Classification conundrum in Gamma Ray Bursts

Dimple, K. Misra, A. Ghosh, K. G. Arun et al.

Abstract

GRB 210217A is detected with different duration by Swift and Fermi. It is classified as a long GRB by Swift/BAT. On the other hand, the sub-threshold detection by Fermi/GBM classified the burst as a short/hard burst with a duration of 1.024 sec. We present the multi-wavelength analysis of GRB 210217A to identify its actual class using multi-wavelength data. We utilized the T₉₀ - hardness ratio (HR), T₉₀ - Ep, and T₉₀ - t_{mvts} distributions of the GRBs to find the probability of GRB210217A being a short GRB. Further, we estimated the photometric redshift of the burst by fitting the joint XRT/UVOT SED and placed the burst in the Amati plane. We found that GRB210217A is an ambiguous burst showing properties of both short and long classes of GRBs.

Introduction

- Samma-ray bursts (GRBs) are the highly energetic burst of γ-rays.
- GRBs follow the bimodal distribution dividing them into two classes of GRBs:
- > Short GRBs : T₉₀ < 2 sec
- > Long GRBs : $T_{90} \ge 2 \sec$

T₉₀ values of Swift and Fermi detected GRBs.

arier

- > 16 GRBs in the sample have different classification reported by the Swift and Fermi satellites.
- GRB 210217A is one of the recent burst lying at the boundary of short and long GRBs divide with

- However, T₉₀ value relies on the energy range, background fluctuations, sensitivity and trigger criteria of detector.
- It is also observed that some GRBs with T₉₀ values of long GRBs have afterglow and host properties similar to the short GRBs and vice versa.
- Therefore, it is not possible to classify the GRBs based on T₉₀ alone.

different burst duration value reported by Swift (4.22+-1.15) and Fermi (1.024).

Other ways to classify GRBs

- > Hardness Ratio, Minimum Variability time scale (t_{mvts}).
- > Spectral Lag, Position in the Amati Plane, Host Properties.

(Fishman & Meegan, 1995, Kaneko et al., 2015, Amati et al., 2002 , MacLachlan et al., 2013, Li et al. 2016)

We performed a detailed analysis to classify GRB 210217A.

Characteristics	GRB 210217A	Detector
T ₉₀ (15-350 keV)	3.76 ± 0.26 sec	Swift-BAT
T100 (25-294 keV)	1.024	Fermi-GBM
HR	1.40 ± 0.02	Swift-BAT
t _{mvts} (sec)	0.512	Swift-BAT
Spectral lag (ms)	186+68	Swift-BAT
Ep	230	Fermi-GBM
Redshift (z)	0.55+0.90	Swift-XRT +UVOT
$E_{\rm v,iso}$ (erg)	$(2.61 \pm 1.4) \times 10^{51}$	Swift-BAT

Methods Used

- Bayesian Gaussian Mixture Model (BGMM), Unsupervised learning useful in fitting multi-modal data for clustering (Pedregosa et al., 2011).
- SED fitting to calculate the photometric

Results

➤ We fitted T₉₀ - HR, T₉₀ - Ep, T₉₀ - t_{mvts}

distributions with BGMM. The probability of GRB 210217A being a short GRB is equal to 98.2%, 96%, and 28% in these cases, respectively.

- The Swift-XRT/UVOT SED fitting yields a photometric redshift of 0.55.
- The position of GRB 210217A lies at the boundary between short and long class in the Amati plane.

Summary

- We present different methods that can be used to classify GRBs (lying close to boundary) other than T₉₀.
- > We calculated the probability of GRB 210217A being a short GRB using BGMM, an unsupervised method used for classification.
- GRB 210217A lies at the boundary between short and long class in the Amati plane.
 It is hard to conclude the classification the burst. Host observations can give a clue about the class of GRB 210217A.

