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Executive Summary

The objective of the I-ImaS project is to develop a new sensor which adaptively
adjusts the exposure settings in order to enhance the image quality or reduce the
patient dose. The exposure adjustment is performed by a control system. In this
study we have analysed different approaches for such a control system, and one
prototype is developed. This is based on the previous work done in identifying
suitable information signatures (deliverable D8).

The control system is based on the I-Imas system architecture and specifications
as given in deliverable D13 and D14. In this architecture, the tissue is first imaged
using a so-called “scout scan”. This initial imaging is done using a constant dose.
The data from the scout scan is analyzed automatically in real-time in order to
determine the correct exposure for the second scan.

In order to develop a control system the images in the developed database were
evaluated by 2 or 3 radiologists.

An analysis of different options for embedding different levels of “intelligence”
into the sensor IC, from basic linear adaptive control to sophisticated classifier-
based non-linear modules has been performed. This context has been used to
select a good framework for developing the control algorithm.

The study includes prototyping of an initial control system algorithm. The
algorithm is based on data from a scout scan combined with a pre-established
sensor model to predict the correct exposure. The main goal of this algorithm is to
avoid underexposure. The algorithm goal was chosen amongst many other
candidates, and give consistently good results on the available images. The
regulated images from the mammography database were evaluated together with
a reference image in a blind test by two experienced radiologists at Ullevål
University Hospital in Norway. The reference image was taken with uniform
exposure at the highest dose used in the regulated image. All the regulated images
were evaluated to have the same or better overall quality than the reference image,
however at a lower dose.

The development and the evaluation of the steering algorithm are based on the
tissue images in database DB3, which consist of a limited number of tissue samples.
Consequently, there is some uncertainty considering the robustness of the
algorithm.

There has also been developed a visualization system, which makes the images
from the developed sensor appear as though they were captured with a normal,
constant-exposure sensor system. This visualization model is based on a model of
the sensor.

This study provides an algorithm for both control and later visualization, which
has  shown  initial  success  in  a  limited  test.  The  algorithm  should  be  easy  to
implement on the sensor.



I-ImaS / Workpackage 3 – Deliverable No D.9 (Feb.2005)

– 6 –

1.  Introduction

The peculiar feature of the I-ImaS imaging system is the possibility of obtaining
images with an optimized quality in the region including details of high diagnostic
interest. This approach allows delivering a high dose of a radiation only to the
regions which present a significant radiological interest, thus reducing the overall
radiation dose given to the patient.

The main structures to be detected in mammography are the denser regions
which might embed masses or calcifications hidden inside the glandular tissue and
microcalcification clusters, which are important signatures of the presence of
cancer.

An increased exposure is required in order to enhance the visibility of structures
embedded in the dense glandular areas and of small calcifications by reducing the
noise presence in the image.

The acquisition process is divided in several steps that will be described in detail
in this document:

The data acquired by the detector will be pre-processed in order
to be corrected for the detector fixed pattern disuniformities.

The important statistical quantities calculated in on image sub-
areas will be used for recognizing the presence of significant
information.

The exposition settings will be adjusted in order to optimize the
delivered dose proportionally to the diagnostic interest of the
exposed area.

Finally the data will be post processed in order to display them.
In particular the image will be flat field corrected in order to
display coherently regions acquired with different settings, the
grayscale will be optimized and possibly some filters will be
applied in order to reduce the presence of noise or enhance
particular image features.

2.   Primary Data

2.1  Mammographic images

A series of mammographic images were taken at UCL to provide the real breast
tissue image data base (DB3). These images were taken using a Seimen’s
Mammomat B and dPix Flashscan 30 flat panel array. The system was set up to
simulate clinical conditions except for the use of a secondary radiation grid. The
300 micron focal spot was used with 60 micron Mo filter. The X-ray source target
was molybdenum. The tissue was excised full breast slices approximately 1 cm
thick. The slices were known to contain both normal and pathological tissue. The
tissue was fixed and contained in polythene bags. To simulate a full compressed
breast each tissue section was imaged with additional Perspex sheets to make up
the full breast. Two tissue slices were made up to an equivalent thickness of 20mm,
and two to an equivalent thickness of 40mm. Each tissue section was then imaged
over a range of exposure values. An ionization chamber was placed next to the
tissue to ensure the Mammomat was correctly exposing the tissue and the readings
recorded on REIDS form C. The table below summarizes the conditions that were
used.
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Tissue
slice

Equivalent
Breast
thickness

kV mAs values

U01  40mm 28 8, 16,25,40,64,80,100,125
30 8, 16,25,40,64,80,100,125
35 8, 16,25,40,64,80

U02 40mm 28 8,16,20,25,32,40,50,64,80,100
30 8,16,20,32,40,50,64,80,100
35 8,16,20,25,32,40,50,64

U03 20mm 28 3.2,4,5,6.4,8,10,12.5,16,20,25,32,40,50
30 3.2,4,5,6.4,8,10,12.5,16,20,25,32,40
35 3.2,4,5,6.4,8,10,12.5,16,20,25,32

U04 20mm 28 3.2,4,5,6.4,8,10,12.5,16,20,25,32,40,50,64,80
30 3.2,4,5,6.4,8,10,12.5,16,20,25,32,40,50
35 3.2,4,5,6.4,8,10,12.5,16,20,25,32,40

Table 2-1: Exposure conditions used during the image acquisition experiments.

Each image was stored as a .tif file.

3.  Overview of Image Evaluations

3.1  Evaluation of mammographic images

3.1.1  Image evaluation from Trieste

Two radiologists from Trieste evaluated the tissue image sets U01, U02, U03 and
U04. The last two sets were evaluated with and without the possibility of using
post processing which consisted of brightness and contrast adjustments. The
RIEDS form E was used for the evaluations. The evaluation grades were from -2 to
+2. Zero equals adequate, less than zero corresponds to less than adequate and
above zero correspond to better than adequate.

Figure 3-1 shows the overall normal and abnormal quality as a function of mAs
for each kVp (red= 28, green=30, blue=35kVp) for each of the two evaluators,
together the mean and difference between them for image set U03 and U04. The
figure shows that there is some deviation between the evaluators, but they have
the same trend and level.

         Evaluator  1                    Evaluator  2                   Mean  evaluation
Difference
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Figure  3-1:  Overall  normal  quality  as  a  function  of  mAs  for  each  kVp  (red=  28,
green=30, blue=35kVp) without post processing for image set U03
(upper row) and U04 (lower row).

         Evaluator  1                    Evaluator  2                   Mean  evaluation
Difference

Figure 3-2:  Overall  abnormal  quality as a function of  mAs for each kVp (red= 28,
green=30, blue=35kVp) without post processing for image set U03
(upper row) and U04 (lower row).

Tables 3-1 and 3-2 show the mean difference between the two evaluators for all
the images taken with each kVp. The tables show that the differences between the
evaluators with and without post processing do not differ significantly.

kVp Mean differance of normal quality Mean differance of abnormal quality
Without postproc. With Postproc. Without postproc. With Postproc.

28 0,2 0,4 0,6 0,3
30 0,6 0,6 0,4 0,4
35 0,7 0,7 1,4 0,4

Table 3-1: Mean difference between evaluators with and without post processing
for image set U03.

kVp Mean differance of normal quality Mean differance of abnormal quality
Without postproc. With Postproc. Without postproc. With Postproc.

28 0,5 1,0 0,6 0,5
30 0,5 0,6 0,4 0,4
35 0,2 0,5 0,5 0,5

Table 3-2: Mean difference between evaluators with and without post processing
for image set U04.
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Figures 3-3 and 3-4 show the overall quality evaluations with and without post
processing  for  image  set  U03.   The  figures  show  how  most  of  the  images  are
evaluated as less than adequate when no post processing were allowed. When
post processing was used most of the images were evaluated as adequate or
better.

Evaluator 1 Evaluator 2 Evaluator 1 Evaluator 2

(a) (b) (c) (d)

Figure  3-3:  Overall  normal  quality  as  function  of  mAs  for  each  kVp  (red=  28,
green=30, blue=35kVp) without (a,b) and with (c,d) post processing for
image set U03.

Evaluator 1 Evaluator 2 Evaluator 1 Evaluator 2

(a) (b) (c) (d)

Figure 3-4: Overall abnormal quality as function of mAs for each kVp (red= 28,
green=30, blue=35kVp) without (a,b) and with (c,d) post processing for
image set U03.

3.1.2  Summary of evaluation from Trieste

The overall normal and abnormal quality evaluation of the images significantly
changes with and without post-processing. We view the evaluations with post-
processing as most relevant, as we think that it is the image information that
should be evaluated, not the image presentation.

For images evaluated with post-processing (U03, U04) almost all the images
have overall normal and abnormal quality evaluated as adequate or better.  No
images with low dose were evaluated as less than adequate, meaning that we did
not have images recorded with low quality and low dose. This means that it is
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difficult to immediately use these evaluations to choose quality criteria based on
image information.

4.  Overview of System Design

In total three systems will be evaluated. One for mammography using
conventional X-ray sources, one for mammography based around a synchrotron
source and one for dental cephlograms. Although basically the same in each case
there will be minor differences when the source characteristics are taken into
account. Currently most of the design elements have been considered with respect
to the conventional mammographic system.

4.1 Conventional mammographic imaging system

The overall system will be based on a dual-in-line scanning system using a
molybdenum target X-ray source and X-ray sensitive APS sensors. The dual-in-line
detector arrays will scan across the patient whilst the breast is held under
compression with the expected scan time to be approximately 3s. The two rows of
sensors  have  different  functions.  The  leading  row  will  form  a  scout  view  of  the
tissue under examination. It will operate at approximately 66% of the total
exposure and will be sufficiently high so as to provide information about the
suspicious nature of the tissue. The second row of sensors will follow behind with
approximately a 1cm gap. The X-ray beam for this row of sensors will be modulated
according to a pre-determined model so as to deposit most radiation in regions of
high interest and little or no radiation used in regions of low interest. This
modulation will be achieved through a series of filters that can be inserted into the
beam. The following system components have been identified:

A primary collimator attached to the X-ray source housing that will shape the
beam to avoid excessive scattering from other components.

A dual slot collimator before the patient that will divide the beam into a scout
beam and an I-ImaS beam.

A filter plate that will accommodate ten wedge filters and actuators suitable for
modifying the beam characteristics in a predetermined manner. This plate and its
filters could be attached to the dual slot collimator.

A tissue support plate and compression plate. In the prototype system for
laboratory evaluation the compression system will not be present and all tissue
samples will be pre-compressed.

The detector unit. This will consist of the two rows of sensors and the DAQ
board that will communicate with the wedge filters/actuators and acquire the
image data from both rows of sensors.

A PC will be used to reconstruct the image data.

4.2 Synchrotron mammographic system

It  is  intended  to  use  the  same  components  but  due  to  the  dimensions  of  the
synchrotron beam it will mean that the scout and I-ImaS views will be acquired
separately.
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4.3 Cepholometric dental imaging

Dental imaging is carried out with a tungsten target source, aluminum filter and
at a kV of between 60 and 65. These characteristics will mean that different wedge
filters will be used and a different model to drive the filters will be required. There
maybe a need to alter the scintillator type/thickness for the higher energy beam.

5.  System Specifications and Constraints

The implementation of a robust and dose-efficient system depends mostly on
the “intelligence” of the control mechanism that provides the required adaptiveness
to the system. In the case of the I-ImaS sensor IC, the controller design has to be
both robust and fast, since the system has to satisfy certain optimality conditions
within a very strict time frame.

First, subsection 5.1 presents the specifications and limitations of the current
sensor IC. The input parameters, the control variables set and the required output
define the general control flow for the on-line module. In subsection 5.2, a formal
set of operational profiles are presented in the form of typical description for the
final system, as well as the means to define and verify its behavior under nominal
conditions.

5.1  System specifications

The I-ImaS system has been proposed as an innovative design for minimizing
patient dose while maintaining high levels of quality in the resulting X-ray image.
Therefore, it is essential to define the exact criteria that have to be included as
optimality conditions by the control mechanism. The general control flow also
includes the formal definition of input and output parameters, as well as restrictions
and limitations that are inherent to the current sensor IC design.

The final system is specified to have two sensor lines consisting of 16 sensors.
Each sensor consists of 512 x 32 pixels resulting in 8192 pixels per row. During
scanning the system can regulate the second line by adding more exposure to a
given region from 0 to 100% of the possible mAs value using 20% steps. The
controlled exposed area corresponds to the sensor size and the sensor size is also
used as ROI for analysis and prediction. The time limitation for the algorithm is
about 16 ms.

In the first I-Imas prototype system, only the mAs exposure parameter could be
changed during the second phase of the scan. The exposure parameters of the
scout scan should be sufficient to depicture possible information and is an input
parameter to the system. The first scan line of the image can be assumed to be
background and is used to calibrate the system.

A characteristic property of the I-ImaS control system is the fact that it is time-
critical. Due to the line-scanning procedure and the fact that there is a fixed spatial
separation between the first “scout” scan and the second “adaptive” scan, there is
only a fixed time interval between the two scans. During this time frame, which in
the  case  of  the  first  I-ImaS  prototype  is  about  16  ms,  the  control  module  has  to
acquire the current input parameters (i.e. exposure settings) and the resulting
control set (i.e. extracted textural features) from the first “scout” scan, calculate the
current optimality levels (i.e. current image quality versus patient dose) and
provide the appropriate feedback (i.e. new exposure settings), in order to guide the
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subsequent “adaptive” scan according to the required optimality conditions (i.e.
best image quality for minimal patient dose).

The time-critical property of the system affects not only the sophistication and
complexity of the control module itself, but also the sophistication and complexity
of every other procedure that is included in the same data flow and takes place
within the same time window. As a result, every pre-filtering option on the raw data
has to be fairly simple and fast, in order to avoid consuming much processing time
from the time-critical frame available to the controller module. Similarly, the
controller itself has to be able to process the incoming data (exposure), evaluate
the current optimality level (output) and calculate the required feedback
(adjustment) within the same time frame. Therefore, the decisions related to the
time-critical section of the control loop are extremely important for the final
system, as they have to closely match the available options of “intelligence” against
the capabilities and available resources of the final sensor IC.

The following table summarizes the main specifications for the control module
design:

Specification Parameter Description

Input Set {kVp,  mAs}   or
{mGy}

Exposure settings/measurements

Control Set {textural features} Internal parameters used by the
controller

Output Set {image
quality.vs.dose}

General quantity to be optimized on each
run

Constraints {textural features}
{time window}

{storage space}
{sensor IC speed}
{....}

Restrictions imposed by the sensor IC
design and the availability of required
resources, required by the control module

Table 5-1: General specifications for the control system design

As  Table  5-1  shows,  there  is  a  choice  of  using  the  dose  (mGy)  instead  of  the
equipment’s  exposure  settings  (kVp,  mAs).  The  dose  can  be  considered  as  more
closely related to the inherent target of the optimization process, which is the
minimization of the inflicting dose to the tissue, rather than the current settings
used by X-ray source.

The use of just one input parameter, instead of two generally independent input
settings, makes the controller design much simpler. Each “scout” scan from the
beam provides one set of input raw data, i.e. one set of extracted textural features
and one evaluation for the current optimality level. Thus, in order to match the
current state of “image quality versus dose” against the current input parameter(s),
the kVp and mAs settings would have to be combined into one measurement for
the exposure, in this case the inflicting dose. This means that, in practice, the kVp
and mAs are not independent if overall exposure level is concerned.

Typically, in modern Automatic Exposure Rate Control (AERC) systems, the
dose is measured directly under the projecting plate, using an ionization chamber
as a triggering mechanism for cutting off the beam when adequate X-ray exposure
has occurred [A01]. The exact values for kVp and mAs are defined by a correlation
formula, usually a calculation of the inflicting dose, which is applied according to a
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predefined set of Standard Exposure Profiles (SEP) for specific rates of increasing
dose, e.g. “standard”, “high contrast”, “pediatric”, etc. Figure 5-1 illustrates similar
SEP plans for AERC modes, used in other X-ray applications. Figure 5-2 illustrates
the corresponding dose measurements for each SEP option.

Figure 5-1: SEP profiles: Standard kVp/mAs exposure profiles (AERC) for a modern
fluoroscopic unit. P1: standard 5 mA, P2: standard 3 mA, P3: 4 mA high
contrast, P4: 8 mA high contrast, P5: “paediatric”, P6: “iodine” [A02].
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Figure 5-2: SEP doses: Relative patient effective dose (mGy) for a stomach
examination at various standard exposure profiles on a conventional X-
ray machine [A02].

The option of using SEP plans for the exposure settings is extremely useful for
the first I-ImaS prototype for two reasons. First, the current design of the
prototype system incorporates a sophisticated mechanism for using wedge filters
as an equivalent of adjusting mAs settings, but it does not compensate for
adjustments in kVp. This means that the kVp setting has to remain as an “external”
parameter, set by the operator before the actual exposure and line-scanning
procedure, while the mAs will be the only actual parameter that can be adjusted
rapidly during the line-scanning for providing adaptive exposure levels. This means
that the adaptive control in the prototype will be responsible for making only mAs
adjustments in the exposure, while kVp will remain fixed. This decision policy can
be easily incorporated into an appropriate SEP plan similar to the “P6-iodine” curve
illustrated in Figure 5.1, where kVp remains constant for the first “flat” section of the
curve. The kVp setting can be manually set before the exposure by the operator,
according to the thickness or density of the target, similarly to the current clinical
practices when using AERC.

The second reason for using SEP plans is related to the use of dose (mGy) as the
only input parameter to the control module. Specific SEP curves can be created for
specifying optimal inflicting dose according to the requirements of each case,
regardless of the system’s capability of adjusting only mAs or both mAs and kVp
settings on-line. In other words, the control module itself is not bounded to the
current capabilities of the sensor IC implementations and it can be employed in any
future design of possibly more advanced features. Furthermore, the SEP curve
itself  can  be  used  as  a  constraint  guideline,  prohibiting  the  use  of  extreme  mAs
and/or kVp settings that could result in excessive doses for the tissue.

In the case of the I-ImaS system, the inflicting dose (mGy) can be measured
either by using a mechanism similar to the modern AERC systems, e.g. an
ionization chamber, or by applying a formal mathematical model for combining the
kVp and mAs settings. Normally, the dose can be calculated with the logarithm of a
combined parameter, linearly with mAs and exponentially with kVp [A03]:
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0,11,11 )()(log,:}{ CmAskVpCmAskVpfmGyRx   [Eq.5-1]

The degree of the exponent ( ) for kVp is normally between 2 and 4, but exact
assessment of its value has to be made directly on the specific X-ray system. The
first option requires that a dose measurement module has to be embedded in the
current sensor IC design, while the second option requires extensive exposure tests
on the final geometry and X-ray source of the I-ImaS prototype. In any case, the
initial “external” exposure settings kVp and mAs are converted into one combined
mGy value that is used as input for the control module.

It should be noted that the efficiency of the final system is closely related to the
overall inflicting dose to the patient and not the individual exposure levels for every
local section of tissue. This means that, although the exposure level can reach the
highest acceptable dose at a specific region of the underlying tissue (e.g. for dense
breast or thick tissue areas), the increased exposure level is applied only in these
regions and not uniformly throughout the entire breast. Therefore, the percentage
of saved dose is closely related to the difference of exposure levels between the
first “scout” scan and the second “adaptive” scan of the X-ray beam. The level of
the “scout” scan, which is applied throughout the scanning area, should be kept at
the minimum possible dose and at the same time provide well-defined textural
features for the image processing module. Subsequently, improvement in the
feature extraction stage at minimal saturation levels could provide additional
savings in the inflicting dose during the second “adaptive” scan, regardless of the
efficiency or sophistication of the control module itself.

5.2  Operational profiles

The behavior and operational conditions of the final controller has to be defined
in detail, in order to avoid poor results and inconsistencies. Additionally, these
formal set of specifications can be used as guidelines for the main task of the
design itself. For these reasons, three typical operational profiles can be defined:

OOP: Optimal Operational Profile

ORP: Optimal Response Profile

OCP: Optimal Control Profile

The Optimal Operational Profile (OOP) contains a set of typical constraints for
nominal behavior of the system. Essentially, these are the conditions under which
the system would operate as expected and would function in an optimal way. The
control design for I-ImaS incorporates the extraction and combination of several
textural features directly from the resulting image after the first “scout” scan.
Therefore, the OOP should take into account and identify the exposure conditions,
under which these textural features present the required information content in an
acceptable level of quality. Given the set of textural features that will be actually
used in the final system, the OOP can use the response curves of each of these
features against exposure (dose), in order to identify operational ranges under
which these specific features present the best information content quality.
Normally, this means that the dose ranges that have to be identified are the ones
where these features illustrate consistent and well-defined behavior against dose.
For  example,  a  feature  function  that  is  “flat”  against  various  levels  of  dose  is  not
very useful as a control parameter, while another one that is almost linear with non-
zero slope could be used instead. If all these features are related directly or
indirectly to the current dynamic range of the grayscale, then other global and
more general measurements can be used instead. In the case of first-order
grayscale statistics, the dynamic grayscale range, i.e. grayscale utilization (%), can
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be used as a suggestive measurement for the inherent quality of all the extracted
textural features, instead of using their individual response curves. Thus, the OOP
could defined the dose ranges under which the grayscale utilization is for example
at least 95%, subsequently providing well-defined textural features measurements.

The Optimal Response Profile (ORP) is a formal definition of the optimal
behavior of the system itself. In the case of I-ImaS, this is a detailed definition of the
property that has to be optimized during the control procedure, i.e. best image
quality for minimal dose. The incorporation of two, essentially conflicting,
optimality conditions can be realized by combining them into one quantity.
Generally, this combination can be implemented using any linear or non-linear
functional formulation, but in most cases the simplest way to do this is by
converting them into a ratio or into a weighted average. The first option is normally
used when the ratio can be directly used as an assessment factor (e.g. a plot of
quality versus dose), while the second option is normally used in cases where the
resulting quantity is to be used in another subsequent processing stage, like in a
control model. Therefore, the second option is the one that is best fit for the design
of the control module. The exact form of the weighted average, i.e. the values of
the weights applied on “image quality” and on “dose”, can be defined according to
the specifications and policy priorities of the system.

Finally, the Optimal Control Profile (OCP) defines the way that the controller is
expected to function, i.e. optimize the target quantity while at the same time
satisfying certain additional constraints. If the target quantity is the result of a
combination of several factors, as suggested by the previous description for the
ORP, then the behavioral plan for the controller defines the way that the controller
is expected to optimize this quantity while satisfying certain constraints. In the case
of  I-ImaS,  the  combined  “image  quality  versus  dose”  property  is  expected  to  be
maximized in the second “adaptive” scan of the X-ray beam, provided that the
beam’s settings can be adjusted by calculating appropriate feedback for
adjustments and provided that these adjustments to the beam result in acceptable
dose levels for the current tissue area. Thus, the OCP for the final I-ImaS system
could contain a formal definition of the adaptive strategy and calculation of the
feedback, using the current input paraneters (kVp/mAs or mGy) and the current
control set (textural features values).

6.  Controller System Design

The design of an intelligent control module incorporates numerous fields of
expertise, including hardware design and implementation, digital filter design,
stability study, feedback design and numerical optimization. This section deals with
the design issues related mostly to the inherent “logic” of the controller in the form
of embedded and/or off-chip software, which is essentially the “heart” of the
control module of the system.

Figure 6-1 illustrates the top-level control flow of a typical modern X-ray layout
for clinical applications, using AERC as a means of automatic exposure control. The
human operator selects a certain “mode” of operation according to the patient’s
physical characteristics, including target thickness and tissue type, the saturation in
optical density is calculated indirectly using a typical sensor, like an ionization
chamber, directly behind the target area, and a simple triggering mechanism uses
the  sensor  output  to  establish  the  precise  time of  X-ray  beam cutoff,  in  order  to
obtain an X-ray image of expected quality (contrast).
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Figure 6-1: AERC model: The external operator sets the initial exposure “mode”
using his/hers experience and an automatic triggering mechanism is
used as a cutoff switch for the X-ray beam. [A01].

The novel approach of the I-ImaS system comprises from the fact that the image
quality evaluation, as well as the adaptive control mechanism, are implemented as
embedded modules within the control loop. Therefore, the new system is a closed-
loop automatic control model for on-line adaptive X-ray beam driving, using the
content of the X-ray image itself as indicators of the resulting quality. Figure 6-2
illustrates the top-level control flow of the closed-loop system, including some
details about the intermediate stages of textural feature extraction in the image
processing module.
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Figure 6-2: I-ImaS model: The external operator is responsible only for monitoring
and verification purposes. The I-ImaS system uses automatic image
analysis procedures to acquire the current image quality and decides
on-line about appropriate adjustments of the X-ray beam during the
line-scanning. [A01].

According to the description and constraints of the design task already
presented in section 5, the final control flow design can be implemented as follows:

1. The first “scout” beam scans the current tissue area, using fixed kVp and
mAs settings

2. The current kVp/mAs are converted into mGy value using a mathematical
model

3. The image processing module extracts specific textural features from the
resulting image

4. The current dose and textural features values are used to calculate a quality
index

5. A generic strategy is  used to decide how a new maximal  quality index can
be obtained

6. The control decision is applied to a formal control model to calculate the
current feedback

7. The feedback is adjusted and corrected according to optimality constraints
8. The final feedback is sent to the X-ray source controller before the next

“adaptive” scan

9. The X-ray source controller uses feedback from the controller to adjust the
beam

10. The second “adapted” beam scans the current tissue area, using adjusted
kVp/mAs

All stages from 1 to 3 have been described in detail in previous activity reports and
deliverables [A03], while stages 8 to 10 are presented here for purposes of
completeness for the overall design.

This section describes thoroughly stages 4 to 7, which constitute the bulk of the
control and adaptive mechanism of the I-ImaS system. A generic control model is
defined in subsection 6.1 and three levels of sophistications are presented in
mathematical form. Subsection 6.2 investigates possible implementations of these
sophistication levels, as well as limitations of the current sensor IC. Finally,
subsection 6.3 contains a number of suggestive improvements of the current
control design, including options for more advanced textural feature extractors,
iterative and recursive control loops, as well as neural and fuzzy control modules.

6.1  Generic controller design

The control module in the I-ImaS system can be described in pure mathematical
form using state-space description through dynamic equations. The state-space
description is generalized method for describing dynamic systems in digital signal
processing and automatic control [A04]. In contrast to the traditional description
using input-output models, the state-variables embodies a detailed description of
the internal properties of the system, including linear or non-linear associations
between the input and the output, as well as dynamic transitions of the internal
“state” of the system that is not available in a classic “black-box” approach.
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This section describes three cascaded approaches for the description of the I-
ImaS adaptive control, from the most generic to the most restricted version, using
the general mathematical model with gradients (6.1.1), the general model with no
gradients (6.2.1) and the linear version with no gradients (6.1.3).

6.1.1  Full state-space description

The state-space description of dynamic systems is a modern, very powerful way
of describing the behavior of complex dynamic systems through the introduction
of state-variables. The state-variables are a set of internal quantitative attributes of
the system, which incorporate and realize the system’s behavior under certain
conditions. Although an input-output model can describe the characteristic
response of a system, stability and consistency can only be evaluated analytically if
the internal structure and functionality of the system is described in the same level
of detail. Generally, the state-variables can contain a number of properties in the
form of internal variables, which are introduced as functional parameters within the
dynamic equations of the system. In other words, if the output is dependent to
properties other than the input, e.g. the system’s internal “state”, then these
associations can be described through a state-space description.

The general state-space description is incorporated in a system of two dynamic
equations, illustrating the functional associations between the input, the output and
the internal state-variables:

ttutxhty

ttutxf
t
tx

,)(,)()(

,)(,)()(
[Eq.6-1a/b]

In Eq.6-1a/b, u(t) represents the vector containing all the external inputs to the
system, y(t) represents the vector containing all the outputs, x(t) is the internal
state-variables vector and (t) is a general spatial or time parameter for non-
stationary systems. The first dynamic equation (Eq.6-1a) describes the dependence
of the gradient of the state-variables against time- or space-transitions, while the
second dynamic equation (Eq.6-1b) describes the association of the output with
both input vector and state-variables. Functions f(.) and h(.) denote general linear
or non-linear models for calculating the associated quantities, thus embodying a
very powerful and unified way of describing any type of processing, from simple
linear transformations to complex neural or fuzzy decision strategies.

When there is the need for a closed-loop system, i.e. the calculation of some
feedback in order to apply some on-line adaptive optimization for the resulting
output, an additional equation can be added to the system:

ttutxgtu ,)(,)()(~ [Eq.6-1c]

In Eq.6-1c, g(.) denotes a generic functional model for calculating the next input
vector, not only by the current input and time- or space-parameter, but using the
internal state-variables vector as well. This essentially means that part of the
system’s internal “state” is used as additional input, in order to “guide” the system
towards an intended behavior, i.e. as “feedback”. Feedback loops are very common
in automatic control and they are usually incorporated into a system in order to
provide on-line control and/or stabilization [A05].
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The implementation of generic non-linear functions in place of f(.), h(.) and g(.)
in the previous dynamic equations makes the analytical description of such
systems extremely difficult, if not impossible, in practice. If a system or a control
model is exhibits a fairly complex behavioral plan that can not be described in a
some simpler way, then the design of the system introduces some heuristic
optimization approach, usually named as “training” phase, in order to achieve a
pre-defined behavior using some generic modules (e.g. a neural network or an SVM
classifier). A simpler and more analytical approach is to approximate the target
model with a linear realization and use standard well-formulated methods for
investigating its requirements, including stabilization and feedback design. If the
system does not permit on-line calculation of gradients due to limited resources or
samples, the first dynamic equation (Eq.6-1a) is usually omitted from the model.
This later approach is described briefly in the following section.

6.1.2  Restricted state-space description

In the current design of the first I-ImaS prototype, system’s specifications
suggest that the first “scout” scan over a specific tissue area is the only source of
input data for deciding the amount of adjustments in exposure settings before the
second “adapted” beam scans the same area. Therefore, only one input “sample” is
available for the control mechanism when calculating the feedback for the second
phase of each step.

In the case of I-ImaS line-scanning procedure, the main transitional factor is the
input itself, i.e. the exposure settings, either kVp/mAs pairs ot mGy single values.
Since the system is generally considered stationary, i.e. not varying statistically
over time, the on-line calculation of gradients for the state-variables vector requires
several instances (calculations) of this vector at different input settings. This means
that, in order to calculate the local transitions of extracted textural features, several
instances  of  these  features  would  have  to  be  calculated  on  the  same tissue  area,
using slightly different exposure parameters. The current I-ImaS design for sensor
IC does not permit varying exposure parameters within the same “scout” scan,
therefore it is not possible to apply this mechanism for true gradient calculations in
the general case. However, such procedure could be implemented in practice if a
generic transition model is available, in the form of “template” transition surface, or
if a simple derivative version of can be calculated analytically from the output
equation (Eq.6-1b).

If the dynamic system of equations is reduced to a non-differential version as
described above, the new “restricted” implementation of the system can be
described simply by omitting Eq.6-1a from the mathematical model:

ttutxhty ,)(,)()( [Eq.6-2b]

ttutxgtu ,)(,)()(~ [Eq.6-2c]

Similarly to the description of the generic system of section 6.1.1, Eq.6-2b
describes the output of the system and Eq.6-2c describes the feedback.

6.1.3  Restricted linear state-space description

In section 6.1.1, the generic mathematical formulation of the dynamic model was
described in detail. However, as mentioned earlier, an analytical form for functionals
f(.), h(.) and g(.) may not be available due to the nature or complexity of the
corresponding system modules that implement them. Furthermore, even when
such an analytical form is available, the processing time required to calculate them



I-ImaS / Workpackage 3 – Deliverable No D.9 (Feb.2005)

– 21 –

within the system’s main loop may be too expensive or impossible to realize in
practice. In the case of I-ImaS, the time-critical nature of the line-scanning
procedure makes the choice of these intermediate modules extremely decisive
about the success of the system in practice.

A simple and usually adequate implementation solution for time-critical
applications is the incorporation of pure linear functions in place of f(.), h(.) and
g(.). In this case, the dynamic equations for the new system are reduced to linear
realizations [A04]:
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[Eq.6-3a/b]

Equation  Eq.6-3c  describes  the  most  common  form  of  feedback,  i.e.  the
introduction of the state-variables vector in a weighted average along with the
current input.

)()()(~ txKtutu [Eq.6-3c]

The multiplier K,  which  is  a  simple  constant  or  a  full  vector  depending  on  the
dimensions of x(t), can be calculated analytically in order to obtain stability and
convergence for the final system [A05].

In equations Eq.6-3a/b, the multipliers A, B, C, and D are constant vectors or
matrices that fully characterize the system’s behavior in terms of stability and
output calculations. The analytical solution of the system can be formulated as
follows:

t

t
duBttxtttx

0

)()()()()( 00  [Eq.6-4a]

where (t) is the solution of the homogeneous equation, i.e.:
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  [Eq.6-4b]

If derivatives of x(t) higher than first-order are required, then additional state-
variables are introduced in a cascaded derivative scheme, thus the final system
includes more state-variables but only first-order derivatives. However, if
polynomial realizations of f(.), h(.) and g(.) are to be used instead of first-order
(pure linear) formulations, the analytical solution of such systems becomes much
more complex and difficult to evaluate in practice, as in the general case of non-
linear models.

The linear state-space description of a control system can be easily converted
into a typical input/output equivalent description, using a Laplace transformation
of the equations Eq.6-3a/b and calculating the response:
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6.2  Options for final controller design

The models that were established in the previous sections provide a solid
theoretical base for choosing the appropriate model design for the I-ImaS control
module. In order to establish an analytical implementation of a custom model, it is
essential that decisive choices are clear regarding the nature and structuring of the
model’s elements.

As mentioned earlier, the time-critical characteristic of the I-ImaS line-scanning
procedure  and  the  current  design  of  the  sensor  IC  leads  to  a  minimal
implementation for the control module, essentially a pure linear control model
similar to the one proposed in section 6.1.3. Furthermore, the introduction of SEP
plans for the input (see section 5.1) and a linear function for “image quality versus
dose” in the form of weighted average as the output (see section 5.2), lead to a 1-D
input/output top-level model for the controller, using the extracted textural
features as the internal state-variables vector of the system.

In this section, three levels of sophistication and complexity for the adaptive
control are presented in the following sections. In 6.2.1, a very simple approach of
single feature usage is presented and analytical results on the system’s
performance are illustrated accordingly. In 6.2.2, the simple model is extended to
include more than one textural feature in the state-variables vector, while in 6.3.3 a
complete linear model is introduced, incorporating prior knowledge from expert’s
evaluation regarding the general performance of the system under certain
conditions of exposure.

6.2.1  “Simplistic” linear model

When only one textural feature is used as input for a pure linear control model, a
“simplistic” prototype algorithm is produced for the adaptive exposure mechanism
of the system. The detailed description of this model and results from its
application on the prototype mammographic image database (DB3) are presented
in section 6.3.

6.2.2  Extended linear model

Extending the notion and structure of the system that was presented in the
previous section, a more complete model can be proposed for using more than one
textural feature in the system’s state-variables vector. This extension requires a
more methodical approach when calculating the mathematical formulation of the
final system.

During the first “scout” scan, the image processing module acquires the textural
feature values from the primal image of the current tissue area and, subsequently,
these feature values are forwarded to an embedded “image quality estimator”,
along with the current exposure settings. This estimator produces an automatic
quality assessment of the current image sample and, given the required minimum
level of quality in the resulting final image, the main control module calculates the
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necessary adjustments of the exposure parameters, which are required to achieve
the specified level of quality (Figure 6-2). Since this procedure is to be completed
within one step, i.e. not using iterative optimization techniques, the solution must
be calculated analytically using the inverse solutions of the (linear) control model.

The output (target) of the first stage in the control loop is the automatic quality
assessment of the current image sample after the first “scout” scan. Since the
transition between the current quality index Qn and the required (optimized)
quality index Q0 includes the transition between the intermediate states of the
exposure settings, i.e. the system’s input, the mathematical form of this transition
can be expressed as:
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In Eq.6-4, the integral part in the right side denotes the transition of the quality
index as the exposure parameters change. Normally, the calculation of the
derivative requires either an analytical formula for the quality index Qn or  at  least
(dim+1) samples around vn in order to make an arithmetic approximation, where
(dim) is the number of individual inputs to the system. Even if the input includes
only dose (mGy) as suggested in section 5.1, the calculation of the derivative still
requires one additional sample for a linear interpolation, which in the case of the
current I-ImaS sensor IC will not be available. Therefore, the analytical approach is
the only choice, provided that the formula for the quality index Qn permits rapid
calculations of the integral for on-chip implementation.

A simple approach, already suggested by the control model of section 6.2.1, is
the definition of the quality index as a simple linear transformation of the available
textural feature values:

)( nnn xCyQ [Eq.6-5a]

In case of fixed linear coefficients, i.e. a weighted average formula, the general
form of Eq.6-5a becomes:

0CxCyQ nXnn [Eq.6-5b]

where CX is the slope and C0 is the offset of the linear translation.

This type of transformation suggests a pure linear model for the transition plane
in the quality index space, which might not be correct in practice. However, if the
linear regression of Eq.6-5b can approximate the quality index with an acceptable
error, for example by using a Least-Squares-Error criterion for calculating the two
linear coefficients, then the calculation of the integral in Eq.6-4 is trivial:
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In order to acquire the final solution for the calculation of the feedback, i.e. the
difference between vn (current settings) and vn+1 (next settings), the state-variables
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vector xn has to be formulated analytically against the input vn as Eq.6-6 suggests.
In the general case, this may be very difficult due to non-trivial associations
between exposure settings and textural features on the resulting image [A03].
However, if only specific features with linear response curve against exposure level
(dose) are selected for the state-variables vector xn and their analytical form can
be  approximated  in  a  way  similar  to  the  one  applied  for  Eq.6-5a/b,  then  Eq.6-6
becomes a pure linear functional of parameter vn and the final solution can be
expressed as:
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As Eq.6-7b suggests, the final calculation of the feedback, i.e. the adjustment in
exposure settings, is calculated using a very simple formula that includes the
current quality index Qn and the required quality index Q0 as  a  difference.  Of
course, the linear coefficients should be defined in a way that prohibits division by
zero. The simple model presented in section 6.2.1, including only one textural
feature xk as state-variables “vector”, can be easily verified as a restricted case of
this generic formulation.

The last stage of the embedded implementation in the sensor IC requires the
calculation of only one subtraction and one multiplication, provided that the
constant part of the formula in Eq.6-7b has been previously calculated and stored
in a fast lookup table.

6.2.3  Heuristic extended linear model

In section 6.2.2, the control model included only the state-variables vector as a
parameter for calculating the adaptive step towards the intended quality level. In
accordance to the general linear equation Eq.6-3b, the full model should include
the current input as a factor when calculating the required adjustment for the
current exposure settings.

Using the formulation and notion already presented in Eq.6-4 and Eq.6-5a, the
full control model can be described as follows:

1,)()( DCnDnCnn wwvDwxCwyQ [Eq.6-8a]

where D(vn) is a functional model for translating the current input into contribution
to the quality index. The wC and wD factors are weighting coefficients for
regularizing the amount of contribution to the quality index between the state-
variables vector (internal state) and the current input (exposure settings – dose).
Thus, they  should  be  selected  in  a  way  that  incorporates  the  priorities  policy
regarding the quality of the resulting image versus the importance of savings in
patient’s dose. Note that the input vn is not denoted as vector, assuming that dose
(mGy) is used instead of kVp/mAs, according to the application of SEP plans
already described in section 5.1.
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In case of a linear transform for both C(.) and D(.), i.e. a weighted average
formula, the general form of Eq.6-8a becomes:

00 DvDwCxCwyQ nVDnXCnn [Eq.6-8b]

where CX and DV are  the  slopes,  and C0 and D0 are  the  offsets  of  the  linear
regression functions for the two contributing factors.

As already mentioned in the previous section, this type of transformation
suggests a pure linear model for the transition plane in the quality index space,
which might not be correct in practice.  However,  if  the weighted sum of the two
linear regression functions of Eq.6-8b can approximate the quality index with an
acceptable error, for example by using a Least-Squares-Error criterion for both,
then the calculation of the integral in Eq.6-4 becomes:
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The integral part in the right side of Eq.6-9 denotes the total contribution of the
two factors, i.e. the state-variables vector and the current input, to the quality
index, when changing the exposure settings from vn to vn+1 by applying some
feedback. The linear form of the weighted average formula inside the integral gives
a simple analytical solution for each part:
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The top part of Eq.6-10 denotes the analytical calculation of the derivative of the
weighted sum inside the integral of Eq.6-9. The derivative of the weighted sum is
converted into a weighted sum of the derivatives of the two contributing factors in
the right part of Eq.6-9, thus each new derivative is calculated individually in the
formulas following the top part of Eq.6-10.

The full solution of Eq.6-10 assumes nothing regarding the parameters CX and DV
that can generally be non-constant parameters, i.e. varying according to the
current exposure settings. Similar generalizations (omitted in Eq.6-10) could also be
made for the offset parameters C0 and D0 if the activation plan of the control
module is implemented as an ensemble of localized linear responses. In the
simplest case, where the controller’s response function is constituted by only one
linear translation, then all the coefficients of the two linear regressions in Eq.6-10
can be regarded as simple constant vectors (for CX and C0) or values (for DV and
D0), and some partial derivatives in Eq.6-10 become zero:
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The derivative of the state-variables vector against the current input parameter
in the above Eq.6-11 denotes the transition of the values of the available textural
features as the X-ray exposure changes. As already discussed in Eq.6-4, this
derivative can be calculated either by using more than one samples around the
current “state” and perform an arithmetic approximation of the local slope, or by
using some analytical form of the derivative function based on a previous
mathematical formulation for the state-variables vector elements.

As in Eq.6-6, this type of transformation suggests a pure linear model for the
transition plane in the quality index space, which might not be correct in practice.
However, if the linear regression of Eq.6-11 can approximate the quality index with
an acceptable error, for example by using a Least-Squares-Error criterion for
calculating the linear regression coefficients, then the calculation of the integral in
Eq.6-9, using Eq.10 and Eq6-11, becomes trivial:
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Similarly to the model proposed in the previous section, in order to acquire the
final solution for the calculation of the feedback, i.e. the difference between vn

(current settings) and vn+1 (next settings), the state-variables vector xn has  to  be
formulated analytically against the input vn as Eq.6-12 suggests. In the general case,
this may be very difficult due to non-trivial associations between exposure settings
and textural features on the resulting image. However, if only specific features with
linear response curve against exposure level (dose) are selected for the state-
variables vector xn and their analytical form can be approximated in a way similar
to the one applied for Eq.6-8a/b, then Eq.6-12 becomes a pure linear functional of
parameter vn and the final solution can be expressed as:
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As Eq.6-13b suggests, the final calculation of the feedback, i.e. the adjustment in
exposure settings, is calculated using a very simple formula that includes the
current quality index Qn and the required quality index Q0 as  a  difference.  Of
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course, the linear coefficients should be defined in a way that prohibits division by
zero. The simple model presented in section 6.2.1, including only one textural
feature xk as state-variables “vector”, as well as its first extension, presented in
section 6.2.2, can be easily verified as restricted cases of this generic formulation.

The physical meaning and importance of introducing current input, as a second
contributing factor when calculating the feedback, is vital. The second factor of the
right  part  of  Eq.6-8a  can  be  explained  as  the  application  of  “a-priori”  knowledge
about the transition plane in the quality index space, as the exposure settings
change. This means that if one or more human experts can evaluate the X-ray
machine’s performance under normal conditions, using a typical target (phantom
or real tissue) and applying the complete envelope of the exposure settings, then
their average quality assessment on the resulting images can be formulated into a
“template”  model.  This  template  can  be  used as  additional  feed  to  the  system,  in
accordance to the discussion in section 6.1.2 regarding methods of designing the
feedback (Eq6-2c). For I-ImaS, the evaluation sheets, already available by
mammography and dental experts, can be exploited in a way that the control
module uses the “template” model as a global quantitative guideline, which is
combined with the extracted textural features of the current tissue area, in order to
estimate the optimal adjustment step for the exposure parameters. In practice, this
means that if a linear regression model can be calculated for the experts’ average
quality index against exposure (dose), then this model can be embedded directly
into the controller’s logic as additional “intelligence”, according to the solution
presented in Eq.6-13b.

The last stage of the embedded implementation in the sensor IC requires the
calculation of only one subtraction and one multiplication, provided that the
constant part of the formula in Eq.6-13b has been previously calculated and stored
in a fast lookup table.

6.3  Implementation and results of the “simplistic” linear model

The main objective of the simplistic linear steering algorithm is to control the
exposure parameters adaptively over the image in order to optimize the image
quality compared to the dose.

We have considered several alternative strategies for steering algorithms. These
considerations have been made based on our experience with different image
features and by inspecting available images with abnormalities.

The following bullets detail some of the choices we have considered, and a brief
evaluation of each possibility.

(a) Ensure sufficient grey tone variation within a region of suitable size

This  idea  was  based  on  how  our  eye  works.  A  human  eye  can  typically
distinguish 200-300 grey levels. Thus, an algorithm which ensures such a variation
within any suitable region would ensure that sufficient information was present in
the image. Typically this could be implemented by for instance using the standard
deviation within local regions, and ensuring that this measure was above a certain
level.

Used alone, this feature has several problems. First, it would dramatically
overexpose regions that actually were homogenous, as it would strive to achieve
an intra-region variation that actually is not present. Secondly, if a region contains
both dense and non-dense tissue, the region will typically be underexposed. This
happens as the grey tone histogram would contain two peaks, and it is difficult to
reliably measure the individual peak widths in multi-peak intermixed greyscale
histograms. Figure 6-3 shows a tissue sample (U01) from DB3 together with the
standard deviation values measured within each image region. The figure shows
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how the standard deviation corresponds to high gradient transition zones like
background- foreground and from non-dense tissue to dense masses.

(b)  Use of skewness for detecting micro-calcifications

Previous work suggested that local distribution skewness may indicate micro-
calcifications (see deliverable D8). However, when using the sensor size as region
of interest no correlation between the distribution skewness and areas with micro-
calcification was found in images from DB3, see Figure 6-5. Secondly, micro-
calcifications are only one of many abnormal features and therefore additional
features would be needed.

(c)  Use the mean level to control exposure

Another choice is to let the exposure level be proportional to the mean level of
any individual region in the scout scan. We are thus basically making the exposure
level proportional to the average density of any region. Tumours may be denser
than other tissue, and will thus get more exposure. However, the mean level has the
some of the same problems as standard deviation with regions containing both
dense and non-dense tissue. In such regions, an incorrect estimate can be made
resulting in over- or underexposure.

(d)  Use a robust estimate of maximum and minimum to control exposure.

This is equivalent to use the scout scan to predict the exposure parameters
necessary to avoid under- and overexposure. This strategy has a number of
advantages. It will adjust the exposure to make it proportional with the density of
the underlying tissue. Thus, it shares the property of the mean by increasing the
exposure in dense masses. However, unlike the mean, it will perform well also
within regions that contain both dense and non-dense tissue, like blood vessels and
possibly also regions containing micro-calcifications.

In order to get a robust estimate of the maximum and minimum value within a
region we have chosen to use the 5 and 95 percentile of the greyscale histogram
within each region of interest.  Figure 6-3 shows the tissue image U01 from
database DB3 with abnormal features marked by radiologists (left).The radiologists
recognized 1) as a mass element, 2) as an asymmetric density element and some of
the radiologists recognized micro-calcifications in the region 3).

               1)          2)                      3)

Figure 6-3: Tissue image U01 from database DB3 with abnormal features marked
by radiologists (left). The standard deviation of the same tissue image
(right) using sensor sized regions.
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Figure  6-4:  The  region  distribution  skewness  of  tissue  image  U01  (left)  and  95
percentile (right).

We have chosen to implement the latter strategy with an additional layer which
makes a distinction between foreground and background. In the foreground/object
the mentioned min/max algorithm is used, while in the background a fixed
exposure is used. The strategy may seem overly simple, but behaves well in actual
experiments, and seems to detect abnormal tissue as well as adjust exposure
accordingly. This detection occurs as abnormal tissue tends to include some dense
tissue, which is detected and results in increased exposure.

6.3.1  Prediction of correct mAs value

Our algorithm strategy is to use the scout scan to avoid under- and
overexposure  in  the  final  image.  In  order  to  do  this,  we  need  to  answer  the
following questions:

What – exactly – is meant by over- and underexposure?

Having  to  choose  between  over-  and  underexposure,  what  will  we
choose?

How  can  we  use  the  information  from  the  scout  scan  to  control  the
second scan?

(a)  Defining under- and overexposure

We have chosen to define overexposure as an exposure setting that will make
the sensor saturate. In a real world setting, we do not believe that this will be a
problem, so we will not elaborate further on the concept. Moreover, if the scout
scan has already overexposed the region, the only possible feedback to the second
scan is no additional exposure.

Underexposure is more challenging to define, but is also the most interesting
concept. We are interested in using the lowest possible exposure that will avoid
underexposure. More theoretical studies have used a variation over the signal-to-
noise ratio, as the contrast-to-noise ratio posed by Huda et al [H01].This definition
is however not immediately applicable in our case, as this moves the question to
defining what “signal” means – as seen by a radiologist.

The test image database does not contain images with sufficient span in quality
as evaluated by a radiologist. This has made it difficult to make any data-founded
interpretation of “signal”. This lack of data has made us choose a simple definition
of underexposure. We have chosen to define underexposure as the mAs value that
makes the grey level corresponding to the 95 percentile of the data contained in
the second scan larger than a predefined threshold. The exact threshold needs to
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be determined empirically by asking radiologists to evaluate images with a suitable
range of exposure from the actual sensor.

(b)  Choosing between under- and overexposure

This situation will only occur in regions that contain two different materials of
significantly different density. We believe that this will be a very rare case in real
world scenarios, given a suitable analogue gain setting.

However, in the mammography case, the dense tissues are typically the most
interesting, as they typically can be tumours. We have therefore chosen in such
cases to overexpose the image.

A consequence of this decision is that the robust regional minimum value is
ignored, as we choose to make no efforts to avoid overexposure.

(c)  Using data from the scout scan to predict exposure

The algorithm should use the scout scan to predict exposure. In order to do this,
the  algorithm  needs  a  model  of  how  the  sensor  behaves  for  varying  mAs  values
and optical densities.

More precisely, it will need to use the observed grey values in the scout scan to
predict the correct exposure. A sensor intensity response model for different mAs
and kVp settings has been developed as part of the visualisation module. This
model M allows us, given that we have observed grey level G with mAs setting D,
to predict what the grey level G’ would be if the same object had been observed
with mAs setting D’. In mathematical terms:

G’ = M(G, D, D’)     [Eq.6-14]

The model developed in the visualisation module is linear. In this setting, let M(.)
be the sensor model, G0 be the grey levels observed in the scout scan, and D0 be
the dose for the scout scan. Let further G1 be the grey levels actually observed in
the second scan using the dose D1,  and G1’ be the predicted grey levels observed
in the second scan. G1 is unknown at the time of the scout scan, while D1 is to be
predicted.

Let  P95(.)  be  a  function  calculating  the  95  percentile  of  any  grey  levels
observed.

As discussed in sections above, correct exposure is equivalent to ensuring
P95(G1) < T where T has been determined empirically. As the model developed in
the visualisation module is linear it is reasonable to assume that

P95(G’) = M(P95(G), D, D’)    [Eq.6-15]

as the ordering of the grey levels are maintained in a linear transform. Sensor noise
may affect this ordering, but as Figure  shows, the assumption seems reasonable.

Given this assumption, we are thus interested in finding a D1 such that

P(G1’) = M(P95(G0), D0, D1) < T.   [Eq.6-16]

We can only choose between five different D1 values. Determining the correct D1
value is thus done through evaluating all possible D1 values, and selecting the
minimum D1 dosage that still fulfils the equation above. This selection needs to be
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made beforehand for all possible values of P95(G0). However, this will be a one-
time calibration job. This calibration is detailed in section 9.2.1.
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Figure  6-5:  Value  of  95  percentile  as  function  of  mAs  for  U01  image,  28  kVp.
Individual lines show measured 95 percentile values for individual regions
in  the  image.  Vertical  green  lines  indicate  the  mAs  values  found.   The
noisy region in the bottom of the original image has been excluded.

6.3.2  Actual linear steering algorithm

This section details the actual steering algorithm. First, an optional pre-
processing step is run. The goal of this step is to differentiate between
foreground/object and background regions.

IF  ( (ROI) > BackgroundParameter *  _Background  )  AND  (  (ROI) >
(Background) +BackgroundParameter*  (Background) )

THEN Foreground state =1;
ELSE (continue Background state)
ENDIF

In the background state, the lowest exposure setting available is used for the
second scan.

In the foreground state, the 95 percentile is used to control exposure. Let
P95(G0) represent the 95 percentile value of the scout scan data in a region. Let
further ADD-p represent a function indicating that an exposure should be used
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equivalent to p percent of the maximum second scan exposure. TGi are thresholds
established by the routine discussed in section 9.2.1.

IF ( Foreground)
IF P95(G0) < TG1 THEN ADD-0
ELSEIF P95(G0) < TG2 THEN ADD-20
ELSEIF P95(G0) < TG4 THEN ADD-40
ELSEIF P95(G0) < TG4 THEN ADD-60
ELSEIF P95(G0) < TG5 THEN ADD-80
ELSE ADD-100;
ENDIF

If  the first  scan line is  not imaging the background the one state model  should
be used, meaning that there is no differencing between background and
foreground and the 95 percentile steering parameter is used all over the image.

6.3.3  Results using the simplistic linear steering model

The algorithm has been tested on both mammography and cephalograms
images. The images were regulated using the linear steering algorithm applying 6
possible exposure levels for regulating the second scan. The control-parameter
vector (Ti) was estimated using the images of each tissue from database DB3 and
the cephalograms images from DB4.

The regulated images of each breast tissue and the cephalogram phantom are
shown in Figures 6-6 to 6-15. The figures also show the mAs images representing
the mAs value applied in the different image regions. In the blue areas no addition
al exposure is added. The regulated images corrected with the visualization
algorithm are also shown together with the reference image. The reference image
corresponds to the image taken with highest exposure parameters uniformly over
the image.

Figure 6-6 shows how the dense areas have received high additional exposure
while background and non-dense tissue have received zero or low additional
exposure. For tissue U01 shown in Figure 6-6 the dense areas with increased
exposure correspond well with the mass element, the asymmetric density element
and the micro-calcification area recognized by the radiologists.

Figure 6-6: Tissue U01 mAs image (left) and regulated image (right).
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Figure 6-7: Tissue U01 reference image (left) and visual corrected regulated image
(right).

For tissue sample U02 no abnormal elements were found by the radiologists.
Figure 6-8 shows the regulated image and the corresponding mAs image.
Additional exposure is given in the dense areas as expected, even though no
abnormal features are present.

Figure 6-8: Tissue U02 mAs image (left) and regulated image (right).

Figure 6-9: Tissue U02 reference image (left) and visual corrected regulated image
(right).
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For tissue sample U03 an asymmetric density element was recognized by the
radiologists. This area has high intensity values, and received additional exposure.
However, some other dense tissue with the highest intensity values received the
highest additional exposure, see Figures 6-10 and 6-11.

Figure 6-10: Tissue U03 mAs image (left) and regulated image (right).

Figure 6-11: Tissue U03 reference image (left) and visual corrected regulated image
(right).

In Figures 6-12 and 6-13 the regulation of  tissue sample U04 is  shown.  For this
sample a mass element and an asymmetric density element were recognized by
the radiologists. In these areas the regulated image has received the highest
additional exposure.
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Figure 6-12: Tissue U04 mAs image (left) and regulated image (right).

Figure 6-13: Tissue U04 reference image (left) and visual corrected regulated
image (right).

The regulated mammography images were evaluated by two experienced
radiologists at Ullevål University hospital. The RIEDS form E was used and the
evaluation scores used were:  -1 as not adequate, 0 as adequate, +1 as good and +2
as excellent. The radiologist evaluated the regulated images and the reference
images without knowing anything about the images. One of the radiologists
evaluated all the regulated and the reference image equally, while the other
radiologist evaluated the regulated image sometimes as good compared to the
reference image as adequate. All the images, both the regulated and the reference
images were evaluated having an overall quality as adequate or good.

The surface dose (mGy) was measured for all images acquired. The surface dose
of the reference image and the regulated image are shown in Table 6-1.

The development and the evaluation of the steering algorithm are based mainly
on the tissue images in database DB3 which consist of a limited number of tissue
samples. Consequently, there is some uncertainty considering the robustness of the
algorithm.
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Tissue Dose regulated image Dose reference image Dose savings
(mGy) (mGy) (%)

U01 2,3 7,7 70
U02 1,8 5,0 64
U03 38,8 65,3 41
U04 53,3 79,6 33

Table 6-1: Surface dose of the reference image compared to the regulated image
and the dose savings of the regulated images.

In  Figures  6-14  and  6-15  the  regulation  of  the  Cephalograms  is  shown.  The
steering algorithm works as expected and the visualized regulated image seems
very similar to the reference image, however captured at a lower dose.

Figure 6-14: Cephalograms mAs image (left) and regulated image (right).

Figure 6-15: Cephalograms reference image (left) and visual corrected regulated
image (right).

6.4  Future prospects
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In this section, additional options for improving the efficiency and level of
sophistication for the sensor IC intelligence are presented. Short descriptions are
provided for possible use and advantages of improved textural feature functions
(6.3.1), on-chip image restoration (6.3.2), iterative quality optimization and
feedback (6.3.3), causal models for recursive filtering (6.3.4), and advanced non-
linear control modules (6.3.5). In the scope of I-ImaS, some of these options are
related to medium-term improvements of the current specifications and design of
the system, while others may be options for future or alternative designs of the
sensor IC functionality.

6.4.1  Advanced feature extractors – 2nd order statistics

The  image  processing  stage  of  the  control  loop  deals  with  the  extraction  of
specific textural features of the underlying image during the first “scout” scanning
phase. Due to the limited dose and the fixed exposure settings during this phase,
this primal image is expected to exhibit information content of degraded quality, in
terms of both contrast and (possibly) noise. Furthermore, the time-critical
characteristic of the line-scanning procedure and the embedded implementation
prohibits the application of complex, time-consuming functions within the image
processing module. Therefore, the functions used for textural feature extraction
have to be fairly simple and straight-forward, while at the same time very economic
in storage resources.

A very attractive option for future improvements of the current design is the
introduction of new, more efficient, textural feature extractors within the same
image processing framework. Specifically, instead of using only first-order statistics
from the histogram of the current image sample, second-order statistics could also
be used [B01]. Second-order statistics that are based on greylevel co-occurrence
matrices of the image have been applied successfully in a wide range of medical
and geographical applications [B02]. Furthermore, another option similar to these
feature functions is the employment of run-length statistics, proved to be equally
useful and powerful in terms of image texture analysis in medical or other
applications [B03].

The usefulness of both second-order greylevel statistics and run-length statistics
is based on the fact that they exhibit very robust and consistent behavior on
various types of texture. Specifically for medical applications, they are better fit for
recognizing homogeneous areas of tissue than the first-order statistics, while at the
same time they are able to capture information content and discrimination
attributes within the underlying image with much better quality.

The implementation of second-order or run-length statistics requires one
additional level of abstraction within the image processing module, i.e. the
calculation of spatial co-occurrence matrices of the greylevels, before the actual
textural features can be calculated. This is a time-consuming and storage-
demanding task that creates additional requirements for the sensor IC design.
However, modern ASIC options, especially FPGA, could enable the introduction of
similar options with minimal deviations from the design and cost of the current
sensor IC of the prototype I-ImaS system.

6.4.2  Advanced pre-filtering – on-line image restoration

The quality of the extracted textural features is directly related to the quality of
the raw data of the primal image. This means that if the primal image, formulated
by the first “scout” scan can employ a quality level that enables a robust extraction
of content-related information, then the subsequent estimation of the quality and
the required exposure adjustments will be much more efficient.
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The two main factors affecting the quality of the primal X-ray image are the
channel distortion and the cumulative noise factors [B04]. Channel distortion
includes all the degradation effects introduced by the system itself, including the
flat-field correction (black and white), the fixed spatial resolution and the moving
sensor plate. The noise factors include mostly X-ray scattering and sensor
efficiency. Image restoration deals with both these issues by estimating a top-level
model of the channel distortion, in the form of a digital filter, and subsequently
applying a statistically “inverse” filter, in order to cancel or at least limit the effects
of these distortions in the final image [A04].

Section 8.1 describes the issue of image restoration in the context of image post-
processing, i.e. using off-chip computing resources. Generally, the estimation and
application of a detailed and robust image restoration model requires significant
amounts of computing resources due to the complexity of the underlying
algorithms. Therefore, they are usually applied only in post-processing stages,
where the time-critical property is usually not an issue. However, if such an
approach can or has to be realized within the context of the on-line processing, as
for example in audio channel equalization, then the acquisition and pre-processing
stages of the control loop produce incoming data of much better quality. In the
context of I-ImaS, such an on-chip implementation could greatly benefit the
efficiency of the control module itself, as the automatic image quality assessment,
on which the feedback decision is based, would be much more realistic.

6.4.3  Full state-space description – iterative models

As mentioned in sections 6.1.1 and 6.1.2, a realistic derivative estimation of the
transition plane in the quality index space requires several instances (calculations)
of the state-variables vector at different input settings. This means that, in order to
calculate the local transitions of extracted textural features, several instances of
these features would have to be calculated on the same tissue area, using slightly
different exposure parameters. The current I-ImaS design for sensor IC does not
permit varying exposure parameters within the same “scout” scan, as it assumes
constant exposure levels during this phase.

An iterative approach could employ such a design for the sensor IC, providing 2
or 3 different exposures over the same tissue area, as a multi-step “scout” scan.
The different samples or “versions” of the primal image would be used to estimate
the local slope in the transition plane in the quality index space and, subsequently,
the local gradient of the quality index. This way, no external “a priori” knowledge of
the transition plane in the quality index space would be required and a much more
accurate estimation of the required feedback could be calculated.

The same approach could be extended for the second “adapted” scan as well.
Instead of allowing only one step of adjustment, the feedback could be calculated
for a localized quality improvement towards the optimal gradient. Thus, an iterative
quality optimization would produce much more accurate and efficient feedback for
the required exposure level, at the cost of significantly more complicated “scout”
scanning and non-trivial adaptive control calculations.

6.4.4  Causal state-space description – recursive models

The notion of multiple samples or “versions” of the primal image during the first
scout scan and/or during the second “adapted” scan can be extended in a
generalized version of the quality estimation procedure. In practice, this is
equivalent to exploiting the optimization results of the previous N-1 steps to
produce the next step towards the intended purpose. These systems are called
“causal” and their implementation results in recursive processing models.

The Kalman filtering technique is of fundamental importance in linear estimation
theory [C01]. According to Kalman models, a linear state-variable system similar to
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the one introduced in section 6.1.3 can be associated directly with the statistics of
the incoming data. Kalman filtering requires a stochastic model of the quantity to
me estimated, whereas the Wiener filters are totally based on the knowledge of
auto-correlation and cross-correlation matrices of the observed data [A04]. This
means that they provide the means to implement recursive realizations of the
corresponding control filters, not based on the complete or previously known
statistics of the data, but instead using the subsequent observations as the data
arrive sequentially. In the context of the I-ImaS sensor IC, this is equivalent to using
the statistics of the gradually improving primal image samples in order to calculate
the appropriate adjustments as feedback for acquiring an even better primal image
in the next scan.

The employment of Kalman filters in the control loop can be realized either in
the form of one-step predictor for the next state-variables vector or by a direct
association to the estimated image quality. In the first case, the system reduces to
a simple k-tap linear predictor [A06] that estimates the next resulting textural
feature values, which can be applied for a more accurate estimation of the
combination formula for the image quality function (Eq.6-12). In the second case,
the system is a full state-space description, in direct accordance to the state-space
model introduced in section 6.1.3, only not the process is calculated in a recursive
manner.

Either way, the storage requirements of the Kalman filters are lower than Wiener
equivalents, yet the computational complexity may still be prohibiting for
implementing them as embedded on-chip functionality [A06]. However, if such an
approach would be feasible in the context of the current or future designs of the I-
ImaS sensor IC, the necessity of using dual scan could be reassessed, as in this case
the recursive filtering model would essentially exploit the “history” of previous
single scans in order to decide on the next feedback.

6.4.5  Non-linear control – neural & fuzzy models

Thus far, a linear state-space model was assumed for the description of the
control model, incorporating additive linear factors for the current texture feature
values and the current exposure settings for the calculation of the required
feedback. As Fig.6-2 illustrates, the control loop actually includes a two-stage linear
control module, one for estimating the resulting image quality index and one for
translating the difference between quality indexes (current versus required) into
differences between exposure settings (adjustment/feedback).

In practice, many cases require much more complex associations between the
input and the output. If either the textural features response curve versus dose or
the experts’ quality assessment versus dose cannot be approximated with
acceptable error by a linear regression function, the linear state-space description
presented in section 6.1.3 and so on becomes invalid. In this case, a more general
approach is required, similar to the state-space description model presented in
section 6.1.2 (for stationary systems) or the model presented in section 6.1.1 (for
non-stationary systems).

Modern automatic control often needs to exploit current state-of-the-art digital
technology in order to realize extremely complex control patterns. In this case,
linear modules can be substituted by off-chip powerful computing equipment or
even implement some of their functionality on-chip in order to achieve more
“intelligent” response functions. Two of the most common approaches are the
neural networks and the fuzzy controllers.

Embedded neural network controllers [C02], although not very common in
consumer applications, can be implemented in the form of firmware or even in
hardwired solutions, using digital or analog processors. Their performance is
usually related to their size and topology, which means that complex control plans
usually require proportionally complex topologies. Neural networks are hosted in
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programmable storage matrices in the form of weights (digital or analog) and their
on-line functionality is usually a direct “forward-flow” of the incoming data, similar
to a typical filter. The weights of the network are calculated off-line independently
from the actual operation of the system, during a “training” phase that exploits
arbitrary relationships between input and output samples.

Fuzzy controllers [C03] have become increasingly popular during the last
decade, mostly by the introduction of new powerful digital processing modules
that could incorporate combinations of partially linear or window-like activation
functions.  The  most  typical  form  of  fuzzy  control  is  the  design  of  several
operational conditions in the form of an optimal response profile (ORP – see
section 5.2), which implements a detailed top-level state-transition model for the
system, and an optimal  control  profile  (OCP – see section 5.2),  which realizes the
appropriate transitions according to the required behavioral plan. Usually, the fuzzy
controller approach is applied when a detailed behavioral plan is available, e.g.
through a rule-based description from an expert, or when a more time- and
storage-consuming solution (like a neural network) cannot be employed.

Both neural and fuzzy approaches provide the means for implementing highly
sophisticated response to the system, the first by automatically “discovering” the
inherent complex relationships between the input and the output, and the second
by robust and economic realization of a top-level description of a behavioral plan.
Fuzzy controllers are usually more economic in terms of required resources and
speed, mostly because of the simplicity of their internal structure. Embedded
neural network controllers are best suited for applications where there is an
increased level of required fault-tolerance, resilience to noise in the input, as well as
in cases where there is no top-level description of the expert’s knowledge or when
the system itself is highly temporal.

In the context of I-ImaS, a fuzzy or neural controller could easily substitute the
quality index assessment module (Fig.6-2, first stage), as well as the feedback
estimator (Fig.6-2, second stage), into one combined node in the control loop. The
utility  of  such  a  choice  should  be  measured in  relation  to  the  true  efficiency  of  a
simpler linear solution, as well as the accompanying cost in the final system.

7.  Pre-processing phase

The raw data extracted from the detector need to be corrected in order to use
them to extract the interesting textural features needed for image evaluation.

In particular, the data are generally affected by fixed pattern disuniformities
caused by:

photon absorption changes due to fluctuations in the phosphor
thickness and variations in the size of the sensitive region of the
IC, both due to the manufacturing process. The beam projection
geometry can also determine a disuniform photon absorption in
the detector depending on the position in the image;

light collection efficiency disuniformities due to the phosphor
deposition techniques and defects in the coupling with the silicon
sensor;

charge collection efficiency disuniformities due to the IC
manufacturing process;

readout electronics reset level, dark current and gain fluctuations
in the Analog to Digital conversion.
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In an integrating front-end electronics, like the one used by I-ImaS, these
disuniformities can usually be corrected linearly and there is no dependency from
the photon fluency.

The fixed pattern correction can be modeled as following:

X = R/G - (N_0+I_0*t)   [Eq.7-1]

where X is the corrected read out of the pixel, R is the raw data, N_0 the reset
level,  I_0  the  dark  current,  t  the  exposure  time  and  G  the  gain  correction.  The
contribution of N_0 and in particular I_0 is expected to be negligible, while it is still
impossible to determine which will be the order of gain disuniformities.

"Dead" or saturated pixels will also be corrected by calculating the mean of the
closest detector elements.

Other pre-processing algorithms (edge enhancement, histogram equalization,
spline correction) have been tested on digital images acquired with a CCD and an
image plate, but they showed no advantages in order to extract interesting textural
features, and in some cases the results were deteriorated [A01].

8.  Post-processing phase

8.1  Image restoration

As in any image acquisition system, the quality of the input data are expected to
exhibit e certain degree of degradation, mostly due to the design, functionality and
deficiencies of the detecting system, as well as the overall additive noise effects.
Image restoration is concerned with filtering the observed image to minimize the
effects of these degradations, thus resulting in the best approximate of the
theoretically “perfect” image. It is fundamentally different from image
enhancement, in the sense that the later is mostly concerned about the
improvement of any extracted image features, rather than the restoration of image
degradations during the acquisition process [A04].

Figure 8-1: Image restoration block diagram.

The effectiveness of image restoration filters depends on the extent and
accuracy of the knowledge of the degradation process, as well as the filter design
criterion. The most commonly used optimization criterion is the mean square error
of the initially acquired image versus the one predicted by a solid theoretical model
if no degradations were present. Usually, this is achieved by first modeling the true
response of the acquisition system, using a mathematically modeled test pattern
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phantom image, and subsequently using the “inverse” form of the evaluated model
as a post-processing filtering module.

This section presents some of the most prominent options for implementing
image restoration stages in the post-processing phase of the I-ImaS system. After a
brief description of image observation models and their analogies to the I-ImaS
system, the general framework of inverse and Wiener filters is presented in the
context of image restoration applications. Furthermore, some alternative options
are discussed for specific applications, possibly useful for the final prototype of the
I-ImaS post-processing imaging software.

8.1.1  Image observation models

A typical imaging system consists of an image formation system, a detector and
a recorder. In the case of I-ImaS, the image formation system and the detector are
fused into one module, i.e. the X-ray sensor plate, while the image recorder is
implemented in the form of digital registers, also within the sensor IC. All the
acquired data are fed directly into the digital registers for further processing, which
essentially constitute the input data source for the rest of the system. Therefore, as
far as image restoration is concerned, the sensor IC is a “black box” that
incorporates the complete response of the image acquisition system.

An additional property that affects the quality of the acquired data is the overall
noise effects. In X-ray imaging, these effects are usually the result of detector
inefficiencies, electronic interference, as well as beam scattering in the system and
the target object itself. The resulting noise, although difficult to model in its final
form, can be estimated as a contributing factor on the resulting image by means of
estimating certain statistical properties within special well-defined areas of the
projected plane. In case of Gaussian noise model, which is the most common case
for complete noise estimation, the signal variance over homogeneous image areas
can be a statistically solid measurement of noise power. In case of multiplicative
noise, the complete noise model becomes a sum of two separate noise factors,
namely 1 for the multiplicative term and 2 for the additive term:

),(),(),(),( 21 yxyxyxgyx    [Eq.8-1]
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Table 8-1: Noise models and their applications in image processing [D01].

From the various types of noise models and their applications presented in Table
8-1, the two most prominent ones for implementation within the first post-
processing stages of the I-ImaS image acquisition system are the Gaussian and the
Salt & Pepper. The Gaussian is most suitable for a generalized noise model that can
be easily combined with most image restoration filters, including Inverse and
Wiener filters, while the Salt & Pepper noise model can be introduced as the very
first stage of the post-processing phase in order to cope with typical random “bad”
pixels in the acquired X-ray image.

In I-ImaS, the specific architecture of the line-scanning procedure adds a
significant factor in the image acquisition process. The relative movement of the
complete sensor IC against the projected tissue area that is recorded results in a
“motion blurring” effect that degrades the resulting image.

Figure 8-2: Point- spread function (PSF)
of uniform 1-D motion blurring [A04].
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Rectangular scanning
aperture integration b

y
a
xrect , )(sinc)(sinc 21 bab

Table 8-2: Spatially invariant formulation of scanning 1-D and 2-D models [A04].

The specifics of this motion effect can be theoretically predicted by the exact
specifications of the line-scanning system, as Figure 8-2 and Table 8-2 illustrate.
However, these theoretical formulations can be implemented in the form of a
separate filtering stage only when the complete response of the image degradation
model can be safely characterized as separable [A04]. This means that if the
“motion blurring” effect is considered statistically independent of any other type of
degradation, including noise and detector inefficiencies, then it is possible to design
a reverse filtering module that essentially cancels this specific degradation process
[D30,D31].

8.1.2  Inverse and Wiener filtering

Inverse filtering is the process of recovering the input from its output. In the
absence of noise, the inverse filter of  an  acquisition  system  is  the  one  that
compensates the effects of this system’s impulse response, thus canceling any
degradation effects of the input data. In frequency domain, the inverse filter can be
calculated by the mathematical inverse of the identity formula:

),(
1),(1),(),(

21
212121 H

HHH invinv   [Eq.8-2]

According Eq.8-2, the spatial domain convolution kernel of the inverse filter can
be calculated by the inverse Fourier transform of the mathematical inverse of the
frequency response of the system. However, there is no guarantee that the divisor
in Eq.8-2 is  non-zero.  In fact,  for  values close to zero and at low noise levels,  the
inverse filter of Eq.8-2 becomes highly unstable and produces overflow effects,
thus destroying the otherwise restored image. A stabilized version of the typical
inverse filter is the pseudo-inverse or generalized inverse filter:
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The pseudo-inverse filter is mathematically well-defined under all conditions, but
it still remains highly sensitive to additive noise and/or round off errors, since low
noise levels in the initial image are effectively amplified by both the inverse and the
pseudo-inverse filters [A04,B04].

A more robust category of restoration filters can be built upon the general
theory of Wiener filters [A04,A06]. Wiener filtering is a method of restoring images
in the presence of a system’s characteristic response convolution as well as noise
effects. When applied to images, it produces the statistically optimal estimate of
the original image according to a probabilistic model for the source data. The best
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estimate of the original image is the conditional mean against the acquired
(degraded) image:

22 ),(~),( yxoyxoEerr     [Eq.8-3a]

),(,),(|),(),(~ lklkdyxoEyxo    [Eq.8-3b]

where o(x,y) is the recorded object and d(x,y) is  the degraded version of o(x,y). The
impulse response of the restoration Wiener filter is calculated from Eq.8-3b such
that the estimation error in Eq.8-3a is minimized. When Gaussian distribution is
used in the probabilistic model, the equations Eq.8-3a/b reduce to a set of
simultaneous linear equations that can be used to calculate the required frequency
response of the Wiener filter, also called the Fourier-Wiener filter:
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where G is the filter’s frequency response, H* is  the  complex  conjugate  of  the
system’s frequency response function and S is the power spectral density functions
for the recorded object and the noise.

Generally, the Wiener filter is not separable even if the PSF and the various
covariance functions are [A04]. This means that it can not be applied row-by-row
and subsequently column-by-column, similarly to the FFT transformation. However,
the zero-mean model defined by Eq.8-4 can be easily extended to non-zero mean
images, simply by introducing the statistical mean values of the corresponding
object and noise data into the mathematical model:

][,),(),(),(),( kEyxyxyxhyx kod  [Eq.8-5a]

kkkyxyxoyxhyxd ˆ,),(ˆ),(ˆ),(),(ˆ   [Eq.8-5b]

According to equations Eq.8-5a/b, the non-zero mean version of the Fourier-
Wiener equations become:
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where M denotes the Fourier transform of the mean. The model described by Eq.8-
6 allows spatially varying means for both the recorded object and the noise, which
can be calculated by local  averaging over a fixed sampling region size.  In case of
constant means, the Fourier equivalents also become constants in the form of
Dirac delta functions that can be easily calculated [A04]. In any case, for zero or
low levels of noise, the Wiener filter reduces to the inverse or pseudo-inverse filter,
accordingly, compensating a low-pass smoothing response on the acquisition
system with a high-pass frequency response on the restoration filter. In the
presence of significant noise, the Wiener filter ensures the best compromise
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between high-pass filtering and reduced noise amplification, in the form of a band-
pass frequency response.

Theoretically, the Wiener filter has infinite impulse response which requires
working with large size FFT transformations and convolution kernels. However, the
effective response of these filters is usually much smaller than the object size, thus
optimum finite impulse response (FIR) filters can be realized with acceptable
performance and significantly lower computational complexity. When Wiener
models are designed as FIR filters, the specifications described by Eq.8-3a/b
reduce to a set of simultaneous linear equations in the form of:

Wi Wj
ddd Wyxjyixrjigyxr ),(,0),(),(),(  [Eq.8-7]

where (rdd) is the auto-correlation function of the observed image object and (rod) is
the cross-correlation function between the observed image object and the
theoretically expected object projection, over a kernel of size W, generally
proportional  to  the  width  of  the  PSF  of  the  acquisition  system [A04]. Equation
Eq.8-7 describes a set of (2M+1)2 linear equations that can be calculated easily over
an NxN sampling region over the acquired image, where M is the size of the Wiener
filter and N is the size of the sampling box. The required size of the filter increases
with the amount of blur and additive noise introduced by the image acquisition
system.  If  the  system’s  PSF  leads  to  a  filter  size  of  at  least  M  pixels,  then  the
sampling box should be at least N=2M accordingly, as correlations outside this
support area can be considered negligible.

In order to obtain the final model for the I-ImaS restoration filter, a spatially
variant version of the FIR filter has to be formulated. Since the line-scanning
system may incorporate non-uniform sensor IC movement in micron level, non-
uniform X-ray beam geometry due to varying deflection angle, or possibly non-
uniform noise distribution over the entire scanning area, the resulting PSF may not
be constant, thus resulting in spatially non-stationary images. A simple but
effective non-stationary model for images incorporates spatially varying mean and
variance functions and shift-invariant correlations. In this case, the Wiener filter
response also becomes a spatially varying function:
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The second term in Eq.8-8 adds a constant with respect to (i,j) to the FIR filter,
which is equivalent to adding to the estimate a quantity proportional to the local
average of the observations. Common realizations of these types of spatially
varying Wiener filters are the Optmask [D08] and the Cosar filters [A04].

If the system’s impulse response is quite complex and the resulting filter
response is too time-consuming to implement in the spatial domain as a 2-D
convolution, the Wiener filter can be calculated in the frequency domain, sampled
over a NxN grid and then applied on the Fourier transform of the current image
sample, hence resulting in a filtered version of the image in the frequency domain.
If advanced FFT or convolution IC modules are available, then the implementation
can be realized directly in the sensor IC, i.e. in hardware, for on-line processing.

For I-ImaS, the complete restoration filter can be realized as a non-zero mean
spatially varying Wiener filter, using a custom set of test pattern phantom images
that can be applied for calibrating the system off-line (see section 9).
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8.1.3  Other filter options

The Wiener filters are not the only options suitable for image restoration
applications. Other options for estimating optimal restoration filters include Kalman
filters, geometric mean filters, generalized Wiener filters, homomorphic Wiener
filters, fast decomposition filters, as well as least-squares and iterative methods.

Kalman filters [C01,A06] are a very robust causal alternative to the state-space
description methods, already discussed in section 6.3.4 in relation to the I-ImaS
control model. Kalman filtering requires a stochastic model of the quantity to me
estimated, whereas the Wiener filters are totally based on the knowledge of auto-
correlation and cross-correlation matrices of the observed data [A04]. Thus, the
Kalman filters are well-suited for applications where the available computational
and storage resources are limited, as in the case of on-line processing.

The geometric mean filter combines the pseudo-inverse and the Wiener filter,
using an additional exponential parameter. This parameter can be defined in such a
way that, unlike the typical Wiener filter, the power spectral density of the output is
identical to that of the object under all conditions [A04].

The generalized Wiener filter is a typical formulation of the standard Wiener
filter, in a way that permits a more efficient and fast approximation. Specifically, the
incorporation of fast unitary transforms permits the algebraic decomposition of the
related matrices into a reduced set of equations, such that the effective size of the
required calculation kernels are much smaller than that of the full model, in the
scale from O(M6) to O(2M2logM) [A04]. This implementation is possible when the
filter matrix can be diagonalized exactly or approximately.

When the noise is multiplicative in nature, rather than additive, then logarithmic
transformation can be applied on the input data, followed by the corresponding
exponential inverse on the output data. Thus, the resulting Wiener filter
incorporates additional pre- and post-processing steps, and the new formulation is
called homomorphic Wiener filter [A04,D01].

For narrow PSF functions and stationary observation models, the filter matrix
can  be  decomposed  into  a  sum  of  two  matrices,  where  the  first  one  can  be
diagonalized and the other is a composition of the system’s frequency response
and a sparse matrix of low rank. In that case, the filter can be realized as a
generalized Wiener filter, with the additional computation of low-order matrix
decomposition operations. This type of filters are often called fast decomposition
filters [A04]. The exact number of these operations depends on the exact width of
the PSF and the image correlation model.

If direct least squares optimization is used to achieve the optimal restoration
result, the finite Laplace operator, i.e. the sum of the directional derivatives, can be
used  as  a  “roughness”  index  over  a  fixed  grid.  Subsequently,  a constrained least
squares filter formulation can be described for the filter output and the restored
image is estimated directly as the outcome of the optimization process
[D18,D19,A06].

An optimization formulation can also be realized through an iterative process,
using gradient methods. When the aim of the solution is to obtain the restored
image itself rather than the restoration filter, then the one-step gradient method
can be used [A04]. A more efficient realization of this type of optimization is the
conjugate gradient method [D22,D23,D24], which incorporates adaptive step and
theoretical upper bound for the required iterations, usually limited to less than the
rank of the system’s frequency response matrix. In case of narrow PSF functions,
additional enhancements can lead to even more efficient implementations.

8.2  Visualization
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The resulting images of the developed intelligent sensor will consist of regions
with different exposure settings which results in square patterns over the images.
For radiologist to analyze the new regulated x-ray images, a visualization algorithm
is needed to make the images transparent of which local exposure settings used.
The developed algorithm is made of a global model for the correction based on a
set of calibration images, followed by a local adjustment based on the image alone.

The visualization algorithm is developed using the mammography tissue images
from database DB3 consisting of 4 images sets (U01, U02, U03, U04).

8.2.1  Linear visualization correction model

We have made a model fitting a 1st order polynomial (y = Ax+B) for each jump
in  mAs  value  for  one  specific  kVp  value  (here  kVp  =  30).  That  means  that  if  we
want to show the mammography image as an image captured with mAs = 40 and
kVp = 30. We need a mapping for each mAs value in the original image to mAs =
40. Figure 8-3 shows the linearity for intensity mapping from mAs = XX to mAs =
40 for image set U04. In Figure 8-4 we show how the coefficients (A and B) are a
function  of  the  mAs  value  mapped  to  mAs  =  40.  We  see  a  clear  exponential
relationship with mAs.

The entire image is used for making the calibration parameters. The resulting
parameters are used when mapping the intensity values. The mapping could also
have been realized as a look-up table.

Image set U03 and U04 shows linear relationships, while image set U01 and U02
deviate some from this assumption. This will probably be the case when the
background and foreground has different mappings.

Figure 8-3: Input mAs = 4 (left) and 25 mAs (right).
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Figure 8-4: The coefficients in the fitted conversion of intensity at one mAs to a
reference mAs images (40mAs), as a function of mAs.

We have made a visualization model for each of the image sets (U01, U02, U03
and U04) and used these models to visually correct the regulated images. When
applying the model and the regulated image from the same image set we get a
very good result, as expected. However, when we apply a model made from
another image set some deviation occur.

Global correction of regulated images from U03 and U04 are shown in Figures
6-5 to 6-8.

Figure 8-5: Simulated regulated image U03 for kVp equal 28.
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Figure 8-6: Global visualization corrected image U03 applying parameters from
U03 (left) and applying parameters from U04 (right).

Figure 8-7: Regulated image U04 (left) and global visualization corrected U04
image with parameters from image set U04 (right).

Figure 8-8: Global visualization corrected U04 image with parameters from image
set U03.
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In Figures 8-9 to 8-10 plots of the conversion parameters are shown as a
function of mAs. We see that the differences in parameters are as large between
kVp-values as between samples. The exponential relationship is not at smooth for
all samples. Image set U01 shows the best exponential curve as a function of mAs.

Figure 8-9: Parameter A as function of mAs, when reference mAs = 25.
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Figure 8-10: Parameter B as function of mAs, when reference mAs = 25.

8.2.2  Local intensity adjustments

Since there are some deviations in the parameters from the different image sets
and the parameter curves are not smooth an additional local adjustment algorithm
is developed.

To make a local adjustment we have used the mAs image to find all transitions
from one mAs value to another. We then pick out the area with the highest mAs as
the reference and adjusts all the other mAs areas toward these values. We use all
transition rows from one mAs to another and find the pixel wise difference.

We can see from the plots in Figure 6-13 that we for some of the mAs transitions
have a linear relationship between the greyscale value in the lowest of the two mAs
values and the neighbour pixel differences. By actively using this when doing the
local adjustments we will improve the visualization, see Figures 6-11 and 6-12. We
have used the pixel intensities in the lowest of the two mAs values since this is the
intensity values to be adjusted.

All pixels in the global model corrected image with intensity values zero (0) is
also set to zero (0) in the locally intensity adjusted image.

The user can also make a chose to run a mAs edge smoothing. This means that
the pixels at and adjacent to the mAs transitions are smoothed with a mean filter to
blur out any intensity shifts at the transitions. We have chosen the default filter
sizes 3x3 for horizontal edges and 5x5 for vertical edges.

Figure 6-11: The global model adjusted U04 image using parameters from U03.
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Figure 6-12: After the image in Figure  is locally adjusted.

Figure 6-13: Pixel difference between mAs 40 and 32 and mAs 25 and 20 in test set
13, kVp = 30.

9.  System Calibration

The I-ImaS acquisition system incorporates a pre-processing phase, including
some basic on-line image enhancement processing, and a post-processing phase,
including sophisticated off-line image restoration process. Additionally, the
exposure control model has to be partially initialized with some parameters related
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to the dynamic range of the grayscale. For acceptable performance and within the
required operational profiles, the system has to be calibrated though  a  series  of
well-defined procedures that estimate the required internal model parameters.

This section describes the details regarding the calibration procedures and
supporting test data, including the pre-processing phase (9.1), the control module
(9.2) and the post-processing phase (6.3).

9.1  Pre-processing modules

The raw data acquired by the detector will be corrected from fixed pattern
disuniformities. The parameters G, N_0, I_0 used in equation (7.1) will be estimated
by fitting dark field images, while G will be estimated from flat field images.

For these purpose the calibration procedure will consist of acquisitions of:

Dark field images with different exposure time in order to determine the
value  of  I_0  and  N_0.  The  ideal  read  out  for  a  non-exposed  pixel  is  0,  so  it  is
expected that the data acquired with no radiation and varying exposure time will
lay on a straight line:

R = N_0 + I_0*t    [Eq.9-1]

The  data  will  be  fitted  thus  estimating  I_0  and  N_0.  I_0  is  expected  to  be
negligible.

This data will be used also to recognize the saturated pixels (i.e. higher than a
certain threshold with no radiation input).

Flat field images in order to correct for gain disuniformities and geometry
projection deformation. These data will also be used to recognize the "dead" pixels
(i.e. lower than a certain threshold also when significantly exposed).

A homogeneous read out is expected on the whole detector, except for the
noise read out already estimated from the dark field data in the previous calibration
step. Flat field images will be acquired with different radiation exposures and
photon  fluencies  in  order  to  better  estimate  the  value  of  G  and  check  the
independence of the gain correction from the impinging photon rate.

A normalization factor will thus be calculated in order to correct for the
disuniformities.

Gain disuniformities will be related to the detector element, while geometry
deformations will be related to its position.

The more the data acquired both for dark and flat field, the better the pre-
processing fixed pattern correction will perform.

9.2  Controller modules

9.2.1  Calibrating the “simplistic” steering algorithm
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We have implemented a dedicated algorithm for calculating the thresholds used
by the steering algorithm to switch between exposures for the second scan.

The algorithm is based on first capturing images of a dedicated test object with
all possible exposure available (0-100% filter setting). Each image should have
consistent exposure for the entire image, and the test object must not be moved
between exposures. The test object should be a sloped object, where density
increases from 0 up to a level somewhat exceeding the maximum expected density
of any “real” object. The exposure settings must be chosen beforehand, and the
exposure range should fit any real objects that will be imaged.

The algorithm establishes the thresholds by comparing regional 95 percentile
responses in the scout scan with corresponding responses in the second scan. A
linear model is fitted between the two responses, ignoring saturated pixels. The
linear model is used for estimating the correct threshold. See Figure 6-14 for an
illustration of the algorithm.

A dedicated Matlab routine – calculateSteeringThresholds – is then used to
calculate the thresholds used by the steering algorithm. In addition to the actual
images taken during these test exposures, the routine needs the threshold value
that should be employed for steering. As previously mentioned, this threshold
needs to be established empirically.

Figure 6-14: Example output and algorithm illustration of threshold selection
algorithm. Blue points indicate 95 percentile responses for
corresponding regions in scout scan and second scan. Green line
indicates desired threshold for final exposure (empirically established).
Black line indicates threshold for when this exposure becomes
insufficient – if the scout scan regional values are above this threshold,
more exposure is necessary. If not, this or a lower exposure is sufficient.
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The routine will output a set of thresholds according to the calibrating images
which can be used directly in the steering algorithm.

Please note that these thresholds will be sensitive to changes to the sensor, so
for instance changing gain settings or similar will require a different set of
thresholds to be used.

9.3  Post-processing modules

9.3.1  Noise pre-filtering

A first stage within the post-processing loop can be a preliminary noise
reduction filter, in order to avoid excessive design specifications for the main image
restoration stage. The noise pre-filtering module can realize spatial low-pass
convolution masks in order to remove artifacts smaller than a specific size, which is
defined by the smallest exploitable clinical feature. For a spatial resolution of 32x32
um, a lower limit on the size of microcalcifications equal to 0,3 mm corresponds to
10-pixel objects. Thus, a preliminary noise reduction can safely remove speckle or
other type of noise with spatial size less than 10 pixels, without destroying the
clinical value of the image.

Additionally, case-specific noise filters can be incorporated when specific
inefficiencies of the acquisition system can be accurately modeled. For “bad” pixels
introducing white and black single-pixel speckling, a “Salt & Pepper” de-noising
filter can be used to correct the input image data before any other processing
takes place (see Table 8-1 in section 8.1.1).

9.3.2  Image restoration filter

The main post-processing stage is constituted by the sophisticated image
restoration filter, probably realized as a non-zero mean spatially varying Wiener
filter, as described in section 8.1.2. The design and implementation of such a
filtering module requires detailed measurements of the spatially-varying PSF
function,  as well  as the noise characteristics of  the system. Thus,  a custom set of
test data are needed as guidelines and base for measuring the statistical properties
of the complete acquisition process.

As described in section 8.1.1, the image observation model includes distortion
effects that are usually the result of detector inefficiencies, electronic interference,
as well as beam scattering in the system and the target object itself. In order to
quantify and measure the combination of these distortions accurately, a set of test
pattern phantoms of well-described mathematical and physical properties are
presented to the system. The cumulative degradation effects are estimated by
measuring the resulting image, i.e. amount of distortion introduced by the
acquisition system itself. Thus, the quality and nature of these test pattern
phantoms are extremely important for the efficiency of the resulting image
restoration model.

In I-ImaS, there are three dominant degradation factors that contribute to the
distortion effects:

non-uniform sensor IC movement in micron level

non-uniform X-ray beam geometry due to varying deflection angle

possibly non-uniform noise distribution over the entire scanning area

If one or more of the above statements is true for the final I-ImaS system, the
resulting PSF will not be constant, thus the acquired images will be spatially non-
stationary in terms of distortion. In order to address these problems, the test
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pattern phantom has to be designed in a way that reveals these inconsistencies at
the highest possible degree.

Non-uniformities in the X-ray beam geometry results in geometric distortions of
the pixels that are produced on the projection (flat) plane. This type of effects can
be modeled mathematically, if the exact geometry of the X-ray (point) source
against the projection (flat) plane is known, or they can be calculated directly in
terms of spatially-varying PSF function. Figure 9-1 illustrates the visual effect of this
type of distortion in magnification.

(a) Original image (b) Geometrically distorted image

Figure 9-1: Non-uniformities in the X-ray beam deflection when using point X-ray
source and flat projection plane.

The line-scanning procedure introduces a relative movement of the detector in
the sensor IC movement and the exposed tissue area. This results in a motion
“blurring effect” in micron level that can be very significant when the integration
time of the sensor IC becomes relatively comparable with the scanning speed. It
should be noted that the “step-and-shoot” line-scanning method limits these
motion effects significantly, however instant stopping and starting motor steering
is mechanically impossible. Furthermore, the scanning speed and accuracy can not
be controlled in a perfect manner along the entire scanning axis.  In this  case,  the
detector movement is non-uniform and the resulting distortion is also spatially-
varying. Figure 9-2 illustrates the visual effect of “motion blurring” distortion for
various scanning speeds.

(a) Original image (b) Horizontally motion-blurred image
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Figure 9-2: Motion blurring effects from relative movement between the object and
the detector during image scanning.

These two types of distortion effects can be measured accurately using a test
pattern that illustrates the spatially-varying PSF function throughout the entire
projection plane. Since the width of the PSF is directly related to the restoration
(Wiener) filter size, a simple approach is to design a test pattern of well-defined
grid with points of minimal size. Such a grid can be similar to the ones presented in
Figures 9-1 and 9-2, only in much smaller scale, typically a small multiplicand of the
system’s theoretical spatial resolution, i.e. N pixels in size or Nx(32x32) um in
physical width. For a typical PSF with width smaller than 16x16 pixels, the test grid
should contain measuring “peaks” with 8-pixel width at most, i.e. 0,256 mm in
physical dimensions. Figure 9-3 illustrates such a test pattern grid in its initial form
(a) and in its degraded form (b) when measured through the acquisition system.

(a) Original image (b) Spatially-varying PSF image

Figure 9-3: Suggestive prototype test pattern grid for measuring spatially-varying
PSF. Sample (a) is the original grid and (b) is the expected resulting
image when measured through the acquisition system.

According to the results obtained by the analysis of the DB3 mammographic
image database, the noise level rises in a near-linear logarithmic rate as mAs
setting increases, while increase in kVp results in larger slope values [A03]. As
already mentioned in section 5, the current design of the first I-ImaS prototype
specifies the kVp setting as an “external” fixed system parameter that will be set by
the operator prior to the line-scanning procedure. On the other hand, changes in
the mAs setting will be effectively simulated using a set of sliding wedge filters
with step-wise absorption factors. Although the general form of the overall noise of
the prototype X-ray source has been measured and modeled, it is not certain if
these assumptions will hold true for the final prototype I-ImaS system.
Furthermore, it is not certain if these noise measurements contain multiplicative, as
well as additive, noise factors, as the mAs setting is actually simulated by different
absorption factors.

In  order  to  assess  the  true  nature  and  power  spectrum  of  the  noise  for  all
(simulated) mAs values, a complete scan of the background for each constant mAs
setting has to be registered for noise modeling, as well as the estimation of the true
dynamic grayscale range in each case. This procedure can be easily realized by
successive scans with increasing mAs setting for every new scan, since no test
pattern phantom and no filter estimation is required. The use of step-wise sliding
wedge filters limits mAs to a set of discrete values (typically 5-6 settings) and the
external kVp “mode” selector also limits its values to a small discrete set (typically
3 settings). Therefore, even in the case of complete spatially-variant realization of
noise modeling, only a limited set of successive scans are required (i.e. 5x3 = 15
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complete scans). Since the noise is generally considered to be independent of the
projected object (intra-tissue beam scattering is considered negligible in relation to
other dominant noise factors), the noise modeling procedure can be conducted
separately from the PSF and Wiener filter calculations described previously.

The models used for implementing the controller itself require some partial
initialization by the current dynamic grayscale range. This is due to the fact that
inverse modeling, applied for feedback calculation, includes various textural feature
values that are directly or indirectly related to the current grayscale. For example,
the “simplistic” steering model, presented in detail in section 6.3, requires an
accurate estimation of the “foreground” object against the “background” plane as a
quality characteristic. Therefore, the true grayscale range has to be calculated over
specific homogeneous areas of the image, namely over pure “black” (saturated)
and pure “white” (non-exposed) regions.

Both grayscale histogram and noise model can be estimated by a series of
successive scans over the entire projection plane, each time using a pair of fixed
kVp (“mode”) and fixed mAs (wedge filter position) settings. The resulting set of
template images can be used as guidelines for noise power spectrum and dynamic
grayscale range estimations, even in spatially-variant cases. Figure 9-4
demonstrates the resulting grayscale saturation and different noise effects when
using different kVp and mAs settings.

low dose,
low noise

(<7%),
underexposure

high dose,
high noise

(40%),
overexposure

Figure 9-4: Demonstration of different noise effects when using different kVp and
mAs settings in successive scans.

If the I-ImaS prototype system is proved not to be spatially stationary or if it is
difficult to prove otherwise, a full spatially-variant realization version of the
complete image restoration stage must be implemented. In this case, the exact
(x,y) position of the current image sample, as well as the exposure settings
(kVp,mAs), can be used as a compound index for a filter bank of spatially-variant
restoration model realizations. This essentially means that for each location on the
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projection plane and for the current exposure parameters, a different set of
restoration & noise model can be used in the form of a pre-calculated Wiener filter.
Since the complete image restoration stage will be implemented as a separate
software module that processes the image data off-line, the computational
complexity and storage requirements of such a realization is not a significant issue.
Such a filtering mechanism, incorporating non-stationary properties regarding both
the spatial location and the exposure parameters, can prove highly efficient and
adaptive to any type of inefficiencies of the prototype I-ImaS system.

The off-line calibration procedure described previously can be summarized in
the following steps:

1. One-time scanning of a uniform test pattern phantom (grid)
over the entire projection plane, in order to estimate the
spatially-variant PSF.

2. Successive scans over the entire projection plane, each time
using a pair of fixed kVp (“mode”) and fixed mAs (wedge filter
position) settings, for estimating noise and grayscale range in
each case.

3. Combine the results of step 1 and 2 to implement filter banks of
variant Wiener restoration filters.

An additional, more restricted, version of the calibration procedure can also be
embedded within the line-scanning procedure. The incorporation of special
homogeneous “black” (saturated) and “white” (non-exposed) areas within each
normal image, as well as specific wedge filter positioning at the beginning of the
scan, can provide valuable information about the current performance of the
system and its conformance with the expected operational profile. Essentially,
while the Wiener filters used for completed image restoration are too complex to
calculate on every run, the grayscale and noise parameters can be easily estimated
by using a few simple “testing areas” embedded within each scanned image data.
Figure 9-5 demonstrates how the projection plane can be properly adjusted in
order to embed these types of testing areas automatically in every scan.

line-scanning direction line-scanning direction

(a) Empty projection plane template (b) Sample image with embedded
patterns

Figure 9-5: Suggestive template for embedded test patterns within the projection
plane.
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