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Abstract—This paper investigates fast implementation of the
optimal transmit beamforming design for simultaneous wireless
information and power transfer in the multiuser multiple-input-
single-output downlink with specific absorption rate (SAR) con-
straints. The problem of interest is to maximize the received
signal-to-interference-plus-noise ratio and the energy harvested
for all receivers, while satisfying the transmit power and the SAR
constraints. The optimal solutions can be obtained via convex
optimization and bisection search but with high complexity. To
reduce the computational complexity, this paper proposes the
deep learning technique to predict key features of the problem
and then recover the beamforming solutions with much reduced
complexity. Simulation results demonstrate that our proposed
algorithms can significantly reduce the algorithm execution time
while maintaining satisfactory performance.

I. INTRODUCTION

Simultaneous wireless information and power transfer
(SWIPT) is a new technology where information and ener-
gy flows co-exist, co-engineered to simultaneously provide
communication connectivity and energy sustainability [1], [2].
From the seminal work of Varshney [3], who introduced the
concept of SWIPT and the fundamental trade-off between
information and energy transfer, substantial works appear in
the literature that study SWIPT from different perspectives.

On the other hand, wireless technologies are subject to strict
regulations on the level of radio-frequency (RF) radiation that
users of the terminals are exposed to. Two widely adopted
regulations/measures on RF exposure are mainly considered.
The first one is the maximum permissible exposure (MPE) in
[W/m2], which is defined as the highest level of electromag-
netic radiation to which a user may be exposed without incur-
ring an established adverse health effect. The second one is
the specific absorption rate (SAR) that measures the absorbed
power in a unit mass of human tissue by using units of Watt per
kilogram [W/kg]. For instance, the Federal Communications
Commission (FCC) enforces an SAR limitation of 1.6 W/kg
averaged over one gram of tissue on partial body exposure [4].

The SAR constraints are incorporated into the transmit
signal design for a multiple-input multiple-output (MIMO)
uplink channel in [5] and [6], and the SAR-aware beamform-
ing and transmit signal covariance optimization methods are
presented in [7] and [8], respectively. However, the integration
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of SAR exposure constraints in the design of SWIPT systems
is unexplored, although SWIPT may significantly contribute
to the electromagnetic pollution (electrosmog). For example,
one of the main applications of SWIPT is for medical devices
in wireless body area networks, where an access point will
support the communication connectivity and the power sus-
tainability of a short-range sensor network in, on, or around
the human body [9].

In this paper, we focus on the power splitting (PS) ap-
proach [10] and study the beamforming design in a mul-
tiuser multiple-input single-output (MISO) downlink channel,
where the receivers are characterized by both communica-
tions quality-of-service (QoS) and energy harvesting (EH)
constraints with additional SAR limitations; the nonlinearity
of the rectification circuit is also taken into account. Similar
problems have been studied in [11] and [12] for an interference
channel and a downlink MISO channel, respectively, but
without the consideration of SAR constraints and nonlinearity
of EH. In our previous work [13], we have derived the optimal
beamforming and power splitting solutions by leveraging
semidefinite programming (SDP) together with rank relax-
ation. However, the complexity of the optimal beamforming
solution is high which makes it difficult to adapt to the channel
variations and the users’ requirements.

In this paper, we propose to use the deep learning tech-
nique to reduce the computational complexity of the optimal
beamforming solutions. The rational is that the deep learning
technique trains neural networks offline and then deploys
the trained neural networks for fast online optimization. The
computational complexity is transferred from the online opti-
mization to the offline training. Deep learning has been widely
used in optimization tasks of wireless resource management,
and early works use deep neural networks (DNNs) mainly to
predict transmit power [14], [15], and later to directly estimate
the beamforming matrix [16]–[20]. Most existing works do
not exploit the problem structure which will lead to high
training complexity and poor prediction performance when the
numbers of transmit antennas and users increase.

We propose to combine deep learning with exploitation of
expert knowledge specific to the beamforming problems to
quickly infer the solution, as an application of our recently
proposed framework of beamforming neural networks [21],
[22] to the area of SWIPT with SAR constraints. This method
improves the learning accuracy compared to the existing data-
driven approaches by specifying the best features to be learned
with reduced dimension. Our simulation results show that the
proposed solutions can significantly reduce the computational
time compared to the optimal solution and even the heuristic
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solution with satisfactory performance, and outperform the
data-driven approach that directly predicts the beamforming
solution.

The remainder of this paper is organized as follows. Section
II introduces the system transmission model and problem
formulation. In Section III, we propose two fast deep learning
based algorithms to solve the SAR-aware beamforming. Simu-
lation results are provided to confirm the proposed algorithms
in IV and our work is concluded in Section V.

Notation: All boldface letters indicate vectors (lower case)
or matrices (upper case). The superscripts (·)† and (·)−1

denote the conjugate transpose and the matrix inverse, respec-
tively. The identity matrix is denoted by I. ‖z‖ denotes the
L2 norms of a complex vector z. Tr(A) denotes the trace of
a matrix A, while A � 0 indicates that matrix A is positive
semidefinite.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an MISO downlink channel consisting of an
Nt-antenna transmitter (e.g., a base station (BS)) and K
single-antenna receivers that employ single-user detection. The
BS transmits with a total power PT and let sk be its transmitted
data symbol to receiver k, which is Gaussian distributed with
zero mean and unit variance. The transmitted data symbol
sk with normalized power is mapped onto the antenna array
elements by the beamforming vector wk ∈ CNt×1. The
received baseband signal at receiver k can be expressed as

yk = h†kwksk︸ ︷︷ ︸
Information signal

+
∑
j 6=k

h†kwjsj︸ ︷︷ ︸
Interference

+nk, (1)

where hk ∈ CNt×1 is the channel between the BS and
the k-th receiver and nk denotes the additive white gaussian
noise (AWGN) component with zero mean and variance N0.
Therefore, the received power at receiver k is equal to

P rk =

K∑
j=1

|h†kwj |2 +N0. (2)

The receivers have RF-EH capabilities and therefore can
harvest energy from the received RF signal based on the power
splitting technique. With this approach, each receiver splits its
received signal into two parts with a parameter ρk ∈ (0, 1):
a) 100ρk% of the received power is converted to a baseband
signal for further signal processing and data detection, and b)
the remaining is driven to the required circuits for conversion
to DC voltage and energy storage. During the baseband
conversion, additional circuit noise, vk, is present due to phase
offsets and non-linearities which is modeled as AWGN with
zero mean and variance NC . The signal-to-interference-plus-
noise ratio (SINR) metric characterizing the data detection
process at the k-th receiver is given by

Γk =
ρk|h†kwk|2

ρk

(
N0 +

∑
j 6=k |h

†
kwj |2

)
+NC

. (3)

On the other hand, the total power that can be harvested is
equal to PSk = F ((1 − ρk)P rk ), where F (·) is a non-linear
parametric EH function which will be presented later.

As discussed, wireless communication devices are subject
to SAR limitations. Previous reported results such as [6]
have shown that the pointwise SAR value with multiple
transmit antennas can be modeled as a quadratic form of the
transmitted signal, and the SAR matrix fully describes the
SAR measurement’s dependence on the transmitted signals;
entries of the SAR matrix have units of W/kg. Because the
SAR measurements are always real positive numbers, the SAR
matrices are positive-definite conjugate-symmetric matrices.

Since SAR is a quantity averaged over the transmit signals
for a specific human tissue, we model the l-th SAR constraint
with a time-averaged quadratic constraint given by

SARl = E{sk}Tr

(
K∑
k=1

s†kw
†
kAlwksk

)
=

K∑
k=1

w†kAlwk ≤ Pl,

(4)
where Al � 0 is the l-th SAR matrix and Pl is the l-th SAR
limit.

B. Problem Formulation

We study the following problem of maximizing the ratios
of the received SINR and EH over the target requirements,
i.e., max

{
Γ1

γ̄1
, · · · , Γk

γ̄k
, · · · , ΓK

γ̄K
,
PS

1

λ̄1
, · · · , P

S
k

λ̄k
, · · · , P

S
K

λ̄K

}
sub-

ject to the SAR and total power constraints, where γ̄k, λ̄k
are the SINR and the EH requirements, respectively. This
choice of the objective function will balance the received
SINR and the EH between users. To make the problem more
tractable, we introduce an auxiliary variable t, and formulate
the optimization problem in P1 where PT is the maximum
total transmit power, and L is the number of SAR constraints.
F (x) is output DC power at the k-th receiver represented by
a nonlinear function and x is the input RF power.

P1: max
{wk,ρk,t}

t (5)

s.t.
|h†kwk|2

K∑
j=1,j 6=k

|h†kwj |2 +N0 + NC

ρk

≥ tγ̄k , γk, (6)

F

(1− ρk)

 K∑
j=1

|h†kwj |2 +N0

 ≥ tλ̄k , λ̃k,(7)

0 ≤ ρk ≤ 1,∀k,
K∑
k=1

w†kAlwk ≤ Pl,∀l, (8)

K∑
k=1

‖wk‖2 ≤ PT .

The nonlinear EH function can take many forms to capture the
relationship between the input and output power at the energy
receiver, such as the sigmoid function [23], the linear fraction
[24] and a heuristic expression by curve fitting [25]. In gen-
eral, the nonlinear EH function is monotonically increasing,
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therefore we can find the inverse mapping F−1(·), and the
EH constraint (8) can be rewritten as

(1− ρk)

 K∑
j=1

|h†iwk|2 +N0

 ≥ F−1(λ̃k) , λk. (9)

It is difficult to solve the above problem P1, because both
SINR and EH constraints (6) and (7) are nonconvex, and we
also have additional multiple SAR constraints. In our previous
work [13], we have shown that the optimal solution to P1
can be found by solving the power minimization problem P2
below:

P2: min
{Wk,ρk}

K∑
k=1

Tr(Wk) (10)

s.t.
h†kWkhk

K∑
j=1

h†kWjhk +N0 + Nk

ρk

≥ γk
1 + γk

,

K∑
j=1

h†kWjhk +N0 ≥
λk

1− ρk
,

0 ≤ ρk ≤ 1,Wk � 0,∀k,
K∑
k=1

Tr(AlWk) ≤ Pl,∀l. (11)

where have defined new matrix variables Wk = wkw
†
k,∀k.

To be specific, if P1 is solved and the optimal t∗ is achieved,
then the same beamforming and power splitting solutions are
also optimal for P2 to achieve the same SINR and EH, and
the optimal minimum power will be PT . Because P1 is a
quasiconvex problem in t, once P2 is solved, P1 can be solved
via the bisection search Algorithm. Therefore, in the rest of
the paper we will focus on solving the problem P2.

III. DEEP LEARNING BASED SOLUTIONS

A. The General Structure

Our proposed deep learning-based structure for the beam-
forming optimization is shown in Fig. 1. Existing data-
driven approaches directly predict the beamforming matrix
with NK complex elements which may lead to inaccurate
and even under-fitting results that cannot guarantee the end
performance. To tackle this challenge, the main idea of our
proposed deep learning structure is to predict only the main
features of the problem with reduced dimension, and then find
the beamforming solution in a fast way using these features.
Therefore it includes two main modules: the neural network
module and beamforming recovery module.

We choose the convolutional neural network (CNN) layers
followed by the feedforward layer as the base of the neural
network module, because the CNN has strong ability of ex-
tracting features. In addition, the CNN can reduce the number
of learned parameters by sharing weights and biases. To
overcome the challenge of predicting the beamforming matrix
directly, we propose to predict some chosen key features
extracted from the problem structure, which is much less
than the number of elements in the beamforming matrix. The

Fig. 1. The neural network structure of the proposed deep learning solutions.

beamforming recover module will then find the beamforming
solution according to the expert knowledge specific to the
problem and the learned features.

The complex channel coefficients are fed into the neural
network module to predict the key features as output, but
complex inputs are not yet supported by standard neural
network software. To deal with this issue, we separate the
complex channel vector into the in-phase component R(h)
and quadrature component I(h).

Here we propose two learning algorithms depending on the
chosen features and the corresponding beamforming recovery
methods.

B. Learning Algorithm 1

In the first learning algorithm, we choose the power splitting
variables {ρk} as the features to predict. The reason is that
although the problem P2 is convex, it does not belong to a spe-
cific category of standard convex programming problems such
as SDP or second-order cone programming (SOCP) for which
efficient algorithms exist because of the presence of {ρk}. If
we predict the more computational demanding variables {ρk},
this will significantly reduce the overall complexity.

To recover the original beamforming solution, once {ρk}
are predicted, we can solve P2 with the learned {ρk} which
becomes a standard SDP problem and can be more efficiently
solved than the original P2. In this method, the number of real
variables to predict is K.

C. Learning Algorithm 2

In the above method, the complexity of the beamforming
recovery module is still relatively high because an SDP prob-
lem needs to be solved. In the second learning algorithm, we
propose to predict more features so as to reduce the complexity
of the recovery module. To be specific, we choose {ρk} and
some of the dual variables as the features. To this end, we first
derive the dual problem of P2 (given {ρk}) below:

max
ν,α,β≥0

−
L∑
l=1

νlPl +

K∑
k=1

αk(N0 +
Ni
ρi

) +

K∑
k=1

βk
1− ρk

(λk −N0)

s.t. I +

K∑
j=1

θjhjh
†
j − αk(1 +

1

γk
)hkh

†
k +

L∑
l=1

νlAl � 0,∀k,

where ν,α,β are dual variables, and θk , αk − βk. Instead
of learning all dual variables, we propose to choose the main
features of {θk}, {νl} and the primal variables {ρk} to predict.
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To recover the original beamforming solution, we first find
the beamforming direction given by

w̃k =

(
I +

∑K
j=1 θjhjh

†
j +

∑L
l=1 νlAl

)−1

hk

‖
(
I +

∑K
j=1 θjhjh

†
j +

∑L
l=1 νlAl

)−1

hk‖
. (12)

With learned {ρk} and {w̃k}, the remaining problem reduces
to the power allocation problem P3 to find {pk}, which is a
linear programming problem and much faster to solve than
SDP, i.e.

P3: min
{pk>0}

K∑
k=1

pk (13)

s.t.
ρkGk,kpk∑K

j=1Gk,jpj + ρkN0 +NC
≥ γk

1 + γk
,∀k,

(1− ρk)(

K∑
j=1

Gk,jpj +N0) ≥ λk,∀k,

K∑
k=1

pkFk,l ≤ Pl,∀l.

In this method, the number of real variables to predict is 2K+
L. As expected, it learns more features, so it will be faster
to recover the original beamforming solution. This will be
verified in the next section.

IV. NUMERICAL RESULTS

In this section, we carry out numerical evaluation of the
performance of the proposed deep learning based beamform-
ing solutions. We consider a MISO downlink consisting of K
receivers randomly located around the BS with distance lk and
direction ζk drawn from the uniform distribution, lk ∼ U(1, 5)
m and ζi ∼ U(−π, π). Each receiver can harvest energy at
frequency f = 915 MHz and it is assumed that the antenna
gains at the BS and receivers are 8 dBi and 3 dBi, respectively.
The path loss coefficient is 2.5. Because of the short distance
between the BS and the receivers and dominance of the line-
of-sight (LOS) signal, Rician fading is used to model the
channel and the Rician factor is 5 dB. We consider a system
consisting of one BS with three antennas serving two receivers
and one SAR constraint, i.e., K = 2, Nt = 3, L = 1,
N0 = −70 dBm and NC = −50 dBm, while the SINR and EH
thresholds are the same for all receivers, i.e. Γ̄k = Γ̄ = 10 dB,
λ̄k = λ̄ = −15 dBm, ∀k. We assume that the total transmit
power constraint is PT = 2 W. We use the nonlinear energy
harvesting model below proposed in [24]

F (x) =
āx+ b̄

x+ c
− b̄

c
, (14)

with fitted parameters ā = 2.463, b̄ = 1.635, c = 0.826. The
SAR matrix is given below by [7]

A =

 0.35 −0.64− 0.15j −0.17 + 0.32j
−0.64 + 0.15j 2.51 −0.31 + 0.29j
−0.17− 0.32i −0.31− 0.29j 2.32

 .
(15)

In our simulation, we generate 10,000 training samples and
1,000 testing samples with independent channels, respectively,
using the optimal algorithm in [13]. We use four CNN layers
each having 8 kernels with size 3×3 and the ReLU activation
function. Adam optimizer [27] is used with the mean squared
error based loss function. We will make comparisons with the
optimal solution, the direct learning algorithm that predicts
the beamforming matrix directly, and the zero-forcing (ZF)
solution [13]. Note that unlike the previous works [11], [12]
where closed-form ZF solutions exist when there is no SAR
constraint, the SAR constraint does not permit a closed-form
solution, therefore we use CVX [26] to solve the ZF solution,
so its complexity is still high.

Figs. 2 depicts the average minimum achievable SINR
and EH ratio by different investigated algorithms against the
SAR. The performance of the proposed learned solution 1 is
very close to that of the optimal solution, and significantly
outperforms the ZF solution, while the performance of the
proposed learned solution 2 is similar to but still outperforms
that of the ZF solution. The direct learning method cannot
guarantee satisfactory performance and is much worse than the
ZF solution. Fig. 3 shows the feasibility of various schemes to
satisfy both the SINR and the EH constraints (i.e., the value
of the objective function of P1 is greater than or equal to 1),
which follows the similar trend as the results in Fig. 2.

In Fig. 4, we plot the percentage of the running time relative
to the optimal solution for various schemes. We can see that
both the ZF solution require similar time as the optimal solu-
tion. This is mainly because of solving variables {ρk} incurs
a high complexity. It is observed that the proposed learned
solution 1 can save 35–40% of time compared to the the
optimal solution while achieving near-optimal performance,
and is much faster than the ZF solution. The proposed learned
solution 2 can achieve nearly two orders of magnitude gain
in running time, but still achieves better performance than the
ZF solution.
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Fig. 2. The minimum achievable SINR and EH ratio vs SAR.

V. CONCLUSIONS

In this paper, we have studied the optimization of SAR-
constrained multiuser transmit beamforming of a SWIPT



A CORRESPONDENCE SUBMITTED TO IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 5

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

SAR Constraint (W/kg)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
e
a
s
ib

ilt
y
 p

ro
b
a
b
ili

ty

Optimal Solution

ZF-BF Solution

Learned Solution 1

Learned Solution 2

Direct Learning

Fig. 3. The feasibility probability vs SAR.
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Fig. 4. The relative running time against that of the optimal solution vs SAR.

system. To reduce the complexity of finding the optimal
beamforming and power splitting solutions, we designed two
fast solutions using deep learning techniques which predict
the main features of the optimization problem. Our simulation
results have shown significant improvement of the proposed
learning based solutions over the heuristic ZF solution and
the direct learning approach. The findings demonstrate the
potential of using deep learning to design fast beamforming
solutions for SAR-aware SWIPT systems.
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