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__________________________________________________________________________________ 

The control of a non-linear jacketed Continuous Stirred Tank Reactor (CSTR) with steady-state 

multiplicity is challenging due to its unstable nature. Generally, CSTR is operated near/at unstable 

equilibrium nodes, which decides the optimal productivity of the process. In this paper, a neural-

estimator based non-linear control structure is developed for a CSTR possessing multiplicity. A Neuro-

estimator based on feed-forward neural network has been designed to estimate the reactor 

concentration, which is often an imprecisely known parameter of the CSTR. We integrate the Neuro-

estimator with a generic model controller (GMC) to develop a Neuro-GMC structure which utilizes the 

concentration estimated by the Neuro-estimator. Both servo and regulatory studiesare performed to 

assess the effectiveness of the Neuro-GMC in controlling the reactor. Two additional control schemes, 

namely an extended Internal Model Control (IMC) and a standard PI controller, are designedto compare 

performance of the designed Neuro-GMC. Simulation results highlight that even in the presence of 

process-model mismatch,the Neuro-GMC yields better tracking and disturbance rejection 

characteristics. 
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Introduction  

Occurrence of steady-state multiplicity in 

CSTR poses difficulty in its control. Many 

researchers1, 2 studied the non-linear 

characteristics of a CSTR and have developed 

schemes to linearize the system. Globally 

linearizing control (GLC) involves imparting 

linear features into the non-linear process 

model. Extensive research has been 

conducted in evolving the GLC algorithm, but 

one requires exact knowledge of the system 

dynamics, which is often difficult to ascertain. 

Mujtaba et al.3 developed non-linear model 

based control techniques for batch reactors 

using neural networks. The study shows that a 

neural network based IMC requires a deep 

training and insight of the process to cope with 

performance uncertainties. Czeczot4 

developed a balance-based adaptive control 

for a non-isothermal CSTR. The authornoticed 

controlrelated difficulties during large 

fluctuations in the flow-rate. Hence, it 



isbeneficial to integrate an estimator/observer 

when using model based controller to 

compensate for the process-model mismatch.A 

novel feedback predictive control algorithm 

was developed and evaluated by Rollins and 

Mei5. They used a time-delay in the 

manipulated variable (not in the controlled 

variable), which was addressed by approaches 

such as the Smith Predictor.Jana6 developed 

adaptive state estimator based GMC and 

showed that this combined control scheme 

outperforms a conventional PI controller. 

GMC relies on accurate information of the 

process dynamics. Process/model mismatch is 

a common problem whilst dealing with non-

linear processes such as in a non-isothermal 

adiabatic CSTR which possessesmultiplicity. 

Adaptive state estimators/observers 

(ASE/ASO) have been developed by many 

researchers6 which require controlled and 

manipulated variables as inputs. Ahybrid 

control mechanism combining GMC and a 

capable estimator can provide a better closed-

loop performance as all the required states are 

not prudently measurable in many processes7, 

8. Other major advantages of the GMC 

controller are its simple design and tuning. It 

also allows the non-linear governing equations 

to be incorporated directly into the algorithmic 

treatise7. 

It is evident that Neuro-GMC and 

extended-IMC are both model-based advanced 

controllers, but it is indeed crucial to present a 

comparison with respect to PI controller also. 

In what follows, we list important pointers 

pertaining to the use of PI controllers. 1) 

Despite being a conventional and non-model 

based controller, PI is one of the most 

commonly used controllers in Chemical 

industry 2) Earlier studies have reported that PI 

can provide satisfactory performance even for 

non-linear processes, and 3) It is important to 

ascertain the extent of superiority of model-

based controllers as opposed to a standard PI 

controller as advanced controllers require 

greater efforts and cost. Hence, only a fair 

comparison can guide a control engineer about 

the worth of additional efforts and cost incurred 

in the development of such controllers.  

The main focus of this research is to 

establish an optimal control mechanism that 

can be employed to control a non-linear CSTR 

that has steady state multiplicity features. The 

main highlight of the present study is accurate 

estimation of the imprecisely known parameter, 

'concentration' based on the only available 

variable i.e. temperature. In addition, an 

extended IMC and a conventional PI 

controllerhave been developed to compare the 

performance obtained fromthe Neuro-GMC 

feedback when applied to the CSTR.The 

performance is evaluated in terms of settling 

time, rise-time and total variation in 

manipulated variable (TV) defined as the 

summation of all control moves. 

Process 

Fig. 1a presents the example process 

considered in this study. A first-order, 

exothermic, and an irreversible reaction take 

place in a perfectly-mixed CSTR whose design 

parameters are presented in Table 16. 
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Fig. 1. (a) Schematic representation of a 

jacketed CSTR; (b) Multiplicity in CSTR- 

reactor temperature 'T' vs jacket temperature 

'Tj' 

The non-isothermal adiabatic CSTR exhibits 

multiplicity and thus invokes the need for 

developing a control approach that affords a 

better reactor conversion whilst still operating 

the reactor at desired temperature. A CSTR 

generally exhibits three states namely: SS1, 

SS2 and SS3 as shown in Figure 1b. It is 

clearly evident that operating the reactor at 

SS3 (in Figure 1b) would produce high 

conversion but a high reactor temperature may 

destroy the catalyst and/or degrade the 

product. On the other hand, if the reactor is 

operated at SS1, a favourable reactor 

temperature will yield less conversion. 

Therefore, to optimise the conversion, one 

needs to operate at a non-linear, unstable SS2 

state. This also defines the motivation for this 

study where GMC backed by a sophisticated 

F-ANN predictor yields a favourable 

conversion keeping the system stable at SS2.  

 

Table 1. Design parameters of the CSTR. 

Parameter Value Unit 

𝐶𝐴  8.5615 𝑘𝑚𝑜𝑙

𝑚3
 

𝐶𝐴𝑓  10.0 𝑘𝑚𝑜𝑙

𝑚3
 

𝐹

𝑉
 

1.0 𝑕𝑟−1 

𝜌𝐶𝑝  500.0 𝑘𝑐𝑎𝑙

𝑚3℃
 

𝑈°𝐴

𝑉
 

150.0 𝑘𝑐𝑎𝑙

𝑚3℃
𝑕𝑟 

𝑇 38.2 ℃ 

𝑇𝑓  25.0 ℃ 

𝑇𝑗  25.0 ℃ 

𝐸 11843.0 𝑘𝑐𝑎𝑙

𝑘𝑚𝑜𝑙
 

−∆𝐻 5960.0 𝑘𝑐𝑎𝑙

𝑘𝑚𝑜𝑙
 

∆𝑡 0.005 𝑕𝑟 

𝐾° 34930800.0 𝑕𝑟−1 

𝑅 1.987 𝑘𝑐𝑎𝑙

𝑘𝑚𝑜𝑙𝐾
 

 

The main-stay of a GMC control is its ability to 

consume the non-linear process model directly 

into the controller itself without having to 

linearise the model first. Table 2 presents 

multiple operating points of the reactor 

including highly non-linear SS2. 

 

 

 

Table 2. Multiple steady state operating points 



(Tss and CAss denote steady state temperature 

and concentration) 

Steady state 

operating 

point  

Tss (K) 
CAss  

kmol

m3
  

SS1 311.2 8.5615 

SS2 339.1 5.518 

SS3 368.1 2.359 

 

Equations 1 and 2 describe the mass and the 

energy balance for the CSTR:  

 

𝑑𝐶 𝐴
𝑑𝑡

 

=  
𝐹

𝑉
 𝐶 𝐴𝑓  – 𝐶 𝐴 

− 𝐾 𝑂 exp 
−∆ 𝐸

𝑅 𝑇
 𝐶 𝐴  

(1) 

𝑑𝑇

𝑑𝑡
 

=  
𝐹

𝑉
 𝑇 𝑓  –  𝑇 

+   
−∆ 𝐻

𝜌 𝐶 𝑃
 𝐾 𝑂 exp  

−∆ 𝐸

𝑅 𝑇
 𝐶 𝐴

−  
𝑈 𝑂  𝐴

𝜌 𝑉 𝐶 𝑃
  𝑇 − 𝑇 𝑗   

(2) 

 

 

where,𝐶𝐴 and 𝐶𝐴𝑓 : Concentration of reactant 

A in the reactor and feed stream, respectively; 

𝑅: Gas constant; 𝑡: Time; 𝐶𝑃 : Heat 

capacity; 𝐹: Flow rate (volume);𝐾𝑜 :Pre-

exponential factor; 𝑇: Temperature in the 

reactor ;𝑇𝑓 : Temperature of feed; 𝑇𝑗 : 

Temperature of jacket; 𝑈𝑂 : Overall heat 

transfer coefficient; A: Area; 𝑉: Reactor 

volume; ΔE: Activation energy; (−ΔH): Heat of 

reaction ; ρ: Density. The design of a Neuro-

estimator is discussed in the next section. 

Neuro-estimator 

A feed-forward artificial neural network (ANN) 

model is used in this study for the prediction of 

the states in the CSTR.The ANN structure for 

the developed estimator is shown in Figure 2. 

The estimator uses Levenberg–Marquardt 

back propagation training method which is 

more robust than the standard Gauss–Newton 

algorithm [9]. The Neuro-estimator has been 

 

Fig. 2. Schematic diagram of ANN scheme  

developed and tested for disturbances in 

several process variables such as:𝑇 𝑗 , 𝑇 𝑖  

and𝐹/𝑉, where temperature (T) is the only 

input that is used to estimate the concentration 

(CA). The input and output parameters for the 

developed neuro-estimator are the reactor 

temperature (T) and product concentration 
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(CA), respectively. The network training 

parameters are listed in Table 3.  

Table 3: FANN network training parameters for 

CSTR 

Fix parameters 

Learning rate 0.05 

Epochs 1000 

Target error goal 10-5 

Minimum 

performance 

gradient 

10-5 

Varying parameters 

Number of hidden 

neuron 
1 to 20 

Transfer function 

(hidden layer) 

Log-sigmoid (logsig) 

Transfer function 

(output layer) 

Linear (purelin) 

Training algorithm 

Levenberg Marquardt 

back propagation 

(trainlm) 

 
The developed neuro-estimator, i.e. a feed-

forward artificial neural network (F-ANN), has a 

single hidden layer. The hidden neurons 

employed a logarithmic sigmoid activation 

function, whilst the output layer neurons used a 

linear activation function. The data for the F-

ANN is generated from the simulated model 

developed in MATLAB™- a total of 1382 data 

points were split (using the dividein command) 

into 70 %, 15 % and 15% for training, 

validation and testing. 

 

Fig. 3. Regression plots for training, validation and testing 

  



 

 

 

In F-ANN, the number of hidden neurons is 

determined using the cross-validation 

technique. The sum of squared error (SSE) 

and coefficient of determination (r2) value is 

estimated for the training as well as testing 

data at each node. The network with the least 

SSE value for both the aforementioned sets is 

considered suitable for prediction. The 

regression curve for training, validation and 

testing is given in Figure 3. From this analysis, 

the best topology of the F-ANN is 1-10-1 i.e. 

one input-10 hidden layer-one output. As noted 

earlier, the input and output for the developed 

model is the reactor temperature and 

concentration, respectively.  

In this study, the FANN is developed 

considering the discrete time of the process. 

The prediction output 𝑦  𝑡  is predicted based 

on the process input 'u(t)' as: 

𝑦  𝑡 = 𝑓 𝑢 𝑡   (3) 

where 𝑢 (𝑡), i.e. the input for this case study, 

is the reactor temperature and )(ˆ ty is the 

output (predicted) product concentration. 

 

Controller Synthesis 

 

In this study, the controllers are designed to 

maintain the reactor temperature (T) at the 

desired set-points. However, the coolant jacket 

temperature  𝑇𝑗   is used in this study as a 

manipulated variable for simplicity in GMC law. 

 

Neuro-GMC controller synthesis 

 

The newly developed Neuro-GMC structure is 

shown in Figure 4. It is crucial to provide the 

information of the states to the GMC control 

law, which is then clubbed with the developed 

Neuro-estimator. 

 

 
Fig. 4. Neuro-Generic Model Control Structure 

 

The estimator ascertains partially known 

parameters during a process/predictor 

mismatch, whereas GMC takes care of the 

intrinsic non-linearities in the process [10].  The 

state-space modelisgiven by Equations 4 and 

5. 

 



 𝑥 

= 𝑓 𝑥, 𝑑 𝜃

+ 𝑔 1(𝑢, 𝑥, 𝑑) 

(4) 

 𝑦 = 𝑐𝑥 
(5) 

 

Where, the state𝑥 ∈ 𝑅𝑛 , the model 

parameter𝜃 ∈ 𝑅𝑛 , the measurable 

disturbance𝑑 ∈ 𝑅𝑛 , the input𝑢 ∈ 𝑅𝑛 . 𝑓and 

𝑔1 are matrices of non-linear functions, and 

𝑐is an unity matrix. The control law can be 

derived using Equation 6 [11]. 

 

 

𝑓 𝑥, 𝑑 𝜃 +  𝑔 1 𝑢, 𝑥, 𝑑 

− 𝐾 1𝑒 − 𝐾 2  𝑒 𝑑𝑡

= 0 

(6) 

 

where 𝑒 is the error which is equal to 𝑦𝑠𝑝 − 𝑦, 

𝑦𝑠𝑝 is the set point, 𝐾1 and 𝐾2 are 𝑛 × 𝑛 

tuning parameter matrices. The GMC law 

comprises of a tuning part which includes the 

proportional and integral terms. The tuning 

parameters given in Equation (7) and (8) can 

be determined using the relations proposed by 

Signal and Lee [12]. 

𝐾 1 (𝑖,   𝑖) =  
2 𝜏 1 𝑖

𝜏 2 𝑖
 

(7) 

 

𝐾 2 (𝑖,   𝑖) =  
1

𝜏 2 𝑖 
2

 
(8) 

 

Where 𝜏 1𝑖   and 𝜏 2𝑖are the response times 

which give the swiftness to the closed loop 

response. The values of 𝑘1and𝑘2 are found 

to be 3.81 and 0.5, respectively. One can use 

the aforementioned equations to arrive at the 

GMC relation described in Equations (9) and 

(10). 

 

𝑓 𝑥, 𝑑 𝜃 + 𝑔  1 𝑢, 𝑥, 𝑑  =  𝑇 

=  
𝐹

𝑉
 𝑇 𝑓  –  𝑇 

+   
−∆ 𝐻

𝜌 𝐶 𝑃
 𝐾 𝑂 exp 

−∆ 𝐸

𝑅 𝑇
 𝐶 𝐴

−  
𝑈 𝑂  𝐴

𝜌 𝑉 𝐶 𝑃
  𝑇 − 𝑇 𝑗  − 𝐾 1𝑒

− 𝐾 2  𝑒 𝑑𝑡 

(9) 

 

Combining the above Equation in the GMC 

state equation, we get: 

 

𝑇 𝑗

=  𝑇 – 
 𝜌 𝑉 𝐶 𝑃

𝑈 𝑂   𝐴
 
𝐹

𝑉
 𝑇 𝑓  –  𝑇 

+   
−∆ 𝐻

𝜌 𝐶 𝑃
 𝐾 𝑂 exp 

−∆ 𝐸

𝑅 𝑇
 𝐶 𝐴

−  
𝑈 𝑂  𝐴

𝜌 𝑉 𝐶 𝑃
  𝑇 − 𝑇 𝑗   − 𝐾 1𝑒

− 𝐾 2  𝑒 𝑑𝑡 

(10) 

 

𝑇𝑗  is chosen as the manipulated variable over 

flow rate, as mentioned above. The control 

objective covers two cases which includes 

controlling the reactor temperature at SS1, 

SS2 and SS3 (servo mechanism), and 

secondly to control the reactor temperature 

when a series of disturbances are imparted 

in 𝑇𝑗  (regulatory mechanism).  

 

IMC Controller synthesis 

IMC offers good robustness characteristics 

against external disturbances and model 



variations.The motivation behind IMC is to club 

the advantages of different model predictive 

schemes and avoid prediction errors in cases 

of severe parametric fluctuations. The IMC 

design procedure constitutes of two parts: first 

designing a controller that is optimal with 

respect to the integral absolute error or integral 

squared error for a servo study, and secondly 

a compensator which stabilises the plant[13]. 

System identification toolbox in MATLAB is 

used to obtain the transfer function model for 

this process. Best match for this process is 

obtained using a second order transfer function 

with a time delay as follows: 

 

𝐺 𝑠 

=  
0.01065

𝑠2 + 0.2527𝑠 + 0.009147
∗ 𝑒−5𝑠 

(11) 

 

For the extended IMC, the output y is given by: 

 

𝑦

= 𝐺𝐾1𝑟

+  1 − 𝐺𝐾1 
𝑃

1 + 𝑃𝐾2
𝑑1

+  1 − 𝐺𝐾1 
1

1 + 𝑃𝐾2
𝑑2 

(12) 

 

𝐾0 is chosen as a PD controller with the form: 

 𝐾0 = 𝑘0(𝜏2𝑠 + 1) (13) 

𝐾1is characterized as: 

 𝐾1 =
 𝜏1𝑠 + 1 ∗ (𝜏2𝑠 + 1)

𝑘 ∗ (𝛾𝑠 + 1)
 (14) 

Where, 𝛾 is a tuning parameter. 

𝐾2 is chosen as:  

 𝐾2 = 𝐾𝑐(𝑇𝑐𝑠 + 1) (15) 

Where 

 
𝐾𝑐 =

1

𝑘
 

0.533
𝜃

𝜏

+ 0.746 𝑖𝑓
𝜃

𝜏

≤ 0.7 

(16) 

 

 

𝐾𝑐 =
1

𝑘
 

0.490
𝜃

𝜏

+ 0.694 𝑖𝑓 0.7

≤
𝜃

𝜏
≤ 1.5 

(17) 

 

 

Results and Discussion 

Neuro-estimator study  

This section discusses the performance of the 

designed estimator and subsequent control 

structures. 

The convergence capability of the designed 

Neuro-estimator is evaluated for disturbances 

in several process variables. 

 

Disturbance in the jacket temperature (Tj) 

Figure 5 shows the neuro-estimator 

responsesfor disturbances imparted in 𝑇𝑗 . The 

initial coolant temperature is 298K which is 

increased to 327.8K at 50 h (Figure 5c), 

resulting in the increase in reactor temperature 

to 384 K (Figure 5b). Adecrease in the effluent 

temperature to 368.1 K (i.e. SS2) is obtained 

with a reduction of the coolant temperature to 

298K at 100 h. 
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Fig. 5. Neuro-estimator responses for changes in the jacket temperature 𝑇𝑗  (a) reactor concentration 

(b) reactor temperature and (c) jacket temperature. 

However, the reactor temperature does not 

reach the initial steady state. This clearly 

demonstrates the multiplicity present in the 

CSTR. A further 10% decrease in the coolant 

temperature (𝑇𝑗 ) at 150 h causes the outlet 

temperature (𝑇) to decrease even further. A 

good match has been obtained between the 

developed neuro-estimator and process model 

(considered to be a true process) for the 

concentration profile. This shows a good 

convergence capability of the developed 

Neuro-estimator. 

Disturbance in the inlet temperature (Ti) 

Figure 6 depicts the neuro-estimator 

responses for a series of step changes in 𝑇𝑖 . A 

periodic fluctuation is imparted in the inlet 

temperature; the inlet temperature is at an 

initial value of 298 K during 0-50 h. The 

temperature is further increased to 327.8 K i.e. 

10% increment from the initial value for the 

next 50 h until 100 h. This results in increased 

effluent temperature to a 407 K. Further, the 

inlet temperature is brought back to its initial 

value of 298 𝐾, but the effluent temperature 

fails to reach the first steady state SS1 

(depicting themultiplicity involved in the 

system)and settles instead at 368.1 K i.e. SS2. 
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Fig. 6. Neuro-estimator responses for changes in the inlet temperature 𝑇𝑖 (a) reactor concentration (b) 

reactor temperature and (c) inlet temperature 

The inlet stream temperature is maintained at 

268.2 K from 150 h to 200 h obtaining asudden 

decrease in the effluent temperature. The 

system exhibits nonlinearity which can be 

observed through the reactor effluent 

temperature plot (Figure 6b). High level of 

convergence is achieved through the designed 

Neuro-estimator. 

Controller performance evaluation 

Servo-study 

Figure 7 shows the controller performance for 

a series of step changes in the controlled 

variable i.e. reactor temperature (T) (shown in 

black). The reactor temperature undergoes a 

step-wise increment until 100 h followed by 

decrease until 250 h. In essence, the 

temperature is shifted from SS1 (311.2 𝐾) to 

SS2 (339.1 𝐾) at 50 h and then to SS3 (368.1 

𝐾) at 100 h. Later, it is brought back to SS1 at 

200 h. Although, neuro-GMC shows a slightly 

sluggish response, it is able to track the set-

points in minimum settling time and moderate 

rise-time and TV (see Table 4). The extended-

IMC controller shows a delayed response with 

a high TV value of 551 and a moderate settling 

time of 21 h.  
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Fig. 7. Servo study (a) Reactor temperature

Note that the steady-state and bias output are 

different for extended IMC (see Figure 7) when 

compared with the other two controllers, which 

is due to a process-model mismatch. On the 

contrary, neuro-GMC, despite being a model 

based controller as IMC, shows superior 

performance due to an efficient neuro-

estimator which works collectively with the 

GMC law to ascertain accurate user-defined 

set points. It is noticed thatthe Neuro-GMC 

requires minimum effort to attain the steady 

states as opposed to the other two controllers 

for the servo-study (see Table 4). PI shows an 

over-shoot and delayed settling time as 

compared to neuro-GMC.  

Regulatory study 

A regulatory study has been performed for the 

system where a series of fluctuations in the 

F/Vis imparted. The system is made to operate 

at SS2 (unstable and challenging node) by 

providing the set-point as 339.1 K. For 

regulatory control, the performance of the 

controller is evaluated based on TV which is an 

indicator of the control effort required for the 

control system to attain the steady state after a 

disturbance.An increase in the F/Vratio until 

100 h results in reduced temperatures. The 

F/Vis subsequently brought back to 1.0 at 100 

h and maintained at a constant value until 150 

h. The ratio is further decreased to 0.9 till 200 

h and brought back to unity at 200 h (see 

Figure 8). This reduction in ratio manifests in 

an increasing temperature profile. Again, the 

neuro-GMC outperforms PI and the extended 

IMC due to its faster response and effective 

set-point tracking. PI shows an overshoot 

whereas extended IMC takes more time to 

stabilize the reactor temperature for 

fluctuations in the flow rate. Neuro-GMC 

depicts a robust and a swift response 

(Figure8). Although, it can be seen that the 

extended IMC has the lowest TV value 

describing the least control effort required 

against fluctuations in the flow rate, it is not as 

accurate as other two controllers. This can be 

inferred from different steady states and bias 

output values for extended IMC (see Figure8) 



controller. PI has the highest TV value 

suggesting the highest control effort amongst 

neuro-GMC and the extended IMC.From Table 

4, it is clear that neuro-GMC displays superior 

performance than the other two controllers in 

terms of TV, settling time and the rise time. For 

the servo study, the proposed neuro-GMC 

scheme is better in terms of all the tested 

criteria, viz. TV, settling time and rise time. On 

the other hand, IMC scheme shows the 

smallest TV for the regulatory case. Although 

less TV is attractive, the performance of IMC is 

not acceptable in this casebecause of a poor 

set point tracking as a consequence of model-

process mismatch, as observed from Figure 8. 

Fig. 8. Regulatory study (a) Reactor temperature
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Table 4. Controller performance evaluation 

 

 Servo Regulatory 

Control 

Scheme 

TV Settling 

time (h) 

Rise 

time 

(h) 

TV  

Neuro-

GMC 

380 12 8 486 

IMC 551 21 18 349 

PI 703 46 3 795 

Conclusions 

This work developed a high quality control 

scheme that could cope multiplicity and non-

linearity issues of a CSTR. First, a neuro-

estimator, developed using feed forward neural 

network has provided fine open loop tracking 

performance. Then it was clubbed with a 

model based GMC controller to develop a 

hybrid 'neuro-GMC' control scheme. The 

neuro-GMC has multiple benefits, such as 

simple design, easy tuning and better 

performance. Later, a closed loop performance 

of the three controllers, namely neuro-GMC, 

extended IMC and conventional PI, has been 

evaluated. Hybrid neuro-GMC control scheme 

has been found to yield superior performance 

than the extended IMC and conventional PI 

controller in terms of TV, settling time and rise 

time. Extended IMC, another advanced model 

based controller, showed a slightly poorer 

performance due to inaccurate model 

identification, whereas neuro-GMC showed 

50 100 150 200 250
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excellent results due to the efficient neural 

estimator. The settling time and TV for neuro-

GMC are lesser than those of extended IMC 

and conventional PI that accentuates that 

neuro-GMC requireslesser control efforts to 

stabilize the process. 
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