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Executive Summary

The current study focuses on the core issue of identifying information signatures

that can capture the content-rich image data and translate them into a compact set of

processing functions that can be implemented and embedded into the sensor IC logic.

The preliminary image analysis was based on publicly available, well-documented

sets of mammographic images. A complete and thorough documentation set of

templates was designed in order to record and file all equipment-related information

during image acquisition experiments, as well as the technical and clinical aspects of

image quality assessments.

A simulation model (SimModel-1A) was created for processing initial

mammographic images, acquired at optimal exposure settings, and produce simulated

versions of the same image at overexposed and underexposed conditions. The model

was verified by comparing its results with a real independent set of phantom images,

acquired at similar overexposure and underexposure settings.

Simulated image sets, along with the initial (optimal) images, were used as the

base  for  PredModel-1A.  This  new  model  was  used  to  implement  a  full  set  of  20

textural feature functions, including 1st order statistics, signal “roughness” metrics, as

well as a set of specially designed synthetic features. Image processing and feature

values extraction was adapted according to the real functionality and data acquisition

of the final line-scanning system.

Intermediate 2-D texture matrices from PredModel-1A were reduced to 1-D simple

curves and combined with the simulation model for acquiring all texture features at

different exposure settings. The combined system, PredModel-1B, produced clear

results on the main issue of establishing a consistent functional link between texture

analysis and exposure conditions. A set of 8 most prominent candidates, from the

total of 20 textural feature functions, was identified as well-suited for this task.

Finally, the preliminary textural feature results and selections were confirmed by

applying the same analytical procedure over a new image database (DB3), containing

X-ray images of real breast tissue samples, exposed at various ranges of kVp and

mAs.

Implementation of all feature functions was confirmed to be fully compatible with

the sensor IC requirement for SIMD architecture. However, before the choices for

feedback control are finalized, further verification and adjustment test have to

conducted, using real (instead of simulated) sets of sub-optimally exposed X-ray

images.
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1.  General Task Overview

With relation to the core image analysis process, sensor intelligence is based on a limited

set of fast and efficient textural features that can encode the bulk of the information content of

the underlying image in real-time. Limited hardware and software resources will be available in

the final sensor IC design, thus only simple, stable and robust texture functions were to be

investigated as possible candidates.

In  order  to  study  textural  features  performance  and  dependence  with  X-ray  exposure

parameters, a standard, publicly available, image database had to be used instead of real

experimentally acquired images. Preliminary analysis on this initial image set will be followed

by clinical performance evaluation of the same feature functions on the experimental image

sets, when they are available.

As the sensor specifications and performance profile will also be available later, a compact

simulation model had to be designed and implemented in order to produce sub-optimal

exposure image sets from the initial (optimal) images. The simulation model was designed

according  to  the  performance  profiles  of  current  digital  mammographic  equipment  and  the

results were verified independently by comparing them with actual sub-optimal exposure test

images, acquired by a digital mammographic system, using a quality-assessment

mammographic phantom.

WP3 tasks:

1. Acquire a web-available mammographic image database for preliminary

analysis.

2. Identify a set of suitable texture feature functions for image analysis.

3. Evaluate feature values and select best candidates for further study.

Current Specifications & Constraints:

Publicly available mammographic databases contain images of optimal

exposure only, usually through conventional Automatic Exposure Rate

Control (AERC).

Images  of  sub-optimal  exposures  must  be  simulated  in  order  to

investigate effects on textural feature functions.

Final  set  of  textural  feature functions will  be verified when new sensor-

specific image sets, acquired through acquisition experiments, are

available and evaluated by expert physicians.
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2.  Overview of work plan

The  complete  work  of  preliminary  texture  feature  functions  evaluation  was  decomposed

into  seven  distinct  areas  of  work.  Specifically,  a  set  of  optimally  exposed  mammographic

images (DB1) was used as a base for the simulation, while an additional set of sub-optimally

exposed mammographic phantom images (DB2) was acquired and used for independent model

verification and validation purposes:

1. Acquire real mammographic images using optimal exposure settings

(DB1).

2. Acquire phantom images using sub-optimal manual exposure settings

(DB2).

3. Formulate a realistic exposure simulation model for constructing

extensive sets of sub-optimal images from DB1.

4. Use phantom images from DB2 to validate the simulation model.

5. Construct  a  set  of  content-rich  textural  feature  functions  for  image

analysis,  according  to  the  current  hardware  and  software  (platform)

constraints.

6. Apply complete set of textural feature functions set to both optimal and

sub-optimal images, in order to evaluate performance profiles for each

one of them.

7. Investigate  the  results  and  select  best  candidates  with  smooth  and

consistent  behavior  over  the  entire  image  set  and  exposure  settings

ranges (kVp, mAs).

8. Acquire a new set of X-ray images for real breast tissue samples, using

sub-optimal manual exposure settings (DB3).

9. Validate the simulation model and the preliminary feature selections by

investigating the texture analysis results over the new image sets (DB3).

10.Evaluate the behavior of important statistical quantities extracted from

the images of  a mammographic phantom in order to detect  the sample

edges and the presence of particular features.

11.Evaluate of the effect of some preprocessing procedures on the behavior

of the same important statistical quantities.

2.1  Web-based mammographic image database (DB1)

According to the initial design specifications, various mammographic databases that are

currently available in the WWW were considered. Specifically, selection was based on the core
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requirements for medium or high resolution images (60 m or better), at least 8-bit grayscale

depth and compact organization of both normal and abnormal (pathological) cases.

The MiniMIAS mammographic database [01] was selected as the most suitable candidate in

terms  of  resolution,  quality  and  overall  size.  The  MiniMIAS  is  publicly  available  by  the

Mammographic  Image  Analysis  Society  (MIAS),  Royal  Marsden  Hospital,  Department  of

Physics,  and  it  is  used  in  many  cases  as  a  performance  evaluation  image  set  for  various

mammographic image processing and computer-aided diagnosis (CAD) systems. The base set

contains 322 images of normal and abnormal cases of various pathologies, digitized at 50 m

and resized to 200 m, with a final resolution of 1024x1024x8bit.

Various subsets of 20-100 images were selected in accordance to the current requirements

for profile (“L” or “R”) with no cropping. The selected images were cropped to the same size

(500x1000x8bit)  and  alignment  for  batch  processing  reasons,  but  no  pre-processing  was

applied for enhancement or noise-removal purposes.

2.2  Experiment documentation (RIEDS)

The final textural feature functions are to be verified when experimentally acquired image

sets will be available by sensor-specific equipment. In order to provide detailed and consistent

evaluation  results,  image  acquisition  experiments  have  to  be  recorded  and  documented

thoroughly.

The  RIEDS  framework  (Radiographic  Imaging  Evaluation  &  Documentation  System)

combines  the  needs  for  technical  X-ray  equipment  description  in  fine  detail,  along  with  a

formal  set  of  templates  for  planning  and  logging  image  acquisition  experiments.  The  main

documentation templates cover the following tasks:

Document mammographic equipment specifications

Document experiment settings and environment

Log experiment progress and image acquisition (samples)

Document technical aspects of image quality for each sample

Document clinical aspects of image quality for each sample

RIEDS  was  designed  in  accordance  to  standard  practices  and  document  forms  that  are

already  in  clinical  use  for  quality  assessment  and  quality  assurance  procedures,  as  well  as

thorough descriptive lists of technical and clinical aspects of image quality evaluation [02-05].

Currently, the RIEDS templates for technical and clinical image quality assessment cover

acquisition experiments for mammographic and dental images, which is the main target of the

I-ImaS project. The same documentation organization was used as the base for an electronic

version of the RIEDS system, which is to be used as a full-featured organized mage database

for supporting all image acquisition experiments for the I-ImaS and other similar projects.

Appendix A contains a detailed description and the full set of document templates (Forms

A-F) of RIEDS. Additionally, a sample experiment planning matrix is included with exposure

settings ranges coverage over kVp and mAs parameters.
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2.3  Preliminary phantom image database (DB2)

As there was need for verifying the results produced by the exposure simulation model, an

additional image set was constructed. Specifically, a quality-assessment mammographic

phantom (Mammochip C141), containing high-resolution tissue-mimicing areas, was used as a

target in an organized series of image acquisition experiments at EUROMEDICA medical center,

Athens,  using  a  typical  digital  mammographic  system  with  storage  phosphor  arrays.  The

RIEDS forms were used to document the experiment and log the acquired images into specific

subsets.

A limited set of 32 images was created, using manual settings for producing specific

overexposure and underexposure conditions for the specific target. The exposure settings

ranges applied were extended sets of the ones used in typical clinical practice for

mammography, namely [25…29] kVp and [4…180] mAs. No automatic exposure control

(AERC) was used in the experiments, except for specific verification and calibration cases.

Absorption  layers  of  the  phantom  were  adjusted  accordingly,  in  order  to  produce  realistic

exposure results for these specific settings ranges. The overall experiment planning against

kVp and mAs selections in presented in Figure 1.

Figure 1: Experiment planning for acquired phantom images of DB2.

2.4  SimModel-1A: Exposure Simulation

A compact exposure simulation model was created in order to produce overexposed and

underexposed conditions from a limited set of optimal images. The main task was to formulate

a fully adjustable virtual exposure system that could effectively transpose an image of given

initial exposure conditions to another arbitrary set of exposure conditions.



I-ImaS / Workpackage-3: Deliverable No D.8 (Dec.2004)

– 9 –

In  accordance  to  the  general  specifications  of  the  overall  procedure  of  evaluating  the

efficiency of various textural features functions under varying exposure conditions, an initial

set of 20 base images were used to produce 21 simulated exposures for each one of them,

thus  producing  a  total  set  of  420  images  of  excessive,  reduced  and  optimal  exposure.  This

combined set constituted the base of further processing in subsequent feature functions

performance evaluation.

2.4.1  Model Design Parameters

The simulation model  (SimModel-1A) was decomposed into four basic  exposure attributes

that  subsequently  correlate  with  each  other  to  produce  the  final  X-ray  image.  Specifically,

these parameters relate to the intermediate stages of translating the X-ray exposure radiation

level (Rx) into standard optical density level (OD), then into gray value at the sensor (GL) and

finally into the graylevel pixel value of the digital image (GI):

1. Rx : Radiation Exposure Level (dose)

2. OD : Optical Density of X-ray projected subject

3. GL : Gray Value of (digital) sensors

4. GI : Graylevel of pixels in the resulting image

The  implementation  of  SimModel-1A  was  based  on  reference  sheets  and  typical

performance  charts  of  digital  mammographic  equipment  [06-12].  All  four  parameters  were

combined into a four-stage (F1-F4), bi-directional, processing pipeline, using equation

modeling and interpolation within the operational ranges for each one of them.

Input parameters, namely kVp and mAs, were limited within typical operational ranges for

mammography, at  [25...29] and [50...200] accordingly.  All  inherent model  parameters were

scaled accordingly in order to provide a fixed set of operational ranges for each one of them.

Specifically,  radiation  exposure  levels  were  modeled  for  mGy  values  between:  [0,0...4,0].

However,  the  validity  of  the  model  is  based  on  the  transfer  function  given  specific  kVp  and

mAs input settings, whereas mGy extremes are used merely to scale the transfer function F1

within the required range.

Table 1: SimModel-1A, stage-F1: Radiation Exposure Level function (model).

F1:
kVp: [25…29]  ,  mAs: [50…200]
Rx : [0,0128…4,000] mGy

0,1
2

1,11 )}(){(log),(: 10 CmAskVpCmAskVpfRx

000029114,0
897021103,0

1,1

0,1

C
C



I-ImaS / Workpackage-3: Deliverable No D.8 (Dec.2004)

– 10 –

Figure 2: SimModel-1A, stage-F1: Radiation Exposure Level function (plot).

The same approach was applied to the next level of processing, i.e. converting radiation

exposure level to optical density (OD). Although optical density is typically used to characterize

attributes  of  analogue  imaging  systems  that  use  conventional  films  (instead  of  direct  digital

conversion), it was necessary to introduce this intermediate stage in order to adapt the

simulation model to verified performance charts that correlate optical density measurements to

typical digital sensor values [06-07,09-10]. Using these intermediate results, it was possible to

verify  the  logarithmic  correlation  between  radiation  exposure  (dose)  and  optical  density  in

analogue films, thus suggesting the implementation of the F2 stage as a simple logarithmic

function.  Extreme  values  are,  again,  adjusted  accordingly  in  order  for  the  F2  function  to

produce results within standard optical density values, namely: [0,04...3,60].
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Table 2: SimModel-1A, stage-F2: Optical Density function (model).

Figure 3: SimModel-1A, stage-F2: Optical Density function (plot).

The conversion of optical density into gray values of digital sensors (GL) was investigated in

comparative reference sheets of typical digital mammographic equipment. Correlation between

analogue and digital imaging pixel values was confirmed to closely follow linear translation

mapping  for  the  largest  portion  of  operational  ranges,  thus  the  F3  processing  stage  was

implemented as a simple linear transfer function. Extreme gray values for typical 12-bit digital

sensors were established at: [495...4069], in accordance to the extreme values of the optical

density values at the previous stage.

F2:
Rx : [0,0128…4,000] mGy
OD: [0,04…3,60]

0,2101,22 )(log)(: CRxCRxfOD

426939483,1
740896827,2

1,2

0,2

C
C
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Table 3: SimModel-1A, stage-F3: Sensor Gray Value function (model).

Figure 4: SimModel-1A, stage-F3: Sensor Gray Value function (plot).

Finally, the digital image creation stage was the simple translation of the gray values from

the  digital  sensors  into  pixel  graylevel  values  (GI),  using  a  linear  mapping  function.  As  the

sensor values are translated into pixel values at full range, only a simple conversion from 12-

bit down to 8-bit was necessary, thus producing a standard grayscale of [0...255].

F3:
OD: [0,04 …3,60]
GL: [495 …4069]

1,3
0,33

1)()(: CCODODfGL

000996083,0
093060996,4

1,3

0,3

C
C
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Table 4: SimModel-1A, stage-F4: Pixel Graylevel function (model).

Figure 5: SimModel-1A, stage-F4: Pixel Graylevel function (plot).

It should be noted that, as optical density (OD) essentially measures the “darkness” of the

projected image on the analogue film, high gray values (GL) at the sensor are translated into

dark  pixel  values,  i.e.  low  graylevel  values  (GI).  For  reasons  of  clarity  and  better

understanding of the simulation model, the scale inversion of the sensor values were

introduced, not between stages F3 and F4 (GL to GI), but rather earlier between stages F2 and

F3  (OD  to  GL),  in  order  to  end  up  with  resembling  linear  forms  for  both  GL  and  GI.  As  all

processing after stage F2 is essentially based on linear transformations, this adaptation does

not affect the functionality of the overall simulation model.

0,41,44 )()(: CGLCGLFGI

062271062,0
255

1,4

0,4

C
C

F4:
GL: [4095 …0]
GI: [0 …255]
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2.4.2  Model Overview

The  four-stage  (F1-F4)  processing  pipeline  of  SimModel-1A  is  the  base  framework  for

translating radiation exposure levels into pixel values in the final (digital) image. However,

since  the  input  consists  only  of  the  initial  image  of  optimal  exposure,  there  are  no  detailed

content information about the structure and the absorption levels of the real projected target,

i.e.  tissue  properties.  Thus,  in  order  to  acquire  a  reference  level  for  the  new  radiation

exposure, a good estimation of the exposure settings (kVp, mAs) has to be made for every

optimally exposed image that is used as an input for the simulation.

For  the  specific  set  of  the  20  initial  mammographic  images,  a  reference  point  was

established  at  27  kVp  and  125  mAs,  which  is  a  standard  exposure  profile  in  clinical

mammography both for analogue and digital mammographic equipment. Although there is

some deviation between these typical values and the true exposure settings of images within

the  initial  image  set,  the  real  value  of  the  simulation  is  to  investigate  the  transition  of  the

textural characteristics of the image content in relation to the associated transition of the

exposure settings (kVp, mAs), rather than to create a very accurate final image through

simulated  exposure.  Therefore,  it  is  safe  to  say  that,  given  the  comprehensive  modular

structure of the simulation model and a valid set of operational ranges for all the parameters

involved,  a  good  estimation  of  textural  feature  functions  performance  against  exposure

settings can be conducted.

In order to exploit  the information content of  the initial  (input)  image with regard to the

real structure and radiation absorption of the projected target, the reference level of the initial

radiation exposure is used to estimate the required transition of Rx from its starting value.

Adjusting  any  one,  or  both,  kVp  and  mAs  exposure  settings,  results  in  a  new  value  for  the

exposure level Rx, according to the model function F1. Given the initial (input) image and the

initial exposure level, the new (simulated) image can be reconstructed in pixel-by-pixel using

the initial pixel value and the required exposure adjustment. Although the new exposure level

is the same for the entire reconstructed image, the same simulation model is used in reverse

mode to translate initial pixel values into raw radiation value, adjust to the new exposure level,

and then back to a new pixel value again.

It should be noted that this procedure is completely different from adjusting the input

image directly to new pixel values, applying some form of graylevel histogram transformation

(windowing, equalization, gamma correction, etc). As the basic control parameters for the final

system are the exposure settings of  kVp and mAs, any pixel-based transformation that does

not  involve  the  first  processing  stage  (F1)  of  the  simulation  model  cannot  be  used  to

investigate direct statistical correlation between variations of exposure settings (kVp, mAs)

against performance of textural feature functions on the final (altered) image. Model inversion

is necessary only for processing stages F2 to F4, as F1 functionality is the same for both the

initial and the new image. Table 5 summarizes the complete SimModel-1A, including the

inverse functions for GI, GL and OD, and Table 6 describes the detailed simulation procedure.
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Table 5: SimModel-1A, overview of reconstruction procedure and inverse model functions
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Table  6: SimModel-1A, complete exposure simulation procedure. Calculation of the exposure

adjustment parameter (r) is consistent with the expected visual results of

overexposure and underexposure conditions, i.e. brighter darker images, accordingly.

2.4.3  Results and Verification

The results from the final SimModel-1A were investigated through comparative studies of

simulated mammographic images of sub-optimal exposure with real phantom images acquired

at similar exposure conditions, and verified by an expert radiologist. The apparent visual

differences between simulated versions of the same image at different exposure settings were

evaluated as realistic and consistent with the expected results. Simulated images at fixed

exposure settings closely matched the visual result of real phantom images at proportionally

analogous radiation absorption conditions, i.e. roughly the same kVp settings at adjusted mAs

rates,  appropriate to physical  differences between real  breast  and phantom. Figures 6 and 7

display examples of simulated (mammographic) and real (phantom) images.
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sim#1: 25 kVp / 75 mAs

(underexposed)

init: 27 kVp / 125 mAs

(optimal)

sim#2: 29 kVp / 200 mAs

(overexposed)

Figure 6: SimModel-1A, sample simulated mammographic images (DB1).

cfg.F2: 23 kVp / 4 mAs

(underexposed)

cfg.A1: 26 kVp / 4 mAs

(optimal)

cfg.G2: 30 kVp / 4 mAs

(overexposed)

Figure 7: Samples of real sub-optimally exposed phantom images (DB2).
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2.5  PredModel-1A: Textural Features Extraction

A comprehensive set of textural feature functions was created in order to investigate the

best  candidates  for  fast  image  analysis  and  quality  assessment  during  the  line-scanning

procedure. All feature functions had to be well-suited for mammographic and dental image

analysis, with inherent low computational complexity and stable performance.

As the target platform specifications demanded very limited resource availability and time

constraints were very strict, image analysis had to be limited to local processing, in order to

avoid excessive data transfers, and simple functionality based on 1st order graylevel statistics,

in order to avoid excessive calculation times.

2.5.1  Model Design Specifications – Progressive Image Scanning

In  accordance  to  the  general  design  of  the  line-scanning  and  sensor  system,  all  image

analysis  had to be limited to “columns” of  buffered pixel  data of  complete image height and

fixed  width.  The  use  of  multiple  autonomous  IC  modules  introduces  the  capability  of  trully

parallel  data  processing  at  segments  of  any  arbitrary  “column”  of  currently  available  image

data, as long as the feature functions depend solely on local input of a limited image area and

their  implementation  is  simple  enough  to  integrate  within  the  IC  of  each  sensor,  instead  of

transferring the data elsewhere for some sort of centralized processing.

Furthermore, each feature function had to be able to produce a single characteristic value

for every local image sample, i.e. a simple 1-D curve for every “column” of buffered pixel data.

This way, the line-scanning procedure would create a reduced 2-D mesh of characteristic

texture values that can be used effectively and efficiently and a content-rich “signature” of the

underlying image data.

As the textural data had to be investigated against the exposure settings (kVp, mAs),

further dimensionality reduction is required. Specifically, instead of creating a full 2-D mesh of

textural data, all values acquired for a specific “column” of buffered pixel data are averaged,

essentially producing a single combined data component, instead of a data vector (1-D curve).

In the final implementation, the combined data component contains two descriptive statistical

values, namely the mean and standard deviation of all feature values calculated for the current

image “column”. This way, the overall result of applying a textural feature function during the

line-scanning procedure is two simple 1-D curves of column-wise averaged local feature

values, one for mean and one for standard deviation. Figure 8 depicts the actual procedure of

calculating localized texture feature functions during the line-scanning procedure.
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Figure 8: Texture feature function calculation during the line-scanning procedure.

2.5.2  Textural Feature Functions

All  feature  functions  were  selected  according  to  their  suitability  for  texture  analysis  on

mammographic  and  dental  images,  as  well  as  their  low  complexity  in  terms  of  storage

requirements and processing time.

An initial set of 6 standard 1st order statistical functions were used as the base for typical

measurements like minimum value, maximum value, mean value, etc. An additional set 5 of

signal power, entropy and surface “roughness” estimators were also used in some simple form

of  implementation,  using  only  raw  pixel  data  values  from  the  local  image  area,  i.e.  no

spectrum analysis was involved in these cases [11-17].

The  initial  set  of  11  statistical  feature  functions  was  extended  by  creating  another  9

synthetic estimators, using normalized versions of the previous ones, combining the results of

two or more simple features, or extending the functionality of the “roughness” estimators to a

more  generalized  form  in  order  to  produce  unbiased  results.  The  last  5  of  the  9  synthetic

feature  functions  can  be  considered  as  a  very  simplistic  approximation  of  techniques  and

algorithms,  normally  used  to  extend  the  notion  of  image  “roughness”  to  more  general

structural analysis approaches like calculating the fractal dimension of an image area. Although

their results do not coincide with fractal analysis of the image data, they inherit similar

capability in capturing a fairly descriptive indication of the complexity of the underlying image,

usually available only when using 2nd or higher order statistics.

Feature averaging

X-axis scanning

Feature value transition (1-D)

Texture Feature Function Calculation

Local features values are averaged over
entire line-scanning columns and the
combined X-axis transition curve of mean
or stdev is the 1-D texture “signature”.
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Table 7 contains all 20 textural feature functions that were implemented in PredModel-1A.

Appendix B contains sample implementation source code (Matlab).

Texture Feature

Function (Name)

Mathematical Formula

1. Min value ),(minmin yxII
XY

2. Max value ),(maxmax yxII
XY

3. Mean value X

i

Y

j
yxI

XY 1 1

),(1

4. Std.Deviation X

i

Y

j
yxI

XY 1 1

2),(
)1(

1

5. Skewness X

i

Y

j

yxI
XY

sk
1 1

3),(1

6. Kurtosis
3),(1

1 1

4X

i

Y

j

yxI
XY

kr

7. Signal Power X

i

Y

j
XY yxIP

1 1

2),(

8. Entropy
)log(

100

1
)()(

k
kGhistkGhist PPE

9. Zero-Crossings 0)),(()),((: 1 yxIyxIkZC kk

10. Surface 1

1

1

1

),()1,(),(),1(1),(
X

i

Y

j
XY yxIyxIyxIyxIyxIS

11. Volume X

i

Y

j
XY yxIV

1 1

),(

12. Synth.Feat-12 2
minmax

12
)( IISF

13. Synth.Feat-13

minmax

min
13 II

ISF

14. Synth.Feat-14
14SF
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15. Synth.Feat-15
215

XYPSF

16. Synth.Feat-16

316
XY

XY

V
S

SF

17. Synth.Feat-17 XYSSF17

18. Synth.Feat-18

XY
ZCSF18

19. Synth.Feat-19

XY
PSF XY

19

20. Synth.Feat-20
2

19
20 255

1log
SFSF

Table 7: PredModel-1A, texture feature functions and mathematical formulas.

2.5.3  Intermediate 2-D Texture Matrices

In order to assess the effectiveness and robustness of the various texture feature functions,

it was necessary to visually evaluate the 2-D output of each function before the individual

texture values are averaged throughout the entire column. The intermediate result is a 2-D

mesh of single texture values that are calculated for each local image area.

The general line-scanning and sensor system design permits some degree of flexibility with

regard to the exact size of the local image sample that is to be used as input for the texture

feature functions. Thus, it was necessary to investigate the effects of using image samples of

various sizes in relation to the efficiency and stability of the functions, especially in the

extreme cases of using very small or very large sampling boxes. While small samples permit

very fast image processing, the information content that is captured by each individual texture

value is limited and the resulting data flow becomes excessive for the subsequent processing

stages. On the other hand, large sampling boxes produce structural details at large scales, but

they can create a performance bottleneck at the image processing modules due to excessive

calculations.

PredModel-1A was applied with three distinct sampling configurations, namely at (square)

box sizes of  10,  25 and 50 pixels  wide.  All  1st  order and synthetic  feature functions employ

computational complexity proportionally analogous to the total number of pixels contained in

the input sample,  i.e.  O(N2)  where N is  the width of  the (square) sampling box.  This  means

that a sampling square box of 50 pixels contains 25 times larger input data volume than in the

case  of  a  10  pixel  box.  Analytical  study  on  the  issue  of  sampling  box  sizes  was  conducted
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subsequently with PredModel-1B, in combination with the overall task of evaluating feature

functions performance against exposure settings (kVp, mAs).

Figures 9 through 16 present the intermediate 2-D texture value results against different

exposure  settings,  using  a  fixed  set  of  simulated  exposure  mammographic  images.  As  it  is

described in detail subsequently in the section for PredModel-1B, the 7 feature functions that

are presented in these figures actually constitute the best candidates for capturing the textural

information content of the underlying image. All 2-D texture matrices were constructed using

sampling box size of 10 pixels, in order to produce visual results of the best possible resolution

(larger 2-D mesh sizes).

sim#1: 25 kVp / 75 mAs

(underexposed)

init: 27 kVp / 125 mAs (optimal) sim#2: 29 kVp / 200 mAs

(overexposed)

Figure 9: PredModel-1A, intermediate 2-D texture results for MIN feature function at different

exposure settings.
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sim#1: 25 kVp / 75 mAs

(underexposed)

init: 27 kVp / 125 mAs (optimal) sim#2: 29 kVp / 200 mAs

(overexposed)

Figure 10: PredModel-1A, intermediate 2-D texture results for MAX feature function at different

exposure settings.

sim#1: 25 kVp / 75 mAs

(underexposed)

init: 27 kVp / 125 mAs (optimal) sim#2: 29 kVp / 200 mAs

(overexposed)

Figure 11: PredModel-1A, intermediate 2-D texture results for MEAN feature function at

different exposure settings.
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sim#1: 25 kVp / 75 mAs

(underexposed)

init: 27 kVp / 125 mAs (optimal) sim#2: 29 kVp / 200 mAs

(overexposed)

Figure 12: PredModel-1A, intermediate 2-D texture results for STDEV feature function at

different exposure settings.

sim#1: 25 kVp / 75 mAs

(underexposed)

init: 27 kVp / 125 mAs (optimal) sim#2: 29 kVp / 200 mAs

(overexposed)

Figure 13: PredModel-1A,  intermediate  2-D  texture  results  for  POWER  feature  function  at

different exposure settings.
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sim#1: 25 kVp / 75 mAs

(underexposed)

init: 27 kVp / 125 mAs (optimal) sim#2: 29 kVp / 200 mAs

(overexposed)

Figure 14: PredModel-1A,  intermediate  2-D  texture  results  for  VOLUME  feature  function  at

different exposure settings.

sim#1: 25 kVp / 75 mAs

(underexposed)

init: 27 kVp / 125 mAs (optimal) sim#2: 29 kVp / 200 mAs

(overexposed)

Figure 15: PredModel-1A, intermediate 2-D texture results for SF19 feature function at different

exposure settings.
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sim#1: 25 kVp / 75 mAs

(underexposed)

init: 27 kVp / 125 mAs (optimal) sim#2: 29 kVp / 200 mAs

(overexposed)

Figure 16: PredModel-1A, intermediate 2-D texture results for SF20 feature function at different

exposure settings.

Although these intermediate 2-D texture results  have to be reduced into 1-D data before

they can be used as feedback for the exposure control system, it is clearly evident that these

simple feature functions capture a great amount of significant content information. All

functions  a  great  level  of  discrimination  capability  between  the  background  and  the  tissue

areas, whereas some of them perform equally well in distinguishing the internal tissue

structural details equally well.

The STDEV function seems to be very effective in recognizing tissue areas with no

significant sensitivity to the actual exposure levels, but at the same time there is little gain in

using  it  as  feedback  for  the  exposure  control  system.  The  MIN,  MAX  and  MEAN  functions

perform  very  well  at  high  exposure  levels,  but  their  discriminative  content  changes  little  to

none  in  medium  to  low  exposure  levels.  The  POWER,  VOLUME,  SF19  and  SF20  functions

perform very well at low exposure levels and have the best discriminative behavior at various

exposure ranges, but seem to loose their capability of tracking closely onto the tissue

boundaries.

As  the  PredModel-1B  results  confirm,  no  one  function  is  adequate  of  tracking  both  the

information content of image texture and changes in the exposure level. Therefore, it is most

probable that more than one of these candidate functions will be used in combination as the

final feedback for the sensor intelligent control.
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2.6  PredModel-1B: Textural Features Evaluation

Using the overall framework and results from PredModel-1A, the final phase of the analysis

consisted of the evaluation of textural feature functions performance against changes in the

exposure settings (kVp, mAs). This step is necessary in order to identify the best candidate

functions that, not only capture significant information content from the image at minimal cost,

but at the same time provide a solid “description” of the input parameter space throughout the

entire range of exposure levels.

2.6.1  Texture “signatures” against exposure rates

Standard clinical practices and regulations impose strict regulations on maximum patient

dose  during  an  X-ray  examination  and  as  a  result  there  are  specific  upper  bounds  to  the

exposure levels that the sensor control would permit. Furthermore, it is necessary to adopt a

design  that  permits  constant  image  quality  at  minimal  dose  for  the  patient.  Therefore,  it  is

necessary to provide a well-defined functional relation between textural feature values that

could be used as feedback for the controller and the main exposure parameters, namely kVp

and mAs. This means that any candidate textural feature function has to provide smooth,

consistent and stable transfer hyperplane in both dimensions, similar to the actual radiation

exposure function that is used in SimModel-1A for Rx.

In PredModel-1B, all 2-D intermediate results from textural feature functions were reduced

into 1-D transfer functions in accordance to the line-scanning direction (conventionally, from

nipple to chest). Furthermore, texture data were grouped according to their location, i.e. the

same image “column”, and the radiation exposure level (Rx). The resulting 3-D plot represents

the  way  a  complete  set  of  image  “columns”  is  translated  into  a  1-D  “signature”  at  various

exposure rates.

Figures 17 through 36 demonstrate the performance of the complete set of 20 feature

functions, including the 8 candidates that were investigated thoroughly at the previous section.

All  plots  were  constructed  using  a  sampling  box  size  of  10  pixels  in  order  to  produce  better

resolution for  the resulting matrices.  The X-axis  represents the X-axis  of  the image, i.e.  the

actual line-scanning direction. The overall exposure level, calculated by the same Rx function

(F1) that was used in the SimModel-1A implementation, is presented in the Z-axis. Finally, the

Y-axis shows the specific feature function values in relation to both the scanning direction and

the exposure level. Each plot essentially captures the transition of the “signature” that the

specific feature function creates for the same image, throughout various exposure settings.
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Figure 17: PredModel-1B, textural “signature” profile for MIN feature function at different

exposure settings.

Figure 18: PredModel-1B, textural “signature” profile for MAX feature function at different

exposure settings.
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Figure 19: PredModel-1B, textural “signature” profile for MEAN feature function at different

exposure settings.

Figure 20: PredModel-1B, textural “signature” profile for STDEV feature function at different

exposure settings.
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Figure 21: PredModel-1B, textural “signature” profile for SKEWNESS feature function at

different exposure settings.

Figure 22: PredModel-1B, textural “signature” profile for KURTOSIS feature function at

different exposure settings.
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Figure 23: PredModel-1B, textural “signature” profile for POWER feature function at different

exposure settings.

Figure 24: PredModel-1B, textural “signature” profile for ENTROPY feature function at

different exposure settings.
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Figure 25: PredModel-1B, textural “signature” profile for ZCCOUNT feature function at

different exposure settings.

Figure 26: PredModel-1B, textural “signature” profile for SURFACE feature function at

different exposure settings.
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Figure 27: PredModel-1B, textural “signature” profile for VOLUME feature function at different

exposure settings.

Figure 28: PredModel-1B, textural “signature” profile for SF12 feature function at different

exposure settings.
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Figure 29: PredModel-1B, textural “signature” profile for SF13 feature function at different

exposure settings.

Figure 30: PredModel-1B, textural “signature” profile for SF14 feature function at different

exposure settings.
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Figure 31: PredModel-1B, textural “signature” profile for SF15 feature function at different

exposure settings.

Figure 32: PredModel-1B, textural “signature” profile for SF16 feature function at different

exposure settings.
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Figure 33: PredModel-1B, textural “signature” profile for SF17 feature function at different

exposure settings.

Figure 34: PredModel-1B, textural “signature” profile for SF18 feature function at different

exposure settings.
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Figure 35: PredModel-1B, textural “signature” profile for SF19 feature function at different

exposure settings.

Figure 36: PredModel-1B, textural “signature” profile for SF20 feature function at different

exposure settings.
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In relation to the sampling box size, Figures 37 and 38 show the resulting plots for SF20

feature function for box sizes of 25 and 50, accordingly.

Figure 37: PredModel-1B, textural “signature” profile for SF20 feature function at different

exposure settings, for sampling box size N=25.

Figure 38: PredModel-1B, textural “signature” profile for SF20 feature function at different

exposure settings, for sampling box size N=50.
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2.6.2  Comparative results & discussion

The results presented in Figures 17 through 38 essentially constitute the visual

representation of the textural feature functions performance with regard to their capability to

track  image  quality  fluctuations  when  exposure  level  changes  with  respect  to  either  kVp  or

mAs. Good choices for  candidate functions should be able to produce smooth and consistent

transitions in both dimensions, namely the line-scanning direction (detection of tissue

structures) and the exposure level (image quality versus kVp and/or mAs).

According to these desired properties, Tables 8 through 10 summarize the efficiency of all

20  feature  functions,  applied  for  sampling  box  sizes  of  10,  25  and  50  pixels.  The  final

evaluation was conducted through the entire set of 20 initial images (DB1) and their simulated

overexposed and underexposed versions.

Table 8: PredModel-1B, textural “signature” performance sheet for all feature functions and

test images, for sampling box size N=10.
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Table 9: PredModel-1B, textural “signature” performance sheet for all feature functions and

test images, for sampling box size N=25.

Table 10: PredModel-1B, textural “signature” performance sheet for all feature functions and

test images, for sampling box size N=50.
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It  is  clear  that  candidate  feature  functions  that  were  identified  by  visual  review  of  the

intermediate 2-D texture data from PredModel-1A are actually verified here as the best choices

for feedback to the sensor control. Feature functions with smooth and consistent behavior can

be easily located in all three tables by isolating columns with large “positive” sums in the very

last row. Best selections are functions that generally relate to sum of pixel values or squared

pixels values. The final feature functions candidates for the final choice of feedback are:

F01: MIN value

F02: MAX value

F03: MEAN value

F04: STDEV value (only for boundary detection)

F07: signal POWER

F11: VOLUME metrics

SF19: (normalized POWER)

SF20: (normalized EXPOSURE)

Although some images proved to be generally poor with regard to their information

content, almost all feature functions performed consistently throughout the image set and

proving that results are statistically unbiased, i.e. there are no special “preferences” of some

feature functions to some images. Actually, these images are cases of very dense breast tissue

where the internal tissue structure is difficult to distinguish even in the original image where

the exposure settings are optimal.

Table 10 also confirms the assertion that using larger sampling box sizes should lead to

content-rich feature values. Large samples of local image areas include fine structural details

at  greater scales,  thus producing texture “signatures” of  better  quality in terms of  capturing

the complexity and spatial  morphology of the underlying image, an aspect of great importance

for  assessing  the  quality  of  the  image  itself.  However,  the  shape  and  smoothness  of  the

transition hyperplane of the best candidate feature functions does not seem to be affected by

having lower or higher resolution on the texture data. This is an indication of good information

content encoding into a compact texture “signature” for the scanned image, as well as stability

and consistency for the feature function itself.

2.7  Real breast tissue image database (DB3)

In order to assess the true efficiency of each textural feature function used in the previous

phase,  a new comprehensive image database was constructed (DB3).  The new images were

acquired in a Siemens Mammomat B X-ray machine, using real breast tissue samples as target

and acquiring images of the same target at various kVp and mAs settings.
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Tissue A: “U01” Tissue B: “U02”

Tissue C: “U03.02” Tissue D: “U04.03”

Figure 39: Samples from all four image sets contained in the DB3 image database
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The Siemens Mammomat B provided an overall specifications profile adequately close to

the  current  I-ImaS  design,  although  the  true  spatial  resolution  (7  lp/mm)  and  true  spatial

resolution (127 m) are both much lower.  The greylevel  depth used for  ADC was 12-bit  and

the  actual  ranges  used  during  these  experiments  were  between  28  and  35  for  kVp,  and

(selectively) between 3.2 and 80 for mAs.

The Bart’s tissue phantom was used with four different breast tissue samples, packed with

appropriate absorption layers to simulate the standard 4.5 cm UK breast  thickness.  The four

distinct sets contained a total of 125 images, employing various aspects of image texture and

X-ray properties including void areas for  noise and artifacts estimation,  normal  tissue areas,

malignant tumor sample and unexposed regions (Figure 39).

Due to the inherently different size and alignment of each of the four tissue samples, each

set was considered and analyzed separately, before a general assessment could be made over

the entire DB3 database samples and the evaluation of the specific textural features. All sets

were reviewed by expert radiologists and were verified as acceptable in terms of overall quality

and clinical value, before any further processing was made.

2.8  PredModel-2A/B: Textural Features Validation

The basic application frameworks that were created for implementing both PredModel-1A,

for  textural  features  extraction,  and  PredModel-1B,  for  textural  features  evaluation,  were

combined into a compact and robust set of modules that was used for processing the new DB3

images in a similar way. Specifically, PredModel-2A/B included all the textural feature

extractors and the statistical analysis code that was necessary to conduct a comparative study

of the DB3 image sets, investigating the sensitivity of the results over the different tissue

samples and validating the conclusions already drawn from the study thus far regarding the

efficiency of the various feature functions.

Due  to  the  nature  and  content  of  the  new  image  sets,  a  slightly  different  approach  was

employed for comparative texture evaluation. Specifically, the use of tissue samples, instead of

complete  breast  mammograms,  prohibited  the  employment  of  analytical  line-scanning

procedure in the same way that was used in PredModel-1A. The lack of exact tissue orientation

and location within the complete breast area could result into misleading conclusions,

regarding the response curve of the line-scanning texture extraction procedure. Instead,

texture was evaluated as before, but results were analyzed in a more compact form, using the

complete sampling area as the base for the final feature value used when comparing it against

different exposure rates. Thus, the efficiency of each feature function was evaluated for the

same tissue and for different settings of kVp/mAs, using single values instead of the full 2-D

output.

The PredModel-2A/B study was focused on four different areas:

(a)  Confirmation of SimModel-1A over exposure and optical density responses

(b)  Global statistics, including noise estimation and greyscale usage.

(c)  Efficiency and stability analysis of all 20 texture feature extractors.

(d)  Effects of standard pre-processing, acquisition artifacts, etc.
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All  four  areas  of  studies  were  conducted  separately  for  each  of  the  four  different  tissue

samples  and  the  final  results  were  studied  comparatively  in  order  to  verify  the  final

conclusions. Not all tissue sets contained the same content type, thus different acquisition and

analysis schemes were applied to each one of them, according to the image content and clarity

of the sampling areas of interest. Figure 41 presents all the scanning regions employed in each

of the tissue sets, including global statistics, normal tissue, malignant tumor and background

artifacts.

Tissue A: “U01” Tissue B: “U02”

Tissue C: “U03.02” Tissue D: “U04.03”

Figure 40: Sampling areas (ROIs) in all four tissue sets included in the DB3 image database,

containing normal tissue (green), malignant tissue (red), saturated background

(orange), unexposed area (magenta) and background patterns (blue) created by

tissue wrapping and/or perspex absorption layers.
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All results were investigated against the two basic control parameters, namely the kVp and

mAs. For 1-D presentation of exposure rates, true surface dose was also measured during the

acquisition  experiments,  using  an  ionization  chamber  placed  next  to  the  tissue  sample  at  a

height  level  with  the  top  surface  of  the  perspex,  and  with  perspex  below  to  give  a  more

accurate estimation of the surface dose due to incident x-rays and the contribution from back

scatter in the target.

Basic  pre-processing  of  the  raw  image  included  a  logarithmic  re-scaling  of  the  greyscale

histogram, by employing normalized gamma correction transformation to the complete 12-bit

range.  Three  gamma  values  were  used,  namely  0.62  (darker),  1.00  (normal)  and  1.60

(brighter), effectively producing symmetric alterations of the overall illumination of the original

image at ±11.6% respectively. The decision on using only full-range histogram manipulation,

instead of local/adaptive optimization, was base on the fact that localized processing of single

scanning “strips” in the final implementation are very likely to produce non-uniform greyscale

transitions between subsequent scanning areas. No further pre-processing or pre-filtering of

the raw image data was employed, in order to prevent any loss of significant structural details

and noise statistics.

2.8.1  Confirmation of SimModel-1A over exposure and optical density responses

SimModel-1A contained rough estimations of the linear dependency of OD against exposure

when simulating the effective changes of fixed images. Preliminary analysis of the efficiency of

textural  feature  extractors  was  partly  based  on  the  correctness  of  SimModel-1A,  thus  it  is

essential to confirm these results by investigating the model parameters against the acquired

image data.

First,  overall  SimModel-1A  dose  calculation  was  compared  to  true  dose  measurements,

against the corresponding kVp and mAs. The calculation formula, i.e:

0,1
2

1,11 )}(){(log),(: 10 CmAskVpCmAskVpfRx

was formulated for a typical dose range and assuming logarithmic scaling, over 2nd-degree

kVp and 1st-degree mAs dependence. Table 11 contains the optimal parameters for fitting the

dose measurements over each of the image sets and Figures 41-44 shows the corresponding

plots.

Image set #images C1,1 C1,0 Mean Error Stdev Error

U01 22 0,000105 0,3916440 10,08% 6,77%

U02 27 0,000105 0,3958910 10,62% 6,59%

U03.02 36 0,002794 16,021653 11,75% 8,82%

U04.03 40 0,002672 19,561620 11,06% 7,99%

Table 11: SimModel-1A dose approximations for all image sets in the DB3 database.
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Sim.Model-1A: predicted vs true exposure
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Figure 41: SimModel-1A dose approximations for all images in the “U01” set of DB3 database.
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Figure 42: SimModel-1A dose approximations for all images in the “U02” set of DB3 database.
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Sim.Model-1A: predicted vs true exposure
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Figure 43: SimModel-1A dose approximations for all images in the “U03.02” set of DB3 database.
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Figure 44: SimModel-1A dose approximations for all images in the “U04.03” set of DB3 database.
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Results show that the formulation employed in the first stage of SimModel-1A closely

approximates the real exposure measurements in all cases. Differences in the exact values of

the  parametric  model  can  be  justified  by  the  fact  that  only  two  pairs  of  image  sets  were

acquired  in  roughly  the  same  target  configurations,  namely  “U01”  with  “U02”  and  “U03.02”

and “U04.03”, and thus the resulting actual ranges for dose are not the same. In all cases, the

error percentage is between 10%-12% and thus the approximation results can be considered

as acceptable.

Next, before evaluating the properties of noise and greyscale, it is essential that the linear

response of the detector is also confirmed. SimModel-1A assumed linear response that is

characteristic to modern digital mammographic X-ray machines. Optical density was assessed

via the translated mean value of homogeneous saturated (black) areas, as shown on Figure 40

(orange). Only “U03.02” and “U04.03” tissues were included in this analysis, as they were the

only ones containing these sampling areas in adequate extent and quality. The following plots

demonstrate the statistical correlation of optical density (OD) against measured (true) dose.
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Figure 45: Optical density response against effective dose, for sets “U03.02” and “U04.03”.

Although optical density becomes constant (full black) for a large part of the dose scale, it

is clear that for the correlation over the normal, non-saturated ranges is mostly linear. Thus,

any further calculation of global and local statistics on the raw data of any acquired image from

the DB3 database can be considered fully compatible with the SimModel-1A formulation.

2.8.2  Global statistics against exposure rates

The  study  of  global  statistics  was  focused  on  RMS(%)  noise  estimation  and  greyscale

utilization against various exposure rates. RMS(%) noise was evaluated via standard deviation

over homogeneous saturated areas, while effective greyscale ranges were estimated by

calculating the mean values over homogeneous saturated (black) and unexposed (white)

areas. Corresponding sampling regions are shown in Figure 40, colored in orange and

magenta, respectively. Only “U03.02” and “U04.03” tissues were included in this analysis, as

they were the only ones containing both these sampling areas in adequate extent and quality.
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Figure 46: RMS(%) noise estimation against kVp and mAs, for image set “U03.02”.
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Figure 47: RMS(%) noise estimation against mAs (kVp: 28,30,35), for image set “U03.02”.
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Figure 48: RMS(%) noise estimation against kVp and mAs, for image set “U04.03”.
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Figure 49: RMS(%) noise estimation against mAs (kVp: 28,30,35), for image set “U04.03”.
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Figure 50: Greyscale utilization(%) estimation against kVp and mAs, for image set “U03.02”.
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Figure 51: Greyscale utilization(%) estimation against mAs (kVp: 28,30,35), for image set “U03.02”.
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Figure 52: Greyscale utilization(%) estimation against kVp and mAs, for image set “U04.03”.
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Figure 53: Greyscale utilization(%) estimation against mAs (kVp: 28,30,35), for image set “U04.03”.
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Figures 46-49 present the estimated RMS(%) noise calculated for images sets “U03.02”

and  “U04.03”,  for  all  the  available  settings  of  kVp  and  mAs.  As  the  graphs  show,  the  noise

rises in a steep logarithmic momentum until a specific limit, where it drops almost instantly to

zero (due to the excessive saturation of the detector). Higher settings for kVp tend to produce,

higher,  almost  linear  positive  slopes,  however  the  main  factor  for  the  noise  power  remains

mAs. These results verify the initial assertion that noise should be considered as an important

factor  when  increasing  kVp  and/or  mAs  in  order  to  produce  images  of  higher  contrast,

regardless of the corresponding patient’s dose limitations.

Figures  50-53  demonstrate  the  utilization  of  the  active  greyscale  range  against  kVp  and

mAs settings. Active greyscale is calculated by setting the minimum (black) to the mean value

of saturated homogeneous areas and the maximum (white) to the mean value of unexposed

areas. Although the full available range is always 12-bit (0...4095), excessively low exposure

rates produce a limited usable range for the produced image, while excessively high exposure

rates tend to saturate the whole imaging area, including the projection of the tissue. Optimal

exposure rates are the ones that combine high utilization(%) of the available greyscale, while

at the same time maintain normal dose and saturation characteristics within the tissue areas.

Similar measurements can be easily embedded in the line-scanning procedure in order to track

both the full (global) and the intra-tissue (local) utilization of the available 12-bit greyscale.

2.8.3  Texture “signatures” against exposure rates

Similarly  to  the  feature  analysis  already  conducted  for  the  simulated  images  of  DB1 and

DB2 by using PredModel-1B, all the 20 prototype texture feature extractors were applied to the

new  DB3  database  and  the  resulting  feature  datasets  were  analyzed  in  a  similar  way.  As

mentioned  earlier,  due  to  the  nature  and  content  of  the  new  DB3  image  sets,  there  is  no

information about the exact tissue orientation and location within the complete breast area.

Therefore, analysis of the textural feature values was conducted using the complete sampling

area as the base for comparing against different exposure rates. Furthermore, three different

gamma correction values were employed as a basic step of (global) histogram pre-processing,

namely 0.62 (darker), 1.00 (normal) and 1.60 (brighter), producing symmetric alterations of

the overall illumination of the original image at ±11.6% respectively.

The efficiency of each feature function was evaluated for the same tissue and for different

exposure rates, using single over the entire sampling area (instead of the full 2-D output) and

for different gamma correction values. The resulting 2-D graphs contain the cumulative feature

values  over  the  entire  sampling  area,  plotted  against  dose  true  measurement  and  gamma

value.  From  the  total  of  500  combined  graphs,  Figures  54-73  present  the  complete  set  of

results for all features calculated over the “U03.02” image set.
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Figure 54: PredModel-2A/B, textural “signature” profile for MIN feature function at different
exposure rates (dose) and gamma correction values.
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Figure 55: PredModel-2A/B, textural “signature” profile for MAX feature function at different
exposure rates and gamma correction values.



I-ImaS / Workpackage-3: Deliverable No D.8 (Dec.2004)

– 55 –

0.5
1

1.5
2

0
50

100
150

0

0.5

1

gamma

U03.02 :Feature(03) vs Dose

Dose (uGy)

Fe
at

ur
e(

03
) v

al
ue

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1
U03.02 :Feature(03) vs Dose (gamma=1.000)

Dose (uGy)

Fe
at

ur
e(

03
) v

al
ue

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1
U03.02 :Feature(03) vs Dose (gamma=0.062)

Dose (uGy)

Fe
at

ur
e(

03
) v

al
ue

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1
U03.02 :Feature(03) vs Dose (gamma=1.600)

Dose (uGy)

Fe
at

ur
e(

03
) v

al
ue

Figure 56: PredModel-2A/B, textural “signature” profile for MEAN feature function at different
exposure rates (dose) and gamma correction values.
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Figure 57: PredModel-2A/B, textural “signature” profile for STDEV feature function at different
exposure rates (dose) and gamma correction values.
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Figure 58: PredModel-2A/B, textural “signature” profile for SKEWNESS feature function at
different exposure rates (dose) and gamma correction values.
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Figure 59: PredModel-2A/B, textural “signature” profile for KURTOSIS feature function at
different exposure rates (dose) and gamma correction values.
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Figure 60: PredModel-2A/B, textural “signature” profile for POWER feature function at different
exposure rates (dose) and gamma correction values.
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Figure 61: PredModel-2A/B, textural “signature” profile for ENTROPY feature function at
different exposure rates (dose) and gamma correction values.
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Figure 62: PredModel-2A/B, textural “signature” profile for ZCCOUNT feature function at
different exposure rates (dose) and gamma correction values.
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Figure 63: PredModel-2A/B, textural “signature” profile for SURFACE feature function at
different exposure rates (dose) and gamma correction values.
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Figure 64: PredModel-2A/B, textural “signature” profile for VOLUME feature function at different
exposure rates (dose) and gamma correction values.
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Figure 65: PredModel-2A/B, textural “signature” profile for SF12 feature function at different
exposure rates (dose) and gamma correction values.
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Figure 66: PredModel-2A/B, textural “signature” profile for SF13 feature function at different
exposure rates (dose) and gamma correction values.
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Figure 67: PredModel-2A/B, textural “signature” profile for SF14 feature function at different
exposure rates (dose) and gamma correction values.
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Figure 68: PredModel-2A/B, textural “signature” profile for SF15 feature function at different
exposure rates (dose) and gamma correction values.
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Figure 69: PredModel-2A/B, textural “signature” profile for SF16 feature function at different
exposure rates (dose) and gamma correction values.
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Figure 70: PredModel-2A/B, textural “signature” profile for SF17 feature function at different
exposure rates (dose) and gamma correction values.
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Figure 71: PredModel-2A/B, textural “signature” profile for SF18 feature function at different
exposure rates (dose) and gamma correction values.
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Figure 72: PredModel-2A/B, textural “signature” profile for SF19 feature function at different
exposure rates (dose) and gamma correction values.
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Figure 73: PredModel-2A/B, textural “signature” profile for SF20 feature function at different
exposure rates (dose) and gamma correction values.
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The  feature  functions  were  assessed  in  terms  of  resolution,  stability  and  smoothness  of

response  curves  against  the  available  range  of  measured  dose.  Similarly  to  the  analysis

conducted by PredModel-1B, the PredModel-2A/B investigated the statistical properties of each

of the 20 feature functions, applied for each image set separately and then combined for the

final  assessments.  In  order  to  relate  these  plots  to  the  ones  generated  by  PredModel-1B

(Figures 17-38), “image scanning column” property should be considered as fixed, i.e. for a

specific “snapshot” during the line-scanning procedure. For example, the SF20 function 2-D

plots  in  Figures  36-38  and  the  corresponding  1-D  plot  of  Figure  73  demonstrate  a  similar,

logarithmic-like, transition curve, when a single scanning column is considered in the 2-D

plots. Therefore, it is clear that the response curves already calculated for the simulated image

sets (DB1 and DB2) and the corresponding curves calculated over the new image sets (DB3)

display similar functional and statistical characteristics.

From  the  results  presented  in  the  previous  plots,  it  can  be  easily  verified  that  feature

functions already identified as “good” candidates for textural content recognition work equally

well for the new DB3 image set. Functions MIN, MAX, MEAN, POWER, VOLUME and SF19 have

shown a similar, exponentially decreasing, response curve when measured against various

doses. Function SF20 demonstrates a similar behavior, only in this case the response curve is

a standard logarithmic plot.

Function STDEV has already been identified as best fit for tissue recognition against the

background, but with limited value over the intra-tissue areas. This property can be recognized

when  reviewing  Figure  57.  However,  if  various  gamma  correction  levels  (gamma=0.62)  are

also considered, the same function demonstrates a characteristic window-like response curve.

This  type  of  transitions  could  be  extremely  useful  when  trying  to  match  an  expert’s  quality

evaluation, where the optimal exposure settings can be found somewhere between excessively

low  and  excessively  high  exposure  rates.  Similar  response  curves  can  be  identified  also  for

feature  functions  SURFACE  (Figure  63)  and  SF17  (Figure  70).  Finally,  feature  function  SF14

(Figure  67)  seem  to  have  a  response  curve  similar  to  the  initial  selection  of  seven  feature

functions, however, the transition plot drops rapidly towards zero and remains almost constant

for the most part of the dose range.

With respect to pre-processing, gamma correction over the full greyscale range seems to

had  limited  to  no  effect  in  the  response  curve.  Almost  in  all  cases,  the  effects  of  using

symmetric  gamma correction levels  below (0.62) and above (1.60) the nominal  value (1.00)

was the introduction of a positive or negative shift of the transition plot in the form of Y-axis

bias. As an exception, functions STDEV, SURFACE and SF17 demonstrated an explicit behavior

of transforming the initial exponential-like curve into a window-like curve when using gamma

levels  below  nominal.  In  general,  the  introduction  of  gamma  correction  as  a  pre-processing

stage before the actual textural feature calculations have shown stable and consistent behavior

in  all  cases,  without  any  affect  on  the  base  statistics  of  the  raw  data  and,  in  some  cases,

evidence of enhancing the information content of specific, otherwise irrelevant, features. Due

to the nature and sensitivity of the design of the line-scanning control loop, the extent of

similar pre-processing stages is to be considered later on.
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2.8.4  Effects of special areas and background artifacts

For completeness purposes, two additional cases of data analysis were considered.

Specifically, a clearly defined area of malignant mass in tissue “U01” (Figure 40, red area) was

considered separately for full texture analysis, in order to assess the statistical differences in

feature values against the normal tissue analysis thus far. Additionally, textural analysis was

also conducted in specific areas of image sets “U03.02” and “U04.03” (Figure 40, blue areas),

in order to investigate the statistical properties of the evaluated textural features when only

the implicit background (perspex layers and tissue plastic wrapping) is considered.

For the malignant mass analysis, the full set of 20 textural feature dataset was calculated

and the analysis was conducted in accordance to the one applied for the normal tissue areas.

From the full set of 80 graphs, only 8 combined plots, the ones corresponding to the selected 8

features, are presented in Figures 74-81.
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Figure 74: PredModel-2A/B, textural “signature” profile for MIN feature function at different
exposure rates (dose) and gamma correction values, for the malignant tumor area.
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Figure 75: PredModel-2A/B, textural “signature” profile for MAX feature function at different
exposure rates (dose) and gamma correction values, for the malignant tumor area.
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Figure 76: PredModel-2A/B, textural “signature” profile for MEAN feature function at different
exposure rates (dose) and gamma correction values, for the malignant tumor area.
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Figure 77: PredModel-2A/B, textural “signature” profile for STDEV feature function at different
exposure rates (dose) and gamma correction values, for the malignant tumor area.
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Figure 78: PredModel-2A/B, textural “signature” profile for POWER feature function at different
exposure rates (dose) and gamma correction values, for the malignant tumor area.
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Figure 79: PredModel-2A/B, textural “signature” profile for VOLUME feature function at different
exposure rates (dose) and gamma correction values, for the malignant tumor area.
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Figure 80: PredModel-2A/B, textural “signature” profile for SF19 feature function at different
exposure rates (dose) and gamma correction values, for the malignant tumor area.
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Figure 81: PredModel-2A/B, textural “signature” profile for SF20 feature function at different
exposure rates (dose) and gamma correction values, for the malignant tumor area.

As expected, the general form of the transition curve for the malignant tissue is roughly the

same  as  for  the  normal  tissue,  while  the  statistics  related  to  power  and  elevation  volume

characteristics (features: POWER, VOLUME, SF19, SF20) are slightly higher in absolute value

due to the overall increased mean value of brightness. The relatively consistent behavior of

these textural feature extractors over both normal and pathological tissue justifies their usage

for stable image quality estimator over the entire breast area. Internal structural details within

the malignant tumor can be recognized in a similar way as for the normal tissue areas, even if

the increased overall brightness makes this task harder for the naked eye. However, there is

no clear indication of direct correlation to the discrimination of pathological findings, related to

malignant tumors, and these slight differences in statistics. This is a direct conclusion from the

fact that the diagnostic task in mammography is usually too difficult and complex to be

described by first-order statistics that all the current (20) feature functions employ.

Next, the full set of 20 textural feature dataset was calculated for the areas of background

artifacts/patterns (Figure 40, blue areas) over the image sets “U03.02” and “U04.03”, and the

analysis was conducted in accordance to the one applied for the normal tissue areas. From the

full  set  of  160  graphs,  only  8  combined  plots,  the  ones  corresponding  to  the  selected  8

features for image set “U03.02”, are presented in Figures 82-89.
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Figure 82: PredModel-2A/B, textural “signature” profile for MIN feature function at different
exposure rates (dose) and gamma correction values, for the background area.
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Figure 83: PredModel-2A/B, textural “signature” profile for MAX feature function at different
exposure rates (dose) and gamma correction values, for the background area.
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Figure 84: PredModel-2A/B, textural “signature” profile for MEAN feature function at different
exposure rates (dose) and gamma correction values, for the background area.
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Figure 85: PredModel-2A/B, textural “signature” profile for STDEV feature function at different
exposure rates (dose) and gamma correction values, for the background area.
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Figure 86: PredModel-2A/B, textural “signature” profile for POWER feature function at different
exposure rates (dose) and gamma correction values, for the background area.
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Figure 87: PredModel-2A/B, textural “signature” profile for VOLUME feature function at different
exposure rates (dose) and gamma correction values, for the background area.
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Figure 88: PredModel-2A/B, textural “signature” profile for SF19 feature function at different
exposure rates (dose) and gamma correction values, for the background area.
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Figure 89: PredModel-2A/B, textural “signature” profile for SF20 feature function at different
exposure rates (dose) and gamma correction values, for the background area.
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Plots from Figures 82-89, i.e. background texture analysis, can be directly compared to the

corresponding plots from Figures 74-81, i.e. normal tissue texture analysis, as they refer to

the same image set “U03.02”. From these comparative studies it is clear that feature values

and the corresponding transition curves were different. Response curves that referred to

background texture demonstrated sharper slopes and smoother transitions, over more limited

areas of the dose range. Furthermore, the exact feature values for background texture varied

over smaller ranges above and below zero, whereas the tissue texture exhibited more extreme

values.

Comparative analysis of background and normal tissue areas, conducted for both “U03.02”

and “U04.03” image sets, has verified the limited statistical influence of background patterns

to the textural feature datasets that were calculated over the tissue areas. Although the

inherent statistics are different, the information content of the tissue areas seem to be much

higher than that of the background artifacts, that can be considered as a convolution of the

expected X-ray noise and the background patterns generated by the perspex layers and the

plastic wrappings of the tissue samples. In any case, the signal-to-noise ratio is high enough to

validate the feature analysis conducted over the new DB3 image database.

2.9 Textural characterization of images of mammographic test objects

Mammography  phantom  images,  previously  acquired  at  Elettra  and  at  UCL  (see  WP  3

monthly report for August 2004), were used to investigate possible candidates for indicators of

interesting feature presence. The digital images were divided in boxes of different sizes (25x25

– 60x60 pixel2), and the following parameters were tested as potential feature functions:

1) standard deviation normalized to mean value (STDn)

2) skewness (which is a measure of data distribution symmetry)

3) kurtosis (which is a measure of whether the data distribution is peaked or flat relative to

a normal distribution)

4)  maximum  gradient  (the  latter  was  defined  as  the  maximum  absolute  value  of  box

derivative: a 2D array containing image box derivative computed row by row)

The  effect  of  some  preprocessing  procedures  on  the  behavior  of  important  statistical

quantities was studied.

It was observed if the ability of a particular parameter in detecting the presence of a well

known object increased or decreased after applying one of the following software tools: a cubic

spline smoothing algorithm1, the histogram equalization and a mean smoothing + edge

1 The cubic smoothing spline s to the given data x,y is constructed, for the specified smoothing parameter p  [0..1] and
the optionally specified weight w. The smoothing spline minimizes

222 )()1()))(()()(( sDpixsiyiwp
i
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enhancement  linear  filter.  The  latter  was  used  by  [A.  Bazzani,  et.al.  “An  SVM  classifier  to

separate false signals from microcalcifications”, Phys. Med. Biol., Vol. 46, 1561-1663, 2001] in

a SVM classifier as a first method step.

It is really important to underline that the standard deviation alone cannot be used, but it is

necessary to normalize it to the mean value. In fact, if we take into account for the sake of

simplicity only the quantum noise, the image regions without the imaged object have a std

value much larger than those regions containing the sample since the number of photons

impinging  the  image  receptor  is  larger  for  the  sample  free  path  in  respect  to  the  sample

transmission path where the number of  photons is  drastically  reduced due to the absorption

inside the phantom. Vice versa, the standard deviation normalized to mean value (STDn),

which  obeying  to  Poisson  statistics  is  proportional  to  the  inverse  of  photon  number  square

root, is lower for sample free image regions. Larger STDn values should therefore indicate

those image regions containing non-uniformities due to feature presence.

2.9.1 Study of the effect of pre-processing

At first the Leeds phantom image acquired (at 17 keV and 0.6 mGy of Mean Glandular Dose

(MGD)) with the imaging plate (IP) was investigated. In particular, the image region containing

the high contrast small objects details, which should simulate microcalcifications, was

examined.  The  details  size  is  0.5  mm and  first  five  of  the  diminishing  contrast  series  were

taken  into  account.  The  image  reported  in  figure  90  was  divided  in  boxes  of  25x25  pixels2

(pixel  size=50 m)  and  the  STDn was  computed  for  each  box.  Figure  91  shows  the  STDn of

each figure 90 25x25 pixels2 box plotted row by row. For example STDn of  phantom image

box row 2 and column 4 (see figure 90) corresponds to the fourth point of STDn plot of data 2

(figure 91).  It  has to be stated that in all  graphs where it  is  written standard deviation,  the

latter  refers to the STDn. Returning to figure 91 results,  the STDn assume larger values for

those figure 90 image boxes containing the details. In particular, if the detail is contained in

two  adjacent  boxes,  as  for  the  first  from  left  detail  of  figure  90,  the  STDn  of  both  boxes

assumes a larger value with respect to the background. The STDn resulted dependent on the

detail contrast, lower the latter lower the STDn.

Figures 92, 93 and 94 show respectively the skewness, kurtosis and maximum gradient of

each  figure  90  25x25  pixels2  box  plotted  row  by  row.  The  skewness  was  found  to  be  very

sensitive to the detail presence and in respect to the STDn less dependent to their contrast.

While, the kurtosis effectiveness in founding the details resulted not particularly promising. The

kurtosis  max  value  corresponded  to  box  row  2  and  column  15  of  figure  90  image,  which

contains  a  small  dark  spot  due  to  IP  defect,  while  the  difference  between  kurtosis  values

associated  to  Leeds  phantom  details  and  the  background  was  less  important  than  the

difference the STDn and the skewness presented between details and background boxes.

with w=ones(size(x)) the default value for w. For p = 0, s is the least-squares straight line fit to the data, while, on the
other  extreme,  i.e.,  for  p  =  1,  s  is  the  variational,  or  natural  cubic  spline  interpolant.  As  p  moves  from  0  to  1,  the
smoothing spline changes from one extreme to the other.
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As visible in figure 94, the maximum gradient was found to be completely inappropriate to

reveal the presence of the small contrast objects. Image variations due to noise obscure those

due to detail presence. Since the feature recognition has to be done on low dose images, which

consequently will  be quite noisy,  the use of  the maximum gradient for  feature recognition is

useless.
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32

Figure 90.  A  detail  of  Leeds  phantom  image,  acquired  at  17  keV  and  0.6  mGy  MGD,

containing the small high contrast objects

Figure 91. STDn of each Leeds phantom image (figure 90) 25x25 pixels2 box plotted row

by row
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Figure 92. Skewness of each Leeds phantom image (figure 90) 25x25 pixels2 box plotted

row by row

Figure 93.  Kurtosis  of  each Leeds phantom image (figure 90) 25x25 pixels2 box plotted

row by row
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Figure 94.  Max  gradient  of  each  Leeds  phantom  image  (figure  90)  25x25  pixels2  box

plotted row by row

The Leeds phantom detail image was then subjected to a smoothing spline algorithm, which

aim is to reduce image noise. Smoothed image is shown in figure 95. As visible in figure 96,

which  reports  maximum  gradient  of  each  25x25  pixels2  box  of  smoothed  phantom  image

(figure  95),  re-computing  the  maximum  gradient  evaluation  on  the  smoothed  data  permits

now to ‘recognize’  the detail  presence.  The STDn and the skewness were also calculated for

the smoothed image (figure 95). The STDn and the skewness of smoothed data are reported

respectively in figures 97 and 98. The smoothing spline tool improves the STDn effectiveness

in identifying details (figure 97). In fact, the difference between STDn of detail free boxes and

those containing them is larger for the smoothed image in respect to the raw one. Whereas the

smoothing  procedure  modifying  box  data  distribution  reduces  the  skewness  ability  in

identifying details (figure 98).
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Figure 95.  Leeds  phantom  image  (figure  90)  subjected  to  a  cubic  smoothing  spline

algorithm
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Figure 96.  Max  gradient  of  each  Leeds  phantom  smoothed  image  (figure  95)  25x25

pixels2 box plotted row by row

Figure 97.  STDn of  each Leeds phantom smoothed image (figure 95) 25x25 pixels2 box

plotted row by row
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Figure 98.  Skewness of  each Leeds phantom smoothed image (figure 95) 25x25 pixels2

box plotted row by row

Figure 99 shows Leeds image (figure 90) after a linear histogram equalization. The goal of

histogram equalization is to obtain a uniform data histogram by redistributing original intensity

distributions. The effect is to improve image contrast. But the effect on STDn and skewness is

poor.  As  visible  in  figures  100  and  101,  which  report  respectively  STDn  and  skewness  of

histogram equalized image, the STDn and in particularly the skewness suffer the loss of their

capacity  in  recognizing  detail  presence  after  the  original  data  have  been  subjected  to  the

histogram equalization.

  1            4                 8               12               16              20               24              28

32

Figure 99. Leeds phantom image (figure 90) subjected to a histogram equalization
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Figure 100. STDn of each Leeds phantom histogram equalized image (figure 90) 25x25

pixels2 box plotted row by row

Figure 101.  Skewness  of  each  Leeds  phantom  histogram  equalized  image  (figure  90)

25x25 pixels2 box plotted row by row
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The next tool taken into account was a mean smoothing and edge enhancement linear

filter.  The  principle  behind  edge  enhancement  is  the  hypothesis,  that  different  organs  are

represented by different pixel intensities, and hence that organ boundaries can be

characterized by rapid intensity changes in the image. However, it is obvious that intensity

discontinuities  may  also  originate  from  noise  in  the  image.  Therefore,  noise  must  be

suppressed by the use of suitable filter kernels, or during edge enhancement itself. In this case

a mean smoothing filter, which reduces the amount of intensity variation between one pixel

and the next, is used. The effect of the smoothing + edge enhancement filter on the original

image is visible in figure 102, while the effect on the STDn and on the skewness is shown in

figures 103 and 104, which report respectively the STDn and the skewness of filtered image.

The use of the filter does not bring any improvement in both STDn and skewness capacity in

reveal detail occurrence. As a matter of fact, the difference between STDn of detail free boxes

and those containing them is larger for the raw image in respect to the filtered one. The same

holds also for the skewness.
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Figure 102.  Leeds phantom image (figure 90) subjected to a mean smoothing and edge

enhancement filter
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Figure 103. STDn of each Leeds phantom image subjected to a mean smoothing and edge

enhancement filter (figure 102) 25x25 pixels2 box plotted row by row

Figure 104. Skewness of each Leeds phantom image subjected to a mean smoothing and

edge enhancement filter (figure 102) 25x25 pixels2 box plotted row by row
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From this analysis it was not found any particular improvement in subjecting the raw image

to the investigated pre-processing tools  before using the STDn and the skewness as feature

‘extractor’. It is important to underline that these results were found at both the employed

energies and for the investigated exposure range.

2.9.2 Study of statistical quantities for feature detection

The  utility  of  the  SDTn  and  the  skewness  was  tested  on  the  anthropomorphic  phantom

(‘Rachel’) images acquired with the IP. In figure 105(a) is shown the Rachel image (at 17 keV

and 0.8mGy MGD), which was subjected to a logarithmic compression. The dynamic range of

an  image  can  be  compressed  by  replacing  each  pixel  value  with  its  logarithm.  This  has  the

effect that low intensity pixel values are enhanced. Applying a pixel logarithm operator to an

image can be useful in applications where the dynamic range may too large to be displayed as

it happened with the Rachel phantom linear image. In figures 105 (c) and (d) are reported

respectively the STDn and the skewness map of the Rachel image. The STDn and the

skewness were computed for  30x30 pixels2 boxes of  the linear (not log compressed) Rachel

image.  As  in  evidence  in  figure  105(c),  the  STDn  resulted  well  suited  to  detect  sample

boundaries and the regions containing large and not particularly contrasted features. In fact,

quite  uniform  phantom  image  regions  are  associated  to  STDn  values  lower  than  those

associated to regions containing some features. Also the skewness reveals the sample

boundaries. But, differently from the STDn, the skewness resulted not sensitive to large and

not particularly contrasted features. However, the skewness was found to be very skilled in

recognizing high contrast small objects. Figure 105(b) shows a detail of Rachel phantom image

containing two small high contrast objects. The STDn and the skewness values associated to

the boxes containing the two small objects are indicated by two arrows in figure 105 (c) and

(d). The presence of the two details was clearly put in evidence by the skewness, while it was

weakly indicated by the STDn. This aspect can be better highlighted looking at figure 105 (e),

where the horizontal profiles extracted from the STDn and the skewness map associated to

image  regions  containing  the  two  small  object  are  reported.  The  skewness  value  of  a  box

containing  a  high  contrast  small  object  is  drastically  lower  than  the  values  the  skewness

assumes  in  the  neighbouring  background.  As  said,  the  skewness  is  a  measure  of  data

distribution symmetry. The skewness for a normal distribution is zero, and any symmetric data

should have a skewness near zero. Negative values for the skewness indicate data that are

skewed  left  and  positive  values  for  the  skewness  indicate  data  that  are  skewed  right.  This

characteristic can be also exploited when identifying sample boundaries. Figure 105(f) shows

two  horizontal  profiles  extracted  from  the  STDn  and  the  skewness  map  and  related  to  the

Rachel image region containing two phantom edges. Approaching the phantom edge from the

background  results  first  in  a  skewness  drop  (the  box  pixel  values  are  mainly  those  of  the

background (high pixel values) and there are few phantom low pixel values, which skew the

data distribution to left). Exactly at the phantom edge the skewness is near zero (high value

pixels  are  equal  in  number  of  low  value  pixels).  While  leaving  the  edge  to  enter  into  the

sample  region  results  in  a  skewness  value  increase.  In  this  case  the  box  pixel  values  are
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dominated  by  sample  low  values  and  the  few  background  high  pixel  values  skews  the  data

distribution to right.

 Hence, at the phantom boundaries the skewness assumes the following three values: a

minimum (local), a value near zero, a maximum (local). While the STDn assume a maximum

at the image box for which the skewness assumes the value near zero (figure 105(e)).

Whereas,  in  the  presence  of  a  small  high  contrast  object,  the  skewness  reaches  a  marked

minimum value and the STDn a relatively large value, both at the same image box: that

containing the detail.
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(a)

(b)

 (c)

(d)

(e) (f)

Figure 105. (a) Anthropomorphic phantom ‘Rachel’ image (log compressed) acquired

at 17 keV and 0.8 mGy MGD. (b) A detail  of  ‘Rachel’  phantom image containing

two  high  contrast  small  objects.  (c)  STDn map of  each  ‘Rachel’  phantom image

30x30 pixels2 boxes.  (d) Skewness map of  each ‘Rachel’  phantom image 30x30

pixels2 boxes. (e) STDn and skewness horizontal profiles related to ‘Rachel’ image

region  containing  the  two  high  contrast  small  objects.  (f)  STDn  and  skewness

horizontal profiles related to ‘Rachel’ image region containing two phantom edges
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It is also important to point out the fact that the STDn assumes larger values in the image

region occupied by the phantom in respect to the background. If the standard deviation alone,

without normalization, had been used, the opposite would have happened.

(a) (b)

(c) (d)

Figure 106. (a) Bart’s phantom image (histogram equalized) acquired at 28 kV and

40 mAs. (b) 3D representation of the Bart’s phantom image before applying

the  histogram  equalization.  (c)  STDn  (log  compressed)  map  of  each  Bart’s

phantom  image  20x20  pixels2  boxes.  (d)  Skewness  map  of  each  Bart’s

phantom image 20x20 pixels2 boxes.

The effectiveness of the STDn and the skewness was then tested using the images of the

Bart’s phantom, which were acquired with an a-Se flat panel detector (FPD) and a conventional

x-ray tube. Figure 106(a) shows the Bart’s phantom image acquired with 28 kV and 40 mAs.

The employed FPD furnishes in output an image, where the original pixel values have been

inverted. As a consequence and as visible in figure 106(a), the background (the image regions

without the sample) are those with the lowest pixel values. In particular, in the considered

image, the background was saturated and is characterized by zero pixel values. The image,

only  for  visualisation  purposes,  was  subjected  to  the  histogram  equalization  in  order  to

increase the contrast. Figure 106(b) reports a 3D representation of the Bart’s phantom image

before applying the histogram equalization. The phantom presents a steep edge and the

contrast  between  the  sample  and  the  background  obscures  the  image  contrast  due  to  the

features contained into the sample. In figures 106 (c) and (d) are reported respectively the

STDn  and  the  skewness  maps  of  the  Bart’s  phantom  image  (the  original)  (figure  106(a)),

which was divided in boxes of 20x20 pixels2. A box size of 20x20 pixels2 was chosen because
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the FPD pixel size (127 m) is quite larger than that of the IP (50 m). It has also to be stated

that  figure  106(c)  shows  the  logarithm  of  the  STDn,  since  the  values  of  the  latter

corresponding  to  phantom  edges,  which  are  very  steep,  are  considerably  larger  than  SDTn

values inside the sample. Together with the boundaries, the STDn recognizes the regions

containing large and not particularly contrasted features. Also in this case, quite uniform

phantom image zones are associated to STDn values lower than those associated to regions

containing  some  features.  The  latter  performance  is  not  provided  by  the  skewness,  which

instead put in evidence the presence of high contrast objects.

The skewness behaviour at the sample boundaries (wit the background) differs from that

obtained with the Rachel image (fig.105) since in the Bart’s phantom image the background is

saturated.  As  a  consequence,  a  skewness  profile  related  to  an  image  region  containing  the

sample boundaries does not present a minimum-maximum pair in correspondence of the edge,

but  only  a  maximum.  Returning,  to  the  high  contrast  small  objects,  figure  107(a)  shows  a

Bart’s  phantom  image  detail  containing  two  dark  spikes.  As  visible  in  figure  107(b),  which

magnifies the two details, both the spikes consist of only one low value pixel. The presence of

the latter is clearly ‘recognized’ by the skewness, as in evidence in figure 107(d), which reports

the  skewness  map  of  Bart’s  phantom  image  detail  (figure  107(a)).  The  SDTn  presents,  in

correspondence  of  the  two  boxes  containing  the  spikes,  a  value  larger  in  respect  to  the

surrounding boxes, but the relative difference is smaller than the difference between the

skewness of dark spike boxes and the background ones.

It has to be underlined that since the image has the pixel values inverted, a dark spike

actually  corresponds  to  an  exceedingly  high  pixel  value  probably  due  to  detector

malfunctioning and not to a small contrast object. The latter will be characterized by a bright

spike in the final-inverted image. The Bart’s phantom image (figure 107(a)) contains also two

extremely high pixel values and the skewness related to the image boxes containing those

values presents two local maxima.

So the ‘sign’  of  the skewness can identify if  a  relatively high box SDTn value is  due to a

‘dark’ or a ‘white’ spike. This important result emerged also in the following presented analysis.
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(a)
(b)

(c) (d)

Figure 107.  (a)  Bart’s  phantom  image  detail  containing  two  dark  spikes.  (b)

Magnification of the image regions containing the two dark spikes. (c) STDn

of  each  Bart’s  phantom  image  detail  (figure  107(a))  20x20  pixels2  boxes.

(d)  Skewness  map  of  each  Bart’s  phantom  image  detail  (figure  107(a))

20x20 pixels2 boxes.

The third set  of  investigated images was acquired with the CCD detector and the sample

was the Rachel phantom. Since the detector area is quite small (29 x 29 mm2), 2D images of

a phantom region were obtained by scanning the sample through the x-ray beam, which was

previously aligned with the CCD. The beam height was 3.5 mm, while the scanning step was

set equal to 3 mm. In this way every scan contains a part (0.5 mm in height) common to the

adjacent  one.  At  first,  the  image  has  been  reassembled  without  using  this  additional

information.  As  visible  in  figure  108,  the  ‘whole’  image  consists  of  two  data  columns  each

formed of 23 2045x253 pixels2 sub-images. The latter were previously corrected for dark

noise (dark noise subtraction) and beam/detector non-uniformities (white field normalization).
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The  image  reported  in  figure  108  was  subjected  to  a  logarithmic  compression  only  for

visualization purposes.

Figure 108. The image (log compressed) of a ‘Rachel’ phantom region acquired with the

CCD at 19 keV and 0.7 mGy MGD.

Figures  109  (a)  and  (b),  show  respectively  the  STDn  and  skewness  map  of  the  Rachel

phantom image (figure 108) which was divided in 60x60 pixels2 boxes since the CCD pixel size

is  quite  small:  14  m.  The  STDn  recognizes  well  the  phantom  boundaries  and  the  regions

containing some extended features. The left-bottom sample side is quite uniform and the

corresponding STDn values are lower than the STDn values of the other sample regions. As it

pertains the skewness, the latter indicates the sample boundaries and the presence of both

dark  and  bright  spikes.  Figures  109  (c)  and  (d),  show  respectively  a  3D  representations  of

sample details regions containing a bright and a dark spike. The arrows in figure 109, show the

skewness values corresponding to the boxes containing the above mentioned spikes. The

bright spike presents a high (positive) skewness value (significantly larger in respect to the

surrounding  background),  while  the  dark  spike  presents  a  low  (negative)  skewness  value

(significantly  smaller  in  respect  to  the  surrounding  background).  For  both  the  spikes,  the

associated STDn does not differ from the STDn of the surrounding background. This is due to
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the large size of the boxes the image was divided in to compute the STDn and the skewness.

Larger the box size, lower the ‘capacity’ of the STDn to detect the presence of a single pixel

spike. While, the skewness ability in detect the presence of a single pixel, which value is quite

different from its background, does not suffer from the box size increase.

Figure 109(e) shows the STDn and the skewness profiles corresponding to an image region,

which contains a bright spike and the phantom edge. As examined, the skewness value of an

image box containing a pixel, which value is quite larger in respect to the other box pixels, is

larger than zero. For the same image box, also the STDn should assume a value larger than

the STDn of the surrounding background. It has to be underlined that the STDn value depends

on the box size and the value relative difference between the bright pixel  and the other box

pixels. If that difference is small e/or the box size is quite large, the STDn can not reveal the

bright  pixel  presence.  As  it  regards  the  sample  boundaries,  the  STDn  assumes  a  maximum

value  in  correspondence  of  a  sample  edge,  while  the  skewness  presents  the  following

sequence: minimum (local),  zero and maximum (local)  in correspondence of  a sample edge.

Precisely, as found when analyzing Rachel phantom images acquired with the IP, the skewness

value  at  the  image  box  for  which  the  STDn  assumes  a  maximum,  is  near  zero;  while  the

skewness is considerably large and considerably low in the adjacent boxes.

At this point the image reported in figure 108, was ‘reconstructed’ using the information

contained in the overlapping subsequent scans. Each scan was multiplied by a constant in

order to render equal the mean value of the common region between two successive sub-

images.

Figure  110  shows  a  detail  of  the  Rachel  image  after  (a)  and  before  (b)  the  above

mentioned correction. The effect of the latter on the STDn and on the skewness was not

relevant. In fact, as visible in figure 110, which reports respectively the STDn and skewness of

both corrected and not Rachel  image detail  (figures 110 (c),  (d),  (e) and (f)),  the correction

procedure has not brought any significant change in both STDn and skewness values.

From  results  emerged  in  this  study,  it  was  found  that  the  kurtosis  and  the  maximum

gradient are not suitable to detect feature presence. While, the STDn and the skewness

resulted well suited to detect phantom boundaries. In particular the information furnished by

the STDn and the skewness can be combined together to better recognize phantom edges. In

fact the skewness value at the image box containing half sample and half background pixel

values,  for  which  the  STDn  assumes  a  maximum,  is  close  to  zero;  while  the  skewness  is

considerably large and considerably low in the adjacent-lateral boxes. Another important result

regards the STDn capacity in recognizing the presence of large and not particularly contrasted

features. Whereas, the skewness was found to be excellently suited to recognize small (even

one pixel) high contrast objects and their nature, i.e. if the object is a dark or black spot. The

latter characteristic can permit to distinguish between a detector malfunctioning (associated to

an  extremely  bright  spike)  and  the  presence  of  a  microcalcification  (associated  to  a  dark

spike).
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(a) (b)

(c) (d)

(e)

Figure 109. (a) STDn of each ‘Rachel’ phantom image (figure 108) 60x60 pixels2 boxes.

(b) Skewness of each ‘Rachel’ phantom image (figure 108) 60x60 pixels2 boxes. (c)

3D representations of ‘Rachel’ image (figure 108) detail region containing a bright

spike. (d) 3D representations of ‘Rachel’ image (figure 108) detail region containing

a  dark  spike.  (e)  STDn  and  skewness  vertical  profiles  corresponding  to  an  image

region (figure 108), which contains a bright spike and the phantom edge.
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(a) (b)

(c) (d)

(e) (f)

Figure 110.  (a)  A  ‘Rachel’  phantom  image  (figure  108)  detail  before  the  correction  for

adjacent  sub-images  nonuniformities.  (b)  A  ‘Rachel’  phantom  image  (figure  108)

detail after the correction. (c) STDn of each figure 110(a) 60x60 pixels2 boxes. (d)

STDn of each figure 110(b) 60x60 pixels2 boxes. (e) Skewness of each figure 110(a)

60x60 pixels2 boxes. (f) Skewness of each figure 110(b) 60x60 pixels2 boxes
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3.  Implementation & Performance Issues

In accordance to the proposed sensor IC design and hardware considerations,  all  texture

feature functions were considered under the SIMD architecture and possible consequences in

the organization of the final code [18-19].

The basic SIMD architecture requirement is that the code can be effectively executed with

multiple instances of input data. In the case of a line-scanning imaging system this means that

the  pixel  data  should  be  able  to  be  processed  as  they  arrive  in  the  buffers,  using  multiple

sensor IC modules that work in parallel processing different parts of the input. It is essential

that branching functions and global data access is limited to the absolute minimum, in order to

gain the most from parallel data processing in every clock cycle.

The complete set of the 20 feature functions are based on 1st order statistics or similar

processing  patterns.  Even  if  all  20  functions  were  to  be  used  in  the  final  system,  careful

execution planning would enable the complete evaluation of all of them in no more than two

stages  –  the  first  for  calculating  all  functions  that  use  only  raw  pixel  data  as  input  and  the

second for calculating the synthetic feature functions that require previous calculation of others

first.  In  any  case,  the  structure  of  all  feature  functions  is  essentially  based  on  a  sequential

access through the entire set of pixel values currently within the boundaries of the sampling

box. This means that the complexity in storage requirements and processing time is always

directly proportional to the total number of pixels available at the input: 100 pixels when size

is 10x10, 625 pixels when size is 25x25, or 2500 pixels when size is 50x50. Although the

choice  on  sampling  box  size  must  be  carefully  balanced  between  high-quality  texture

“signature” and fast processing, the inherent structure of the code remains the same and fully

compatible for SIMD implementation.

As a demonstrative example, the following source code excerpts can be used a guideline for

translating any of the feature functions from Matlab (original source) into C/C++ source code

and finally into Assembly for IC programming:

 MATLAB sample:

function npower=func_SF19( I )

    npower = sum(sum(I.^2))/(size(I,1)*size(I,2));
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 C/C++ sample:

int func_SF19( unsigned char *pixel, int boxsz )
{
    int    i, j, sum=0, px, npower;

    for ( i=0; i<boxsz; i++ )
        for ( j=0; j<boxsz; j++ )
        {
            px = *(pixel+(i-1)*boxsz+j);
            sum = sum + px*px;
        }

    npower = sum / (boxsz*boxsz);
    return(npower);
}

 x86 Assembly sample:

 ...
DSEG SEGMENT

BOX_SZ DW 50
ICOUNT DW 50
JCOUNT DW 50
SUM DW 0
NPOWER DW 0

DSEG ENDS
 ...

FUNC_SF19 PROC

 PUSHA

 MOV SUM,0

L1: CMP JCOUNT,0
 JNG L0

L2: CMP JCOUNT,0
 JNG L1
 MOV DI,JCOUNT
MOV BX,ICOUNT
 SUB BX,1
 MUL BX,BOX_SZ
 MOV AX,PIXEL[BX][DI]
 MUL AX,AX
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 ADD SUM,AX

 SUB JCOUNT,1
 JMP L2

 SUB ICOUNT,1
 JMP L1

L0: MOV AX,BOX_SZ
 MUL AX,AX
 MOV CX,AX
 MOV AX,SUM
 DIV CX

 MOV NPOWER,CX

 POPA

 RET

FUNC_SF19 ENDP

In general, preliminary analysis through PredModel-1A, PredModel-1B and PredModel-2A/B

has proven that efficient low-level texture analysis is possible with limited computational

resource requirements. Consistent performance profiles against exposure settings can be

formulated when using even single feature functions that relate to complexity and structural

analysis, thus constituting a solid base for the design of a feedback loop for real-time control.
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4. Further Progress Requirements

The current study for textural feature functions evaluation was initially based on a typical

set  of  mammographic images that were used as the base for  an exposure simulation model.

Later, a new set of breast tissue images was employed to validate the analysis results and the

initial feature functions selection.

In order to complete the general specifications for the design of the control loop, including

the sensor IC and the X-ray profiles, experts’ quality assessment over the entire set of breast

tissue images is essential in order to identify the clinically optimal acquisition parameters and,

subsequently, match the response curves of the selected feature functions to the expert’s one

[20].

Final stages of subsequent work should be focused, but not limited to, the following major

issues:

1. Acquire a complete set of experts’ quality assessment over the entire set

of breast tissue images (DB3).

2. Investigate the statistical correlation of the response curves between the

selected feature functions and the experts’ one.

3. Define a complete set of transformations, including any pre-processing

on the raw image data, as well as the feature datasets, in order to realize

the required matching towards the response curve of the expert’s quality

assessments.

4. Define  a  complete  set  of  rules,  thresholds  and  profiles  for  the

implementation of a realistic sensor IC intelligent control module, for

dental and mammographic applications.

5. Investigate alternative approaches and levels of providing higher levels of

intelligence in the sensor/imaging system through the application of

sophisticated image processing.
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APPENDIX  A

RIEDS – Radiographic Imaging Evaluation & Documentation System
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Site: Survey Date
Medical

Physicist
X-Ray Unit Manufacturer Contact

X-Ray Unit Model Email

Last QC Report Date Signature

I-ImaS
Intelligent Imaging Sensors for
Industry, Health and Security

RIEDS – Radiographic Imaging Evaluation &
Documentation System

version 1.2

Documentation set:
Form A: X-ray Equipment Specifications Assessment
Form B: Image Acquisition – Experiment Settings
Form C: Image Acquisition – Experiment Logging
Form D: Image Quality Evaluation – Technician’s QC
Form E: Image Quality Evaluation – Physician’s QC – Mammo
Form F: Image Quality Evaluation – Physician’s QC – Dental

Results:
Images Acquired:
Image Resolution (pixels):
Graylevel Depth (bits):
Detailed Equipment
Description:  YES  NO
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RIEDS – Radiographic Imaging Evaluation & Documentation System

version 1.2

I-ImaS

Intelligent Imaging Sensor for Industry, Health and Security

Workpackage-3

Contact: Harris Georgiou, xgeorgio@di.uoa.gr

mailto:xgeorgio@di.uoa.gr
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1. Introduction

As part of the I-ImaS project, the RIEDS prototype (Radiographic Imaging Evaluation

and  Documentation  System)  is  the  basic  tool  for  planning  and  executing  a  series  of

radiological experiments for image sets acquisition. It contains a package of template

documents in the form of data sheets that are to be filled before, during and after the

image acquisition process.

The main goals for having a detailed set of documentation and logging templates are

related to quality control, backtracking information and explicit image annotation, all

necessary for the construction of images that employ high quality and detailed

descriptions.

The RIEDS prototype includes a total of 6 template sheets for documenting various

aspects and parameters of the equipment, the data acquisition environment and the

retrieved images. Specifically, these sheets are:

Form A: X-Ray Equipment Specifications Assessment

Form B: Image Acquisition – Experiment Settings

Form C: Image Acquisition – Experiment Logging

Form D: Image Quality Evaluation – Technician’s QC

Form E: Image Quality Evaluation – Physician’s QC (Mammo)

Form F: Image Quality Evaluation – Physician’s QC (Dental)

The system is concluded with additional electronic data container files that are filled

after processing the data, as well as a prototype experiment planning chart that is

constructed after defining the goals of the experiments and the specifications of the

equipment.

2. Identification Codes

The RIEDS uses a detailed set of unique identifiers for all the elements involved in the

experiment. Specifically, codes are applied for the project name, the equipment, the

target used as the X-ray subject, the experiment runs and the image sets acquired. There

are no strict rules on naming conventions for these identifiers, however the naming rules

should be applied consistently and provide uniqueness.

For I-ImaS, the following naming conventions could be used:
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Project ID: “I-ImaS” (common name used throughout the documents)

Machine ID: Lxx (latin letter identifying location + two-digit numeric code)

o UCL: L=“U”, xx=10...19

o Trieste: L=“T”, xx=20…29

o ACTA: L=“A”, xx=30…39

Target ID: zz (location-specific X-ray subject identifier)

Test Set ID: NNN (set of images acquired under similar equipment
settings)

Image ID: nnnn (unique image identifier within the current test set)

Based on these naming conventions, the combined Unique Image Identifier (UID) can

be constructed as follows:

< ProjectID . MachineID . TargetID . TestsetID . ImageID >

For example:  “I-ImaS.U10.01.003.0023”  can be translated as image No 23 of set No 3,

depicting subject #1 on equipment No 10 at UCL.

All the UID codes should be accompanied with accurate timestamps, containing at

least date information. For compatible date/time representation, the ISO 8601 standard

format can be used for date-only representation, e.g. the “YYYY-MM-DD” format can be

used.

3. Phase A – Experiment Planning

Before conducting the experiment, several properties have to be identified and

documented, in order to log the exact characteristics of equipment and to plan the

required experiment settings.

Form A is used to record the equipment specifications. There are specific fields for

logging the tube potential (kVp) and tube current (mA or mAs) ranges, usually required

distribute the acquisition parameters and plan the experiment. Other equipment-related

parameters include focal spot sizes, filtering properties, grid properties, detector

specifications, etc. Output image characteristics are described by pixel size, spatial

resolution and graylevel depth. Finally, there additional fields for recording AERC

settings available, optical density modes, etc.
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After the equipment characteristics are recorded in every detail, Form B can

subsequently be used to record the exact settings of these equipment-related parameters

that are involved in the experiment. These settings are considered fixed and common

throughout the entire experiment, thus there is no need to include them along with every

single image set that is acquired but instead record them once for the entire experiment.

Using  the  information  from Form A and Form B,  specifically  the  data  related  to  the

tube capabilities in kVp and mAs ranges, the exact settings can be planned and noted in

the corresponding Experiment Planning Chart.

4. Phase B – Image Acquisition

During the experiment, acquired images are annotated using Form C. The fields

contain information about the initial exposure settings set by the technician, the true

values used (may differ slightly from the initial), as well as dose measurements. The

same sheet can be used to record multiple images or entire test sets.

As the full UID naming convention might be too lengthy for the actual file names, the

acquired images can be stored with a shorter abbreviation of the UID, for example using

the “TestsetID.ImageID” part as the file name and the rest of the UID as a hierarchical

directory structure for organizing the storage of the complete set. Image format should be

chosen carefully for lossless and optionally compressed storage, as it may affect future

work on data quality and software development.

5. Phase C – Image Evaluation

After the images are acquired and stored, they are evaluated by trained radiologists,

as well as expert physicians of the specific medical field.

Form D contains technical measurements on the acquired image, specifically related

to image quality. Resolution is considered through spatial resolution (SR), high-contrast

resolution (Hi-CR) and low-contrast resolution (Lo-CR). True intensity if the projected

target is measured via optical density values inside (OD1) and outside (OD2) the disc.

Finally, there is also a subjective evaluation of noise level (rms%), as well as beam quality

measurements (HVL – Half Value Length). The same sheet can be used to record multiple

images or entire test sets.

Forms  E  and  F  are  used  by  the  expert  physicians  on  the  specific  field  of  study,

specifically mammograms and dental images, in order to produce a detailed image
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quality evaluation with regard to various clinical aspects and content-related features of

the image. Integer ranking grades are noted in a symmetric range between -5 and +5. If

less detailed ranking is needed, the active range can be limited accordingly, e.g. between

-2 and +2. Due to the extent of the ranking tables needed for detailed image quality

characterization, one sheet is used per image.

6. General Guidelines

All documents included in the RIEDS prototype were created in accordance with

standard quality control assessment procedures, employed in periodic equipment

validations in real clinical environments [1]. Although RIEDS is focused on image quality

evaluation, rather than quality control for the equipments, the same rules apply with

regard to consistency in using it as an annotation tool.

For maximum integrity and usability of the resulting data, as well as the acquired X-

ray images, it is recommended that properly trained personnel are used when conducting

and documenting the experiments.

References

[1] RANZCR Mammography QC Manual – Physicist’s Test Sheets
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RIEDS / FORM A:  X-Ray Equipment Specifications Assessment

Machine ID2: Project ID1:

Site: Survey Date
Medical

Physicist
X-Ray Unit Manufacturer Contact

X-Ray Unit Model Email

Last QC Report Date Signature

Minimum
Setting

Maximum
Setting Step Setting Nominal

SettingTube Potential
kVp

Minimum
Setting

Maximum
Setting Step Setting Nominal

Setting

mATube Current

mAs

Minimum Value Maximum Value Nominal Value
Focal spot size m

Minimum Value Maximum Value Nominal ValueMagnification
factor

Mo/Mo Mo/Rh Rh/Rh W/Re Other
(specify)Filter types

available
Y    N Y    N Y    N Y    N

Filter thickness mm

Configuration 1 Configuration 2 Configuration 3Grid types
available

Grid thickness mm

Detector type

Configuration 1 Configuration 2 Configuration 3
Detector size cm x cm

Pixel size m

Number of
Pixels p x p

Spatial
Resolution lp/mm

Scan time Minimum Value Maximum Value Nominal Value
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sec

Minimum Value Maximum Value Nominal ValueEffective
Exposure Time msec

Setting 1 Setting 2 Setting 3
Matrix size p x p

Graylevel
depth bits/pixel

Configuration 1 Configuration 2 Configuration 3AERC modes
available

Minimum
Setting

Maximum
Setting Step Setting Nominal

SettingOptical Density
modes

Comments
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RIEDS / FORM B:  Image Acquisition – Experiment Settings

Project ID1: Target ID3:

Machine ID2: Experiment ID4:

Site: Survey Date
Medical

Physicist
Contact

Email
Signature

Minimum
Setting

Maximum
Setting Step Setting Nominal

SettingTube Potential
kVp

Minimum
Setting

Maximum
Setting Step Setting Nominal

Setting

mATube Current

mAs

Setting Used
Focal spot size m

Magnification
factor

Mo/Mo Mo/Rh Rh/Rh W/Re Other
(specify)Filter type

used

Filter thickness mm

Configuration Used
Grid type

Grid thickness mm

Detector type

Configuration Used
Detector size cm x cm

Pixel size m

Number of
Pixels p x p

Spatial
Resolution lp/mm

Matrix size p x p

Graylevel
depth bits/pixel
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AERC mode Default:
OFF

Optical Density
mode

 (AERC: on)
Default:

OFF

Target Used

Target model

Target type

Target diameter mm

Target
thickness mm

Comments



– 111 –

RIEDS / FORM C:  Image Acquisition – Experiment Logging

Machine ID2: Project ID1: Target ID3:

Site: Survey Date Experiment ID4:

Medical
Physicist

# of Images

Contact Current Page

Email
Signature Total Pages

Test Set ID5:

EMULSION SETTINGS RESULTS

Values Set True Values Air Kerma MGD

Image ID6 Filename kVp mA sec mAs kVp mA sec mAs mGy mGy
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RIEDS / FORM D:  Image Quality Evaluation – Technician’s QC

Machine ID2: Project ID1: Target ID3:

Site: Survey Date Experiment ID4:

Medical
Physicist

# of Images

Contact Current Page

Email
Signature Total Pages

Test Set ID5:

EMULSION IMAGE QUALITY EVALUATION

Resolution Intensity Noise Beam
Quality

Image ID6 Filename SR Hi-CR Lo-CR OD1 OD2 Diff(2-1) Diff (%) rms (%) HVL
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RIEDS /FORM E:  Image Quality Evaluation – Physician’s QC
Mammography Template

Project ID1: Target ID3:

Machine ID2: Experiment ID4:

Site: Survey Date
Medical

Physicist
Contact

Email
Signature

Test Set
ID5:

Image ID6:

Scale
Image Quality Property

–5 –4 –3 –2 –1 0 +1 +2 +3 +4 +5

Typical Measurements

Contrast Estimation

Spatial Resolution Estimation

Noise Estimation (%)

Normal Elements

Background / Tissue Discrimination

Structural Details (veins, etc)

Fatty Tissue (compressed+uncompressed)

Dense Tissue (fibro-granular)

Pectoral Muscle

Main Boundary Edges (breast)

Overall Quality on Normal Elements

Abnormal Elements (if present)

Masses

Spiculate Formations

Micro-calcifications

Stellate Lesions

Asymmetric Density

Asymmetric Ducts

Axillary Nodes

Lymphoadenoma Patterns

Other: ____________________________

Overall Quality on Abnormalities
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RIEDS /FORM F:  Image Quality Evaluation – Physician’s QC
Dental Template

Project ID1: Target ID3:

Machine ID2: Experiment ID4:

Site: Survey Date
Medical

Physicist
Contact

Email
Signature

Test Set
ID5:

Image ID6:

Scale
Image Quality Property

–5 –4 –3 –2 –1 0 +1 +2 +3 +4 +5

Typical Measurements

Contrast Estimation

Spatial Resolution Estimation

Noise Estimation (%)

Background / Tissue Discrimination

Intraoral Elements

Teeth Enamel and Dentine

Caries Lesion

Periodontal Lesions

Periapical Lesions

Bone

Bone Lesions

Soft Tissues

Restoration Materials

Overall Quality on Intraoral Elements

Extraoral Elements

Bone

Teeth

Soft Tissues

Sharpness

Slice Thickness

Other: ____________________________

Overall Quality on Extraoral Elements
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RIEDS: Experiment Planning Chart Page of

mAs \ kVp
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APPENDIX  B

PredModel-1A:

Sample source code for textural feature functions (Matlab)
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%---------------------------------------------------------------------------

function val=f_tex_min( I )

val = min( I(:) );

%---------------------------------------------------------------------------

function val=f_tex_max( I )

val = max( I(:) );

%---------------------------------------------------------------------------

function val=f_tex_mean( I )

val = mean( I(:) );

%---------------------------------------------------------------------------

function val=f_tex_std( I )

val = std( I(:) );

%---------------------------------------------------------------------------

function val=f_tex_skewness( I )

if min(I(:)) == max(I(:))
    val = 0;
else
    val = skewness( I(:) );
end

%---------------------------------------------------------------------------

function val=f_tex_kurtosis( I )

if min(I(:)) == max(I(:))
    val = 0;
else
    val = kurtosis( I(:) );
end

%---------------------------------------------------------------------------

function val=f_tex_power( I )

%val = sum(sum(I.^2))/(size(I,1)*size(I,2));
%val = sum(sum(I.^2));
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%---------------------------------------------------------------------------

function H=f_tex_hist( I, Nbins )

QI=floor(normalize(I(:),'minmax')*Nbins);
H=zeros(1,Nbins);
[maxi,maxj]=size(QI);
for i=1:maxi,
    for j=1:maxj,
        k=QI(i);
        if (k<1), k=1; end;
        if (k>Nbins), k=Nbins; end;
        H(k)=H(k)+1;
    end;
end;
H=H/(maxi*maxj);

%---------------------------------------------------------------------------

function val=f_tex_entropy( I, Nbins )

H=f_tex_hist(I,Nbins);
s=0;
for i=1:length(H),
    if (H(i)>0), s=s+H(i)*log(H(i)); end;
end;
val=s;

%---------------------------------------------------------------------------

function val=f_tex_zccount( I, ZClev )

[maxi,maxj]=size(I);
c=0;  zcv=zeros(1,4);
for i=2:maxi,
    for j=2:maxj,
        zcv(1:4)=[(I(i-1,j-1)-ZClev) (I(i-1,j)-ZClev) (I(i,j-1)-ZClev) (I(i,j)-
ZClev)];
        if (length(find(zcv<=0))>0), c=c+1; end;
    end;
end;
val=c;

%---------------------------------------------------------------------------

function val=f_tex_surf( I )

val=size(I,1)+size(I,2)-1;
for x=1:size(I,2)-1,
    for y=1:size(I,1)-1,
        val = val + 1 + abs(I(x,y)-I(x+1,y)) + abs(I(x,y)-I(x,y+1));
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    end;
end;

%---------------------------------------------------------------------------

function val=f_tex_vol( I )

val = sum( I(:) );

%---------------------------------------------------------------------------


