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Lax-Wendroff type explicit finite difference scheme is proposed for 

parabolic ADE. For proposed second order Lax-Wendorff type scheme of 

ADE, we discretise the first order terms of ADE in second order like Lax-

Wendorff scheme for hyperbolic partial differential equation. We perform 

stability analysis of these numerical schemes and determine the condition of 

stability in terms of temporal and spatial step sizes, advection co-efficient 

and diffusion co-efficient. The stability conditions of these schemes lead to 

determine the efficiency of these schemes in terms of the time step 

restrictions. Finally, we compare these schemes in terms of stability 
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Introduction 

ADE is a combination of the advection equation and diffusion equation. It is a parabolic type partial differential 

equation and is derived on the principle of conservation of mass using Fick’s law (Socolofsky and Jirka 2002). 

Many investigators have been studied analytical and numerical solutions for higher-dimensional and higher 

order ADE from many years. In numerical analysis, numerical stability is usually a desired property of 

numerical algorithms. Stability analysis of finite difference schemes for the Navier-Stokes equations is obtained 

(Rigal 1979). Stability analysis of finite difference schemes for the advection-diffusion equation is studied 

(Chan 1984). A comparison of some numerical methods for the advection-diffusion equation is presented 

(Thongmoon and Mckibbin 2006). An analytical solution of the advection diffusion equation for a ground level 

finite area source is presented (Park and Baik 2008). An analytical solution is obtained of the one dimensional 

ADE by reducing the original ADE into a diffusion equation by introducing another dependent variable (Al-

Niami and Ruston 1977). Analytical solution of 1D ADE with variable coefficients is presented in a finite 

domain by using Laplace transformation technique. In that process new independent space and time variables 

have been introduced (Kumar, A., D. K. Jaiswal and N. Kumar. 2010). Two explicit finite difference schemes 

such as FTBSCS and FTCSCS, for solving the ADE numerically are studied in this article. A numerical 

technique was proposed in 1960 by P.D. Lax and B. Wendroff for solving, approximately, systems of 

hyperbolic conservation laws. Here in this article a new explicit second order Lax-Wendroff type scheme is 

proposed for solving ADE numerically where we discretise the first order terms of ADE in second order 

similarly as Lax-Wendroff schemes for hyperbolic partial differential equation. Stability conditions for 

FTBSCS, FTCSCS and proposed second order Lax-Wendorff type explicit finite difference schemes for solving 

the ADE are determined. The stability analysis for these numerical schemes are verified by numerical 

experiments in terms of time step restriction. The efficiency of these numerical schemes is verified by elapsed 

time. Then we compare the stability conditions and efficiency of these numerical schemes. Finally, we conclude 

in the last section. 

 

 

Methodology 

LeVeque, R. J., & Leveque, R. J. (1992) showed a study on numerical methods for conservation laws. Febi 

Sanjaya and Sudi Mungkasi. (2017) conducted a study on a simple but accurate explicit finite difference method 

for the advection-diffusion equation. The way to find the numerical solution of advection-diffusion equation 

was showed on that article.  P.D Lax; B. Wendroff (1960) conducted a study on systems of conservation laws, 

where Lax-Wendroff scheme for hyperbolic partial differential equation was showed. Azad, T.M.A.K., M. 

Begum and L.S.Andallah. (2015) conducted a study on an explicit finite difference scheme for advection 

diffusion equation, where they studied an explicit finite difference scheme for advection-diffusion equation. 
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Ahmed S.G. (2012) conducted a study on a Numerical Algorithm for Solving Advection-Diffusion Equation 

with Constant and Variable Coefficients. Murat Sari, Gurhan Gurarslan, and Asuman Zeytinoglu. (2010) 

showed a study on higher order finite difference approximation for solving advection-diffusion equation. Leon, 

L. F., & Austria, P. M. (1987) conducted a study on stability Criterion for Explicit Scheme on the solution of 

Advection Diffusion Equation. Chan, T. F. (1984) conducted a study on stability analysis of finite difference 

schemes for the advection diffusion equation. Charney, J. G., Fjortoft, R., & Neumann, J. V. (1950) showed a 

study on numerical integration of the barotropic vorticity equation, a way for stability analysis was shown on 

this article. 

 

Mathematical Model  

 

The simplest one-dimensional ADE is 

𝜕𝑐

𝜕𝑥
+ 𝑢

𝜕𝑐

𝜕𝑡
= 𝐷

𝜕2𝑐

𝜕𝑥2
                                                                                (1) 

Where                                                            𝑥𝜖[𝑎, 𝑏], 𝑡𝜖[0,𝑇] 
With initial condition,                                    𝑐 0, 𝑥 = 𝑐0 𝑥 ;                                                                                            
Boundary condition                                        𝑐 𝑡, 𝑎 = 𝑐𝑎 𝑡 ; 
And                                                                  𝑐 𝑡, 𝑏 = 𝑐𝑏 𝑡 ;                                            
Where c is the concentration of the transference elements; D is the diffusion co-efficient and u is the speed of 

field. 

 

Numerical Method 

 

We use finite difference method to solve ADE numerically. Here we work with explicit FTBSCS, FTCSCS and 

proposed second order Lax-Wendroff type scheme of ADE. 

 

Finite difference formulae  

 

Derivatives in equation (1) are approximated by truncated Taylor Series expansions, 

1
st
 order forward difference formula in terms of time, 

𝜕𝑐 𝑥𝑖
𝑛 

𝜕𝑡
≈
𝑐𝑖
𝑛+1 − 𝑐𝑖

𝑛

∆𝑡
                                                                  (2) 

1
st
 order backward difference formula in terms of space, 

𝜕𝑐 𝑥𝑖
𝑛 

𝜕𝑥
≈
𝑐𝑖
𝑛 − 𝑐𝑖−1

𝑛

∆𝑥
                                                                 (3) 

1
st
 order central difference formula in terms of space, 

𝜕𝑐 𝑥𝑖
𝑛 

𝜕𝑥
≈
𝑐𝑖+1
𝑛 − 𝑐𝑖−1

𝑛

2∆𝑥
                                                              (4) 

2
nd

 order central difference formula in terms of space, 

𝜕2𝑐 𝑥𝑖
𝑛 

𝜕𝑥2
≈
𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1 
𝑛

 ∆𝑥 2
       (5) 

Explicit Upwind Difference Scheme (FTBSCS) 

 

Substituting equations (2), (3), (5) into equation (1), we get 

𝑐𝑖
𝑛+1 − 𝑐𝑖

𝑛

∆𝑡
+ 𝑢

𝑐𝑖
𝑛 − 𝑐𝑖−1

𝑛

∆𝑥
= 𝐷

𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛

(∆𝑥)2
 

⇒ 𝑐𝑖
𝑛+1 = 𝑐𝑖

𝑛 −
𝑢∆𝑡

∆𝑥
 𝑐𝑖

𝑛 − 𝑐𝑖−1
𝑛  +

𝐷∆𝑡

 ∆𝑥 2
 𝑐𝑖+1

𝑛 − 2𝑐𝑖
𝑛 + 𝑐𝑖−1

𝑛                (6) 

Taking 𝛼 =
𝑢∆𝑡

∆𝑥
 and 𝛾 =

𝐷∆𝑡

 ∆𝑥 2 

⟹ 𝑐𝑖
𝑛+1 = 𝑐𝑖

𝑛 − 𝛼 𝑐𝑖
𝑛 − 𝑐𝑖−1

𝑛  + 𝛾 𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛   

⟹ 𝑐𝑖
𝑛+1 =  𝛼 + 𝛾 𝑐𝑖−1

𝑛 +  1 − 𝛼 − 2𝛾 𝑐𝑖
𝑛 + 𝛾𝑐𝑖+1                                        

𝑛     (7) 

Which is known as the explicit upwind difference scheme for ADE and it is also known as FTBSCS 

technique. 

 

Stability condition of FTBSCS 

 

The above scheme  7  satisfies the convex combination,  

Therefore, the FTBSCS is stable for 
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                                         0 ≤ 𝛾 ≤ 1  and −𝛾 ≤ 𝛼 ≤ 1 − 2𝛾                                                              

                                         0 ≤
𝐷∆𝑡

 ∆𝑥 2 ≤ 1 and  −
𝐷∆𝑡

 ∆𝑥 2 ≤
𝑢∆𝑡

∆𝑥
≤ 1 − 2

𝐷∆𝑡

 ∆𝑥 2                                           (8) 

 Explicit centered difference scheme (FTCSCS) 

 Substituting equations (2), (4), (5) into equation (1), we get 

𝑐𝑖
𝑛+1 − 𝑐𝑖

𝑛

∆𝑡
+ 𝑢

𝑐𝑖+1
𝑛 − 𝑐𝑖−1

𝑛

2∆𝑥
= 𝐷

𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛

(∆𝑥)2
 

⇒ 𝑐𝑖
𝑛+1 = 𝑐𝑖

𝑛 −
𝑢∆𝑡

2∆𝑥
 𝑐𝑖+1

𝑛 − 𝑐𝑖−1
𝑛  +

𝐷∆𝑡

 ∆𝑥 2
 𝑐𝑖+1

𝑛 − 2𝑐𝑖
𝑛 + 𝑐𝑖−1

𝑛              (9) 

Taking 𝛼 =
𝑢∆𝑡

∆𝑥
 and 𝛾 =

𝐷∆𝑡

 ∆𝑥 2 

⟹ 𝑐𝑖
𝑛+1 = 𝑐𝑖

𝑛 −
𝛼

2
 𝑐𝑖+1

𝑛 − 𝑐𝑖−1
𝑛  + 𝛾 𝑐𝑖+1

𝑛 − 2𝑐𝑖
𝑛 + 𝑐𝑖−1

𝑛   

⟹ 𝑐𝑖
𝑛+1 =  

𝛼

2
+ 𝛾 𝑐𝑖−1

𝑛 +  1 − 2𝛾 𝑐𝑖
𝑛 +  𝛾 −

𝛼

2
 𝑐𝑖+1

𝑛                             (10) 

Which is known as the explicit centered difference scheme for ADE and it is also known as FTCSCS 

technique. 

 

Stability condition of FTCSCS 

 

The above scheme  10  satisfies the convex combination, 

We can conclude that the FTCSCS is stable for 

                                                      0 ≤ 𝛼 ≤ 1  and  0 ≤ 𝛾 ≤
1

2
 

                                                        0 ≤
𝑢∆𝑡

∆𝑥
≤ 1  and 0 ≤

𝐷∆𝑡

 ∆𝑥 2 ≤
1

2
                                                                 (11) 

 

Explicit second order Lax-Wendroff type Scheme of ADE 

 

For Explicit secondorder Lax-Wendroff type scheme of ADE, we discretize advective part in half time-step 

Lax-Friedrich scheme, then substituting that value in half-step Leapfrog scheme and combining with centered 

diffusion part explicit second order Lax-Wendroff type scheme of ADE is found. 

Half-time step lax-Friedrich scheme at the point  𝑡𝑛 , 𝑥𝑖 : 

𝑐
𝑖+

1

2

𝑛+
1

2 =
1

2
 𝑐𝑖+1

𝑛 + 𝑐𝑖
𝑛 −

𝑐∆𝑡

2∆𝑥
 𝑐𝑖+1

𝑛 − 𝑐𝑖
𝑛                                         (12) 

𝑐
𝑖−

1

2

𝑛+
1

2 =
1

2
 𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛  −

𝑐∆𝑡

2∆𝑥
 𝑐𝑖

𝑛 − 𝑐𝑖−1
𝑛                                           (13) 

Half-step Leapfrog scheme at the point  𝑡𝑛 , 𝑥𝑖 : 

𝑐𝑖
𝑛+1 − 𝑐𝑖

𝑛

∆𝑡
+ 𝑢

 
 
 
 
 𝑐
𝑖+

1

2

𝑛+
1

2 − 𝑐
𝑖−

1

2

𝑛+
1

2

∆𝑥

 
 
 
 
 

= 0                                                      (14) 

By centered difference discretization of 
𝜕2𝑐

𝜕𝑥2 at the point  𝑡𝑛 , 𝑥𝑖 , we have 

𝜕2𝑐 𝑥𝑖
𝑛 

𝜕𝑥2
≈
𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛

 ∆𝑥 2
                                                             (15) 

Combining equation  14 ,  15  in  1  we obtain, 

𝑐𝑖
𝑛+1 − 𝑐𝑖

𝑛

∆𝑡
+ 𝑢

 
 
 
 
 𝑐
𝑖+

1

2

𝑛+
1

2 − 𝑐
𝑖−

1

2

𝑛+
1

2

∆𝑥

 
 
 
 
 

= 𝐷
𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛

 ∆𝑥 2
 

             ⟹ 𝑐𝑖
𝑛+1 − 𝑐𝑖

𝑛 +
𝑢∆𝑡

∆𝑥
 𝑐
𝑖+

1

2

𝑛+
1

2 − 𝑐
𝑖−

1

2

𝑛+
1

2 = 𝐷∆𝑡  
𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛

 ∆𝑥 2
  

⟹ 𝑐𝑖
𝑛+1 = 𝑐𝑖

𝑛 −
𝑢∆𝑡

∆𝑥
 𝑐
𝑖+

1

2

𝑛+
1

2 − 𝑐
𝑖−

1

2

𝑛+
1

2 + 𝐷∆𝑡  
𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛

 ∆𝑥 2
               (16) 

Now substituting the value of 𝑐
𝑖+

1

2

𝑛+
1

2 and 𝑐
𝑖−

1

2

𝑛+
1

2in equation  16  ,we have 
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⟹ 𝑐𝑖
𝑛+1 = 𝑐𝑖

𝑛 −
𝑢∆𝑡

∆𝑥
 
1

2
 𝑐𝑖+1

𝑛 + 𝑐𝑖
𝑛 −

𝑢∆𝑡

2∆𝑥
 𝑐𝑖+1

𝑛 − 𝑐𝑖
𝑛 −

1

2
 𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛  +

𝑢∆𝑡

2∆𝑥
 𝑐𝑖

𝑛 − 𝑐𝑖−1
𝑛   

+
𝐷∆𝑡

 ∆𝑥 2
 𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛   

⟹ 𝑐𝑖
𝑛+1 = 𝑐𝑖

𝑛 −
𝑢∆𝑡

∆𝑥
 
1

2
 𝑐𝑖+1

𝑛 + 𝑐𝑖−1
𝑛  −

𝑢∆𝑡

2∆𝑥
 𝑐𝑖+1

𝑛 − 2𝑐𝑖
𝑛 + 𝑐𝑖−1

𝑛   +
𝐷∆𝑡

 ∆𝑥 2
 𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛   

Taking 𝛼 =
𝑢∆𝑡

∆𝑥
 and 𝛾 =

𝐷∆𝑡

 ∆𝑥 2 we have 

               ⟹ 𝑐𝑖
𝑛+1 = 𝑐𝑖

𝑛 − 𝛼  
1

2
 𝑐𝑖+1

𝑛 + 𝑐𝑖−1
𝑛  − 𝛼 𝑐𝑖+1

𝑛 − 2𝑐𝑖
𝑛 + 𝑐𝑖−1

𝑛   + 𝛾 𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛   

⟹ 𝑐𝑖
𝑛+1 =

1

2
 𝛼2 + 𝛼 + 2𝛾 𝑐𝑖−1

𝑛 +  1 − 2𝛾 − 𝛼2 𝑐𝑖
𝑛 +

1

2
 2𝛾 − 𝛼 + 𝛼2 𝑐𝑖+1

𝑛      (17)  

Which is required secondorder Lax-Wendroff type scheme of ADE. 

 

Stability Conditionsecond order Lax-Wendroff scheme with max-principle 

 

The above equation 17  satisfies the convex combination, we obtain, 

0 ≤
1

2
 𝛼2 + 𝛼 + 2𝛾 ≤ 1                                                         (18) 

0 ≤  1 − 2𝛾 − 𝛼2 ≤ 1                                                             (19) 

0 ≤
1

2
 2𝛾 − 𝛼 + 𝛼2 ≤ 1                                                         (20) 

Then the new solution is a convex combination of the two previous solutions. That is, the solution at new time-

step  𝑛 + 1  at a spatial node 𝑖 is an average of the solution at the previous time-step at the spatial-nodes 𝑖 − 1 , 

𝑖 𝑎𝑛𝑑 𝑖 + 1 . This means that the extreme value of the new solution is the average values of the previous two 

solutions at the three consecutive nodes. Therefore, the new solution continuously depends on the initial value 

𝑐𝑖
0 , 𝑖 = 1,2,3,………… . . ,𝑀. 

Therefore, from  18 ,  19 ,  20  we have 

                                                            0 ≤ 𝛼2 + 2𝛾 ≤ 1,   0 ≤ 𝛾 < 1 and    0 ≤ 𝛼 < 1                                            21  
Which is required stability condition forsecondorderLax-Wendroff type scheme of ADE. 

Stability ofsecond order Lax-Wendroff type scheme with Von-Neumann Analysis 

 

The second order Lax-Wendroff type Scheme of ADE can be re-write as 

𝑐𝑗
𝑛+1 =

1

2
 𝛼2 + 𝛼 + 2𝛾 𝑐𝑗−1

𝑛 +  1 − 2𝛾 − 𝛼2 𝑐𝑗
𝑛 +

1

2
 2𝛾 − 𝛼 + 𝛼2 𝑐𝑗+1

𝑛  22  

where  𝛼 =
𝑢∆𝑡

∆𝑥
 and 𝛾 =

𝐷∆𝑡

 ∆𝑥 2 

Now we substitute 𝑐𝑗
𝑛 = 𝜉𝑛𝑒𝑖𝑘𝑗 ∆𝑥  in equation (22) we get 

𝜉𝑛+1𝑒𝑖𝑘𝑗 ∆𝑥 = 𝜉𝑛𝑒𝑖𝑘𝑗 ∆𝑥 1 − 𝛼2 − 2𝛾 + 𝜉𝑛𝑒𝑖𝑘 (𝑗+1)∆𝑥
1

2
 2𝛾 − 𝛼 + 𝛼2   

+ 𝜉𝑛𝑒𝑖𝑘 (𝑗−1)∆𝑥
1

2
 𝛼2 + 𝛼 + 2𝛾                                                                           (23) 

Cancelling 𝜉𝑛𝑒𝑖𝑘𝑗 ∆𝑥  from both sides of  equation (23), we get 

𝜉 =  1 − 𝛼2 − 2𝛾 + 𝑒𝑖𝑘∆𝑥
1

2
 2𝛾 − 𝛼 + 𝛼2 + 𝑒−𝑖𝑘∆𝑥

1

2
 𝛼2 + 𝛼 + 2𝛾  

⇒ 𝜉 =  1 − 𝛼2 − 2𝛾 +
1

2
𝛼 𝑒𝑖𝑘∆𝑥 − 𝑒−𝑖𝑘∆𝑥 +  𝑒𝑖𝑘∆𝑥 + 𝑒−𝑖𝑘∆𝑥 

1

2
 𝛼2 + 2𝛾  24  

Now using Euler’s formula 

cos 𝑥 + 𝑖 ∗ sin 𝑥 = 𝑒𝑖𝑥  
and  

cos 𝑥 − 𝑖 ∗ sin 𝑥 = 𝑒−𝑖𝑥  

with 2𝑐𝑜𝑠𝑥 = 𝑒𝑖𝑥 + 𝑒−𝑖𝑥  𝑎𝑛𝑑 2 ∗ 𝑖 ∗ 𝑠𝑖𝑛𝑥 = 𝑒𝑖𝑥 − 𝑒−𝑖𝑥 , equation   24  becomes, 

⇒ 𝜉 =  1 − 𝛼2 − 2𝛾 +
1

2
𝛼𝑖 ∗ 2 sin 𝑘∆𝑥 +

1

2
 𝛼2 + 2𝛾 ∗ 2cos(𝑘∆𝑥) 

⇒ 𝜉 =  1 − 𝛼2 − 2𝛾 + 𝛼𝑖 sin 𝑘∆𝑥 +  𝛼2 + 2𝛾 cos(𝑘∆𝑥) 

⇒ 𝜉 =  1 +  𝛼𝑖 𝑠𝑖𝑛 𝑘∆𝑥 −   𝛼2 + 2𝛾 (1 − 𝑐𝑜 𝑠 𝑘∆𝑥 ) 

⇒ 𝜉 =  1 +  𝛼𝑖 𝑠𝑖𝑛 𝑘∆𝑥 −   𝛼2 + 2𝛾 ∗ 2𝑠𝑖𝑛2  
𝑘∆𝑥

2
  

⇒ 𝜉 =  1 −   𝛼2 + 2𝛾 ∗ 2𝑠𝑖𝑛2  
𝑘∆𝑥

2
 +  𝛼𝑖 𝑠𝑖𝑛 𝑘∆𝑥  25  

For stability condition  𝜉 ≤ 1 
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i.e.  1 −   𝛼2 + 2𝛾 ∗ 2𝑠𝑖𝑛2  
𝑘∆𝑥

2
 +  𝛼𝑖 𝑠𝑖𝑛 𝑘∆𝑥  ≤ 1 

For complex number  𝐴 + 𝑖𝐵 =  𝐴2 + 𝐵2 

Now  

 1 −   𝛼2 + 2𝛾 ∗ 2𝑠𝑖𝑛2  
𝑘∆𝑥

2
 +  𝛼𝑖 𝑠𝑖𝑛 𝑘∆𝑥  =   1 −   𝛼2 + 2𝛾 ∗ 2𝑠𝑖𝑛2  

𝑘∆𝑥

2
  

2

+  𝛼𝑖 𝑠𝑖𝑛 𝑘∆𝑥  2 

Since sin 𝑥 is always positive and varies over [0,1], so we have 

  1 −   𝛼2 + 2𝛾  
2

+  𝛼 2 ≤ 1 

Finding the range of 𝜶 and 𝛾: 

 

Case 1: when 𝛼 = 𝛾 = 0, then 

  1 −   𝛼2 + 2𝛾  
2

+  𝛼 2 = 1                                          26  

Case 2: when 𝛼 = 𝛾 = 1, then 

  1 −   𝛼2 + 2𝛾  
2

+  𝛼 2 > 1                                            27  

Case 3: when 𝛼, 𝛾 > 0, then 

 𝛼2 + 2𝛾 > 0 and  𝛼 2 > 0 

So, 

  1 −   𝛼2 + 2𝛾  
2

+  𝛼 2 > 0                                         28  

Case 4: when 0 ≤ 𝛾 ≪ 𝛼 < 1, then 

  1 −   𝛼2 + 2𝛾  
2

+  𝛼 2 ≤ 1                                        29  

Case 5: when 0 ≤ 𝛼 ≪ 𝛾 < 1, then 

  1 −   𝛼2 + 2𝛾  
2

+  𝛼 2 ≤ 1                                         30  

Therefore, the stability condition                              0 ≤ 𝛾 ≪ 𝛼 ≤ 1 and 0 ≤ 𝛼 ≪ 𝛾 ≤ 1                                   31  
Hence, the scheme is stable conditionally. 

 

Results and Discussion 

 

Stability analysis of ADE by FTBSCS, FTCSCS, and secondorder Lax-Wendroff type schemes  

Here for verification of stability we choose 𝑢 = 0.02𝑚/𝑠 and 𝐷 = 0.01𝑚2/𝑠 for ADE. 

Case 1: Here spatial grid size, ∆𝑥 = 0.25 for spatial domain (0,20), and temporal grid size, ∆𝑡 = 2.5 for 

temporal domain, (0,6) is taken for this analysis . 

For this application, 
𝑢∆𝑡

∆𝑥
= 𝛼 =

0.02×2.5

0.25
= 0.2 and 

𝐷∆𝑡

∆𝑥2 = 𝛾 =
0.01×2.5

 0.25 2 = 0.4 

The stability condition for FTBSCS implies 

0 ≤
𝐷∆𝑡

∆𝑥2 ≤ 1 and −
𝐷∆𝑡

∆𝑥2 ≤
𝑢∆𝑡

∆𝑥
≤ 1 − 2

𝐷∆𝑡

∆𝑥2 

or,0 ≤ 0.4 ≤ 1 and −0.4 ≤ 0.2 ≤ 1 − (2 × 0.4) 

or,0 ≤ 0.4 ≤ 1 and −0.4 ≤ 0.2 ≤ 0.2                                                   32  
The stability condition for FTCSCS implies 

0 ≤
𝑢∆𝑡

∆𝑥
≤ 1 and 0 ≤

𝐷∆𝑡

∆𝑥2 ≤
1

2
 

or, 0 ≤ 0.2 ≤ 1 and 0 ≤ 0.4 ≤
1

2
 33  

The stability condition of second order Lax-Wendroff type scheme implies 

0 ≤  
𝑢∆𝑡

∆𝑥
 

2

+ 2
𝐷∆𝑡

∆𝑥2 ≤ 1 and 0 ≤
𝑢∆𝑡

∆𝑥
< 1and 0 ≤

𝐷∆𝑡

∆𝑥2 < 1 

or, 0 ≤  0.2 2 + (2 × 0.4) ≤ 1 and 0 ≤ 0.2 < 1and 0 ≤ 0.4 < 1 

or,0 ≤ 0.84 ≤ 1 and 0 ≤ 0.2 < 1and 0 ≤ 0.4 < 1                                           34  
Therefore, the stability condition for three schemes are satisfied, and a stable solution is expected. The solutions 

are to be obtained up to 𝑡 = 6 minutes; shown in figure 1 
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Figure 1: Solutions for the schemes with ∆𝑥 = 0.25 and ∆𝑡 = 2.5(𝑠𝑒𝑐𝑜𝑛𝑑𝑠). 

Case 2: Here spatial grid size, ∆𝑥 = 0.25 for spatial domain (0,20), and temporal grid size, ∆𝑡 = 2.57 for 

temporal domain, (0,6) is taken for this analysis. 

For this application, 
𝑢∆𝑡

∆𝑥
= 𝛼 =

0.02×2.57

0.25
= 0.2056 and 

𝐷∆𝑡

∆𝑥2 = 𝛾 =
0.01×2.57

 0.25 2 = 0.4112 

The stability condition for FTBSCS implies 

0 ≤
𝐷∆𝑡

∆𝑥2 ≤ 1 and −
𝐷∆𝑡

∆𝑥2 ≤
𝑢∆𝑡

∆𝑥
≤ 1 − 2

𝐷∆𝑡

∆𝑥2 

or,0 ≤ 0.4112 ≤ 1 and −0.4112 ≤ 0.2056 ≤ 1 − (2 × 0.4112) 

or,0 ≤ 0.4112 ≤ 1 and −0.4112 ≤ 0.2056 ≤ 0.1776                          35  
Which is not possible. It is seen that contradiction of stability condition is growing here. 

The stability condition for FTCSCS implies 

0 ≤
𝑢∆𝑡

∆𝑥
≤ 1 and 0 ≤

𝐷∆𝑡

∆𝑥2 ≤
1

2
 

or, 0 ≤ 0.2056 ≤ 1 and 0 ≤ 0.4112 ≤
1 

2
 36  

The stability condition for second order Lax-Wendroff type scheme implies 

0 ≤  
𝑢∆𝑡

∆𝑥
 

2

+ 2
𝐷∆𝑡

∆𝑥2 ≤ 1 and 0 ≤
𝑢∆𝑡

∆𝑥
< 1and 0 ≤

𝐷∆𝑡

∆𝑥2 < 1 

or, 0 ≤  0.2056 2 + (2 × 0.4112) ≤ 1 and 0 ≤ 0.2056 < 1and 0 ≤ 0.4112 < 1 

or, 0 ≤ 0.86467 ≤ 1 and 0 ≤ 0.2056 < 1and 0 ≤ 0.4112 < 1                                37  
Therefore, the stability condition for three schemes are not satisfied, and so stable solution is not expected. The 

solutions are to be obtained up to 𝑡 = 6 minutes; shown in figure 2 

 
Figure 2: Solutions for the schemes with ∆𝑥 = 0.25 and ∆𝑡 = 2.57(𝑠𝑒𝑐𝑜𝑛𝑑𝑠) 

Here it is found that FTBSCS start be unstable at this step but FTCSCS and second order Lax-Wendroff type 

scheme is still stable. 

Case 3: Here spatial grid size, ∆𝑥 = 0.25 for spatial domain (0,20), and temporal grid size, ∆𝑡 = 2.647 for 

temporal domain, (0,6) is chosen for this analysis. 

For this application, 
𝑢∆𝑡

∆𝑥
= 𝛼 =

0.02×2.647

0.25
= 0.212 and 

𝐷∆𝑡

∆𝑥2 = 𝛾 =
0.01×2.647

 0.25 2 = 0.424 

The stability condition for FTBSCS implies 

0 ≤
𝐷∆𝑡

∆𝑥2 ≤ 1 and −
𝐷∆𝑡

∆𝑥2 ≤
𝑢∆𝑡

∆𝑥
≤ 1 − 2

𝐷∆𝑡

∆𝑥2 

or,0 ≤ 0.424 ≤ 1 and −0.424 ≤ 0.212 ≤ 1 − 2 × 0.424 

or,0 ≤ 0.424 ≤ 1 and −0.424 ≤ 0.21 ≤ 0.152                                          38  
Which is not possible, contradiction of stability condition is seen here. 

The stability condition for FTCSCS implies 

0 ≤
𝑢∆𝑡

∆𝑥
≤ 1 and 0 ≤

𝐷∆𝑡

∆𝑥2 ≤
1

2
 

or, 0 ≤ 0.212 ≤ 1 and 0 ≤ 0.424 ≤
1

2
 39  

The stability condition of second order Lax-Wendroff type scheme implies 

0 ≤  
𝑢∆𝑡

∆𝑥
 

2

+ 2
𝐷∆𝑡

∆𝑥2 ≤ 1 and 0 ≤
𝑢∆𝑡

∆𝑥
< 1and 0 ≤

𝐷∆𝑡

∆𝑥2 < 1 
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or, 0 ≤  0.212 2 + (2 × 0.424) ≤ 1 and 0 ≤ 0.212 < 1and 0 ≤ 0.424 < 1 

or, 0 ≤ 0.8929 ≤ 1 and 0 ≤ 0.212 < 1and 0 ≤ 0.424 < 1                                     40  
Therefore, the stability condition for three schemes are not satisfied, and so stable solution is not expected. The 

solutions are to be obtained up to 𝑡 = 6 minutes; shown in figure 3 

 
Figure 3: Solutions for the schemes with ∆𝑥 = 0.25 and ∆𝑡 = 2.647(𝑠𝑒𝑐𝑜𝑛𝑑𝑠) 

Now up to this step, it is found that the FTBSCS scheme is become totally unstable but the FTCSCS and the 

second order Lax-Wendroff type schemes is still stable, so we will move to next step of analysis with FTCSCS 

and second order Lax-Wendroff type scheme. 

Case 4: Here spatial grid size, ∆𝑥 = 0.25 for spatial domain (0,20), and temporal grid size, ∆𝑡 = 2.9 for 

temporal domain, (0,6) is chosen for this analysis. 

For this application, 
𝑢∆𝑡

∆𝑥
= 𝛼 =

0.02×2.9

0.25
= 0.232 and 

𝐷∆𝑡

∆𝑥2 = 𝛾 =
0.01×2.9

 0.25 2 = 0.464 

The stability condition for FTCSCS implies 

0 ≤
𝑢∆𝑡

∆𝑥
≤ 1 and 0 ≤

𝐷∆𝑡

∆𝑥2 ≤
1

2
 

or, 0 ≤ 0.232 ≤
1

2
 and 0 ≤ 0.464 ≤ 1                                        41  

The stability condition for second order Lax-Wendroff type scheme implies 

0 ≤  
𝑢∆𝑡

∆𝑥
 

2

+ 2
𝐷∆𝑡

∆𝑥2 ≤ 1 and 0 ≤
𝑢∆𝑡

∆𝑥
< 1and 0 ≤

𝐷∆𝑡

∆𝑥2 < 1 

or, 0 ≤  0.232 2 + (2 × 0.464) ≤ 1 and 0 ≤ 0.232 < 1and 0 ≤ 0.464 < 1       
or,0 ≤ 0.9809 ≤ 1 and 0 ≤ 0.232 < 1and 0 ≤ 0.464 < 1                      42  

Therefore, the stability condition for both schemes are satisfied, and a stable solution is expected. The solutions 

are to be obtained up to 𝑡 = 6 minutes; shown in figure 4 

 
Figure 4: Solutions for the schemes with ∆𝑥 = 0.25 and ∆𝑡 = 2.9(𝑠𝑒𝑐𝑜𝑛𝑑𝑠) 

Case 5: Here spatial grid size, ∆𝑥 = 0.25 for spatial domain (0,20), and temporal grid size, ∆𝑡 = 3 for temporal 

domain, (0,6) is chosen for this analysis. 

For this application, 
𝑢∆𝑡

∆𝑥
= 𝛼 =

0.02×3

0.25
= 0.24 and 

𝐷∆𝑡

∆𝑥2 = 𝛾 =
0.01×3

 0.25 2 = 0.48 

The stability condition for FTCSCS implies 

0 ≤
𝑢∆𝑡

∆𝑥
≤ 1 and 0 ≤

𝐷∆𝑡

∆𝑥2 ≤
1

2
 

or, 0 ≤ 0.24 ≤ 1 and 0 ≤ 0.48 ≤
1

2
 43  

The stability condition for second order Lax-Wendroff type scheme implies 

0 ≤  
𝑢∆𝑡

∆𝑥
 

2

+ 2
𝐷∆𝑡

∆𝑥2 ≤ 1 and 0 ≤
𝑢∆𝑡

∆𝑥
< 1and 0 ≤

𝐷∆𝑡

∆𝑥2 < 1 

or, 0 ≤  0.24 2 + (2 × 0.48) ≤ 1 and 0 ≤ 0.24 < 1and 0 ≤ 0.48 < 1 

or, 0 ≤ 1.0176 ≤ 1 and 0 ≤ 0.24 < 1and 0 ≤ 0.48 < 1                                    44  
Which is impossible, so the stability condition is not justified here. 

Therefore, the stability condition for both schemes are not satisfied, and so stable solution is not expected. The 

solutions are to be obtained up to 𝑡 = 6 minutes; shown in figure 5 
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Figure 5: Solutions for the schemes with ∆𝑥 = 0.25 and ∆𝑡 = 3(seconds) 

Here it is found that the second order Lax-Wendroff type scheme start to be unstable with contradicting its 

stability condition but still the FTCSCS is stable. 

Case 6: Here spatial grid size, ∆𝑥 = 0.25 for spatial domain (0,20), and temporal grid size, ∆𝑡 = 3.075 for 

temporal domain, (0,6) is chosen for this analysis. 

For this application, 
𝑢∆𝑡

∆𝑥
= 𝛼 =

0.02×3.075

0.25
= 0.246 and 

𝐷∆𝑡

∆𝑥2 = 𝛾 =
0.01×3.075

 0.25 2 = 0.492 

The stability condition for FTCSCS implies 

0 ≤
𝑢∆𝑡

∆𝑥
≤ 1 and 0 ≤

𝐷∆𝑡

∆𝑥2 ≤
1

2
 

or, 0 ≤ 0.246 ≤ 1 and 0 ≤ 0.492 ≤
1

2
 45  

The stability condition for second order Lax-Wendroff type scheme implies 

0 ≤  
𝑢∆𝑡

∆𝑥
 

2

+ 2
𝐷∆𝑡

∆𝑥2 ≤ 1 and 0 ≤
𝑢∆𝑡

∆𝑥
< 1and 0 ≤

𝐷∆𝑡

∆𝑥2 < 1 

or, 0 ≤  0.246 2 +(2 × 0.492) ≤ 1 and 0 ≤ 0.246 < 1and 0 ≤ 0.492 < 1 

or, 0 ≤ 1.044516 ≤ 1 and 0 ≤ 0.246 < 1and 0 ≤ 0.492 < 1                              46  
Which is impossible, so the stability condition is not justified here. 

Therefore, the stability condition for both schemes are not satisfied, and so stable solution is not expected. The 

solutions are to be obtained up to 𝑡 = 6 minutes; shown in figure 6 

 
Figure 6: Solutions for the schemes with ∆𝑥 = 0.25 and ∆𝑡 = 3.075(𝑠𝑒𝑐𝑜𝑛𝑑𝑠). 

Form the above figure we see that second order Lax-Wendroff type schemes become totally unstable but the 

FTCSCS scheme is still stable. So, we will move to next step with FTCSCS scheme to find the stability limit of 

it with respect to time step. 

Case 7: Here spatial grid size, ∆𝑥 = 0.25 for spatial domain (0,20), and temporal grid size, ∆𝑡 = 3.1034 for 

temporal domain, (0,6) is taken for this analysis. 

For this application, 
𝑢∆𝑡

∆𝑥
= 𝛼 =

0.02×3.1034

0.25
= 0.248 and 

𝐷∆𝑡

∆𝑥2 = 𝛾 =
0.01×3.1034

 0.25 2 = 0.497 

The stability condition FTCSCS implies 

0 ≤
𝑢∆𝑡

∆𝑥
≤ 1 and 0 ≤

𝐷∆𝑡

∆𝑥2 ≤
1

2
 

or, 0 ≤ 0.248 ≤ 1 and 0 ≤ 0.497 ≤
1

2
 47  

Therefore, the stability condition for this scheme is satisfied, and a stable solution is expected. The solutions are 

to be obtained up to 𝑡 = 6 minutes; shown in figure 7. 
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Figure 7: Solutions for the schemes with ∆𝑥 = 0.25 and ∆𝑡 = 3.1034(𝑠𝑒𝑐𝑜𝑛𝑑𝑠) 

Case 8: Here spatial grid size, ∆𝑥 = 0.25 for spatial domain (0,20), and temporal grid size, ∆𝑡 = 3.214 for 

temporal domain, (0,6) is chosen for this analysis. 

For this application, 
𝑢∆𝑡

∆𝑥
= 𝛼 =

0.02×3.214

0.25
= 0.257 and 

𝐷∆𝑡

∆𝑥2 = 𝛾 =
0.01×3.214

 0.25 2 = 0.514 

The stability condition for FTCSCS implies 

0 ≤
𝑢∆𝑡

∆𝑥
≤ 1and 0 ≤

𝐷∆𝑡

∆𝑥2 ≤
1

2
 

or, 0 ≤ 0.255 ≤ 1and 0 ≤ 0.514 ≤
1

2
 48  

Which is not possible, so the stability condition is not satisfied here. 

Therefore, the stability condition for this scheme is not satisfied, and so stable solution is not expected. The 

solutions are to be obtained up to 𝑡 = 6 minutes; shown in figure 8. 

 
Figure 8: Solutions for the schemes with ∆𝑥 = 0.25 and ∆𝑡 = 3.214(𝑠𝑒𝑐𝑜𝑛𝑑𝑠) 

From the above analysis it is seen that the FTCSCS scheme is start to be unstable by contradicting its stability 

condition. 

Case 9: Here spatial grid size, ∆𝑥 = 0.25 for spatial domain (0,20), and temporal grid size, ∆𝑡 = 3.3 for 

temporal domain, (0,6) is chosen for this analysis. 

For this application, 
𝑢∆𝑡

∆𝑥
= 𝛼 =

0.02×3.3

0.25
= 0.267 and  

𝐷∆𝑡

∆𝑥2 = 𝛾 =
0.01×3.3

 0.25 2 = 0.528 

The stability condition for FTCSCS implies 

0 ≤
𝑢∆𝑡

∆𝑥
≤ 1and 0 ≤

𝐷∆𝑡

∆𝑥2 ≤
1

2
 

or, 0 ≤ 0.258 ≤ 1and 0 ≤ 0.516 ≤
1

2
 49  

Which is not possible, so the stability condition is not satisfied here.  

Therefore, the stability condition for the FTCSCS scheme is not satisfied, and so stable solution is not expected. 

The solutions are to be obtained up to 𝑡 = 6 minutes; shown in figure 9 

 
Figure 9: Solutions for the schemes with ∆𝑥 = 0.25 and ∆𝑡 = 3.3(𝑠𝑒𝑐𝑜𝑛𝑑𝑠) 

From the above figure it is seen that the FTCSCS scheme become totally unstable with contradicting its 

stability. 

Efficiency of the Numerical schemes  

To the check the efficiency of these numerical schemes, various methods are used here the efficiency of the 

numerical schemes are checked by Elapsed time. 
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Elapsed Time 

Elapsed time is the time which is needed for computation of any system or phenomena. So, in comparison of 

numerical schemes which has less elapsed time, is more efficient and it will take less computational cost to 

work with that scheme. 

So, by calculating elapsed time we can find which scheme is more efficient than other. 

We can check the elapsed time of the scheme to find out efficiency for last stable time step (critical time step) of 

the finite difference FTBSCS, FTCSCS and proposed secondorder Lax-Wendroff type schemes from the 

previous stability analysis of this article. 

Here, for calculating elapsed time we use velocity 𝑢 = 0.02 and diffusion co-efficient. 

𝐷 = 0.01, spatial domain (0,20) and temporal domain (0,6). 

Table 1: Elapsed time with last stable time step (critical time step) of FTBSCS, FTCSCS and secondorder Lax-

Wendroff type scheme. 

Scheme Spatial step 

∆𝑥 

Critical time step 

∆𝑡 
Elapsed time of scheme 

with last stable 

temporal step 

FTBSCS 0.25 2.5 0.064039 

Lax-Wendroff type  0.25 2.9 0.067143 

FTCSCS 0.25 3.1034 0.065534 

From the above analysis it is seen that the finite different FTBSCS scheme take less elapsed time than FTCSCS 

and proposed secondorder Lax-Wendroff type scheme. The FTBSCS scheme will cost less than FTCSCS and 

proposed secondorder Lax-Wendroff type scheme.  

 

Conclusion 

In this paper, we have discussed about the different numerical schemes of ADE such as FTBSCS, FTCSCS. We 

have proposed a secondorder Lax-Wendroff type scheme for ADE like as Lax-Wendroff scheme of hyperbolic 

partial differential equation. Here for proposed new Lax-Wendroff type scheme of ADE the discretisation of 

first order terms are in second order same as Lax-Wendroff scheme of hyperbolic partial differential equation. 

We have determined the stability condition of FTBSCS, FTCSCS and secondorder Lax-Wendroff type scheme 

by maximum principle and Von-Neumann stability analysis. We have compared the stability of these schemes 

with respect to different temporal step and verify the efficiency of these schemes with elapsed time. We have 

observed that FTBSCS scheme is more efficient with less accuracy than FTCSCS and secondorder Lax-

Wendroff type scheme, on the other hand secondorder Lax-Wendroff type scheme is less efficient but more 

accurate than FTBSCS and FTCSCS.  

 

Recommendation 
According to numerical analysis results of this research, second order Lax-Wendroff type scheme of ADE is 

more accurate and less efficient according to elapse time for computational work compare to FTBSCS and 

FTCSCS. In future work, it would be useful to further investigate with higher order and higher dimensional 

explicit and implicit scheme of ADEwhich will provide good results. 
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