

I-ImaS

CTI:

Update on remaining issues regarding Image Analysis and Controller Logic

London, 22 – 23 Nov 2006

Remaining Issues on Image Analysis and Control:

- Image Restoration & Pre-processing Filters Design
- Adaptive Control for Image Quality/Dose/Clinical optimality
- System Calibration Resources & Procedures

Aspects of imaging/control-related experiments:

- Flat-field correction (no target object)
- Image Quality: Technical (test-pattern target)
- Image Quality: Clinical (tissue-mimicking phantom)

Note: Dose measurements are included in "Image Quality" tests

Experiments (1): Flat-field correction

- Goal is to measure all non-uniformities at sensor plane
- Only system's internal statistics are addressed here
- Experiments conducted with no target object at all
- Image set: all scout beam & wedge filter settings

Addresses problems related to:

- Bad pixels / "salt & pepper" noise
- Cumulative statistical noise at pixel-level
- Non-uniform gain & dose/absorption profile (*)

(*): Tissue-mimicking phantom is required for absorption estimation

Experiments (2): Image Quality / Technical

- Goal is to measure all non-uniformities during scanning
- Only system's internal statistics are addressed here
- Experiments conducted with test-pattern (geometric)
- Image set: all scout beam & wedge filter settings

Addresses problems related to:

- Multi-sensor alignments (vertical)
- PSF spreading due to line-scanning movements (if any)
- Perspective distortions due to conical projection (*)

(*): Only for post-processing, requires multi-angle projections

Experiments (3): Image Quality / Clinical

- Goal is to introduce experts' knowledge into the control
- Application-specific, requires analytical evaluation
- Experiments conducted with tissue-mimicking phantoms
- Image set: all scout beam & wedge filter settings

Provides the means to:

- Make the controller more "intelligent" than on/off trigger
- Must include skin dose estimation (real or calculated)
- Expert's preference "mapped" to textural features (*)

(*): Quality Index (QI) as linear regression of a set of features

Image normalization: Dynamic range estimation during scanning

Example of ORP: Expert's evaluation against beam settings

I-ImaS setup: acceptable dose, high quality

I-ImaS setup: low dose, acceptable quality

Note: Tests at multiple scout beam levels are necessary to cover all possible cases of tissue-related areas during normal operation.

I-ImaS: CTI on WP3/WP9 London, 22-23 Nov 2006

Example of OCP: From texture analysis to I-lmaS beam adjustments

Design of the desired system response:

Summary of I-lmaS	Reactive Control (error-based)	Reactive Control (error-based)	Reactive Control (error-based)	Anticipatory Control (predictive)
Models for On-Line Control	Simplistic "blind" optimization stationary	Fully-Adaptive "blind" optimization pon-stationary	Model-Matching Use experts' "reference" points	Model-Matching Use experts' "reference" points
Direct Single-step analytical solution	FG/BG Percentile Model (SINTEF) tested/verified (see: report D.9)	Weighted Linear Nodel (CTI/UoT) adaptive limits and quality/dose tpl.	Weighted Linear Model gain-directed (see: report D.9)	Weighted Linear Model gain-directed (see: Trieste/06)
Iterative Multi-step analytical solution	Small-step adjustments (?)	Gradient-based algorithms (?)	Gain-directed gradient-based algorithms (?)	Gain-directed gradient-based algorithms (?)
Heuristic Behavioral model (on-line learning)	selected des	 lign framework	Reinforcement Learning Model error-based (see: Trieste/06)	Reinforcement Learning Model predictive (see: Trieste/06)
for I-ImaS launch				

I-ImaS: CTI on WP3/WP9

Remaining phases of work for I-ImaS "intelligence":

Images from I-ImaS sensors

Dose Measurements

Statistical Analysis

Evaluation from Experts

Required Pre-Processing

Texture-to-Quality
Linear Model

Combined Index (Quality+Dose)

Calibration Protocols

Final I-ImaS Image Analysis Final I-ImaS
Adaptive Control

Suggestive References:

- [23] *I-ImaS, Workpackage 3 Deliverable D.8*, "Translating information signatures to a sequence of well-defined processing functions", Feb.2005
- [24] *I-ImaS, Workpackage 3*, "Update on current progress and report for deliverable D.8", CTI presentation for 3rd I-ImaS meeting, London, 12-13 Oct 2004
- [25] *I-ImaS, Workpackage 3 Deliverable D.9*, "Different approaches to providing intelligence to the sensor/imaging system", Mar.2005
- [26] *I-ImaS, Workpackage 3*, "Update on current progress and deliverable report D.8", CTI presentation for 4th I-ImaS meeting, Oslo, 14-15 Feb 2005
- [29] I-ImaS, CTI, "Top-level system designs", Mar.2005
- [34] *I-ImaS*, "Enhancements to the image pre-filtering and image restoration options, and preface to x-ray camera geometry", CTI presentation for 5th I-ImaS meeting, Athens, 29-30 Sept 2005.
- [35] *I-ImaS*, "Improved Adaptive Control by Anticipatory and Reinforcement-Learning options for the I-ImaS Controller Logic", CTI presentation for 6th I-ImaS meeting, Trieste, 10-11 Jan 2006.
- [36] *I-ImaS*, "Summary of patent-related issues regarding Image Analysis and Controller Logic", CTI presentation for 7th I-ImaS meeting, Ioannina, 23-24 May 2006.