a 
reliable source.  In a case such as this, you 
might well find that the author field had been 
put to different purposes by different data 
entry people.

A similar problem exists in another typical 
design of fields for genus, specific epithet, 
subspecific epithet, author, and year.  The 
problem here is more subtle – values in the 
author field for subspecies might apply to 
the species name or to the subspecies 
name, and untangling errors will require lots 
of work or queries against authoritative 
nomenclators.  Such a problem might also 
have produced incorrect printed labels, say 
if in this example, the genus, specific 
epithet, and author were always printed on 
labels, but sometimes the author was filled 
in with the author of the subspecies epithet. 
These sorts of issues arise not from 
problems in the design of the underlying 
database, but in its documentation, its user 
interface, and in the documentation on data 
entry practices and training provided for 
data entry personnel.  In particular, changes 
in the user interface over time, secondary to 
weak documentation that did not explain the 
business rules of the database clearly 
enough to the programmers of replacement 
interfaces, can result in inconsistent data. 
Given the complexity of nomenclatural and 
collections associated information, these 
problems might be more likely to be present 
in complex databases designed and coded 
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by computer programmers (with strong 
knowledge of database design) than in 
simpler, less well designed databases 
produced by systematists (with a very 
detailed knowledge of the complexity of 
biological information).  

I will now discuss specific examples of 
handling issues in legacy data.  I have 
selected typical issues that can be found in 
legacy data related to the design of the 
legacy database.  These problems may not 
reflect poor design in the legacy database. 
The data structures may have been 
constrained by the limitations of an earlier 
DBMS, the data may have been captured 
before database design principles were 
understood, or the database may have been 
designed for a different purpose.  

Data entered in wrong field 

A common problem in legacy data is values 
that are clearly outside the range of 
appropriate values for a field, such as “03-
12-1860” as a value for donor.  Values such 
as this commonly creep into databases from 
accidental entry into the wrong field on a 
data entry interface, such as the date 
donated being typed into the donor field.  

A very useful approach to identifying values 
that were entered into the wrong field is to 
sort all the distinct values in each field with a 
case sensitive alphabetic sort.  Values that 
are far out of range will often appear at the 
top or bottom of such lists (values beginning 
with numbers appearing before values 
beginning with letters, and values beginning 
with lower case letters appearing before 
those beginning with upper case letters). 
The database can then be searched for 
records that contain the strange out of range 
values, and these records will often contain 
several fields that have had their values 
displaced.  This displacement may reflect 
the organization of fields on the current data 
entry layout, or it may reflect some older 
data entry screen.   

Records from databases that date back into 
the 1970s or earlier should be examined 
very carefully when values that appear to 
have been entered into the wrong field are 
found.  These errors may reflect blind edits 
applied to the database by row number, or 
other early data editing methods that 
required knowledge of the actual space 

occupied by a particular value in a field. 
Some early database editing methods had 
the potential to cause an edit to overwrite 
nearby fields.  Thus, when checking values 
in very old data sets, examine all fields in a 
suspect record, as well as records that may 
have been stored in proximity to that record. 

Regular expressions can also be used to 
search for out of range values existing in 
fields.   These include simple patterns such 
as /^[0-9]{4}$/ which will match a four digit 
year, or more elaborate patterns such as 
/^(1[789]/20)[0-9]{2}$/  which will match four 
digit years from 1700-2099.

A rather more subtle problem can occur 
when two text fields that can contain similar 
values sit next to each other on the data 
entry interface.   Species (specific epithet) 
and subspecies (subspecific epithet) fields 
both contain very similar information and, 
indeed, can contain identical values.   

Atomization problems

Sometimes legacy datasets include multiple 
concepts placed together in a single field.  A 
common offender is the use of two fields to 
hold author, year of publication, and 
parentheses.   Rows make plain sense for 
combinations that use the original genus 
(and don't parenthesize the author), but end 
up with odd looking data for changed 
combinations (Table 26).

Table 26. Parentheses included in author.

Generic name Trivial 
epithet

Autho
r 

Year of 
Publication 

Palaeozygopleura hamiltoniae (Hall 1868)

The set of fields in Table 26 works perfectly 
well in a report that always prints taxon 
name + author + , + year, and can be 
relatively straightforwardly scripted to 
produce reports that print taxon name + 
author + closing parenthesis if author starts 
with parenthesis, but make for lots of 
complications for other operations (such as 
producing a list of unique authors) or asking 
questions of the database.  Splitting out 
parentheses from these fields and storing 
them in a separate field is straightforward, 
as shown in the following 5 SQL statements 
(which add a column to hold a flag to 
indicate whether parentheses should be 
applied, populate this column, update the 
author and year fields to remove 
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parentheses, and check for exceptions).  

ALTER TABLE names ADD COLUMN paren 
BOOLEAN DEFAULT FALSE;
UPDATE names 
   SET paren = TRUE 
   WHERE LEFT(author,1)= ”(“;
UPDATE names 
   SET author = 
       RIGHT(author,LENGTH(author)-1) 
   WHERE paren = TRUE;
UPDATE names 
   SET year = LEFT(year,LENGTH(year)-1)
   WHERE 
    paren = TRUE and RIGHT(year,1)= ”)”;
SELECT names_id, author, year 
 FROM names 
 WHERE paren=FALSE 
    AND ( INSTR(author,”(”)>0 
       OR INSTR(author,”)”)> 0
       OR INSTR(year,”(”)>0 
       OR INSTR(year,”)”)> 0);

Another common offender in legacy data is 
a field holding non-atomized taxon names 
(Table 27) including author and year.

Table 27.  A non-atomic taxon name field holding 
a species name with its author, year of 
publication, and parentheses indicating that it is a 
changed combination.

Taxon Name
Palaeozygopleura hamiltoniae (Hall, 1868)

In manipulating such non-atomic fields you 
will need to parse the string content of the 
single field into multiple fields (Table 28).   If 
the names are all simple binomials without 
author and year, then splitting such a 
species name into generic name and 
specific epithet is simple.  Otherwise, the 
problem can be very complex.   

Table 28. Name from Table 27 atomized into 
Generic name, specific epithet, author, year of 
publication fields and a boolean field  (Paren) 
used to indicate whether parentheses should be 
applied to the author or author and year.

Generic name Specific_ 
epithet

Author Year Paren

Palaeozygopleura hamiltoniae Hall 1868 TRUE

In some cases you will just need to perform 
a particular simple operation once and won't 
need to write any code.  In other cases you 
will want to write code to repeat the 
operation several times, make the operation 
feasable, or use the code to document the 
changes you applied to the data.  

One approach to splitting a non-atomic field 
is to write a parser that loops through each 
row in the dataset, extracts the string 
content of the non-atomic field of interest 
from one row, splits the string into 
components (based on a separator such as 
a space, or loops through the string one 
character at a time), and examines the 
content of each part in an effort to decide 
which parts of the string map onto which 
concept.   Pseudocode for such a parser 
can be expressed as:

run query(SELECT TaxonName 
          FROM sourceTable)
for each row in result set
   whole bunch of code to 

    try to identify and split
    parts of name
   run query(INSERT INTO parsedTable  

             (genus, subgenus...))
   log errors in splitting row

next row    

Follow this with manual examination of 
the results for problems, then fix any 
bugs in the parser, and then run the 
parser again....  Eventually a point of 
diminishing returns will be reached and 
you will need to handle some rows 
individually by hand. 

Writing a parser in this form, especially for 
complex data such as species names can 
be a very complex and frustrating task. 
There are, however, approaches other than 
brute force parsing to handing non-atomic 
fields.  For long term projects, where data 
from many different data sources might 
need to be parsed, a machine learning 
algorithm of some form might be 
appropriate.  For one shot data migration 
problems, exploiting some of the interesting 
and useful tools for pattern recognition in 
the programmer's toolkit might be of help. 
There are, for example, regular expressions. 
Regular expressions are a tool for 
recognizing patterns found in an expanding 
number of languages (perl, PHP, and 
MySQL all include support for regular 
expressions).  

An algorithm  and pseudocode for a parser 
that exploits regular expressions to match 
and split known taxon name patterns might 
look something like the following:
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1) Compile by hand a list of patterns 
that match different forms of taxon 
names.
   /̂ [A-Z]{1}[a-z]*$/   
   maps to field:  Generic 
   /̂ [A-Z]{1}[a-z]* [a-z]?$/
   maps to fields: Generic, Trivial
     split on “ “
2) Store these patterns in a list

3) for each pattern in list
   run query
      (SELECT taxonName 
       WHERE taxonName matches pattern)
   for each row in results
     split name into parts 

          following known pattern
      run query
         (INSERT INTO parsedTable 
           (genus, subgenus...))
   next row
next pattern

4) By hand, examine rows that didn't have 
matching patterns, write new patterns and 
run parser again

5) Enter last few unmatched taxon names 
by hand

Normalization Problems: 
Multiple values in one field

Legacy datasets very often contain fields 
that hold multiple repeated pieces of the 
same sort of information.  These fields are 
usually remains of efforts to store one to 
many relationships in the flat file format 
allowed by early database systems.  The 
goal in parsing these fields is to split them 
into their components and to place these 
components into separate rows in a new 
table, which is joined to the first in a many to 
one relationship.

If users have been consistent in the 
delimiter used to separate multiple repeated 
components within the field (e.g. semicolon 
as a separator in “R1; R2”), then writing a 
parser is quite straightforward.  Twenty five 
to thirty year old data, however, can often 
contain inconsistencies, and you will need to 
carefully examine the content of these fields 
to make sure that the content is consistent. 
This is especially true if the text content is 
complex and some of the text could contain 

the character used as the delimiter.

Parsing consistent data in this form is 
usually a simple exercise in splitting the 
string on the delimiter (very easy in 
languages such as perl that have a split 
command, but requiring a little more coding 
in others).  Pseudocode for such a parser 
may look something like this:

run query
  (SELECT Catalog, DictionaryRemarks 
     FROM originalTable)
for each row in result set
  split DictionaryRemarks on the    

   delimiter “;” into a list of remarks
  for each split remark in list  

run query
         (INSERT INTO parsedTable
                (Catalog,Remark)
               VALUES ... )
  next split
  log errors found when splitting row

next row 

The parser above could split a field into 
rows in a new table as shown in Figure 26.

Figure 26.  Splitting a non-atomic Dictionary 
Remarks field containing multiple instances of 
DictionaryRemarks separated by a semicolon 
delimiter into multiple rows in a separate 
normalized table.

Normalization Problems: 
Duplicate values with 
misspellings

If the structures that data are stored in are 
not in at least third normal form, they will 
allow a field to contain multiple rows 
containing duplicate values.  A locality table 
that contains fields for country and state will 
contain duplicate values for country and 
state for as many localities as exist in a 
single state.  Over time, new values entered 
by different people, imports from external 
data sources, and changes to the database 
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will result in these repeated values not quite 
matching each other.  Pennsylvania, PA, 
and Penn. might all be entries in a 
State/Province/Primary Division field. 
Likewise, these repeated values can often 
include misspellings.  

In some cases, these subtle differences and 
misspellings pass unnoticed,  such as when 
a database is used primarily for printing 
specimen labels and retrieving information 
about single specimens.  At other times, 
these not quite duplicate values create 
serious problems.  An example of this 
comes from our attempt at ANSP to migrate 
the Ichthyology department database from 
Muse into BioLink.  Muse uses a set of 
tables to house information about 
specimens, localities, and transactions.  It 
includes a locality table in second normal 
form (the key field for locality number 
contains unique values) that has fields for 
country, for state or province, and for 
named place (which typically contains 
duplicate values).  In the ANSP fish data, 
there were several different spellings of 
Pennsylvania and Philadelphia, with at least 
12 different combinations of variants of 
United States, Pennsylvania, and 
Philadelphia.  Since BioLink uses a single 
geographic hierarchy and uses a graphical 
tree browser to navigate through this 
hierarchy, it was not possible to import the 
ANSP fish data into BioLink and simply use 
it.  Extensive cleanup of the data would 
have been required before the data would 
have been usable within BioLink.  

Cleanup of misspellings, differences in 
punctuation, and other such near duplicate 
values is simple but time consuming for 
large data sets.  The key components are: 
first, maintain a copy of the existing legacy 
data; second, select a set of distinct values 
for a field or several fields into a separate 
table; third, map each distinct value onto the 
correct value to use in its place; and fourth, 
build a new table containing the corrected 
values and links to the original literal values. 

SELECT DISTICT country, primary_division 
FROM locality
ORDER BY country, primary_division;

or, to select and place in a new table:

CREATE TABLE country_primary_map_table
  SELECT DISTICT 
    country, primary_division, 
    “” as map_country, 
    “” as map_primary 
  FROM locality
  ORDER BY country, primary_division; 

Data in the mapping table produced by the 
query above might look like those in Table 
29.  Country and primary division contain 
original data, map_country and 
map_primary_division need to be filled in. 

Table 29.  A table for mapping geographic names 
found in legacy data to correct values.

country primary
_division

map_
country

map_primary
_division

USA PA
USA Pennsylvania
US Pennsylvana

The process of filling in the mapping values 
in this table can involve both queries and 
direct inspection of each row by someone. 
This examination will probably involve one 
person to examine each row, and others to 
help resolve problematic rows.    It may also 
involve queries to make changes to lots of 
rows at once, especially in cases where two 
fields (such as country and primary division) 
are being examined at once.  An example of 
a query to set the map values for multiple 
different variants of a country name is 
shown below.   Changes to the country 
mapping field could also be applied by 
selecting the distinct set of values for 
country alone, compiling mappings for them, 
and using an intermediate table to compile a 
list of unique primary divisions and 
countries.   Indeed, you will probably want to 
work iteratively down the fields of a 
hierarchy.

UPDATE country_primary_map_table
  SET map_country = “United States”
  WHERE country = “USA” or country = “US” 
     or country = “United States” 
     or country = 
            “United States of America”;

Ultimately, each row in the mapping table 
will need to be examined by a person and 
the mapping values will need to be filled in, 
as in Table 30.  
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Table 30. A table for mapping geographic names 
found in legacy data to correct values.

country primary
_division

Map_
country

map_primary
_division

USA PA United 
States

Pennsylvania

USA Pennsylvania United 
States

Pennsylvania

US Pennsylvana United 
States

Pennsylvania

Planning for future migrations

The database life cycle is a clear reminder 
that data in your database will need to be 
migrated to a new database some time in 
the future.  Planning ahead in database 
design can help ease these future 
migrations.  The two most important aspects 
of database design that will aid in future 
migration are  good relational design and 
clear documentation of the database. 
Clear documentation of the database is 
unambiguously valuable.  In ten years there 
will be questions about the nature of the 
data in a database, and the people who 
created the database will either be 
unavailable or will simply not remember all 
the details.   Good relational design has 
tradeoffs.   

Figure 27. Migration costs from databases of 
various complexity into a complex normalized 
database.  Migration into a flat or simple database 
will have relatively low costs, but will have the risk 
of substantial quality loss in the data over the long 
term as data are added and edited.

More complex database designs require 
more complex user interface code than 
simple database designs.  Migrating a 
simple database (with all its contained 
garbage) into a new simple database is 
quite straightforward.  Migrating a complex 
database will require some substantive work 
to replace the user interface (and any code 

embedded in the backend) with a working 
user interface in the new system.  Migrating 
a simple database to a new complex 
database will require substantial time 
cleaning up problems in the data as well as 
writing code for a new user interface.  This 
tradeoff is illustrated in Figure 27.  

The architecture of your code can affect the 
ease of migration.   Some database 
management systems are monolithic 
(Figure 28).  Data, code, and user interface 
are all integral parts of the same database. 
Other database systems can be 
decomposed into distinct layers – the user 
interface can be separated from the data, 
and the data can easily be accessed 
through other means.   

A monolithic database system offers very 
limited options for either code reuse or 
migration.   Migration requires either 
upgrading to a newer version of the same 
DBMS (and then resolving any bugs 
introduced into the code by changes made 
by the DBMS vendor), or exporting the data 
and importing it into an entirely new 
database with an entirely new user 
interface.    In contrast, a layered 
architecture can allow the DBMS used to 
store the data from user interface 
components, meaning that it may be 
possible to upgrade a DBMS or migrate to a 
new DBMS without having to rewrite the 
user interface from scratch, or indeed 
without making major changes to the user 
interface.  

Many relational database management 
systems are written to allow easy separation 
of the code into layers (Figure 29).  

A database server, responsible for 
maintaining the integrity of the data, can be 
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Figure 28. Architecture of a monolithic database 
management system.
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separated from the front end clients that 
access the data in that server.  The server 
stores the data in a central location, while 
clients access it (from the local machine or 
over a network) to view, add, and alter data. 
The server handles all of the storage of the 
data, clients display the data through a user 
interface.  Multiple users spread out over 
the world can work on the same database at 
the same time, even altering and viewing 
the same records.  Different clients can 
connect to the same database.  Clients may 
be a single platform application, a cross 
platform application, or multiple different 
applications (such as a data entry client and 
a web database server update script).  A 
client may be a program that a user installs 
on their workstation that contains network 
transport and business rules for data entry 
built into a fancy graphical user interface.  A 
client could be a web server application that 

allows remote users to query the database 
and view result sets through their web 
browsers.  A design that separates a 
database system into layers has 
advantages over a monolithic database. 
Layers can help in multi-platform support 
(clients can be written in a cross platform 
language or compiled in different versions 
for different operating systems), allow 
scaling and distribution of clients [Figure 
30], and aid in migration (allowing 
independent migration of backend and user 
interface components through a common 
Application Programing Interface).  

Although object oriented programing and 
object thinking is a very natural match for 
the complex hierarchies of biodiversity data, 
I have not discussed object oriented 
programing here.  One aspect of object 
oriented thinking, however, can be of 
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Figure 29. Layers in a database system.  A database with server side code can focus on maintaining the 
integrity of the data, while the user interface can be separated and connect either locally to the server or 
remotely over a network (using various network transport layers).  A stable and well defined application 
programming interface can allow multiple clients of different sorts to connect to the back end of the database 
and allow both client and server code to be altered independently.  
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substantial help in informing design 
decisions about where in a complex 
database system business logic code 
should go.  This aspect is encapsulation. 
Encapsulation allows an object to hide (that, 
is encapsulate) all of its internal storage 
structures and operation from the world. 
Encapsulation limits the abilities of the world 
to interactions with the information stored in 
an instance of an object only through a 
narrow window of methods.   In object 
oriented programming, a code object that 
represents real world collections objects 
might store a catalog number somewhere 
inside it and allow other objects to find or 
change that catalog number only through 
invocations of methods of the object that 
allow the collection_object code object to 
apply business rules to the request and only 
fulfill it if it meets the requirements of those 
rules.  Direct reading and writing to the 
catalog number would not be possible.  The 
catalog number for a particular instance of a 

collection_object might be obtained with a 
call to Collection_object.get_catalog(). 
Conversely the catalog number for a 
particular instance of a a collection_ojbect 
might be set with a call to 
Collection_object.set_catalog(“452685”). 
The set_catalog() method is a block of code 
that can test to see if the catalog number it 
has been provided is in a valid format, if the 
number provided is in use elsewhere, if the 
number provided falls within a valid range, 
or any other business rules that apply to the 
setting of the catalog number of a collection 
object.  More complex logic could be 
embedded in methods such as 
collection_object.loan(a_loan).  

We can think about the control of 
information going into a database as 
following a spectrum from uncontrolled to 
highly encapsulated.    At the uncontrolled 
end of the spectrum, if raw SQL commands 
can be presented to a database, a 
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Figure 30. BioLink (Windows) and OBIS Toolkit (Java, cross platform) interfaces to a BioLink database on a 
MS SQLServer, with a web copy of the database.   The separation of user interface and database layers 
allowed the OBIS Indo-Pacific Mollusc project to use both BioLink's Windows client and a custom cross-
platform Java application for global (US, France, Australia) distributed data entry.  
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collection_object table in a database could 
have its values changed with a command 
such as UPDATE collection_object SET 
catalog_number = “5435416”;  a 
command that will probably have 
undesirable results if more than one record 
is present.   At the other end of the 
spectrum, users might be locked out from 
direct access to the database tables and 
required to interact through stored 
procedures such as 
sp_collection_object_set_catalog(id,new_ca
talog) which might be invoked somewhere in 
the user interface code as 
sp_collection_object_set_catalog(“6423500
3”,”42005”).  At an intermediate level, direct 
SQL query access to the tables is allowed, 
but on insert and on update triggers on the 
collection_object table apply business rules 
to queries that attempt to alter catalog 
numbers of collections objects. 
Encapsulating the backend of a database 
and forcing clients to communicate with it 
through a fixed Application Programming 
Interface of stored procedures allows 
development and migration of backend 
database and clients to follow independent 
paths.  

Conclusion

Biological information is inherently complex. 
Management and long term stewardship of 
information related to biological diversity is a 
challenging task, indeed at times a daunting 
task.  Stewardship of biodiversity 
information relies on good database design. 
The most important principles of good 
database design are to atomize information, 
to reduce redundant information, and to 
design for the task at hand.  To atomize 
information, design tables so that each field 
contains only one concept.  To reduce 
redundant information, design tables so that 
each row of each field contains a unique 
value.    Management of database systems 
requires good day to day system 
administration.  Database system 
administration needs to be informed by a 
threat analysis, and should employ means 

of threat mitigation, such as regular 
backups, highlighted by that analysis. 
Stewardship of biodiversity information also 
requires the long term perspective of the 
database life cycle.  Careful database 
design and documentation of that design 
are important not only in maintaining data 
integrity during use of a database, but are 
also important factors in the ease and extent 
of data loss in future migrations (including 
reduction of the risk that inferences made 
about the data now will be taken at some 
future point to be original facts).  Good 
database design is a necessary foundation, 
but the most important factor in maintaining 
the quality of data in a biodiversity database 
is a quality control process that involves 
people with a strong stake in the integrity of 
the data.
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Glossary (of terms as used herein).

Accession number: number or alphanumeric identifier assigned to a set of collection objects 
that enter the care of an institution together.  Used to track ownership and donor of  material 
held by an institution.  In some disciplines and collections, accession number is used to mean 
the identifier of a single collection object (catalog number is used for this concept here).  

Catalog number: number or alphanumeric identifier assigned to a single collection object to 
identify that particular collection object within a collection.  Widely referred to as an accession 
number in some disciplines.

Collection object: generic term to refer to specimens of all sorts found in collections, refers to 
the standard single unit handled within a collection.  A collection object can be a single 
specimen, a lot of several specimens all sharing the same data, or a part of a specimen of a 
particular preparation type.   Example collection objects are a mammal skin, a tray of mollusk 
shells, an alcohol lot of fish, a mammal skull, a bulk sample of fossils, an alcohol lot of insects 
from a light trap, a fossil slab, or a slide containing a gastropod radula.  Collection objects can 
form a nested hierarchy.  An alcohol lot of insects from a light trap could have a single insect 
removed, cataloged separately, and then part of a wing could be removed from that specimen, 
prepared as an SEM stub, and used to produce a published illustration.  Each of these objects 
(including derived objects such as the SEM negative) can be treated as a collection object. 
Likewise a microscope slide containing many diatoms can be a collection object that contains 
other collection objects in the form of identified diatoms at particular x-y coordinates on the slide. 

DBMS: Database Management System.  Used here to refer to the software responsible for 
storage and retrieval of the data.  Examples include MS Access, MySQL, Postgresql, MS 
SQLServer, and Filemaker.  A database would typically be created using the DBMS and then 
have a front end written in a development environment provided by the DBMS (as in MS Access 
or Filemaker), or written as a separate front end in a separate programming language.  

Incident Response Capability: A plan for the response to computer security incidents usually 
involving an internal incident response team with preplanned contacts to law enforcement and 
external consulting sources to be activated in response to various computer incidents.  

Specific epithet: The species word in a binomial species name or polynomial subspecific name. 
For example, palmarosae in Murex palmarosae and  nodocarinatus in Hesperiturris 
nodocarinatus crassus are specific epithets.

Subspecific epithet: The subspecies word in the  polynomial name of a subspecies or other 
polynomial.  For example, crassus in Hesperiturris nodocarinatus crassus is a subspecific 
epithet.

Trivial epithet: The lowest rank word in a binomial species name or a polynomial subspecific 
name.   The specific epithet palmarosae in the binomial species name Murex palmarosae, or the 
subspecific epithet crassus in the trinomial subspecies name Hesperiturris nodocarinatus 
crassus are trivial epithets.   
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Appendix A: An example of Entity Documentation
Table: Herbarium Sheet

Definition: A Herbarium Sheet. Normally an approximately 11 X 17 inch piece of paper 
with one or more plants or parts of plants and labels attached.
Comment: Core table of the Herbarium types database. Some material in herbarium 
collection is stored in other physical forms, e.g. envelopes, but concept of herbarium sheet 
with specimens that are annotated maps easily to these other forms.
See Also: Specimens, ExHerbariumSpecimenAssociation, Images

Field Summary
Field Sql type PrimaryKey NotNull Default AutoIncrement

Herb Sheet ID Integer X X  X

Name Varchar(32) - X  [Current User] -

Date Timestamp - - Now -

Verified by Varchar(32) - -  Null -

Verification Date Date - -  Null -

CaptureNotes Text - -  -

VerificationNotes Text - -  -

CurrentCollection Varchar(255) - -  -

Verified Boolean - X False -

Fields
Name: Herb Sheet ID 
Type: Integer 
Definition: Surrogate numeric primary key for herbarium sheet.
Domain: Numeric Key
Business rules: Required, Automatic.
Example Value: 528

Name: Name 
Type: Varchar(32) 
Definition: Name of the person who captured the data on the herbarium sheet.
Domain: Alphabetic, Names of people in Users:Full Name
Business rules: Required, Automatic, Fill from authority list in Users:Full Name using 
current login to determine identity of current user when a record is created.

Name: Date 
Type: Timestamp
Definition: Timestamp recording the date and time the herbarium sheet data were 
captured.
Domain: Timestamp
Business Rules: Required, Automatic. Auto generate when herbarium sheet record is 
created, i.e. default to NOW().
Example Value: 20041005:17:43:35UTC  
Comment: Timestamp format is dbms dependent, and its display may be system 
dependent.

Name: Verified by 
Type: text
Definition: Name of the person who verified the herbarium sheet data.
Domain: Alphabetic. Names of people from Users: Full Name
Business Rules: Optional. Automatic. Default to Null. On verification of record, fill with 
value from Users: Full Name using current login to identify the current user. Current user 
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must have verification rights in order to verify a herbarium sheet and to enter a value in 
this field.
Example Value:  Macklin, James

Name: Verification Date 
Type: Date 
Definition: Date the herbarium sheet data were verified. Should be a valid date since the 
inception of the database (2003 and later).
Domain: Date. Valid date greater than the inception date of the database (2003).
Business Rules: Optional. Automatic. Default to Null. On verification of record, fill with 
current date. Current user must have verification rights in order to verify a herbarium sheet 
and to enter a value in this field. Value must be more recent than value found in 
Herbarium Sheet: Date (records can only be verified after they are created).
Example Value: 2004-08-12

Name: CaptureNotes 
Type: Text
Definition: Notes concerning the capture of the data on the herbarium sheet made by the 
person capturing the data. May be questions about difficult to read text, or other reasons 
why the data related to this sheet should be examined by someone more experienced 
than the data entry person.
Domain: Free text memo.
Business rules: Manual, Optional.
Example Values: "Unable to read taxon name Q_____ ___ba", "Locality description hard 
to read, please check".

Name: VerificationNotes
Type: Text
Definition: Notes made by the verifier of the specimen. May be working notes by verifier 
prior to verification of record.
Domain: Free Text Memo.
Business Rules: Manual, Optional. May contain a value even if Verified By and 
Verification Date are null.
Example Values: “Taxon name is illegible”, “Fixed locality description” 

Name: CurrentCollection 
Type: Varchar(255)
Definition: Collection in which herbarium sheet is currently stored. Data entry is currently 
for the type collection, with some records being added for material in the general 
systematic collection that are imaged to provide virtual loans.
Domain: "PH systematic collection", "PH type collection".
Business Rules: Required, Semimanual, default to "PH type collection". Should data 
entry expand to routine capture of data from systematic collection, change to Manual and 
allow users to set their own current default value.

Name: Verified 
Type: Boolean
Definition: Flag to indicate if data associated with a herbarium sheet has been verified.
Domain: True, False.
Business rules: Required, Semiautomatic. Default to False. Set to true when record is 
verified. Set the three fields Herbarium Sheet: Verified, Herbarium Sheet: Verified by, and 
Herbarium Sheet: Verification sheet together. Only a user with rights to verify material can 
change the value of this field.  Once a record has been verified once maintain these three 
verification stamps and do not allow subsequent re-verifications to alter this information.  
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