
A Short Workflow Exercise with RavenR v1.3
Dr. James R. Craig, Robert Chlumsky

May 2019

This short document is intended to get you started with using RavenR to aid your analysis with the Raven
model. This will get you up and running with the RavenR package and comfortable running a few commands.
Some knowledge or R is presumed in this document. If you are not comfortable with R, take a look at any
number of R training and Introductory resources, such as the tRaining repository) on Github. If you are
looking for a longer version of this exercise for use on the RavenR package, see the RavenR Tutorial file
maintained with the RavenR package (currently under construction).

This exercise will use the Nith River modelled output available from within the RavenR package, thus the
functions to read in data from csv files are not required. However, it is recommended that you download the
Nith river model files, and try to both run the model and read in the output files. The Nith river model can
be downloaded from the Raven Tutorial #2.

As you go through this tutorial, don’t just follow along blindly. Try to pay attention to what you are doing
and how you are doing it.

Getting Acquainted with RavenR

Start a new RStudio session by opening RStudio. If you don’t have RavenR yet installed in your R library,
run the following commands to install the latest version of RavenR from Github (you will need the devtools
library to be installed and loaded as well, so install this library first if you haven’t yet).

install.packages("devtools")
library(devtools)
devtools::install_github("rchlumsk/RavenR")

Load the RavenR library from the console and view its contents with the following commands:

library(RavenR)
ls("package:RavenR") # view all functions in RavenR

You can look at what any one of these functions does by typing out the name of the function beginning with
a question mark, which will show the help information at the right of the RStudio environment.

?flow.scatterplot

Sample Data in RavenR

The RavenR package contains a number of sample data files, which are useful for training purposes and
testing of functions. The package contains sample data both in R format (under RavenR/data) and as raw
data files in their native formats (RavenR/inst/extdata). The sample data set from the RavenR package (in
R format) can be loaded in using the data function (with either quotes or just the name of the data), e.g.,

data(forcing.data)
?forcing.data
data("hydrograph.data")
?hydrograph.data

1

https://github.com/rchlumsk/tRaining
http://www.civil.uwaterloo.ca/jrcraig/Raven/Downloads.html

Notice as well that the sample data set in R format also has a built in help file to describe the data.

To pull out the raw data from the RavenR package, we will use a syntax to find the data by file name in the
RavenR package directory, which ends up looking more similar to a raw file call. This raw data file comes
from the extdata folder in the RavenR package, not the data folder. Note that this is done so that the
sample data in raw format can be used and tested with functions, and the syntax to locate the data file is
more portable across various computer operating systems.

read in hydrograph sample csv data from RavenR package
ff <- system.file("extdata","run1_Hydrographs.csv", package="RavenR")

read in sample rvi file from the RavenR package
rvi <- system.file("extdata", "Nith.rvi", package="RavenR")

The system.file command will simply build a file path for where this data file is located on your machine
with the RavenR package installation, which can then be passed to any function as required to provide a file
location. This command will be used throughout this tutorial in place of local files for portability, however,
your own data files may be swapped in place of the system.file locations.

Data and Plotting

Now you are ready to start using RavenR to directly visualize and manipulate model output. This section
of the exercise will make use of raw sample data in the RavenR package to illustrate some of the diagnostics
and plotting capabilityes of RavenR.

Start by finding the raw run1_ForcingFunctions.csv file with the system.file command. Note that this
can be replaced with your own forcing functions file location if preferred. We will store the forcing functions
data into an object called ff (and obtain just the subobject using the ‘$’ operator), and then view the first
few rows using the head function. We will show only the first six columns of the data for brevity.

ff <- system.file("extdata","run1_ForcingFunctions.csv",package="RavenR")
ff <- "mydirectory/ForcingFunctions.csv" # replace with your own file
ff_data <- RavenR::forcings.read(ff)
head(ff_data$forcings[,1:6])

day_angle rain snow temp temp_daily_min temp_daily_max
2002-10-01 4.70809 3.468690 0 22.5956 17.92510 27.2662
2002-10-02 4.70809 3.468690 0 22.5956 17.92510 27.2662
2002-10-03 4.72530 1.189180 0 19.2076 15.40780 23.0075
2002-10-04 4.74251 2.083260 0 13.3714 11.49870 15.2440
2002-10-05 4.75973 6.474310 0 19.0304 12.50970 25.5510
2002-10-06 4.77694 0.125591 0 11.0186 7.43466 14.6024

Now we can plot the forcing data using the forcings.plot function. This creates an output of the five main
forcings from the data set.

forcings.plot(ff_data$forcings)

2

2003 2004

0
5

15
25

35

P
re

ci
pi

ta
tio

n
(m

m
/d

) total precip
as snow

Watershed−averaged Forcings (2002−10−01 to 2004−09−30)

2003 2004

−
30

−
10

10
30

M
in

/M
ax

 D
ai

ly
 T

em
pe

ra
tu

re
 (

°C
)

2003 2004

0
1

2
3

4
5

6

Date

P
E

T
 (

m
m

/d
)

2003 2004

−
10

0
10

0
30

0
50

0

Date

R
ad

ia
tio

n
(M

J/
m

2/
d)

2003 2004

0
20

60
10

0

Date

P
ot

en
tia

l M
el

t (
m

m
/d

)

3

This is typically a reasonable reality check on the model forcings.

We can similarly access the hydrograph fit. Here the hydrograph sample data is located with the usual
system.file command, then read into R with the hyd.read function intended for reading Hydrographs file.
The flows from a specific subbasin can be extracted using the hyd.extract function, which is done here for
subbasin 36. The precipitation can be extracted similarly.

ff <- system.file("extdata","run1_Hydrographs.csv",package="RavenR")
ff <- "mydirectory/Hydrographs.csv" # replace with your own file
hy <- hyd.read(ff)
head(hy$hyd)

precip Sub36 Sub36_obs Sub43 Sub43_obs
2002-10-01 NA 5.96354 NA 11.25050 NA
2002-10-02 3.468690 11.96430 0.801 18.59070 3.07
2002-10-03 1.189180 15.43700 0.828 25.74430 2.99
2002-10-04 2.083260 8.76948 0.860 18.68610 3.06
2002-10-05 6.474310 4.66501 0.903 9.82648 2.93
2002-10-06 0.125591 4.20829 1.040 7.90952 3.15

flow36 <- hyd.extract("Sub36",hy)
precip <- hyd.extract("precip",hy)$sim

The hydrograph object flow3 now stores the simulated hydrograph (flow36$sim) and the observed hydro-
graph (flow36$obs), and the null subobject (flow36$inflow). The precip object stores the entire time
series of watershed-averaged precip (precip$sim). We can plot the simulated and observed hydrograph with
the simple commands:

plot(lubridate::date(flow36$sim),flow36$sim,col='red',type='l')
lines(lubridate::date(flow36$obs),flow36$obs,col='black')

4

2003 2004

0
50

10
0

15
0

lubridate::date(flow36$sim)

flo
w

36
$s

im

Or using the special hydrograph plot function, which is part of the RavenR library. This function save some
of the trouble of plotting the precipitation on the secondary axis.

hyd.plot(sim=flow36$sim, obs=flow36$obs, precip=precip)

5

2003 2004

0
50

10
0

15
0

20
0

25
0

Date

F
lo

w
 [m

3/
s]

50
40

30
20

10
0

P
re

ci
pi

ta
tio

n
[m

m
]

sim
obs
precip

[1] TRUE

There are some other helpful functions in RavenR for understanding our hydrographs.

flow.spaghetti(flow36$sim)

6

0
50

10
0

15
0

Day of Year

F
lo

w
 [m

3/
s]

274 305 336 1 32 63 94 125 156 187 218 249

2003
2004

[1] TRUE

flowdurcurve.plot(flow36$sim)

7

1e−02 1e+00 1e+02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Flow Exceedance

Q (m3/s)

%
 o

f f
lo

w
s

le
ss

 th
an

 Q

sim

We can also use some of the Raven plots to get some diagnostics and comparisons on the simulated and
observed hydrographs.

cum.plot.flow(flow36$sim, obs=flow36$obs)

8

2003 2004

0.
0e

+
00

1.
0e

+
08

2.
0e

+
08

Date

C
um

ul
at

iv
e

F
lo

w
 [m

3]

sim
obs

[1] TRUE

annual.volume(flow36$sim, flow36$obs)

9

1.5e+08 2.0e+08 2.5e+08

1.
5e

+
08

2.
0e

+
08

2.
5e

+
08

Observed Volume [m3]

S
im

ul
at

ed
 V

ol
um

e
[m

3]

2003

2004

date.end sim.vol obs.vol
1 2003-10-01 125978298 126733075
2 2004-09-30 192760345 254344147

A helpful plot for understanding the volume bias on a monthly breakdown is the monthly.vbias function,
which plots out the volume bias between the simulated and observed hydrographs by month.

monthly.vbias(flow36$sim, obs=flow36$obs)

10

−
50

0
50

10
0

20
0

Month

%
 F

lo
w

 V
ol

um
e

B
ia

s

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ov
er

es
tim

at
ed

un
de

re
st

im
at

ed

mvbias
Jan 14.21804
Feb -31.63489
Mar 15.93412
Apr -36.52680
May -61.52621
Jun -55.78284
Jul -69.45787
Aug -70.45509
Sep 35.16982
Oct 281.28584
Nov 83.76182
Dec 29.17106

A fun new addition to the RavenR package is the addition of dygraphs, which produces a dynamic hydrograph
plot with a slider on the time scale. This is particularly helpful for viewing subsections of a hydrograph
dyanmically, and comparing the simulated and observed hydrographs in an interactive environment.

hyd.dyGraphs(hy, basins="Sub36")

[[1]]

11

Spatial Plotting

The RavenR package also has some functionality for spatial plots. This section will use some of the sample
spatial data for the Nith basin to build a subbasin plot from custom output data, which can be modified to
show any custom output data.

Begin by loading in the appropriate sample data files, and locating them on the local machine. This includes
a custom output of daily average precipitation by subbasin for the Nith subbasin.

Raw sample data
shpfilename <- system.file("extdata","Nith_shapefile_sample.shp",package="RavenR")

Custom Output data from Raven for Nith basin
cust.data <- custom.read(system.file("extdata","run1_PRECIP_Daily_Average_BySubbasin.csv",

package="RavenR"))

subIDcol <- 'subID' # attriute in shapefile with subbasin IDs
plot.date <- "2003-03-30" # date for which to plot custom data

function call
SBMap.plot(shpfilename,subIDcol,plot.date,cust.data)

30

36

39

43

2003−03−30

Legend

0.1
0.3
0.4
0.6
0.8
1

[1] TRUE

12

This produces a basic static map of the Nith subbasins provided in the sample file, with the precipitation
data from the Custom Output data provided at the date specified. Neat! We can add a few more features
from here to cutomize our plot if we wish, such as changing the legend title to match the custom output
data, the number of class breaks, the plot title, and the colour scheme.

leg.title <- 'Legend \nPrecip. (mm)'
colour1 <- "white"
colour2 <- "cyan"
num.classes <- 8
plot.title <- 'Daily Average Precipitation (mm/d)'

create an updated plot
SBMap.plot(shpfilename,subIDcol,plot.date,cust.data,plot.title=plot.title,

colour1 = colour1, colour2=colour2,
leg.title = leg.title, num.classes=num.classes)

Daily Average Precipitation (mm/d)

30

36

39

43

2003−03−30

Legend
Precip. (mm)

0.1
0.2
0.3
0.4
0.5
0.7
0.8
0.9
1

[1] TRUE

This function can accept any custom output data as the input data for a given subbasin shapefile,
provided that the numbering of the custom data and the labels on the subbasin IDs in the shape-
file correspond. Try to use the sample external data for snowpack in this plot as well! Use the
‘run1_SNOW_Daily_Average_BySubbasin.csv’ file and change the colours to grey40 and white for

13

snowpack. Use March 1st, 2003 as the date and 5 classes in the legend. Normalize the results, and check
your plot against the one provided.

Daily Average Snowpack (mm)

30

36

39

43

2003−03−01

Legend
Snowpack (mm)

0
37
74
110.9
147.9
184.9

[1] TRUE

We can also use the animated version of this function, built on the magick package, to produce a gif of
results. This is likely much more useful than a static plot provided for a single date. Follow the example
below to create an animated .gif file from the snowpack data.

cust.data <- custom.read(system.file("extdata","run1_SNOW_Daily_Average_BySubbasin.csv",
package="RavenR"))

leg.title <- 'Legend \nSnowpack (mm)'
colour1 <- "grey40"
colour2 <- "white"
num.classes <- 5
plot.title <- 'Daily Average Snowpack (mm)'
Feel free to adjust the date range here, although many dates make this slow to run!
plot.daterange <- '2003-02-01/2003-03-30'

gif.filename='Nith_snowpack_Feb2003_March2003.gif'
gif.speed <- 0.5
cleanup <- FALSE # see the individual plots in the scratch directory created

14

SBMap.animate(shpfilename,subIDcol,plot.daterange,cust.data,plot.title=plot.title,
colour1 = colour1, colour2=colour2,
leg.title = leg.title, normalize=T, num.classes=num.classes,
gif.filename=gif.filename,
gif.speed=gif.speed, cleanup=cleanup

)

This works well, although the overall precipitation is much more exciting to watch in a gif.

cust.data <- custom.read(system.file("extdata","run1_PRECIP_Daily_Maximum_BySubbasin.csv",
package="RavenR"))

leg.title <- 'Legend \nDaily Max Precip (mm)'
colour1 <- "white"
colour2 <- "blue"
num.classes <- 5
plot.title <- 'Daily Max Precip. (mm)'
plot.daterange <- '2003-05-01/2003-06-30'

gif.filename='Nith_precip_May2003_June2003.gif'
gif.speed <- 0.5
cleanup <- FALSE

SBMap.animate(shpfilename,subIDcol,plot.daterange,cust.data,plot.title=plot.title,
colour1 = colour1, colour2=colour2,
leg.title = leg.title, normalize=T, num.classes=num.classes,
gif.filename=gif.filename,
gif.speed=gif.speed, cleanup=cleanup

)

More Exploring and Getting Help

The RavenR library can be explored to see what other functions are available in the package.

ls("package:RavenR")

Using the ?help option (where help is the name of a RavenR command), figure out how to plot:

1. a comparison of annual peak flows, and
2. the mean and median annual observed flow using the barplot() function (hint: use the apply.wyearly

function to calculate annual mean and median)

Building a model workflow script

Now we will build a simple script which will provide a bunch of visualizations that we can use to look at the
Nith river model each time we run it. This can be made as complex as you want.

Start with a new script. From RStudio, go to the main menu. Choose File -> New File -> R Script.
Populate the script with the following. You can find the Nith model files in the Raven Tutorials.

15

Load the RavenR sample data
===
indir <- "C:/temp/Nith/"
outdir <- "C:/temp/Nith/output/"
fileprefix <- "Nith"

if (dir.exists(outdir)==FALSE) {
dir.create(outdir)

}

setwd(outdir)

RUN RAVEN
===
writes complete command prompt command
> Raven.exe [filename] -o [outputdir]
RavenCMD <-paste(indir,"Raven.exe ",indir,fileprefix," -o ",outdir,sep="")
system(RavenCMD) # this runs raven from the command prompt

Once the model is run, we can read in the output (or use the package data) and save some of the plots to
file.

GENERATE OUTPUT PLOTS
===
use the package data, or read in the model output files

ff_data <- forcings.read("ForcingFunctions.csv")
pdf("forcings.pdf") # create a pdf file to direct plot to
forcings.plot(ff_data$forcings)
dev.off() #finishes writing plot to .pdf file

data(watershed.data)
mywshd <- watershed.data$watershed.storage
#mywshd <- RavenR::watershed.read("WatershedStorage.csv")$watershed.storage
png("snowpack.png") # create a png file to direct plot to
plot(mywshd$snow)
dev.off() #finishes writing plot to .png file

Modify the script

Modify the above script to generate png image plots of monthly subbasin-averaged PET in Subbasin 43
using the :CustomOutput option (you will have to add a :CustomOutput command to the Raven input rvi
file). You will also want to use the RavenR custom.read() and customoutput.plot() commands.

More exercises

This short exercise is meant to serve as a brief introduction to the RavenR package. The complete RavenR
Tutorial can be found on the Raven downloads page or on the RavenR Github page. If you have any
comments, suggestions or bug reports, please email the authors of the package or feel free to let us know on
the Raven forum.

16

http://www.civil.uwaterloo.ca/jrcraig/Raven/Downloads.html
https://github.com/rchlumsk/RavenR
http://www.civil.uwaterloo.ca/raven_forum/

	Getting Acquainted with RavenR
	Sample Data in RavenR
	Data and Plotting
	Spatial Plotting
	More Exploring and Getting Help
	Building a model workflow script
	Modify the script
	More exercises

