Policy Cloud

Cloud for Data-Driven Policy Management

CLOUD FOR DATA-DRIVEN PoLIcY MANAGEMENT

Project Number: 870675 Start Date of Project: 01/01/2020 Duration: 36 months

D7.5 DATA MARKETPLACE: SOFTWARE PROTOTYPE

Dissemination Level PU

Due Date of Deliverable 31/10/2021, M22

Actual Submission Date 28/10/2021

Work Package WP7, Communication, Exploitation,

Standardisation, Roadmapping & Business
Development

Task T7.2

Type Demonstrator

Approval Status
Version V1.0
Number of Pages p.1-p.74

Abstract: The deliverable D7.5 Data Marketplace: Software Prototype describes the initial
demonstrator of the PolicyCLOUD Data Marketplace. The latter will be a unified web-based
platform consisting of two (2) core services, its front-end and back-end services, offering to its

users various ready-to-use solutions, by supporting different kinds of assets.

The information in this document reflects only the author’s views and the European Community is not liable for any use that may be made
of the information contained therein. The information in this document is provided “as is” without guarantee or warranty of any kind,
express or implied, including but not limited to the fitness of the information for a particular purpose. The user thereof uses the information
at his/ her sole risk and liability. This deliverable is licensed under a Creative Commons Attribution 4.0 International License.

(GO

/

PolicyCloud has received funding from the European Union's Horizon 2020 research and
innovation programme under grant agreement No 870675.

Policy Cloud D7.5-v.1.0
Versioning and Contribution History
‘ Version Date Reason Author

0.1 06/09/2021 ToC Vasilis Koukos, Argyro
Mavrogiorgou (UPRC)

0.2 15/09/2021 Contribution in Sections 1, 2 Thanos Kiourtis (UPRC)

0.3 28/09/2021 Updates in Sections 2.2.1 Vasilis Koukos (UPRC)

04 05/10/2021 Updates in Sections 2.2.2 Eleftheria Kouremenou,
Alexandros Raikos (UPRC)

0.5 12/10/2021 Contribution in Sections 3, 4 Argyro Mavrogiorgou, Thanos
Kiourtis (UPRC)

0.6 19/10/2021 Check and revision of all Sections Argyro Mavrogiorgou (UPRC)

0.7 22/10/2021 Review Giannis Ledakis (UBl),
Panayiotis Michael (ICCS)

0.8 25/10/2021 | Changes based on review comments Vasilis ~ Koukos, Eleftheria
Kouremenou (UPRC)

0.9 27/10/2021 Quality check Argyro Mavrogiorgou (UPRC)

1.0 28/10/2021 | Submitted version ATOS

Author List

Organisation Name

UPRC Vasilis Koukos

UPRC Eleftheria Kouremenou

UPRC Alexandros Raikos

UPRC Argyro Mavrogiorgou

UPRC Thanos Kiourtis

Abbreviations and Acronyms

Abbreviation/Acronym
API
CRUD
EOSC
HTTP
JSON
JWT

www.policycloud.eu

Definition

Application Programming Interface

Create Retrieve Update Delete
European Open Science Cloud
Hypertext Transfer Protocol
JavaScript Object Notation
JSON Web Token

@ Policy Cloud D7.5-v.1.0

REST Representational State Transfer
Ul User Interface

Contents

Versioning and CONTriDULION HISTOIY ..ottt sttt bbb 2
AUUTNOT LIST .ttt ettt b e bt b b b e b sttt e et et b b b e ne ettt e st bbb e benenens 2
ADDreVviations aNA ACIONYIMS ..ottt et bebebese s e e sasassssebebesesssesssessssssssesesesesssens 2
EXECULIVE SUIMMIAIY ..ttt ettt et b et b et e b et b e b et b b et b ebe st seeneais 7
T INEFOAUCTION ettt ettt ettt st b bbbttt etttk b e bttt e b et b ebebenenenens 8
2 PrOtOLYPE OVEIVIEW...cueuiirieieiiieieinisieesieeesesiesestssesestssesessssesessssesassssessssesessssesensssesessssesensssesessssessssssesesssensssesensses 9
2.1 MaiN COMPONENTS ...cveuirieieeieieertsieestereestesesesseresestssesessesesessesessssesessssesesessesessssesessssesessssesessssesesssesessssesenes 10
2.1 BACK-ENA ettt sttt bbb bbbt bbb bttt ettt 10
2,12 FIONT-@NGA ettt ettt ettt sttt e b bbbttt bbbttt bbb bbbt 10

2.2 INEEITACES ettt bbb bbbt b bbbkttt bbbttt 11
221 BACK-ENA ottt stttk b ettt bbb bt ettt b 11
2.2.1.1 INterfaces related tO USEIS.... ettt sttt 13
2.2.1.2 Interfaces related tO DeSCriPtiONS ...ttt 25
2.2.1.3 Search functionality ON DESCrIPLIONS ...cccverririrereicieteteererereeeieie et sesseens 51
2.2.1.4 Interfaces related tO ASSELS ...ttt 54
2215 ROOEINEEITACE oottt ettt bbbttt bttt 58

2.2.2 FIONE-@NG oottt bbbttt sttt bbbttt b ettt e bbb bbb e b ettt st st nb bt 59

2.3 Baseline Technologies and TOOIS ...ttt sreresssesesessssssssesesesesssssesessssssssessses 69
23T BACK-ENGA ettt bbbttt b bbbttt bbb 69
2.3.2 FIONE-@N0 ottt sttt bbbttt b bttt bbb bbb ettt ettt 69

3 SOUICE COUC ..ttt sttt bttt bbb stttk b ettt b bbbttt s bbb st st sttt bebe bt e s seneatacs 72
3.1 AVAIIADITITY etttk b bbb ke b et e s e e e e s esebebes 72
BUTLT BACK-ENA ettt bbbttt bbb bttt a ettt 72
BU1.2 FrONT-@NGA etttk bbbkttt b bbbt 72

302 = q o] 0] 1 7= € o o OO OO OO PRSPPI 72
32T BACK-ENA etttk ettt b bbbt sttt bt 72

@ Policy Cloud D7.5-v.1.0

322 FrONT-@NG i bbb bbb bbb 72
4 CONCIUSION ettt bbb bbb bbbt 73
RO EIEINCES. ..ttt sttt bttt sttt b ettt bbb b e sttt etk ek bRt a bbb b e b e nene 74
Table 1 - Back-end's interfaces related t0 USEIS ...ttt ssasesesssssesesens 13
Table 2 - Register @ NEW USEI INTEITACE ..ottt ettt s 14
Table 3 - Check availability of @ USErName INTErTaCE.oviieieerrreeeee ettt 15
Table 4 - Authorize a user (LOZIN) INTEITACE ...c.viiiirrrirreceetrr ettt se e e s e bbb sane 16
Table 5 - VErify USEIS INTEITACE ..ottt s s ss st sa e e e s s s s b bebebesasns 17
Table 6 - Resend verification code tO USErs INtEITACE. ..ottt eaens 17
Table 7 - Get user's iNfOrmation INTEITACE. ..ottt 18
Table 8 - Update user's information INTEITACE. ...ttt sesesese s s b sasane 19
Table 9 - Change user's PasSWOrd INTEITACE ...ttt se e s s s bbb sasane 20
Table 10 - Reset user's password reqUeSt INTEITACE ..ottt 20
Table 11 - Reset USer's PassSWOrd INTEITACE ..ottt 21
Table 12 - Delete user's aCCOUNt INEEITACEcccuviiiiiiiciicc e esens 22
Table 13 - Change USer's @Mail INTEITACE ...ttt sa e s bbb bebasasans 22
Table 14 - Change user’s profile PiCtUre INTEITACE ..ot 23
Table 15 - Remove user's profile PIicture INTErfate ..o enens 24
Table 16 - Get user's StatiStics INTEITACEccc e ns 24
Table 17 - Get user's account data INtEIfACE ... eaens 25
Table 18 - Back-end's interfaces related t0 DESCrIPLIONSc.ccivirirriririririnieieeeeresese sttt sesesens 26
Table 19 - Get descriptions’ COECtioNS INTEITACEc.v v nens 27
Table 20 - Get a list with all descriptions INTEITACE. ..ottt 29
Table 21 - Get a list with all descriptions from a specific collection Interface........ccoevvveveceeennnreneneenenen 29
Table 22 - Get a specific description (using keyword “all”) INterfacecoovvveveeeenrnreneceeerrereeeeenens 30
Table 23 - Get a specific description (using description’s “collection”) INterfacecoceceveeeverrnvrseeeenn, 30
Table 24 - Get latest descriptions from all collections INtErface ... 31
Table 25 - Get latest descriptions from a specific collection INterface........ovveeeevrrreneceeeeerreeeeenens 32
Table 26 - Get random descriptions from all collections INterface ... eesens 32
Table 27 - Get random descriptions from a specific collection INterfacecvvvvveeericernnnneeeeeeeen, 33
Table 28 - Get a list with all descriptions provided by a specific user (using keyword “all”) Interface........ 34
Table 29 - Get a list with all descriptions provided by a specific user and under a specific collection (using
A "COIIRCLION" VAIUE) INEEITACE .. ittt ettt st sttt et et e st esbe s bt satess et enbessessesntonsensensensessessesnsonsonsensen 35
Table 30 - Get descriptions' statistics (useful for front-end’'s homepage) Interface.......ccoevvvrrereeerennnn, 36
Table 31 - Upload / Create a new description with random ID Interfaceccvvvvreieeevennnnnneeeeenene 37
Table 32 - Upload / Create a new description with given ID INterface.........cccvvvvnvnieieneenenenenenniseieeenenns 39

@ Policy Cloud D7.5-v.1.0

Table 33 - Update a specific description (using keyword “all”) INterfacecccvvvvvveeeererennennneeeeenenens 40
Table 34 - Update a specific description (using description’s “collection”) Interfacecccocevvvverereererennn. 41
Table 35 - Delete a specific description (using keyword “all”) INterface.........covvvrrneieeenenenennrreeeeenens 42
Table 36 - Delete a specific description (using description’s “collection”) Interface.........ccvvevvvrereeeenen. 43
Table 37 - Delete all descriptions INTEITACE ...ttt se e e s s bbb s s sans 43
Table 38 - Delete all descriptions from a specific collection INterfaceovvveeeennnneneceeeerereeeeeens 44
Table 39 - Make a review for a description INTEITACe ... bbb sns 44
Table 40 - Update an existing review for a description INterface......coceevvvnerceeeennereeeee s 45
Table 41 - Delete a review for @ description INTEITACE ..ottt 46
Table 42 - Get a list with the reviews made by a specific user INterfaceccooceeevvnnenccceeennnereeeenens 47
Table 43 - Get a list with all descriptions that need permission INterfacec.cccoeeervveveeeeeennenereeenens 48
Table 44 - Get a list with all descriptions from a specific collection that need permission Interface......... 49
Table 45 - Approve or reject a description that needs permission, using keyword “all” Interface 49
Table 46 - Approve or reject a description thats needs permission, using description’s “collection”
INEEITACE et bbb 50
Table 47 - Approve or reject all descriptions that need permission, using keyword “all” Interface 50
Table 48 - Approve or reject all descriptions that need permission under a specific collection, using a
“CONECEION" VAlUE INTEITACE .ottt bbbt sttt bbbttt bbb 51
Table 49 - Back-eNd'S SEAICN OPEIATOIS.....cvivieierieiiirerertrisierereresesese st sese e ss e e ssssssesesesesesasasesesessesesesssssesssans 53
Table 50 - Back-end's interfaces related t0 ASSELS ... esesens 54
Table 51 - Get a list with the stored assets INtErfACEov vt 54
Table 52 - Get a specific asset USING ItS ID INTEITACE oottt 55
Table 53 - Upload a new asset with random D INTEITACE ...t sesens 56
Table 54 - Upload a new asset with given ID INterface.....oerrrnniceeesrtrecee ettt 56
Table 55 - Update a specific asset USING itS ID INTEITACE .cvvueueuriririreceeieertr ettt 57
Table 56 - Delete a specific asset USING itS ID INtEITACE ...cvvieerrrrrcccce e 57
Table 57 - Delete all assets (administrators’ action) INEEITACEcouevevveviiieiecee e 58
TaDIE 58 - ROOE INTEITACE ...cuuitieeeiri ettt st bbbttt sttt b bbbttt bebts 58

@ Policy Cloud D7.5-v.1.0

List of Figures

Figure 1 - Data Marketplace arChit@CIUIEottt ettt 8
Figure 2 - Data Matketplace's layers and main funCtionNalities ... 9
FIBUIE 3 - FrONt-€NA'S NEATEIS ...ttt ettt sttt bbbt sttt sttt bbb b b b s s 59
Figure 4 - Headers VIeW from HOMIE PABE......cviuiiiriririniririeieereeeesest sttt sese e sesesassssssesesesesssesessssssssesesesesssens 59
Figure 5 - Sub menu item View from [OZiN PAEEcccururirrereieieienrr ettt 60
Figure 6 - Discover's sub-items redirect to DiISCOVEI PAZEccoerururirireeueueieiririsereteieie ettt sesens 60
FigUIe 7 - HOME PAZE: UPPEI VIEW c..ueerrerirerreuiieresestsiesesteseesessesessesestsessessssessssssesessssensssssessssssenssesessssssesssesensssssenes 61
FIgUre 8 - HOME PAZE: IOWET VIBW ...ttt ettt ettt s s bens 61
FISUIE 9 - REEISTEI FOIMN oottt bbbttt b bttt st s 63
FIZUIE 10 - LOZIN FOMMN coiiiieeerteere ettt ettt sttt sttt bt sa b s 63
Figure 11 - ACCOUNt OVEIVIEW FOI @ SIMPIE USEI w.cuueiiirireeeerieieieeerereeeeie et eseseesieb ettt sebens 64
Figure 12 - Account information and assets for @ SIMPIE USEIcvvceerrrnenieeeerreeeeeeeseseseeeesenens 64
Figure 13 - ACCOUNT aSSELS FOr @N OWNETcueviiieicieieieirireeeciete ettt ettt sttt sttt sebes 65
Figure 14 - Account assets and information fOr @aN OWNET ...t aeaens 65
FISUIE 15 - DiSCOVET PAEE ..cveuiirieriririeeririeresesseesteresestesesessesesessesesessesessssesessssesessssesessssesessesessssesesensesesessesessssesesssesenes 66
Figure 16 - Single asset Page fOor [0ZZEA iN USEIS....ciiiiiiirenssssessssesesssssss st sssssesssesessssssssesssssssssens 67
Figure 17 - SINGIE aSSET PAGE OWNEK ..ottt sese ettt bbbt st sttt st stk se ettt bbb senenenens 67
Figure 18 - Single asset page for UNAULNOIIZEA USEIS.......ocuceieiininririneeeecceeseststree e 68
FISUIE 19 = ErTOr MESSAZE DAT ...ttt sttt sttt bbbttt st bbbt 68
Figure 20 - Front-end acCess MiddIEWATE. ...ttt ettt sttt s bes 70
Figure 271 - Dashboard add SETHINGS......cocvvrririeieuiiietntrrie ettt sttt sttt bbb sasenens 70
Figure 22 - Dashboard admin VIEW SETHINES.cccceererrrrrieeereeserereeee ettt sesesesesesesesesens 71
Figure 23 - TOKEN DASEA QCHIONSccucviieicicic et 71

Q) oty owd 07:5-1.1.0

Executive Summary

This deliverable (entitled “Data Marketplace: Software Prototype”) describes the initial demonstrator of
the PolicyCLOUD Data Marketplace. The Data Marketplace will be a unified web-based platform

consisting of two (2) core services, its front-end and back-end, offering its users various ready-to-use
solutions.

Into this context, the current deliverable describes an overview of the Data Marketplace architecture,
detailing the main features of its core components (also described in D7.4 - Data Marketplace: Design
and Open Specification, delivered in August 2021), whereas all the implemented interfaces are
thoroughly described accompanied by indicative examples. On top of these, the baseline technologies
that have been used for the realization of the Data Marketplace are analyzed, providing detailed
information on how an external user can exploit and access the Marketplace.

& o e

1 Introduction

The deliverable D7.4, entitled “Data Marketplace: Design and Open Specification” and delivered in August
2021,was about the initial design and the architecture of the PolicyCLOUD Data Marketplace. As
described and analysed in D7.4, the Data Marketplace is considered as a smart user-based repository of
assets that aims to create a community of users who will be able, through the Marketplace’s platform, to
provide and share various ready-to-use solutions/tools to various subjects and fields of use, related to
the areas of interest of the PolicyCLOUD.

This deliverable describes the first version of the implemented prototype of the Data Marketplace, and
it is an extension of the deliverable D7.4. In summary, the Marketplace has been implemented in order
to provide the means for storing, searching and retrieving several types of assets, which are the outcome
of a requirements analysis which was performed during task 7.2 and described in D7.4. It consists of a
public web-based environment with many different APIs and functionalities, covering all different
requirements of the project’s stakeholders.

The remainder of this deliverable describes an overview of the Marketplace architecture in section 2.1,
detailing the main features of its core components that are also described in deliverable D7.4. In section
2.2 the implemented interfaces of the Data Marketplace's components are described, while section 2.3
describes the baseline technologies that have been used for the realization of the marketplace. Section
3 provides some access information to the source code, and finally, section 4 concludes with a summary
of the described prototype.

PolicyCLOUD @ Human Machine
Platform uﬁ - Users OQ Users

- /
\ Data Marketplace /

FIGURE 1 - DATA MARKETPLACE ARCHITECTURE

Policy CIQHQ D7.5-v.1.0

Cloud for Data-Driven Policy

2 Prototype Overview

The PolicyCLOUD Data Marketplace is a public web-based environment with various APIs, able to store
several types of assets. It has been structured and developed having two core components. The first and
most important component is the back-end which contains in a structured way the information, stores
the assets offered by the Marketplace and implements the required functionalities. The second
component is the front-end which presents to the users the offered content (the assets and their
information), allowing them to interact with the platform in an easier way.

Generally, the Marketplace provides several functionalities that are mapped to different layers. The back-
end includes three layers (i.e. Assets Storage Layer, Assets Management Layer, and Interaction Layer),
while the front-end includes one layer (i.e. Presentation Layer) that in full consists of four different layers
(as depicted in Figure 2) that realize its capabilities. The four layers of the marketplace are described
below:

e The Assets Storage Layer (part of the back-end) is the layer in which the platform'’s offered assets
are stored.

e The Assets Management Layer (part of the back-end) delivers all the needed principles and
techniques for the management of the Marketplace’s assets.

e The Interaction Layer (part of the back-end) supports the communication between the market
platform and its users (i.e. human users, and machine users), by providing discrete APIs for
exploiting each different type of asset.

e The Presentation Layer (part of the front-end) provides the User Interface towards the different
types of users that are willing to use the platform.

A

Presentation Laver . . .
y Functionalities

. ’:‘ ASSGtS management
Interaction Layel‘

TS . .
% User reglstratlon

* Third party access

*,

Assets Management Layer

<,
A X4

Billing / Negotiation

>
A 2%d

Security / Privacy check

Assets Storage Layer V

FIGURE 2 - DATA MATKETPLACE'S LAYERS AND MAIN FUNCTIONALITIES

@ Policy Cloud D7.5-v.1.0

2.1 Main Components

2.1.1 Back-end

The back-end is the main component of the marketplace. It consists of three different layers and
implements the main functionalities for assets management. The three levels are briefly described
below.

The Assets Storage Layer is responsible for storing the assets that will be offered by the Data
Marketplace. An essential component of this layer is the database that can store files in any format as
well as additional information about the files provided. In this context, the type of database that is used
is a document-oriented NoSQL database, which stores both JSON-like documents (the format of the
descriptions files that are analyzed in the Assets Management Layer) and binary files, using extended
specifications (e.g. file system).

The Assets Management Layer is responsible for the entire life cycle of the assets within the platform
and offers all the principles and techniques for their management. Specifically, this layer handles the
assets from the moment they are entered into the platform through the APIs and then stored in the
database (in Assets Storage Layer), until their final deletion from the platform. Through this layer, the
market platform supports the CRUD operations and searching functionality, which are triggered by the
corresponding APIs of the back-end (Assets Interaction Layer). The back-end is a REST API and receives
different HTTP requests in order to perform an operation/ trigger a functionality. Moreover, there are
mandatory description files for all assets that contain metadata about the described asset (in JSON
format). These description files are mandatory in order to make the assets searchable and retrievable by
the end-users of the Data Marketplace.

The last layer, the Assets Interaction Layer, is responsible for supporting the communication between
the platform and its end-users. It implements the interfaces (APIs) of the back-end (analyzed in section
2.2.1) that will handle the back-end's operations. As described before, these APIs receive HTTP requests
that trigger the CRUD operations for both assets and description files.

2.1.2 Front-end

The front-end is the fourth layer of the market platform, the Presentation Layer. It is a web-based server
that presents the offered assets to the users, with a friendly Ul. In general, the front-end will convert all
interfaces of the back-end (REST API) into user friendly interfaces and provide automated forms and
processes that make it easier for users to interact with the back-end and benefit from its stored assets.
Therefore, it acts as an intermediate among the marketplace users and the back-end, sending the
respective HTTP requests to the latter and presenting its responses.

In short, the front-end allows users to register and sign in to the marketplace (user-based platform),
upload their offered assets by filling out appropriate forms whose fields will be the content of the
description files of the assets (as mentioned in Section 2.1.1); search for assets according to various fields

10

@ Policy Cloud D7.5-v.1.0

(title, asset's type, fields of use, provider, other metadata, etc.) that can be further filtered or even sorted
by the number of views or the date they were uploaded to the marketplace, etc. Also, there is a page that
presents in detail the information of the assets, and through this page, the users are able to retrieve the
real assets, the files. More details about the front-end and its supported functionalities are described in
the next section, 2.2.2.

2.2 Interfaces

This section provides the description and the core details of the interfaces for both components, back-
end and front-end. The back-end's subsection describes its interfaces in more technical terms, while the
front-end’s subsection describes the webpages that take advantage of the back-end's interfaces, along
with their use cases.

2.2.1 Back-end

As described in section 2.1.1, the back-end is a REST API that receives HTTP requests to trigger its
designed and implemented functionalities. This section describes the REST APl endpoints that are
introduced in the first version of the back-end. These APIs are categorized into 3 main groups, namely:
APIs related to Users, APIs related to Descriptions and APIs related to Assets.

One of the basic requirements set during the design of the Data Marketplace and described in the
deliverable D7.4, was to become a user-based system. There are many reasons for this requirement,
starting from the fact that it is a web system / server that will offer its users various types of objects
(assets), to the fact that the assets are offered by their providers / owners to all users without special
restrictions (at least in its first version) something that results in intellectual property rights issues, which
are resolved, allowing providers to manage their assets on their own. In case that an offered asset is not
provided by the author of the asset, the providers can specify who is the real author.

Thus, all users of the Marketplace should have their personal accounts in the system, which they will be
able to manage themselves. As is common on all websites with such requirements, the Marketplace’s
administrators are able to audit the accounts and perform actions that will ensure the platform’s smooth
operation, but also of the community that will be created through the Marketplace. To this end, the back-
end has implemented APIs that are related to its users.

As already described, the Data Marketplace consists of two components, running two different servers
but both managing the same information and data, with the storage of these data being done exclusively
in the back-end. Specifically, the binaries of the provided assets and their descriptions (metadata files)
are stored in the back-end, as does for the users’ data. In addition, both components are accessible to
users by direct communication, using HTTP requests for the back-end and through web browsers for the
front-end, which provides information stored in the back-end. Therefore, based on all these, in order to
restrict the access to the information, it was decided that the back-end will be the server that will offer
the authentication and authorization mechanisms to the users for the management of its content. It
should be noted that the latter was decided based on the fact that the Data Marketplace will be publicly

11

@ Policy Cloud D7.5-v.1.0

available to all the interested users (either they are partners of the PolicyCLOUD consortium or third
parties). As a result, since all the offered solutions will be immediately puclicly available to these users,
the back-end will be independent compared with the rest of the PolicyCLOUD components, supporting
its own authentication and authorization mechanisms to manage its content.

As authorization mechanism, the JSON Web Token (JWT) [1] technology is used. JWT is an open standard
that defines a compact and self-contained way for securely transmitting information between parties as
a JSON object in a way that can be verified and trusted because it is digitally signed. The JWT is a simple
token format and because of its relatively small size, a JWT can be sent through a HTTP request either as
query parameter in the URL or inside the HTTP header, and it is transmitted quickly, and it can be used
very easy within the context of the HTTP.A JWT contains all the required information about an entity (e.g.
information about issuer, subject, expiration time, and any other information) to avoid querying a
database more than once. As described before, it is a secure approach as it is digitally signed for tamper
proof and authenticity, and it can be encrypted to protect the token information using symmetric or
asymmetric approach. It should be noted that by default, a JWT contains the information encoded and
not encrypted (the token can be further encrypted). Some extra benefits of the JWT are that it can be
used as a stateless authentication mechanism (the back-end as REST API is not able to keep users’
sessions) and finally, the fact that its content is a JSON object (as the assets’ descriptions) is makes it
easier to be used and be parsed by the back-end [2].

The following token is an example of a JWT for the next JSON Object, signed with a symmetric key “key":

/SON Object: {"username": "vkoukos", "name": "Vasilis", "surname": "Koukos'", "Organization": "UPRC", "exp":
1516239022}

IWT:

eylhbGciOilUzITNilsInR5cCl61kpXVC9.ey) 1c2VybmFtZSI6InZrb3Vib3MiLGlu YW1 ljjoiVmFzaWxpcylsinN 1cm5hb WUiOjLb3Virb3MiLC
JPcmdhbml6 YXRpb24iOj/\VUFDIiwiZXhwljoxNTEZMiM5MDIyfQ.310s TPhrxNFWN-moZsDFEIQq6HcOEe7svcGCGnjl9IA

The content of a JWT can also be the key “exp” which sets an expiration time for the JWT, and that reduces
its validation time, which is useful for the back-end. However, the fact that the information is not
encrypted (it is simply encoded) it should not contain sensitive personal data.

The usage of the JWT in the Data Marketplace will be as follows:

e The Marketplace will restrict the access to its assets and specifically to all interfaces related to its
assets as well as to all HTTP requests, e.g. GET, POST, PUT, DELETE. Regarding the interfaces
related to the descriptions, the requests to these interfaces will be restricted too, but not for the
GET HTTP request because the descriptions should be accessible to all (with limited content)
because the Marketplace has to promote its contents to the public.

e The users of the Marketplace need to register / create an account (their information will be stored
in the back-end). In order to access the stored (and permitted) information, users should use an
interface so to authorize themselves, using their credentials. Their authorization will result to the
retrieval of a JWT, which they will use in their HTTP requests to the Marketplace.

12

@ Policy Cloud D7.5-v.1.0

e The JWT will contain all the necessary information of the users along with the expiration period.
The JWT will be signed from the back-end with a secret key (fake JWTs are addressed from the
back-end through the signature - brute force attacks are not addressed but can be limited).

e The front-end,x during users' login will retrieve their JWTs and use them on their behalf, in the
headers of the HTTP requests to the back-end. By decoding the JWTs, the front-end will have the
most important information of the users. Also, as long as the JWTs are valid (based on the
expiration field), it should be kept it in the users' sessions. If a JWT expires, the user's session
must end and therefore, the user must login again in order to get access.

e The back-end, when validating a JWT, will decide if a user is actually able to perform an action /
access stored information (based also to other rules / restrictions / access rights).

e The expiration time of a JWT is different when users retrieve it making a request directly to the
back-end instead of a request through the front-end. The reasons about this decision are that a)
the front-end users will not handle the JWTs by themselves (front-end will do), b) they don't have
access to it and c) they should have longer session (and more time). Unlike front-end users, the
users/services that have direct access to the back-end will be able to have a limited expiration
time, as they know and handle JWT (they are also able to share it to third parties as if they were
sharing their credentials).

The interfaces of the back-end are described below.

2.2.1.1 Interfaces related to Users

This group of APIs offers functionalities intended for the management of Marketplace's users. The most
important endpoints are those for the user registration as it is necessary for the usage of the other
endpoints, and the endpoint for their authorization, in order to get a JWT. For all users, except for their
personal information, there will be a unique username. The table below presents the endpoints related
to Users as they are in the first version of the Data Marketplace’s back-end.

Register a new user (Sign up) POST {HOST}/accounts/users/registration

Check availability of a username GET {HOST}/accounts/username/availability
Authorize a user (Login) POST {HOST}/accounts/users/authorization

Verify users (their email) GET {HOST}/accounts/users/verification/{vc}

Resend verification code to users POST {HOST}/accounts/users/verification/resend

Get user’s information GET {HOST}/accounts/users/information/{username}
Update user's information PUT {HOST}/accounts/users/information/{username}
Change user’s password POST {HOST}/accounts/users/password/change

Reset user's password request POST {HOST}/accounts/users/password/reset

Reset user's password POST {HOST}/accounts/users/password/reset/{prc}
Delete user's account DELETE {HOST}/accounts/users/delete/{username}
Update user's email PUT {HOST}/accounts/users/email/{username}
Change user's profile picture PUT {HOST}/accounts/users/image

Remove user's profile picture DELETE {HOST}/accounts/users/image/{username}

Get user's statistics GET {HOST}/accounts/users/statistics/{username}
Get user's account data GET {HOST}/accounts/users/data

TABLE 1 - BACK-END'S INTERFACES RELATED TO USERS

13

PQ,[!C}/,,,QE’H(,J, D7.5-v.1.0

e {HOST}refers to the hosting server: the domain name and the port running the back-end.
e Some of these actions require additional fields in the headers of the HTTP request. Example of a
required field is the JWT.

Below is a more detailed description of all the developed interfaces, and their corresponding actions:

\ Title: Register a new user (Sign up)
Endpoint: {HOST}/accounts/users/registration
HTTP Method: POST
Description: From this endpoint, Data Marketplace's user registrations are made. A POST

request should be submitted and the next JSON schema must be in its body
as raw data. It should be noted that a) the email and the username must be
unique and available b) the schema below should be exactly the same,
whether there are values or not (empty strings ') - the array “social” can be

enwpty.
{
"username": "..", "account": {"password": ".."},
"info": {
"name": "..", "surname": "..",
"title": "..", "gender": "..",
"organization": "..", "phone": "..", "email": "..",
"about": "..", social": ["..",".."]

}
}
The headers of the request may contain the key “x-more-time” which is used

only by the front-end in order to get JWTs that are valid for a longer period
(greater expiration value).

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)
Headers: Key Value
X-more-time [Restricted and available only for the

front-end which use an API key]
Front-end's AP| key

URL Parameters: None
Query Parameters: None
Restrictions / Special None
Features:

Successful Response: JSON Object with a successful message and user’s JWT.

The following is an example of the request in cURL:
curl --request POST '{HOST}/accounts/users/registration' \

--header 'Content-Type: application/json' --header 'x-more-time: <API KEY>' \
--data-raw '{
"username": "..", "account": {"password": "."},
"info": {
"name": "..", "surname": "..", title": ".", "gender": ".",
"organization": "..", "phone": "..", "email": "..",
"about": "..", social": ["..",".."]

TABLE 2 - REGISTER A NEW USER INTERFACE

14

Policy Cloud D7.5-v.1.0

Cloud for Data-Driven Policy Management

After a successful registration, the following JSON document is stored in the database:

{

"_id": "..", // user’s username
"account": {
"password": "..", // user’s password (hashed)
"role": "user", // user’s role (user or admin)
"verified": "..", // value = 1 if user is verified,
otherwise, it has a verification code to use it for user’s email/account verification
"registration datetime": ".." // user’s registration date
}V
"info": {// info provided during user’s registration
"name": "..", "surname": "..", "title":"..", "gender": "..", "organization": "..",
"phone": "..", "email": "..", "about": "..", "social": []
by
"profile parameters": ({

"public email":0, // parameter that determines if the email will be public or not
(values 1 or 0)

"public_phone":0, // parameter that determines if the phone will be public or not
(values 1 or 0)

"profile image": "default image users" // the ID of the user’s profile image

a default image is used for all users

Title: Check availability of a username

Endpoint: {HOST}/accounts/username/availability
HTTP Method: GET
Description: This endpoint is used in order to check the availability of a username during

the registration of the users. A GET request should be made and the key “x-
username” must be included in the headers of the request.

Body Data: None
Headers: Key Value
X-username The username whose availability will be
checked.

URL Parameters: None

Query Parameters: None

Restrictions / Special None

Features:

Successful Response: Availability status in JSON Obiject.

The following is an example of the request in cURL:
curl --request GET '{HOST}/accounts/username/availability' --header 'x-username: <value>'

TABLE 3 - CHECK AVAILABILITY OF A USERNAME INTERFACE

15

Policy Cloud D7.5-v.1.0

\ Title: Authorize a user (Login)
Endpoint: {HOST}/accounts/users/authorization
HTTP Method: POST
Description: Through this endpoint, the users are authorized in order to log in to their

account. The next JSON schema, containing users’ credentials, must be in
the body of the request as raw data. It should be noted that users can log in
either with their email or with their username.

{ "username": "4..", "email": "...", "password": non }
A successful response will return the next JSON schema that contains the
JVVTirlthe key'TOken"I{"_status": "successful", "token": "<JWT>"}

The headers of the request may contain the key “x-more-time” which is used
only by the front-end in order to get JWTs that are valid for a longer period
(greater expiration value).

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)
Headers: Key Value
X-more-time [Restricted and available only for the front-

end which use an API key]
Front-end's API key

URL Parameters: None
Query Parameters: None
Restrictions / Special None
Features:

Successful Response: JSON Object with a successful message and user’s JWT.
The following is an example of the request in cURL:

curl --request POST '{HOST}/accounts/users/authorization' \
--header 'x-more-time: <API_KEY>' --header 'Content-Type: application/json' \
--data-raw '{ "username": "..", "email": "..", "password": "." }'

TABLE 4 - AUTHORIZE A USER (LOGIN) INTERFACE

\ Title: Verify users (their email)
Endpoint: {HOST}/accounts/users/verification/{vc}
HTTP Method: GET
Description: Through this endpoint, the users can verify their account using the

verification code {vc} that they received in their email during their
registration. For users’ convenience, the email that they receive contains a
URL that directs to the front-end. It should be noted that this endpoint is
also useful for all the occasions that the users’ account gets locked and
needs verification again (e.g. change email).

The headers of the request may contain the key “x-more-time” that is used
only by the front-end in order to get JWTs that are valid for a longer period
(greater expiration value).

Body Data: None
Headers: Key Value
X-more-time [Restricted and available only for the front-
end which use an API key]
Front-end's API key
URL Parameters: Parameter Value

16

Policy Cloud D7.5-v.1.0

VC The verification code that sent to user's
email.
Query Parameters: None
Restrictions / Special None

Features:
Successful Response: JSON Object with a successful message and user’s JWT.

The following is an example of the request in cURL:
curl --request GET '{HOST}/accounts/users/verification/{vc}' --header 'x-more-time: <API_KEY>'

TABLE 5 - VERIFY USERS INTERFACE

Title: Resend verification code to users

Endpoint: {HOST}/accounts/users/verification/resend

HTTP Method: POST

Description: This endpoint is connected to the endpoint above. Its scope is to resend

users’ account/email verification codes. It is useful mainly for the back-end'’s
users (those who communicate directly with the back-end) and not for those
who use the front-end, because the latter has mechanisms to retrieve users'
verification codes and send them to users’ emails.
This request requires user's JWT in the headers of the request, under the key
“x-access-token”, in order to authenticate the user.

Body Data: None

Headers: Key Value
x-access-token Requester's JWT

URL Parameters: None

Query Parameters: None

Restrictions / Special The endpoint is available only to accounts’ owners.

Features:

Successful Response: JSON Object with the verification code.

The following is an example of the request in cURL:
curl --request GET '{HOST}/accounts/users/verification/resend' --header 'x-access-token: <JWT>'

TABLE 6 - RESEND VERIFICATION CODE TO USERS INTERFACE

Title: Get user’s information

Endpoint: {HOST}/accounts/users/information/{username}
HTTP Method: GET
Description: This endpoint is used in order to retrieve information about a user. A GET

request should be made and the user's {username} is required at the end of
the endpoint. Moreover, this endpoint is restricted and thus, the JWT of a
requester must be included in the headers of the request.

It should be noted that the administrators and the accounts’ owners are able
to retrieve all users’ information, while users that retrieve information of
other users retrieve only public information. Private information can be
users' email and phone, depending on the values of the profile parameters
“public_email” and “public_phone”.

Below are examples of retrieved users’ information, one by an
administrator/account owner (1) and one by a user that retrieves another

17

@ Policy Cloud D7.5-v.1.0

user's information (2) - the examples present information retrieval for the

same user.
Body Data: None
Headers: Key Value

x-access-token Requester's JWT
URL Parameters: Parameter Value

username The wusername of the user whose

information will be retrieved.

Query Parameters: None
Restrictions / Special The administrators and the accounts’ owners are able to retrieve all users’
Features: information, while users that retrieve information of other users retrieve

only public information.
Successful Response: JSON Object with a user’s information.

The following is an example of the request in cURL:
curl --request GET '{HOST}/accounts/users/information/{username}' \
--header 'x-access-token: <JWT>'

TABLE 7 - GET USER'S INFORMATION INTERFACE

Example 1
{" status": "successful", "result": {
"account": {"registration datetime": "..", "role": "user", "verified": "1"},
"info": {"about": "..", "email": "..", "gender": "..", "name": "..", "organization": "..",
"phone": "..", "social": [], "surname": "..", "title": ".."
}!
"profile parameters": ({
"profile image": "default image users",

"public email": 0, "public phone": 0
}, "username": "."

1}

Example 2
{"_status": "successful", "result": {
"account": {"registration datetime": "..", "role": "user", "verified": "1"},
"info": {"about": "..", "gender": "..", "name": ".", "organization": "..",
"social”™: [], "surname": "..", "title": ".."
br
"profile parameters": {"profile image": "default image users"}, "username": ".."

18

Policy Cloud D7.5-v.1.0

\ Title: Update user's information
Endpoint: {HOST}/accounts/users/information/{username}
HTTP Method: PUT
Description: This endpoint handles requests for updating users' information. A PUT

request should be made and the next JSON schema (it is flexible and thus
may contain fewer fields - but no new fields), containing users’' new
information, must be in its body as raw data.

{"info": { "name": "..", "surname": "..", "title": "..",
"gender": "..", "organization": "..", "phone": "..",
"social": ["..", ".."1, "about": ".."},

"profile parameters": {"public email": 1, "public phone": 0}}

Moreover, this endpoint is restricted and thus, the JWT of a requester must
be included in the headers of the request. It should be noted that only the
accounts’ owners and the administrators are able to update the information
of a user. The latter are not able to change the profile parameters.

Also, the headers of the request may contain the key “x-more-time” which is
used only by the front-end in order to get JWTs that are valid for a longer
period (greater expiration value).

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)
Headers: Key Value

x-access-token Requester's JWT

X-more-time [Restricted and available only for the front-end

which use an API key]
Front-end’'s API key

URL Parameters: Parameter Value
username The username of the user whose information
will be updated.
Query Parameters: None
Restrictions / Special Only the accounts’ owners and the administrators are able to update the
Features: information of a user.
Successful Response: A successful response will return the next JSON Object that contains a new
JWT in the key “token”:
{"_status": "successful", "message": "The information of the user
'{username}' has been updated.", "token": "<JWT>"}

The following is an example of the request in cURL:
curl --request PUT '{HOST}/accounts/users/information/{username}' \
--header 'x-access-token: <JWT>' --header 'x-more-time: <API_KEY>' \

--header 'Content-Type: application/json' \
--data-raw '{"info": { "name": "..", "surname": ".", ..}, .. }'

TABLE 8 - UPDATE USER'S INFORMATION INTERFACE

Title: Change user’'s password

Endpoint: {HOST}/accounts/users/password/change
HTTP Method: POST
Description: This endpoint is used when the users want to change their account's

password. A POST request should be made and the next JSON schema,
containing users' new and old password, must be in its body as raw data.
Also, this endpoint is restricted and thus, the JWT of a requester must be
included in the headers of the request. It should be noted that this action is
only available to accounts’ owners.

19

@ Policy Cloud D7.5-v.1.0

{ "old password": "..", "new password": "..", "confirm new password": ".."}
Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)
Headers: Key Value

x-access-token Requester's JWT
URL Parameters: None
Query Parameters: None
Restrictions / Special Only available to accounts' owners. The new password must not be the same
Features: with previous password.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request POST '{HOST}/accounts/users/password/change' \
--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-raw '{ "old password": "..", "new_password": "..", "confirm new password": ".."}'
TABLE 9 - CHANGE USER’S PASSWORD INTERFACE

Endpoint: {HOST}/accounts/users/password/reset
HTTP Method: POST
Description: This endpoint handles the first step of the password reset process. The users

who forgot their passwords have to make a password reset request first,
sending a POST request to this endpoint with the next JSON schema in its
body. It should be noted that it is not necessary to use both fields - at least
one of the two is sufficient/required.

{"username": "..", "email": ".."}

Another important note is that this endpoint is available only through the
mechanisms of the front-end which sends to the users’ emails a password
reset link that contains a generated password reset code. The generated
password reset codes are valid only for an hour (1 hour).

The password reset link redirects to a front-end’s form from which the users
can set their new password. After the submission of the form, the front-end
uses the next interface in order to change the password of the user.

The headers of the request must contain the front-end’s API key.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)
Headers: Key Value
x-api-key Front-end's API key
URL Parameters: None
Query Parameters: None
Restrictions / Special Only available to the front-end.
Features:
Successful Response: JSON Object with a successful message and the password reset code in its
content.
The following is an example of the request in cURL:
curl --request POST '{HOST}/accounts/users/password/reset' --header 'x-api-key: <API_KEY>' \
--header 'Content-Type: application/json' --data-raw '{"username": "..", "email": ".."}'

TABLE 10 - RESET USER’S PASSWORD REQUEST INTERFACE

20

Policy Cloud D7.5-v.1.0

\ Title: Reset user’s password
Endpoint: {HOST}/accounts/users/password/reset/{prc}
HTTP Method: POST
Description: This endpoint is connected to the above endpoint and handles the second

step of the password reset process. The users will open the password reset
link that they received in their email, which redirects to a front-end's form
from which the users are able to set their new password. After the
submission of the form, the front-end sends a request to the current
interface in order finish the process.

The password reset code {prc} that the users received in their email must
be inthe request's URL and the following JSON schema should be in the body
of the request.

{ "new password": "..", "confirm new password": ".."}
Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)
Headers: None
URL Parameters: Parameter Value
prc The password reset code that the users’
received in their email.
Query Parameters: None
Restrictions / Special None
Features:

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:

curl --request POST '{HOST}/accounts/users/password/reset/{prc}' \
--header 'Content-Type: application/json' \

--data-raw '{ "new_password": "..", "confirm new_password": ".."}'

TABLE 11 - RESET USER'S PASSWORD INTERFACE

Title: Delete user's account

Endpoint: {HOST}/accounts/users/delete/{username}
HTTP Method: DELETE
Description: In order to delete an account, this endpoint should be used, making a

DELETE request and providing requester’s password in its body, as raw data
(JSON format). The endpoint must contain the user's {username} at the end
of the URL.

{ "password": ".." }

The endpoint is restricted and thus, the JWT of a requester must be included
in the headers of the request. This action is available to accounts’ owners
and to administrators who are able to delete users from the Marketplace. If
the action is made by an administrator, the field “password” in the body
should be administrator's password.

An _important note is that the deletion of an account has as result the
deletion of all user's data, offered descriptions and assets.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)
Headers: Key Value

x-access-token Requester's JWT
URL Parameters: Parameter Value

21

@ Policy Cloud D7.5-v.1.0

username The username of the user whose account
will be deleted.
Query Parameters: None
Restrictions / Special Only the accounts' owners and the administrators are able to delete an
Features: account/user.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:

curl --request DELETE '{HOST}/accounts/users/delete/{username}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \
--data-raw '{ "password": ".." }'

TABLE 12 - DELETE USER'S ACCOUNT INTERFACE

Endpoint: {HOST}/accounts/users/email/{username}
HTTP Method: PUT
Description: This endpoint is used in order to update the emails of the users. This action

is also possible through the endpoint for update users’ information, but it is
important to have the current endpoint because the email is an important
field for all accounts. The next JSON schema must be in the request’s body
as raw data:

{ "new email": ".." }

The endpointis restricted and thus, the JWT of a requester must be included
in the headers of the request. This action is available only to accounts
owners and administrators. If the action is made by the accounts’ owners,
their accounts will get locked until they will verify their new email (using the
endpoint for the emails' verification). In case that this action is made by an
administrator, the account does not get locked.

Also, the headers of the request may contain the key “x-more-time” which is
used only by the front-end in order to get JWTs that are valid for a longer
period (greater expiration value).

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)
Headers: Key Value

x-access-token Requester's JWT

X-more-time [Restricted and available only for the front-

end which use an API key]
Front-end's API key

URL Parameters: Parameter Value
username The username of the user whose email will
be updated.
Query Parameters: None
Restrictions / Special Only the accounts’ owners and the administrators are able to update users’
Features: email.

Successful Response: JSON Object with a successful message along with a new JWT. It may contain
a verification code only if the action is made by accounts’ owners.
The following is an example of the request in cURL:

curl --request PUT '{HOST}/accounts/users/email/{username}' \
--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \
--data-raw '{ "new_email": ".." }'

TABLE 13 - CHANGE USER’S EMAIL INTERFACE

22

Policy Cloud D7.5-v.1.0

\ Title: Change user’s profile picture
Endpoint: {HOST}/accounts/users/image
HTTP Method: PUT
Description: All users have a default profile image from their registration and through

this endpoint are able to change it. The endpoint is restricted and available
only to accounts owners and thus, the JWT of a requester must be included
in the headers of the request.

Also, the headers of the request may contain the key “x-more-time” which is
used only by the front-end in order to get JWTs that are valid for a longer
period (greater expiration value).

Body Data: Data Type: Form Data
Key Value
asset Binary data / Path to image
Headers: Key Value
x-access-token Requester's JWT
X-more-time [Restricted and available only for the front-

end which use an API key]
Front-end's API key

X-mimetype Image’s mimetype (Only JPEG and PNG
images are allowed)

URL Parameters: None

Query Parameters: None

Restrictions / Special Available only to accounts’ owners.

Features:

Successful Response: A successful response will return the next JSON Object that contains a new
JWT in the key “token”;
{"_status": "successful", "message": "The profile image of the user
'{username}' has been changed.", "token": "<JWT>"}

The following is an example of the request in cURL:

curl --request POST '{HOST}/accounts/users/image' --header 'x-access-token: <JWT>' \

--header 'x-more-time: <API KEY>' --header 'x-mimetype: <image’s mimetype>' \

--form 'asset=@"<fu11_path_€o_image>"'
TABLE 14 - CHANGE USER'S PROFILE PICTURE INTERFACE

Title: Remove user’s profile picture

Endpoint: {HOST}/accounts/users/image/{username}
HTTP Method: DELETE
Description: This endpoint is used in order to delete users’ profile images. The

{username} of the user whose profile image will be deleted should be in the
URL. This action deletes users’ images and replaces them with the default
image which is used for all users.

The endpoint is restricted and thus, the JWT of a requester must be included
in the headers of the request. It should be noted that only the accounts’
owners and the administrators are able to delete users' profile image.

Also, the headers of the request may contain the key “x-more-time” which is
used only by the front-end in order to get JWTs that are valid for a longer
period (greater expiration value).

Body Data: None
Headers: Key Value

23

URL Parameters:

Query Parameters:
Restrictions / Special
Features:

Successful Response:

D75-v.1.0

x-access-token Requester's JWT

X-more-time [Restricted and available only for the front-
end which use an API key]
Front-end's API key

Parameter Value

username The username of the user whose profile
image will be deleted.

None

Available only to accounts’ owners and administrators.

A successful response will return the next JSON Object that contains a new
JWT in the key “token”:

{"_status": "successful", "message": "The profile image of the user
'{username}' has been removed.", "token": "<JWT>"}

The following is an example of the request in cURL:

curl --request DELETE '{HOST}/accounts/users/image/{username}' \
--header 'x-access-token: <JWT>' --header 'x-more-time: <API_KEY>'

TABLE 15 - REMOVE USER’'S PROFILE PICTURE INTERFACE

| Title: Get user's statistics

Endpoint:
HTTP Method:
Description:

Body Data:
Headers:

URL Parameters:
Query Parameters:

Restrictions / Special
Features:

Successful Response:

{HOST}/accounts/users/statistics/{username}

GET

This endpoint is used in order to get some statistics about a user whose
{username} is in the URL of the GET request. It is used in users' profiles
where their contribution with offerings to the Marketplace is presented.
The endpoint is restricted and thus, the JWT of a requester must be included
in the headers of the request.

None

Key Value

x-access-token Requester's JWT

Parameter Value

username The username of the user whose statistics
will be retrieved.

None

Available to all authorized users.

JSON Object with a successful message and statistics as follows:

{" _status": "successful", "results": {
"total descriptions": 0, "approved descriptions": 0,
"assets uploaded": 0, "total downloads": O,
"total views": 0, "total reviews": 0, "average rating": 0

H}

The following is an example of the request in cURL:

curl --request GET '{HOST}/accounts/users/statistics/{username}' --header 'x-access-token: <JWT>'

TABLE 16 - GET USER'S STATISTICS INTERFACE

24

Policy ClE’,E.'fJ D7.5-v.1.0

Cloud for Data-Drven Policy

\ Title: Get user's account data
Endpoint: {HOST}/accounts/users/data
HTTP Method: GET
Description: This endpoint, which is available only to accounts’ owners, returns all

personalized data of the requester. More specifically, it returns users’
information, uploaded descriptions, reviews to descriptions and other
collected statistics.

The endpoint is restricted and thus, the JWT of a requester must be included
in the headers of the request

Body Data: None
Headers: Key Value
x-access-token Requester's JWT
URL Parameters: None
Query Parameters: None
Restrictions / Special Available only to accounts’ owners.
Features:
Successful Response: A JSON Object with users’ data (as file).
The following is an example of the request in cURL:
curl --request GET '{HOST}/accounts/users/data' --header 'x-access-token: <JWT>'

TABLE 17 - GET USER'S ACCOUNT DATA INTERFACE

2.2.1.2 Interfaces related to Descriptions

This group of APIs offers functionalities intended for the management of the descriptions. They support
all CRUD operations as well as the search functionality. Special emphasis was placed on the APIs for the
descriptions’ retrieval, extending them so as to get the latest descriptions or even random descriptions
either from a specific collection (database collection) or from all the collections at once, using the keyword
“all”. The collections of the database as well as the Marketplace’s offered types of assets, vary. The current
list of the collections can be found at the end of Table 18, which presents the endpoints related to the
Descriptions as they were stated in the first version of the back-end.

Action HTTP Endpoint
Method
Get descriptions’ collections GET {HOST}/descriptions
Get a list with all descriptions GET {HOST}/descriptions/all

Get a list with all descriptions from a specific GET {HOST}/descriptions/{collection}
collection

Get a specific description (using keyword “all”) GET {HOST}/descriptions/all/{description_id}
Get a specific description (using description’s GET {HOST}/descriptions/{collection}/{descrip

“collection”) tion_id}

Get latest descriptions from all collections GET {HOST}/descriptions/all/latest

Get latest descriptions from a collection GET {HOST}/descriptions/{collection}/latest
Get random descriptions from all collections GET {HOST}/descriptions/all/random

Get random descriptions from a specific GET {HOST}/descriptions/{collection}/random
collection

Get a list with all descriptions provided by a GET {HOST}/descriptions/provider/{username
specific user (using keyword “all”) Mall

25

D75-v.1.0

@ Policy Cloud

Get a list with all descriptions provided by a
specific user and under a specific collection
(using a “collection” value)

Get descriptions’ statistics (useful for front-
end’s homepage)

Upload / Create a new description with
random ID

Upload / Create a new description with given
ID

Update a specific description (using keyword
“all”)

Update a specific
description’s “collection”)
Delete a specific description (using keyword
“all”)

Delete a specific
description’s “collection”)
Delete all descriptions (administrators' action)
Delete all descriptions from a specific
collection (administrators’ action)

Make a review for a description

description (using

description (using

Update an existing review for a description
Delete a review for a description

Get a list with the reviews made by a specific
user

Get a list with all descriptions that need
permission (administrators' action)

Get a list with all descriptions from a specific
collection that need permission
(administrators’ action)

Approve or reject a specific description that
need permission, using keyword “all”
(administrators’ action)

Approve or reject a specific description that
need permission, using description’s
“collection” (administrators’ action)

Approve or reject all descriptions that need
permission, using keyword “all”
(administrators’ action)

Approve or reject all descriptions that need
permission under a specific collection, using a
“collection” value (administrators’ action)

GET

GET

POST

POST

PUT

PUT

DELETE

DELETE

DELETE
DELETE

POST

PUT

DELETE

GET

GET

GET

POST

POST

POST

POST

{HOST}/descriptions/provider/{username
Y/{collection}

{HOST}/descriptions/statistics
{HOST}/descriptions/{collection}

{HOST}/descriptions/{collection}/{given_i
d}
{HOST}/descriptions/all/{description_id}

{HOST}/descriptions/{collection}/{descrip
tion_id}
{HOST}/descriptions/all/{description_id}

{HOST}/descriptions/{collection}/{descrip
tion_id}

{HOST}/descriptions/all/all
{HOST}/descriptions/{collection}/all

{HOST}/descriptions/review/{description_
id}
{HOST}/descriptions/review/{description_
id}
{HOST}/descriptions/review/{description_
id}
{HOST}/descriptions/review/{username}

{HOST}/descriptions/permit/all
{HOST}/descriptions/permit/{collection}
{HOST}/descriptions/permit/all/{descripti
on_id}

{HOST}/descriptions/permit/{collection}/{
description_id}

{HOST}/descriptions/permit/all/all

{HOST}/descriptions/permit/{collection}/a
Il

TABLE 18 - BACK-END'S INTERFACES RELATED TO DESCRIPTIONS

26

PQlicy Cloud D7.5-v.1.0

e {HOST}refers to the hosting server: the domain name and the port running the back-end.
e {description_id}refers to the ID of a specific description.
e {given_id}is used in upload description action, providing new description’s ID.
e As a {collection} can be one of the following values derived from the current types of offered

assets:

{"algorithms', "tools", "policies", "datasets’,
"webinars", "tutorials”, "documents”. "externals’
"other"}

e Some of these actions require additional fields in the headers of the HTTP request. Example of a

required field is the JWT.

Below is a more detailed description of all table’s interfaces/actions:

Title: Get descriptions’ collections

Endpoint: {HOST}/descriptions
HTTP Method: GET
Description: This endpoint returns a list with the sub-routes of the “description”

endpoint. More specifically, returns the values of the {collection} parameter
which are also the database's collections and the types of the offered assets.

Body Data: None

Headers: None

URL Parameters: None

Query Parameters: None

Restrictions / Special None

Features:

Successful Response: A text/plain list with the back-end’s collections.

The following is an example of the request in cURL:
curl --request GET '{HOST}/descriptions'

TABLE 19 - GET DESCRIPTIONS' COLLECTIONS INTERFACE

Title: Get a list with all descriptions

Endpoint: {HOST}/descriptions/all
HTTP Method: GET
Description: A request to this endpoint will result in the retrieval of the stored

descriptions from all collections. It uses the keyword “all” instead of a specific
collection and that makes the platform to retrieve descriptions from all
collections at once. The descriptions that return from this request are in a
short schema (short description) and that means that the retrieved
information is limited. An example of a description in short schema is the
following JSON schema:

{"collection": "algorithms", "id": "algorithms v1LZWaoQNlFe ",
"info": {
"fieldOfUse": ["information"], "owner": "Vasilis Koukos",
"short desc": "This is an example", "type": "algorithms",
"subtype": "-", "title": "Example title."},
"main_image": "default image_assets",
"metadata": {"provider": "vkoukos",
"reviews": {"average rating": 4.2, "no reviews": 14},

27

@ Policy Cloud

Body Data:
Headers:

URL Parameters:
Query Parameters:

Restrictions / Special
Features:
Successful Response:

D75-v.1.0

"updateDate":
b}l

, "uploadDate": "..", "views": 35

This endpoint can get query parameters in order to search for descriptions
that meet certain conditions. As a query parameter can be any pair of key-
value while additional search operators can be used for more advanced and
enhanced search. More details about searching can be found in section
2.2.1.3. In addition to these, this endpoint offers some standard query
parameters that are described below (Query Parameters).

None
None
None

Key
sortBy

itemsPerPage

page

Any key to search
(refer to section
2.2.1.3)

None

Value

[Optional] Sorts the descriptions by a field - the
default is the “newest” key. The value should be
one of the following:

"newest": sort by date in descending order.
"oldest": sort by date in ascending order.
"rating-asc": sort by average rating in ascending
order.

"rating-desc™: sort by average rating in
descending order.

"views-asc": sort by the number of views in
ascending order.

"views-desc": sort by the number of views in
descending order.

"title": sort by title in ascending order.

[Optional] Returns the results separated in pages
(arrays) of N items. The number N is specified by
the value of this key. The value N must be an
integer number greater or equal to 1. If the key is
not used or has a non-accepted value, the results
are returned on a single page.

[Optional] This key can only be used if the
“itemsPerPage” key is also used. If it is used, it
returns only the specified (by key's value) page
instead of all pages created using the key
“itemsPerPage”. The value must be an integer
number greater or equal to 1. The default value is
0, which means that all pages will be returned.
Any value to search (refer to section 2.2.1.3).

A JSON Object with the results (all descriptions from all collections). If the
query parameter “itemsPerPage” is used, then the results contain the total

number of the pages.

28

Policy Cloud D75 -v. 1.0

The following is an example of the request in cURL:

curl --request GET '{HOST}/descriptions/all'

curl --request GET '{HOST}/descriptions/all?sortBy={value}'

curl --request GET '{HOST}/descriptions/all?itemsPerPage={value}’

curl --request GET '{HOST}/descriptions/all?itemsPerPage={value}é&page={value}'

curl --request GET '{HOST}/descriptions/all?sortBy={value}&itemsPerPage={value}'

curl --request GET '{HOST}/descriptions/all?sortBy={value}&itemsPerPage={value}é&page={value}'

++ + + + +

Example of retrieving 10 most viewed descriptions:
+ curl --request GET '{HOST}/descriptions/all?sortBy=views-desc&itemsPerPage=10&page=1"

TABLE 20 - GET A LIST WITH ALL DESCRIPTIONS INTERFACE

Get a list with all descriptions from a specific collection

Endpoint: {HOST}/descriptions/{collection}
HTTP Method: GET
Description: This request is similar to the above request. The only difference between

these two actions is that this request retrieves descriptions from a single
and specific collection (instead of using keyword “all”). For more details, refer
to the above endpoint.

Body Data: None

Headers: None

URL Parameters: Parameter Value

collection Valid values:

{"algorithms", "tools", "policies", "datasets",
"webinars", "tutorials", "documents",
"externals", "other"}

Query Parameters: As in the above request.

Restrictions / Special None

Features:

Successful Response: A JSON Object with the results (all descriptions in a specific collection).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/descriptions/{collection}'
+ curl --request GET \
' {HOST}/descriptions/{collection}?sortBy={value} &itemsPerPage={value} &page={value}'

TABLE 21 - GET A LIST WITH ALL DESCRIPTIONS FROM A SPECIFIC COLLECTION INTERFACE

\ Title: Get a specific description (using keyword “all")
Endpoint: {HOST}/descriptions/all/{description_id}
HTTP Method: GET
Description: With this request, the users are able to retrieve a specific description. The

retrieval of a specific description is possible using its unique identification
code (ID), known when uploading it. Also, the retrieval of a specific
description can be done using both keyword “all” and the name of the
collection that the description has been stored (next interface). This is
feasible because the back-end ensures that the IDs are unique regardless of
in which collection a description has been stored.

Moreover, the retrieval of a specific description requires a JWT in order to be
retrieved in its “full schema”. If requester’s JWT is missing, then the endpoint
returns the short schema of the description. Example of a full schema is in
the endpoint that handles the uploading of a description.

29

@ Policy Cloud D7.5-v.1.0

This endpoint, except for the full schema, also returns the reviews of the
specified description.

Body Data: None
Headers: Key Value
x-access-token [Optional, it should be used in order to
retrieve the full schema of a description]
Requester's JWT
URL Parameters: Parameter Value
description_id The ID of the description that will be
retrieved.
Query Parameters: None
Restrictions / Special The full schema is available only to authorized (and verified) users,
Features: otherwise, the short schema is available to all.

Successful Response: A JSON Object with the description in the results.

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/descriptions/all/{description_id}'
+ curl --request GET '{HOST}/descriptions/all/{description_id}' --header 'x-access-token: <JWT>'

TABLE 22 - GET A SPECIFIC DESCRIPTION (USING KEYWORD “ALL") INTERFACE

Endpoint: {HOST}/descriptions/{collection}/{description_id}
HTTP Method: GET
Description: This request is similar to the above request, with the difference that it uses

description’s collection for the retrieval of the description (instead of using
keyword “all"). The value of the {collection} must be the collection in which
the specific description has been stored. More information about the
endpoint can be found on the above endpoint.

Body Data: None
Headers: Key Value
x-access-token [Optional, it should be used in order to
retrieve the full schema of a description]
Requester's JWT
URL Parameters: Parameter Value
collection Valid values:
{"algorithms", "tools", "policies", "datasets",
"webinars", "tutorials", "documents",
"externals", "other"}
description_id The ID of the description that will be
retrieved.
Query Parameters: None
Restrictions / Special The full schema is available only to authorized (and verified) users,
Features: otherwise, the short schema is available to all.

Successful Response: A JSON Object with the description in the results.

The following is an example of the request in cURL:

+ curl --request GET '(HOST)/descriptions/{collection)/{description_id}'
+ curl --request GET '{HOST}/descriptions/{collection}/{description_id}"' \
--header 'x-access-token: <JWT>'

TABLE 23 - GET A SPECIFIC DESCRIPTION (USING DESCRIPTION'S “COLLECTION") INTERFACE

30

Egrlic_\/qglgg!d D75-v.1.0

\ Title: Get latest descriptions from all collections
Endpoint: {HOST}/descriptions/all/latest
HTTP Method: GET
Description: This request is used to retrieve the most recent uploaded descriptions

sorted based on the date that they have been uploaded, with the most
recent being on the top of the list. This request uses the keyword “all” and
returns the K latest descriptions from all collections. The value of K can be
specified through the query parameter “max” (the default value is 20). The
descriptions are returned in their short schema.

This endpoint can get query parameters in order to search for descriptions
that meet certain conditions. As a query parameter can be any pair of key-
value while additional search operators can be used for more advanced and
enhanced search. More details about searching can be found in section
2.2.1.3.

Finally, the endpoint “Get a list with all descriptions” can return the same
results as the current, if the example at the end will be followed.

Body Data: None
Headers: None
URL Parameters: None
Query Parameters: Key Value
max Integer value greater than 0 - Default: 20

Any key to search (referto Any value to search (refer to section 2.2.1.3).
section 2.2.1.3)

Restrictions / Special None
Features:
Successful Response: A JSON Object with the results (latest descriptions from all collections).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/descriptions/all/latest'
+ curl --request GET '{HOST}/descriptions/all/latest?max=5"

Example of similar response by the endpoint “Get a list with all descriptions”:
+ curl --request GET '{HOST}/descriptions/all?sortBy=newest&itemsPerPage=20&page=1"

TABLE 24 - GET LATEST DESCRIPTIONS FROM ALL COLLECTIONS INTERFACE

\ Title: Get latest descriptions from a specific collection
Endpoint: {HOST}/descriptions/{collection}/latest
HTTP Method: GET
Description: This request is similar to the above request. It uses the value of a specific

collection and not the keyword “all” and this results to return sorted the K
most recent descriptions of the provided collection. The value of K can be
specified through query parameter “max” (the default value is 20). The
descriptions are returned in their short schema.

This endpoint can get query parameters in order to search for descriptions
that meet certain conditions. As a query parameter can be any pair of key-
value while additional search operators can be used for more advanced and
enhanced search. More details about searching can be found in section
2.2.1.3.

31

@ Policy Cloud

Body Data:
Headers:
URL Parameters:

Query Parameters:

Restrictions / Special
Features:
Successful Response:

D75-v.1.0

Finally, the endpoint “Get a list with all descriptions from a specific collection”
can return the same results as the current, if the example at the end will be
followed.

None

None

Parameter Value

collection Valid values:
{"algorithms", "tools", "policies", "datasets",
"webinars", "tutorials", "documents",
"externals", "other"}

Key Value

max Integer value greater than 0 - Default: 20

Any key to search (referto = Any value to search (refer to section 2.2.1.3).
section 2.2.1.3)
None

A JSON Object with the results (latest descriptions of a collection).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/descriptions/{collection}/latest'
+ curl --request GET '{HOST}/descriptions/{collection}/latest?max=5"

Example of similar response by the endpoint “Get a list with all descriptions from a specific

collection”:

+ curl --request GET '{HOST}/descriptions/{collection}?sortBy=newesté&itemsPerPage=20&page=1"
TABLE 25 - GET LATEST DESCRIPTIONS FROM A SPECIFIC COLLECTION INTERFACE

Endpoint:
HTTP Method:
Description:

Body Data:
Headers:

URL Parameters:
Query Parameters:

Restrictions / Special
Features:
Successful Response:

{HOST}/descriptions/all/random

GET

This endpoint returns a number of random descriptions from all collections
(uses keyword “all”). It is useful in order to suggest and promote different
descriptions each time. It is also used in the home page of the Data
Marketplace, where random descriptions are displayed. Through the query
parameter “max” can return K descriptions, where K can be specified by the
users (the default value is 4). The descriptions are returned in their short
schema.

None

None

None

Key Value

max Integer value greater than 0 - Default: 20

None

A JSON Object with the results (random descriptions from all collections).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/descriptions/all/random'
+ curl --request GET '{HOST}/descriptions/all/random?max=5"

TABLE 26 - GET RANDOM DESCRIPTIONS FROM ALL COLLECTIONS INTERFACE

32

D75-v.1.0

Endpoint:
HTTP Method:
Description:

Body Data:
Headers:
URL Parameters:

Query Parameters:

Restrictions / Special
Features:

Successful Response:

Get random descriptions from a specific collection
{HOST}/descriptions/{collection}/random

GET

This endpoint is similar to the above endpoint. Instead of keyword “all” it
uses a specific collection and thus it returns a number of K random
descriptions of the provided specific collection. The value of K can be
specified through query parameter “max” (the default value is 4). The
descriptions are returned in their short schema.

None

None

Parameter Value

collection Valid values:
{"algorithms", "tools", "policies", "datasets",
"webinars", "tutorials", "documents",
"externals", "other"}

Key Value

max Integer value greater than 0 - Default: 20

None

A JSON Object with the results (random descriptions of a collection).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/descriptions/{collection}/random'
+ curl --request GET '{HOST}/descriptions/{collection}/random?max=5"

TABLE 27 - GET RANDOM DESCRIPTIONS FROM A SPECIFIC COLLECTION INTERFACE

Get a list with all descriptions provided by a specific user (using keyword

Endpoint:

HTTP Method:
Description:

Body Data:
Headers:

URL Parameters:

“all”)

{HOST}/descriptions/provider/{username}/all

GET

This request returns all the descriptions that have been provided by the user
whose {username} is part of the request's URL. It uses the keyword “all”
instead of a specific collection and that makes the platform to retrieve its
provided descriptions from all collections at once. The descriptions are
returned in their short schema.

Moreover, the endpoint is restricted and thus, the JWT of a requester must
be included in the headers of the request. It should be noted that the
accounts’ owners who use this endpoint in order to retrieve their uploaded
descriptions, except for the retrieval of the approved descriptions, they also
retrieve “pending” descriptions (e.g. the descriptions that they uploaded and
need administrators’ approval).

Finally, the endpoint offers some standard query parameters that specify
the format of the results and are described below (Query Parameters).
None

Key Value
x-access-token Requester's JWT
Parameter Value

33

@ Policy Cloud

Query Parameters:

Restrictions / Special
Features:

Successful Response:

curl
curl
curl
curl
curl
curl

+ + + o+

--request
--request
--request
--request
--request
--request

GET
GET
GET
GET
GET
GET

D75-v.1.0

username

Key
sortBy

itemsPerPage

page

None

The username of the user whose offered
descriptions will be retrieved.

Value

[Optional] Sorts the descriptions by a field - the
default is the “newest” key. The value should be one
of the following:

"newest": sort by date in descending order.
"oldest": sort by date in ascending order.
"rating-asc": sort by average rating in ascending
order.

"rating-desc": sort by average rating in descending
order.

"views-asc": sort by the number of views in
ascending order.

"views-desc": sort by the number of views in
descending order.

"title": sort by title in ascending order.

[Optional] Returns the results separated in pages
(arrays) of N items. The number N is specified by
the value of this key. The value N must be an integer
number greater or equal to 1. If the key is not used
or has a non-accepted value, the results are
returned on a single page.

[Optional] This key can only be used if the
“itemsPerPage” key is also used. If it is used, it
returns only the specified (by key's value) page
instead of all pages created using the key
“itemsPerPage”. The value must be an integer
number greater or equal to 1. The default value is
0, which means that all pages will be returned.

A JSON Obiject with the results (all descriptions provided by a user from all
collections). If the query parameter “itemsPerPage” is used, then the results
contain the total number of the pages.

The following is an example of the request in cURL:

' {HOST} /descriptions/provider/{username}/all’

' {HOST} /descriptions/provider/{username}/all?sortBy={value}'

' {HOST} /descriptions/provider/{username}/all?itemsPerPage={value}'
'..?itemsPerPage={value}&page={value}'
'..?sortBy={value}é&itemsPerPage={value}'
'..?sortBy={value}é&itemsPerPage={value}&page={value}'

TABLE 28 - GET A LIST WITH ALL DESCRIPTIONS PROVIDED BY A SPECIFIC USER (USING KEYWORD “ALL") INTERFACE

34

PQlicy Cloud D7.5-v.1.0

Get a list with all descriptions provided by a specific user and under a

specific collection (using a “collection” value)

Endpoint: {HOST}/descriptions/provider/{username}/{collection}
HTTP Method: GET
Description: This request is similar to the above request. The only difference between

these two actions is that this request retrieves all descriptions provided by
a specific user and from a single / specific collection (instead of using
keyword “all"). The endpoint is restricted and thus, the JWT of a requester
must be included in the headers of the request. For more details, refer to
the above endpoint.

Body Data: None
Headers: Key Value
x-access-token Requester's JWT
URL Parameters: Parameter Value
username The username of the user whose offered
descriptions will be retrieved.
collection Valid values:
{"algorithms", "tools", "policies", "datasets",
"webinars", "tutorials", "documents",
"externals", "other"}
Query Parameters: As in the above request.
Restrictions / Special None
Features:

Successful Response: A JSON Object with the results (all descriptions provided by a user from a
specific collection). If the query parameter “itemsPerPage” is used, then the
results contain the total number of the pages.

The following is an example of the request in cURL:

curl --request GET '{HOST}/descriptions/provider/{username}/{collection}'

curl --request GET '{HOST}/descriptions/provider/{username}/{collection}?sortBy={value}'

curl --request GET '{HOST}/descriptions/provider/{username}/{collection}?itemsPerPage={value}'
curl --request GET '..?itemsPerPage={value}é&page={value}'

curl --request GET '..?sortBy={value}é&itemsPerPage={value}'

curl --request GET '..?sortBy={value}é&itemsPerPage={value}é&page={value}'

TABLE 29 - GET A LIST WITH ALL DESCRIPTIONS PROVIDED BY A SPECIFIC USER AND UNDER A SPECIFIC COLLECTION (USING A
“COLLECTION" VALUE) INTERFACE

Title: Get descriptions’ statistics (useful for front-end’s homepage)

+ + + o+

Endpoint: {HOST}/descriptions/statistics

HTTP Method: GET

Description: A request to this endpoint has as result the retrieval of some statistics on
stored (and approved) descriptions (and collections). Briefly, the response
contains:

e the total number of descriptions,

e the number of descriptions per collection, and

e top 3 collections with the most descriptions as well as their
percentages of the total number.

Body Data: None
Headers: None
URL Parameters: None

35

&S Polcy Cloud 7.5 -v.19

Query Parameters: None
Restrictions / Special None
Features:
Successful Response: A JSON Object with the descriptions’ statistics. Example of a response:
{"_status": "successful", "results": {
"all": {"algorithms": 15, "datasets": 22, "documents": 5,
"externals": 2, "other": 0, "policies": 20, "tools": 6,
"tutorials": 4, "webinars": 3}, "sum": 77,
"top": |
{"collection": "datasets", "descriptions": 22, "percentage": 0.28},
{"collection": "policies", "descriptions": 20, "percentage": 0.26},
{"collection": "algorithms", "descriptions": 15, "percentage": 0.19}]

1}

The following is an example of the request in cURL:
curl --request GET '{HOST}/descriptions/statistics'

TABLE 30 - GET DESCRIPTIONS' STATISTICS (USEFUL FOR FRONT-END’S HOMEPAGE) INTERFACE

| Title: Upload / Create a new description with random ID

Endpoint: {HOST}/descriptions/{collection}
HTTP Method: POST
Description: Through this POST request, the users can upload their descriptions. It

requires users-providers to specify (at the end of the endpoint) the collection
in which the description will be stored. Also, the providers should include
their]WTs in the headers of the request because the endpoint is available
only to authorized (and verified) users.

An important note is that all new descriptions uploaded to the Marketplace
must be approved by an administrator before they can be made available
to other users. Moreover, the administrators can upload a description on
behalf of other user, adding the key “x-provider” in the headers of the
request.

The body of the request must contain the description as raw data in JSON
format. The schema of the descriptions’ content varies, and it is flexible to
be extended. The JSON schema below, presents the required fields of a

description.
{
"title": "<title of the asset>",
"description ": "<description of the provided asset>",
"type": "<type of the asset (same as collection’s value)>",
"subtype": "<the subtype of the asset, if any, otherwise empty
string or a dash (-)>",
"comments": "<a private field that is shown only when the full schema
is retrieved (only by authorized users) - useful for

provider’s private comments>",
"fieldOfUse": ["<field 1>", .. 1,

"owner ": "<organization / author / etc.>",

}
The front-end has appropriate forms that build such descriptions.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)
It should be noted that the descriptions can also be uploaded from binary
files that contain the above JSON schema (example in curl can be found at
the end of the interface).

Headers: Key Value
x-access-token Requester's JWT

36

v Policy Cloud D7.5-v.1.0

URL Parameters:

Query Parameters:
Restrictions / Special
Features:

Successful Response:

X-provider [Optional & only for administrators] The
username of the provider in case that the
description is uploaded by an administrator and
not by the provider.

Parameter Value

collection Valid values:
{"algorithms", "tools", "policies", "datasets",
"webinars", "tutorials", "documents",

"externals", "other"}
None
Available to all authorized (and verified) users. The administrators can
upload a description on behalf of other users.
JSON Object with the new description’s ID in its content.

The following is an example of the request in cURL:
curl --request POST '{HOST}/descriptions/{collection}' \
--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-raw '{

"title": "<title of the asset>", "description ": "<description of the provided asset>",

"type": "<type of the asset (same as collection’s value)>",

"subtype": "<the subtype of the asset, if any, otherwise empty string or a dash (-)>",

"comments": "<a private field that is shown only when the full schema is retrieved

(only by authorized users) - useful for private comments>",
"fieldOfUse": ["<field 1>", ..], "owner ": "<organization / author / etc.>",

} 1

Example of uploading a description through binary data/file:

curl --request POST '{HOST}/descriptions/{collection}' --header 'x-access-token: <JWT>' \

--header 'Content-Type:

application/json' --data-binary '@<path_to_json file>'

TABLE 31 - UPLOAD / CREATE A NEW DESCRIPTION WITH RANDOM ID INTERFACE

Below are some examples of the stored descriptions’ schema:

Example 1 - Newly uploaded description with no assets

"id": "others P8fYOAX67HkK-8fpelTlB-KuR4-Zsck",
"info": {"comments": "Private comment.", "contact": "Vasilis Koukos, email",
"description": "This is an example of description.",
"fieldOfUse": ["testing", "documentation"]"], "owner": "UPRC",
"subtype": "-", "title": "Example.", "type": "others"},
"main image": "default image assets",
"metadata": {"approved": 1, //0 for pending / 1 for approved
"last updated by": "vkoukos", "md5": "<md5 hash of the description>",
"provider": "vkoukos", "reviews": {"average rating": 3.2, "no_reviews": 5},
"updateDate": "2021-10-11 13:50:48.420Z", "uploadDate": "2021-10-11 13:50:48.420z",
"version": 1, //the version of the description - increases when updating
"views": 8},
"assets": {"files": [], //1list with the uploaded files for this description
"images": [], //list with the uploaded images for this descript
"links": [1], //1list with the external links added to this description
"videos": [] //list with the uploaded videos for this description

37

Pollcy Cloud D7.5-v. 1.0

riven Policy Management

Example 2 - Description with uploaded file

"id": "others P8fYOAX67HkK-8fpelTlB-KuR4-Zsck",

"assets": {

"files": [{
"approved": 0, //0 for pending / 1 for approved
"downloads": 3, //number of downloads of the file
"filename": "kmeans.py", "id": "80F7MJjRTIxvb-7qIKRAjv-IJ3p-b3vL", //file’s ID
"md5": "..", "size": "7.92 KB", "updateDate": "Thu, 14 Oct 2021 13:56:52 GMT",
"version": 1 //the version of the file - increases when updating

11,

"images": [], links": [], videos": []

Example 3 - Retrieved description (full schema)

"id": "others P8fYOAX67HkK-8fpelTlB-KuR4-Zsck",

"info": {"comments": "Private comment.", "contact": "Vasilis Koukos, email",
"description": "This is an example of description.",
"fieldOfUse": ["testing", "documentation"]"], "owner": "UPRC",
"subtype": "-", "title": "Example.", "type": "others"},

"main image": "default image assets",

"metadata": {"approved": 1, last updated by": "vkoukos", "md5": "<md5 hash of the description>",
"provider": "vkoukos", "reviews": {"average rating": 3.2, "no reviews": 5},
"updateDate": "2021-10-11 13:50:48.420z", "uploadDate": "2021-10-11 13:50:48.420z",
"version": 1, "views": 8},

"assets": {
"files": [{
"approved": 0, "downloads": 3, filename": "kmeans.py",
"id": "80FTMjRTIxvb-7qIKRAjv-IJ3p-b3vL", "md5": "..", "size": "7.92 KB",
"updateDate": "Thu, 14 Oct 2021 13:56:52 GMT", "version": 1
}1, "images": [], links": [], videos": []
}l
"reviews": [
{
"comment": "Very good!", "description version": 1, "rating": 4,
"review version": 1, "updated review date": "2021-10-14 16:02:05.4842z",
"username": "user 1"
e A
"comment": "Needs improvement..", "description version": 1, "rating": 2,
"review version": 2, "updated review date": "2021-10-15 11:06:03.334z",
"username": "user 2"
b o
"comment": "Not bad.", "description version": 1, "rating": 3,
"review version": 1, "updated review date": "2021-10-15 13:30:00.209z",
"username": "user 3"
oo Ao
"comment": "Thank you for this!!", "description version": 1, "rating": 5,
"review version": 1, "updated review date": "2021-10-18 10:12:49.956z",
"username": "user 4"
oo Ao
"comment": "Good idea but does not perform well for big data.",
"description version": 1, "rating": 2, "review version": 1,
"updated review date": "2021-10-18 14:53:13.4102Z", "username": "user 5"

38

@ Policy Cloud D7.5-v.1.0

Endpoint: {HOST}/descriptions/{collection}/{given_id}
HTTP Method: POST
Description: This endpoint is similar to above. The only difference is that through the

current endpoint, the users are able to specify the ID of the new description,
providing it at the end of the endpoint {given_id}. Currently, this endpoint
can be used only by the administrators.

Body Data: Raw (JSON) Data - as the schema of the previous endpoint (Content-Type:
application/json).
It should be noted that the descriptions can also be uploaded from binary
files that contain the JSON schema of the previous endpoint (example in
curl can be found at the end of the interface).

Headers: Key Value
x-access-token Requester's JWT
x-provider [Optional & only for administrators] The

username of the provider in case that the
description is uploaded by an administrator and
not by the provider.
URL Parameters: Parameter Value
collection Valid values:
{"algorithms", "tools", "policies", "datasets",
"webinars", "tutorials", "documents", "externals",

"other"}
given_id The ID to be given to the new description.
Query Parameters: None
Restrictions / Special Available only to administrators. The administrators are able to upload a
Features: description on behalf of other users.

Successful Response: JSON Object with the new description’s ID in its content.

The following is an example of the request in cURL:

curl --request POST '{HOST}/descriptions/{collection}/{given_ id}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-raw '{
"title": "<title of the asset>", "description ": "<description of the provided asset>",
"type": "<type of the asset (same as collection’s value)>",

"subtype": "<the subtype of the asset, if any, otherwise empty string or a dash (-)>",
"comments": "<a private field that is shown only when the full schema is retrieved
(only by authorized users) - useful for private comments>",

"fieldOfUse": ["<field 1>", ..], "owner ": "<organization / author / etc.>",

} 1

Example of uploading a description through binary data/file:

curl --request POST '{HOST}/descriptions/{collection}/{given id}' \
--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \
--data-binary '@<path to_ json_file>'

TABLE 32 - UPLOAD / CREATE A NEW DESCRIPTION WITH GIVEN ID INTERFACE

39

” Policy Cloud D7.5-v.1.0

Endpoint: {HOST}/descriptions/all/{description_id}
HTTP Method: PUT
Description: With this endpoint, the providers of the descriptions are able to update the

contents of the descriptions. It requires the ID of the description to be at the
end of the endpoint and the body of the request should contain the next
JSON schema (the same schema with the uploading action) as raw data.

{

"title": "<title of the asset>",
"description ": "<description of the provided asset>",
"type": "<type of the asset (same as collection’s value)>",
"subtype": "<the subtype of the asset, if any, otherwise empty
string or a dash (-)>",
"comments": "<a private field that is shown only when the full schema
is retrieved (only by authorized users) - useful for

provider’s private comments>",
"fieldOfUse": ["<field 1>", .. 1,
"owner ": "<organization / author / etc.>",
}
It should be noted that this endpoint uses the keyword “all” (the descriptions

are already stored in the Marketplace, thus the platform knows the
collections in which have been stored). Moreover, this action is only available
to the providers/creators of the descriptions and to administrators who are
able to update any description. Thus, the JWT of a requester should be
included in the headers of the request. An important note is that all updated
descriptions get locked and must be approved again by an administrator to
get available again to other users.
Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).

The descriptions can also be updated from binary files that contain the
above JSON schema (curl example can be found at the end of the interface).

Headers: Key Value

x-access-token Requester's JWT
URL Parameters: Parameter Value

description_id The ID of the description that will be updated.
Query Parameters: None
Restrictions / Special Available only for the providers/creators of the descriptions and for the
Features: administrators who can update any description.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:

curl --request PUT '{HOST}/descriptions/all/{description_id}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-raw '{
"title": "<title of the asset>", "description ": "<description of the provided asset>",
"type": "<type of the asset (same as collection’s value)>",

"subtype": "<the subtype of the asset, if any, otherwise empty string or a dash (-)>",
"comments": "<a private field that is shown only when the full schema is retrieved
(only by authorized users) - useful for private comments>",

"fieldOfUse": ["<field 1>", ..], "owner ": "<organization / author / etc.>",

} 1

Example of uploading a description through binary data/file:
curl --request POST '{HOST}/descriptions/all/{description_id}' \
--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \
--data-binary '@<path to_json_file>'
TABLE 33 - UPDATE A SPECIFIC DESCRIPTION (USING KEYWORD “ALL") INTERFACE

40

v Policy Cloud D7.5-v.1.0

Endpoint: {HOST}/descriptions/{collection}/{description_id}
HTTP Method: PUT
Description: This PUT request is similar to the previous. The only difference is that instead

of using keyword “all” it uses the collection in which the description has been
stored during its creation. The endpoint is restricted and available only to
descriptions’ providers/creators and to administrators who can update any
description. Thus, the JWT of a requester must be included in the headers of
the request. More information about the endpoint can be found on the
above endpoint.

Body Data: Raw (JSON) Data - as the schema of the previous endpoint (Content-Type:
application/json).
It should be noted that the descriptions can also be uploaded from binary
files that contain the JSON schema of the previous endpoint (example in curl
can be found at the end of the interface).

Headers: Key Value
x-access-token Requester's JWT
URL Parameters: Parameter Value
collection Valid values:
{"algorithms", "tools", "policies", "datasets",
"webinars", "tutorials", "documents”,
"externals", "other"}
description_id The ID of the description that will be updated.
Query Parameters: None
Restrictions / Special Available only for the providers/creators of the descriptions and for the
Features: administrators who can update any description.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:

curl --request PUT '{HOST}/descriptions/{collection}/{description_id}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-raw '{
"title": "<title of the asset>", "description ": "<description of the provided asset>",
"type": "<type of the asset (same as collection’s value)>",

"subtype": "<the subtype of the asset, if any, otherwise empty string or a dash (-)>",
"comments": "<a private field that is shown only when the full schema is retrieved
(only by authorized users) - useful for private comments>",

"fieldOfUse": ["<field 1>", ..], "owner ": "<organization / author / etc.>",
}l

Example of uploading a description through binary data/file:

curl --request POST '{HOST}/descriptions/{collection}/{description_id}' \
--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \
--data-binary '@<path_to_json_file>'

TABLE 34 - UPDATE A SPECIFIC DESCRIPTION (USING DESCRIPTION'S “COLLECTION") INTERFACE

41

Egrlic_\/qglgg!d D75-v.1.0

Delete a specific description (using keyword “all")

Endpoint: {HOST}/descriptions/all/{description_id}
HTTP Method: DELETE
Description: A DELETE request to this endpoint has as a result the deletion of a specific

description, using its ID. The endpoint is restricted and available only to
descriptions' providers/creators and to administrators who can delete any
description. Thus, the JWT of a requester must be included in the headers of
the request.

It should be noted that this endpoint uses the keyword “all” instead of
description’s collection (the descriptions are already stored in the
Marketplace, thus the platform knows the collections in which have been
stored).

For security reasons, the requesters should provide their password in the

body of their request, as raw data (JSON schema):
{ "password": ".." }

If the action is made by an administrator, the field “password” should be the
password of the administrator.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).
Headers: Key Value

x-access-token Requester's JWT
URL Parameters: Parameter Value

description_id The ID of the description that will be deleted.
Query Parameters: None
Restrictions / Special Available only for the providers/creators of the descriptions and for the
Features: administrators who can delete any description.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:

curl --request DELETE '{HOST}/descriptions/all/{description_id}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \
--data-raw '{ "password": ".." }'

TABLE 35 - DELETE A SPECIFIC DESCRIPTION (USING KEYWORD “ALL") INTERFACE

\ Title: Delete a specific description (using description’s “collection”)
Endpoint: {HOST}/descriptions/{collection}/{description_id}
HTTP Method: DELETE
Description: This request is similar to the previous. The only difference is that instead of

using keyword “all” it uses the collection in which the description has been
stored during its creation. The endpoint is restricted and available only to
descriptions’ providers/creators and to administrators who can delete any
description. Thus, the JWT of a requester must be included in the headers of
the request. More information about the endpoint can be found on the
above endpoint.

Body Data: Raw (JSON) Data - as the schema of the previous endpoint (Content-Type:
application/json).

Headers: Key Value
x-access-token Requester's JWT

URL Parameters: Parameter Value
collection Valid values:

42

Egrlic_\/qglgg!d D75-v.1.0

{"algorithms", "tools", "policies", "datasets",

"webinars", "tutorials", "documents”,
"externals", "other"}
description_id The ID of the description that will be deleted.
Query Parameters: None
Restrictions / Special Available only for the providers/creators of the descriptions and for the
Features: administrators who can delete any description.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:

curl --request DELETE '{HOST}/descriptions/{collection}/{description_id}' \
--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \
--data-raw '{ "password": ".." }'

TABLE 36 - DELETE A SPECIFIC DESCRIPTION (USING DESCRIPTION'S “COLLECTION") INTERFACE

Delete all descriptions (administrators’ action)

Endpoint: {HOST}/descriptions/all/all
HTTP Method: DELETE
Description: This endpoint is available only to the administrators who through it, can

delete all descriptions from all collections (the keyword “all” is used instead
of a specific collection). The endpoint is restricted and thus, the JWT of a
requester must be included in the headers of the request.

For security reasons, the requesters should provide their password in the
body of their request, as raw data (JSON schema):

{ "password": ".." }
Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).
Headers: Key Value

x-access-token Requester's JWT
URL Parameters: None
Query Parameters: None
Restrictions / Special Currently, it is available only to the “superuser” (master admin) of the
Features: Marketplace.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request DELETE '{HOST}/descriptions/all/all' --header 'x-access-token: <JWT>' \
--header 'Content-Type: application/json' --data-raw '{ "password": ".." }'

TABLE 37 - DELETE ALL DESCRIPTIONS INTERFACE

Delete all descriptions from a specific collection (administrators’ action)

Endpoint: {HOST}/descriptions/{collection}/all
HTTP Method: DELETE
Description: This endpointis similar to the above. It is available only to the administrators

who through it, can delete all descriptions from a specific collection. The
endpoint is restricted and thus, the JWT of a requester must be included in
the headers of the request.

For security reasons, the requesters should provide their password in the
body of their request, as raw data (JSON schema):

{ "password": ".." }
Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).
Headers: Key Value

43

@ Policy Cloud D7.5-v.1.0

x-access-token Requester's JWT
URL Parameters: Parameter Value
collection Valid values:

{"algorithms", "tools", "policies", "datasets",
"webinars", "tutorials", "documents",
"externals", "other"}

Query Parameters: None
Restrictions / Special Currently, it is available only to the “superuser” (master admin) of the
Features: Marketplace.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request DELETE '{HOST}/descriptions/{collection}/all' --header 'x-access-token: <JWT>' \
--header 'Content-Type: application/json' --data-raw '{ "password": ".." }'

TABLE 38 - DELETE ALL DESCRIPTIONS FROM A SPECIFIC COLLECTION INTERFACE

Endpoint: {HOST}/descriptions/review/{description_id}
HTTP Method: POST
Description: This endpoint is used in order to make a review for a specific description

whose ID is included in the URL of the request. The endpoint is available to
all registered and verified users whose JWT is required in the headers of the
request.

A review consists of a rating (integer value between 1 and 5)and a comment.
The users are able to make a review for a specific description only once, but
they can update it through the next endpoint. Moreover, the
providers/creators of a description are not able to make a review for their
descriptions.

The next JSON schema should be in the body of the request, as raw data:

{"rating": <value>, "comment": ".."}
After the successful submission of a review, the average rating of the
reviewed description is recalculated.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).
Headers: Key Value

x-access-token Requester's JWT
URL Parameters: Parameter Value

description_id The ID of the description for which the

review of a user will be made.

Query Parameters: None
Restrictions / Special Available to all registered and verified users. The providers/creators are not
Features: able to make a review for their descriptions.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:

curl --request POST '{HOST}/descriptions/review/{description_ id}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \
--data-raw '{"rating": <value>, "comment": ".."}'

TABLE 39 - MAKE A REVIEW FOR A DESCRIPTION INTERFACE

44

Policy CIQHQ D7.5-v.1.0

ud for Data-Driven Policy

After the successful submission of a review, the following JSON document is stored in the database:

{

"_id": "<review’s ID>", "rating": <integer value between 1 and 5>,

"comment": "..", "title": "<description’s title>", "did": "<description’s ID>",
"collection": "<description’s collection>",

"username": "<username of the user who made the review>",

"initial_ review_date": "<the date of the initial review>",

"updated review date": "<date of the last review>",

"description version": <description’s version when the review made>,

"review version": <version of the current review>

Title: Update an existing review for a description

Endpoint: {HOST}/descriptions/review/{description_id}

HTTP Method: PUT

Description: This endpoint is used in order to update a review that made for a specific

description. The ID of the description should be included in the URL of the
request. The endpoint is available to all registered and verified users whose
JWT is required in the headers of the request. A prerequisite for this action
is that users have already made a review for the specific description.

A review consists of a rating (integer value between 1 and 5)and a comment.
The next JSON schema should be in the body of the request, as raw data:

{"rating": <value>, "comment": ".."}

After the successful submission of an updated review, the average rating of
the reviewed description is recalculated.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).
Headers: Key Value

x-access-token Requester's JWT
URL Parameters: Parameter Value

description_id The ID of the description for which the review

of a user will be updated.

Query Parameters: None
Restrictions / Special Available to all registered and verified users. A prerequisite for this action is
Features: that users have already made a review for the specific description.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:

curl --request PUT '{HOST}/descriptions/review/{description id}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \
--data-raw '{"rating": <value>, "comment": ".."}'

TABLE 40 - UPDATE AN EXISTING REVIEW FOR A DESCRIPTION INTERFACE

Title: Delete a review for a description

Endpoint: {HOST}/descriptions/review/{description_id}
HTTP Method: DELETE
Description: This endpoint is used in order to delete a review that made for a specific

description. The ID of the description should be included in the URL of the
request. The endpoint is available to all registered and verified users whose
JWT is required in the headers of the request. A prerequisite for this action
is that users have already made a review for the specific description.

45

@ Policy Cloud

Body Data:
Headers:

URL Parameters:

Query Parameters:
Restrictions / Special
Features:

Successful Response:

D75-v.1.0

It should be noted that the administrators are able to delete reviews that
made from other users, providing the username of a reviewer in the headers
of the request.

After the successful deletion of a review, the average rating of the
description is recalculated.

None

Key Value

x-access-token Requester's JWT

X-username [Optional & only for administrators] The username
of the user whose review on the specified
description will be deleted. It is used by
administrators in order to specify the reviewer.

Parameter Value

description_id The ID of the description for which the review of a
user will be deleted.

None

Available to all registered and verified users. A prerequisite for this action is
that users have already made a review for the specific description. The
administrators are able to delete reviews that made from other users.
JSON Object with a successful message.

The following is an example of the request in cURL:

+ curl --request DELETE '

{HOST} /descriptions/review/{description_id}' \

--header 'x-access-token: <JWT>'

+ curl --request DELETE '

{HOST} /descriptions/review/{description_id}"' \

--header 'x-access-token: <JWT>' --header 'x-username: <value>'

Endpoint:
HTTP Method:
Description:

Body Data:
Headers:

URL Parameters:

Query Parameters:

TABLE 41 - DELETE A REVIEW FOR A DESCRIPTION INTERFACE

{HOST}/descriptions/review/{username}

GET

This request returns all the reviews made by a specific user whose
{username} is part of the request's URL (the schema of the reviews can be
found in the “Make a review for a description” interface).

The endpoint is restricted and thus, the JWT of a requester must be included
in the headers of the request. Finally, the endpoint offers some standard
query parameters that specify the format of the results and are described
below (Query Parameters).

None

Key Value

x-access-token Requester's JWT

Parameter Value

username The username of the user whose reviews will be
retrieved.

Key Value

sortBy [Optional] Sorts the reviews by a field - the default is the

“newest” key. The value should be one of the following:
"newest"; sort by review date in descending order.
"oldest": sort by review date in ascending order.

46

@ Policy Cloud

Restrictions / Special
Features:
Successful Response:

D75-v.1.0

"rating-asc": sort by user's rating in ascending order.
"rating-desc": sort by user’s rating in descending order.
"title": sort by description’s title in ascending order.

itemsPerPage [Optional] Returns the results separated in pages
(arrays) of N items. The number N is specified by the
value of this key. The value N must be an integer
number greater or equal to 1. If the key is not used or
has a non-accepted value, the results are returned on a
single page.

page [Optional] This key can only be used if the
“itemsPerPage” key is also used. If it is used, it returns
only the specified (by key's value) page instead of all
pages created using the key “itemsPerPage”. The value
must be an integer number greater or equal to 1. The
default value is 0, which means that all pages will be
returned.

Available to all registered and verified users.

JSON Object with the reviews made by a specific user.

The following is an example of the request in cURL:

+ curl --request GET '{HOST}/descriptions/review/{username}' --header 'x-access-token: <JWT>'
+ curl --request GET '..?sortBy={value}' ..

+ curl --request GET '..?itemsPerPage={value}' ..

+ curl --request GET '..?itemsPerPage={value}é&page={value}' ..

+ curl --request GET '..?sortBy={value}é&itemsPerPage={value}' ..

+ curl --request GET '..?sortBy={value}é&itemsPerPage={value}é&page={value}' ..

TABLE 42 - GET A LIST WITH THE REVIEWS MADE BY A SPECIFIC USER INTERFACE

Endpoint:
HTTP Method:
Description:

Body Data:
Headers:

URL Parameters:
Query Parameters:

{HOST}/descriptions/permit/all

GET

This endpoint returns the descriptions from all collections (since the
keyword “all” is used) that need permission before they become available to
the Marketplace’s users. A description needs permission either when it is
uploaded or after it has been updated.

Moreover, the endpoint is only available to administrators and thus, the JWT
of a requester is required in the headers of the request. Finally, the endpoint
offers some standard query parameters that specify the format of the
results and are described below (Query Parameters).

None

Key Value

x-access-token Requester's JWT

None

Key Value

sortBy [Optional] Sorts the descriptions by a field - the default
is the “newest” key. The value should be one of the
following:

"newest"; sort by date in descending order.
"oldest": sort by date in ascending order.

47

Policy Cloud D7.5-v.1.0

"title": sort by title in ascending order.
itemsPerPage [Optional] Returns the results separated in pages
(arrays) of N items. The number N is specified by the
value of this key. The value N must be an integer
number greater or equal to 1. If the key is not used or
has a non-accepted value, the results are returned on
a single page.
page [Optional] This key can only be wused if the
“itemsPerPage” key is also used. If it is used, it returns
the specified (by key's value) page instead of all pages
created using the key “itemsPerPage”. The value must
be an integer greater or equal to 1. The default value
is 0, meaning that all pages will be returned.
Restrictions / Special Available only to the administrators.
Features:
Successful Response: JSON Object with the descriptions (from all collections) that need permission
in its content.

The following is an example of the request in cURL:

curl --request GET '{HOST}/descriptions/permit/all' --header 'x-access-token: <JWT>'
curl --request GET '..?sortBy={value}' ..

curl --request GET '..?itemsPerPage={value}' ..

curl --request GET '..?itemsPerPage={value}é&page={value}' ..

curl --request GET '..?sortBy={value}é&itemsPerPage={value}' ..

curl --request GET '..?sortBy={value}é&itemsPerPage={value}é&page={value}' ..

TABLE 43 - GET A LIST WITH ALL DESCRIPTIONS THAT NEED PERMISSION INTERFACE

+ 4+ + + + +

Get a list with all descriptions from a specific collection that need

permission (administrators’ action)

Endpoint: {HOST}/descriptions/permit/{collection}
HTTP Method: GET
Description: This request is similar to the above request. The only difference between

these two actions is that the current request retrieves the descriptions that
need permission from a specific collection (uses specific {collection} value
instead of the keyword “all"). For more details, refer to the above endpoint.

Body Data: None
Headers: Key Value
x-access-token Requester's JWT
URL Parameters: Parameter Value
collection Valid values:
{"algorithms", "tools", "policies", "datasets",
"webinars", "tutorials", "documents", "externals",
"other"}
Query Parameters: As in the above request.
Restrictions / Special Available only to the administrators.
Features:

Successful Response: JSON Object with the descriptions (from a specific collection) that need
permission in its content.
The following is an example of the request in cURL:

48

Policy Cloud D7.5-v.1.0

Cloud for Data-Driven Policy Management

+ curl --request GET '{HOST}/descriptions/permit/{collection}' --header 'x-access-token: <JWT>'
+ curl --request GET '..?sortBy={value}' ..

+ curl --request GET '..?itemsPerPage={value}' ..

+ curl --request GET '..?itemsPerPage={value}é&page={value}' ..

+ curl --request GET '..?sortBy={value}é&itemsPerPage={value}' ..

+ curl --request GET '..?sortBy={value}é&itemsPerPage={value}é&page={value}' ..

TABLE 44 - GET A LIST WITH ALL DESCRIPTIONS FROM A SPECIFIC COLLECTION THAT NEED PERMISSION INTERFACE

Approve or reject a specific description that need permission, using

keyword “all” (administrators’ action)

Endpoint: {HOST}/descriptions/permit/all/{description_id}
HTTP Method: POST
Description: This endpoint is used by administrators in order to approve or reject a

specific description (using its ID) that needs administrators’ permission. The
endpoint is restricted and available only to administrators and thus, the
requesters’ must provide their JWTs in the headers of the request. Also, it
should be noted that this endpoint uses the keyword “all” and not the
collection in which a specific description is stored, as the next endpoint does.
An important parameter/key that must be included in the headers of the
request is the “x-permission” key which should have as a value the text
“approve” so the description to be approved, otherwise the text “disapprove”
so to be rejected. A rejection/disapproval of a description has as a result the
deletion of the description and all of its assets.

Body Data: None
Headers: Key Value
x-access-token Requester's JWT
X-permission Valid values:
{"approve”, “disapprove"}
URL Parameters: Parameter Value
description_id The ID of the description that will be approved
or rejected.
Query Parameters: None
Restrictions / Special Available only to the administrators.
Features:

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request POST '{HOST}/descriptions/permit/all/{description_id}' \
--header 'x-access-token: <JWT>' --header 'x-permission: <value>'

TABLE 45 - APPROVE OR REJECT A DESCRIPTION THAT NEEDS PERMISSION, USING KEYWORD “ALL" INTERFACE

Approve or reject a specific description that need permission, using

description’s “collection” (administrators’ action)

Endpoint: {HOST}/descriptions/permit/{collection}/{description_id}
HTTP Method: POST
Description: This request is similar to the above request. The only difference between

these two actions is that the current request uses the value of the
{collection} in which a specific description is stored. For more details, refer
to the above endpoint.

Body Data: None
Headers: Key Value

www.policycloud.eu 49

Policy Cloud D7.5-v.1.0

x-access-token Requester's JWT
X-permission Valid values:
{"approve”, “disapprove"}
URL Parameters: Parameter Value
collection Valid values:
{"algorithms", "tools", "policies", "datasets",
"webinars", "tutorials", "documents",
"externals", "other"}
description_id The ID of the description that will be approved
or rejected.
Query Parameters: None
Restrictions / Special Available only to the administrators.
Features:

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:

curl --request POST '{HOST}/descriptions/permit/{collection}/{description_id}' \
--header 'x-access-token: <JWT>' --header 'x-permission: <value>'

TABLE 46 - APPROVE OR REJECT A DESCRIPTION THATS NEEDS PERMISSION, USING DESCRIPTION’S “COLLECTION” INTERFACE

Approve or reject all descriptions that need permission, using keyword “all”

(administrators’ action)

Endpoint: {HOST}/descriptions/permit/all/all
HTTP Method: POST
Description: This endpoint is used by administrators in order to approve or reject all

stored descriptions (from all collections, since keyword “all” is used) that
need administrators’ permission. The endpoint is restricted and available
only to administrators and thus, the requesters’ must provide their JWTs in
the headers of the request.

An important parameter/key that must be included in the headers of the
request is the “x-permission” key which should have as a value the text
“approve” so the descriptions to be approved, otherwise the text
“disapprove” so to be rejected. A rejection/disapproval of the descriptions
has as a result the deletion of the descriptions and all of their assets.

Body Data: None

Headers: Key Value

x-access-token Requester's JWT

X-permission Valid values:

{"approve”, “disapprove"}

URL Parameters: None
Query Parameters: None
Restrictions / Special Currently, it is available only to the “superuser” (master admin) of the
Features: Marketplace.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request POST '{HOST}/descriptions/permit/all/all ' \
--header 'x-access-token: <JWT>' --header 'x-permission: <value>'

TABLE 47 - APPROVE OR REJECT ALL DESCRIPTIONS THAT NEED PERMISSION, USING KEYWORD “ALL” INTERFACE

50

Egrlic_\/qglgg!d D75-v.1.0

Approve or reject all descriptions that need permission under a specific

collection, using a “collection” value (administrators' action)

Endpoint: {HOST}/descriptions/permit/{collection}/all
HTTP Method: POST
Description: This request is similar to the above request. The only difference between

these two actions is that the administrators, using the current endpoint, are
able to approve or reject all descriptions of a specific {collection}. The
endpoint is restricted and available only to administrators and thus, the
requesters’ must provide their JWTs in the headers of the request.

An important parameter/key that must be included in the headers of the
request is the “x-permission” key which should have as a value the text
“approve” so the descriptions to be approved, otherwise the text
“disapprove” so to be rejected. A rejection/disapproval of the descriptions
has as a result the deletion of the descriptions and all of their assets.

Body Data: None
Headers: Key Value
x-access-token Requester's JWT
X-permission Valid values:
{“approve”, “disapprove"}
URL Parameters: Parameter Value
collection Valid values:
{"algorithms", "tools", "policies", "datasets",
"webinars", "tutorials", "documents",
"externals", "other"}
Query Parameters: None
Restrictions / Special Currently it is available only to the “superuser” (master admin) of the
Features: Marketplace

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request POST '{HOST}/descriptions/permit/{collections}/all ' \
--header 'x-access-token: <JWT>' --header 'x-permission: <value>'

TABLE 48 - APPROVE OR REJECT ALL DESCRIPTIONS THAT NEED PERMISSION UNDER A SPECIFIC COLLECTION, USING A
“COLLECTION" VALUE INTERFACE

2.2.1.3 Search functionality on Descriptions

The search functionality is a vital requirement for most services in order to reduce the number of objects
returned by a query. Thus, the back-end’s endpoints that retrieve multiple descriptions simultaneously,
support some relative query filters. These filters enable the users of the Marketplace to search for assets,
based on various parameters from the content of the stored descriptions.

More specifically, the interfaces of the back-end that return lists of support additional query parameters
with any key-value pair. Query parameters are a defined set of parameters attached to the end of a URL
and are used in order to help search specific content or actions based on the data being passed. In order
to append query parameters to the end of a URL, a question mark “?" is added to the end of the URL,
followed immediately by a pair of a key and a value, separated by an equal symbol “=". Moreover, a URL
can have multiple parameters, by adding an ampersand symbol “&” between each pair of key-value.

51

&S Polcy Cloud 7.5 -v.19

In the context of the Marketplace and the descriptions, the keys added to the URLs as query parameters
must be valid, in the sense that they exist as fields in the descriptions and their search has a real value.
Below are some valid syntaxes for advanced search with additional query parameters. The examples use
the “Get a list with all descriptions” interface.

Single key: '{HOST}/descriptions/all?<key name>=<value>'
Multiple keys: '{HOST}/descriptions/all?<key_ l>=<value>&<key 2>=<value>&..'

Moreover, the Python programming language which is used by the back-end (as described in section
2.3.1), enables access to nested fields of dictionary / JSON object using a dot “.” between a key at the first
level of the hierarchy and a key at the second level (this applies to all levels, up to the lowest level). Thus,

the next example is also a valid schema of a query:

For keys in lower hierarchical level:

'{HOST} /descriptions/all?<key_level 1>.<key level 2>.<.>.<key level n>=<value>'
TO SUM UP, GIVEN THE ABOVE SYNTAXES OF A VALID QUERY AND THE JSON OBJECT / DESCRIPTION OF THE “EXAMPLE 1" IN THE
INTERFACE “TABLE 30 - GET DESCRIPTIONS' STATISTICS (USEFUL FOR FRONT-END’'S HOMEPAGE) INTERFACE

", the following search example request in cURL, returns the descriptions that in their title contain the
value “machine learning” and their provider is the user with username “vkoukos":

curl --request GET
'{HOST}/descriptions/all?info.title=machine%20learning&metadata.provider=vkoukos'

It should be noted that the value “%20" is the ASCII Encoding Reference of the space character.

Except for these, the back-end supports advanced searching using some operators which extend the
keys of query parameters, using a dot “." between the keys and the operators. Below are the supported
operators along with a description for their usage.

\ Operator Usage Example
Full title: equal <key>.eg=<value>
o This operator performs an equality search and has
exactly the same use with the equality symbol “=". It
applies to both texts (strings) and numbers.
Full title: not equal <key>.ne=<value>
ne This operator performs a non-equality search. It applies
to both texts (strings) and numbers.
Full title: greater than <key>.gt=<value>
This operator performs searching for a key with a value
&t greater than the provided. It applies to both texts
(strings) and numbers.
Full title: greater than or equal <key>.gte=<value>
ote This operator performs searching for a key with a value
greater than or equal to the provided. It applies to both
texts (strings) and numbers.
It Full title: less than <key>.It=<value>

52

@ Policy Cloud D7.5-v.1.0

This operator performs searching for a key with a value
less than to the provided. It applies to both texts (strings)
and numbers.
Full title: less than or equal <key>.|lte=<value>
This operator performs searching for a key with a value
less than or equal to the provided. It applies to both texts
(strings) and numbers.
Full title: in (equal to one of the values) <key>.in=<value_1>,<value_2>
This operator performs searching for a key with a value
in equal to one of the provided values. The <value> may
have multiple values separated by a comma “/". It applies
to both texts (strings) and numbers.
Full title: not in (not equal to any of the value) <key>.nin=<value_1><value_2>
This operator performs searching for a key with a value
nin not equal to any of the provided values. The <value> may
have multiple values separated by a comma “/". It applies

to both texts (strings) and numbers.
TABLE 49 - BACK-END'S SEARCH OPERATORS

fte

Below are some examples of the operators’ use.

eq: '{HOST}/descriptions/all?metadata.provider.eg=vkoukos'
ne: '{HOST}/descriptions/all?metadata.version.ne=1"

gt: '{HOST}/descriptions/all?metadata.views.gt=100"

gte: '{HOST}/descriptions/all?info.type.gte=datasets'

1lt: '{HOST}/descriptions/all?metadata.uploadDate.l1t=2021-10-15"

lte: '{HOST}/descriptions/all?metadata.reviews.no_reviews.lte=20'
in: '{HOST}/descriptions/all?info.title.in=machine,learning,algorithm'
nin: '{HOST}/descriptions/all?info.fieldsOfUse.nin=poverty,crime’

Furthermore, the back-end's search mechanism uses a ranking system for the results. More specifically,
for each description in the results, maintains a score resulting from the points it receives for each search
argument.

In an equality search (using “=" symbol or “eq” operator) for a specific key, the points that a description
receives can be one of the following:

5:if the values are exactly equal (same) and case sensitive.

e 4:if the values are equal (same) but not case sensitive.

3: if the values are similar (e.g. the first value contains the second value but are not the same)
and case sensitive.

2: if the values are similar but not case sensitive.
e 0:if the values do not match.

The other operators just receive 1 point if the conditions match (“true”). The operator “in” uses the
operator “eq” (or the symbol “=") for each value in its “array” and thus, it has the same score system.

Finally, the operator “nin” uses the operator “ne” for each value in its “array”.

53

Policy ClE)HgJ D7.5-v.1.0

Cloud for Data-Driven Policy

2.2.1.4 Interfaces related to Assets

This group of APIs offers functionalities intended for the management of the assets. They support all
CRUD operations for the assets which are stored in the back-end. Table 50 presents the endpoints related
to Assets as they are in the first version of the Data Marketplace’s back-end.

Action HTTP Method Endpoint
Get a list with the stored assets GET {HOST}/assets
Get a specific asset, using its ID GET {HOST}/assets/{asset_id}
Upload a new asset with random POST {HOST}/assets/{description_id}
ID, linked to a specific description
Upload a new asset with given ID, POST {HOST}/assets/{description_id}/{given_asset_id}
linked to a specific description
Update a specific asset, using its PUT {HOST}/assets/{asset_id}
ID
Delete a specific asset, using its ID DELETE {HOST}/assets/{asset_id}
Delete all assets (administrators' DELETE {HOST}/assets/all
action)

TABLE 50 - BACK-END’S INTERFACES RELATED TO ASSETS

e {HOST}refers to the hosting server: the domain name and the port running the back-end.

e {asset id}refers to the ID of a specific asset.

e {given_asset id}is used in upload asset action, providing new asset's ID.

e {description_id}refers to the ID of the description with which the new asset will be linked to.

e Most of these actions require additional fields in the headers of the HTTP request. Example of a
required field is the JWT.

Below is a more detailed description of all the provided interfaces and their corresponding actions:

Title: Get a list with the stored assets

Endpoint: {HOST}/assets

HTTP Method: GET

Description: A request to this endpoint will result in the retrieval of a list with the stored
assets and some additional information of them.

Body Data: None

Headers: Key Value
x-access-token Requester's JWT

URL Parameters: None

Query Parameters: None

Restrictions / Special Available only to administrators.

Features:

Successful Response: Results in JSON Object

The following is an example of the request in cURL:

curl --request GET '{HOST}/assets' --header 'x-access-token: <JWT>'

TABLE 51 - GET A LIST WITH THE STORED ASSETS INTERFACE

54

Policy CIQHQ D7.5-v.1.0

ud for Data-Driven Policy

\ Title: Get a specific asset, using its ID
Endpoint: {HOST}/assets/{asset_id}
HTTP Method: GET
Description: This endpoint is used to retrieve a specific stored asset. For its retrieval, the

usage of the asset's ID is necessary. Also, this endpoint is restricted and thus,
the JWT of a requester must be included in the headers of the request.

Body Data: None
Headers: Key Value
x-access-token Requester's JWT
URL Parameters: Parameter Value
asset_id The ID of the asset that will be
retrieved.
Query Parameters: None
Restrictions / Special Available to all authorized (and verified) users.
Features:
Successful Response: Binary data
The following is an example of the request in cURL:
curl --request GET ' {HOST)/assets/{asset_id} ' --header 'x-access-token: <JWT>'

TABLE 52 - GET A SPECIFIC ASSET USING ITS ID INTERFACE

\ Title: Upload a new asset with random ID, linked to a specific description
Endpoint: {HOST}/assets/{description_id}
HTTP Method: POST
Description: Through this endpoint, the users can upload their assets. It requires to add

(at the end of the endpoint) the ID of the description with which is going to
be linked. Itis also necessary to add to the headers of the request a) the JWT
of the provider and b) the asset's filename. The assets should be uploaded
as form-data with the key “asset”.

Body Data: Data Type: Form Data
Key Value
asset Binary data / Path to file
Headers: Key Value
x-access-token Requester's JWT
x-filename New asset's filename.
x-provider [Optional & only for administrators] The

username of the provider in case that the asset
is uploaded by an administrator and not by the

provider.
URL Parameters: Parameter Value
description_id The ID of the description with which the new
asset is going to be linked.
Query Parameters: None
Restrictions / Special Available for the providers of the descriptions with which the assets will be
Features: connected, and also for the administrators who can upload assets on behalf

of the providers.
Successful Response: JSON Object with the new asset's ID in its content.
The following is an example of the request in cURL:

55

Policy CIQHQ D7.5-v.1.0

ud for Data-Driven Policy

curl --request POST '{HOST}/assets/{description id}' \
--header 'x-access-token: <JWT>' --header 'x-filename: <value>' \
--form 'asset=@"<full path to_asset>"'

TABLE 53 - UPLOAD A NEW ASSET WITH RANDOM ID INTERFACE

\ Title: Upload a new asset with given ID, linked to a specific description
Endpoint: {HOST}/assets/{description_id}/{given_asset_id}
HTTP Method: POST
Description: This endpoint is similar to the previous. The difference is that with the

current endpoint it is possible to specify the ID of the new asset, providing it
at the end of the endpoint {given_asset_id}. Currently, this endpoint can be
used only by the administrators.

Body Data: Data Type: Form Data
Key Value
asset Binary data / Path to file
Headers: Key Value
x-access-token Requester's JWT
x-filename New asset's filename.
x-provider [Optional & only for administrators] The

username of the provider in case that the
asset is uploaded by an administrator and
not by the provider.

URL Parameters: Parameter Value
description_id The ID of the description with which the
new asset is going to be linked.
given_asset _id The ID to be given to the new asset.
Query Parameters: None
Restrictions / Special Available only for administrators whether they upload an asset for their
Features: descriptions or upload an asset on behalf of the providers.

Successful Response: JSON Object with the new asset's ID in its content.

The following is an example of the request in cURL:

curl --request POST '{HOST}/assets/{description_id}/{given_asset_id}' \
--header 'x-access-token: <JWT>' --header 'x-filename: <value>' \
--form 'asset=@"<full path to_asset>"'

TABLE 54 - UPLOAD A NEW ASSET WITH GIVEN ID INTERFACE

Title: Update a specific asset, using its ID

Endpoint: {HOST}/assets/{asset_id}
HTTP Method: PUT
Description: With this PUT request, it is possible to update an already stored asset. The

asset’s ID which should be at the end of the endpoint, determines which
asset should be replaced by the new asset. As in the uploading, the asset
should be uploaded as form-data with the key “asset” and the headers of
the request should contain provider's JWT. Note that the users can only
update the assets provided by themselves (except for administrators).

Body Data: Data Type: Form Data

Key Value

asset Binary data / Path to file
Headers: Key Value

56

Policy Cloud D7.5-v.1.0

x-access-token Requester's JWT
x-filename [Optional]
Asset's new filename.

URL Parameters: Parameter Value

asset_id The ID of the asset that will be updated.
Query Parameters: None
Restrictions / Special Available only for the providers of the descriptions / assets and for the
Features: administrators who can update stored assets on behalf of the providers.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:

curl --request PUT '{HOST}/assets/{asset_id}' \

--header 'x-access-token: <JWT>' --header 'x-filename: <value>' \
--form 'asset=Q"<full path to asset>"'

TABLE 55 - UPDATE A SPECIFIC ASSET USING ITS ID INTERFACE

\ Title: Delete a specific asset, using its ID

Endpoint: {HOST}/assets/{asset_id}
HTTP Method: DELETE
Description: A request to this endpoint has as a result the deletion of a specific asset, by

using its ID in order to find it. This endpoint is restricted and thus, the JWT
of a requester must be included in the headers of the request. Note that an
asset can be deleted only by its provider and the administrators.

For security reasons, the requesters should provide their password in the
body of their request, as raw data (JSON schema):

{ "password": ".." }

If the action is made by an administrator, the field “password” should be the
password of the administrator.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).
Headers: Key Value

x-access-token Requester's JWT
URL Parameters: Parameter Value

asset_id The ID of the asset that will be deleted.
Query Parameters: None
Restrictions / Special Available only for the providers of the descriptions / assets and for the
Features: administrators who can delete any stored assets.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request DELETE '{HOST}/assets/{asset_id}' --header 'x-access-token: <JWT>' \
--header 'Content-Type: application/json' --data-raw '{ "password": ".." }'

TABLE 56 - DELETE A SPECIFIC ASSET USING ITS ID INTERFACE

| Title: Delete all assets (administrators’ action)
Endpoint: {HOST}/assets/all
HTTP Method: DELETE
Description: This request is similar to the above request, with the difference that it

deletes all assets, as it uses the keyword “all”. Again, it is necessary the usage
of the requester’s JWT, and it is only available to administrators.

57

Egrlic_\/qglgg!d D75-v.1.0

For security reasons, the requesters should provide their password in the
body of their request, as raw data (JSON schema):

{ "password": ".." }
Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).
Headers: Key Value

x-access-token Requester's JWT
URL Parameters: None
Query Parameters: None
Restrictions / Special Currently, it is available only to the “superuser” (master admin) of the
Features: Marketplace.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request DELETE '{HOST}/assets/all' --header 'x-access-token: <JWT>' \
--header 'Content-Type: application/json' --data-raw '{ "password": ".." }'

TABLE 57 - DELETE ALL ASSETS (ADMINISTRATORS' ACTION) INTERFACE

2.2.1.5 Root Interface
One last endpoint that was not mentioned is that of the back-end's root interface, which presents a
roadmap of the main back-end’s interfaces. It is described below:

| Title: Root interface
Endpoint: {HOST}
HTTP Method: GET
Description: This endpoint returns a list with the back-end's interfaces that are available

to be used by all users. It acts as a roadmap, providing the interfaces along
with short information about the functionalities that they trigger. The
structure of the information follows a tree approach.

Body Data: None

Headers: None

URL Parameters: None

Query Parameters: None

Restrictions / Special None

Features:

Successful Response: Back-end's roadmap in text/plain.

The following is an example of the request in cURL:
curl --request GET '{HOST}'

TABLE 58 - ROOT INTERFACE

58

@ Policy Cloud D7.5-v.1.0

2.2.2 Front-end

In this section, the main screens of the front-end of the Data Marketplace are presented. All the versions
of the interfaces of the pages that have more information about owners, and registered users, etc. are
presented with screenshots. Thus, the screens for the Header, Login, Register, Home, Discover, Single
Asset and Account pages are illustrated. To this end it should be noted that all these pages are responsive
and are able to adjust accordingly to the screen of each user. In deeper detail:

Header: The Header is common to all the pages, it is located at the top of each page, and it contains the
navigation menu, as depicted in Figure 3. Depending on whether a user is logged in or not, the users can
view the corresponding items in the menu. Logged in users can also view the Account page in the Header.

@ ["I.:Jllif Y C ICJ l_\l"_‘ Discover Account About Logout

FIGURE 3 - FRONT-END'S HEADERS

For the convenience of the users, every time they place the mouse in the Discover element, a submenu
with the basic categories of Assets is displayed, where and any category can be selected, redirecting the
user to the corresponding Discover page category. Figure 4 presents the headers' view from the home

page.

@ Policy Cloud
Policy Cloud

Datasets

Marketplace. |

Webinars

Documents

Algorithms

Discover our Assets : r—— <>

Externals

Others

Explore our Marketplace
AmOeE. v . 2 T AR ¥ ¢ 2 T R [e NN - - M vide = - — Y

FIGURE 4 - HEADERS VIEW FROM HOME PAGE

In the following example, a user wants to search for Assets categorized as “Algorithms” through the Login
Page. By clicking on the dropdown menu named “Discover”, the main categories of Assets are displayed
in the submenu. To this end, the user selects the “Algorithms” category, as depicted in Figure 5.

59

v Policy Cloud D7.5-v.1.0

@ Policy Cloud Account

Algorithms

Insert your credentials

Tools
The following information is required to log you in.

Datasets
Username or E-mail address *

Tutorials

User1]

Webinars

Password *
Documents

Presentations

Externals

Log |
Others
Don't have an account yet? You can register now to obtain full access to the Market,

FIGURE 5 - SUB MENU ITEM VIEW FROM LOGIN PAGE

In sequel, the useris redirected to the Discover page (presents the stored descriptions), where only assets

categorized as “Algorithms” are displayed (Figure 6).

@ Policy Cloud Account

Filters = Newest first

Select the options below to
narrow your search.

Types
algorithms) |Lieomainers” Care minute record son Care minute record son Care minute record son
TR impact particular front. impact particular front. impact particular front.
- F al natural sout { I Fi tural sout 1V W ai rdir Fii 1cial natural south v W acc n
Owner o 4
0 University of Piraeus University of Nicosia updstes 1 neura University of Nicosia updsted 1 hour ag: University of Nicosia updstes 1 hour ao
@) Public Power Company W 4,3 (128 reviews) 1238 Views * 4.3 (128 reviews) 1238 Views W 4,3 (128 reviews) 1238 Views
pha Ban algorithms datasets algorithms datasets algorithms datasets
Alpha Bank SA g g g
(O Mitilineos SA
View all : =
i \: i
Views

N, AN LN
Care minute record son Care minute record son Care minute record son

Date
impact particular front. impact particular front. impact particular front.

| southern dow CO Financia t uthern v w accordir Fi cia ural southe

f ead d p N rk

" University of Nicosia updstes 1 ncur ac University of Nicosia updsted 1 hour ag: University of Nicosia updated 1 hourags
Apply filters
% 4,3 (128 reviews) 1238 Views % 4.3 (128 reviews) 1238 Views % 4,3 (128 reviews) 1238 Views
algorithms datasets algorithms datasets algorithms datasets

FIGURE 6 - DISCOVER'S SUB-ITEMS REDIRECT TO DISCOVER PAGE

60

PQUW..QQHQ D7.5-v.1.0

Home page: The home page presents some of the most popular and most latest descriptions / solutions
along with some random suggested descriptions, which are differentiating every time that a user reloads
the home page. What is more, the home page represent some relevant statistics about the supported
collections and the offered assets. If a user tries to log in, the front-end sends an ajax request to the
corresponding interface of the back-end to get a valid token (JWT). If the response does not contain a
successful message, the front-end presents to the user a corresponding error. In the case of a successful
login, the user is redirected to his/her account page. There is also a button that when it is pressed by the
users, it redirects them to the Discover page. It should be noted that the basic assets’' categories are
shown in circles in the beginning of the home page (Figure 7), whereas the home page contains a
background image from the main PolicyCLOUD website, being designed in way that is consistent with it.

P @) I i C C I ou d Datasets Tools
2 B qv

Marketplace

Documents Webinars Algorithms

Discover our Assets <)

Explore our Marketplace

Care minute record son impact Care minute record son impact Care minute record son impact
particular front. particular front. particular front.
University of Nicosia University of Nicosia University of Nicosia

algorithms datasets algorithms datasets algorithms datasets

FIGURE 7 - HOME PAGE: UPPER VIEW

outcommunity 100 87 92
our commaurni
Regi y Policies Datasets Tools

.Iohlhn.) in ’
PolicyCloud community PolicyCloud EU~ @PolicyCloudEU PolicyCloud EU

FIGURE 8 - HOME PAGE: LOWER VIEW

61

PQ“C\{_QQHQ D75-v.1.0

Register Page: The register page contains a form that a user must complete to register and access all the
Marketplace information. As depicted in Figure 9, the form is divided into three (3) discrete parts: (i) The
"Account Credentials" in which the users must fill in their usernames and passwords, (ii) The “Account
Details” that contains more detailed information of the users, such as their name, surname, title,

organizations and gender, and (iii) The “Account Contact Details” for the users' phone and email.
Account credentials

The following information is reguired for authentication purposes

Usemame *

= |

Passwornd *

[uunuoounoou]

Confirm password

[In-.::'l‘. your password again]

Account details

Fill in the following fields with your personal details. This information will be used to personalize your expenence
within the marketplace platform and showcase your profile to other visitors. Fields marked with (*) are required for

registration

Title

[Mone VJ

First name *

Last name *

[I"se‘t your last name]

Organization

[I"se‘t your organization]

Gender

[Prefer not to say V]

Summary

Tell us about yourself

7,
Related links
[Example] [https:/fwww.example.org/] x
idd link

62

@ Policy Cloud D7.5-v.1.0

Account contact details

Fill in your contact information here, This information will be used to validate your new account, as well as
cptionally make them available to other logged in Marketplace visitors. Fields marked with {*) are reguired far
registration. These details remain private by default.

E-mail address *

[E x. johndoe@example.org]

Phone number

[E «. +30 6999123456]

By submitting this form, you agree o our Terms of Service. Already have an account? Please
Login

FIGURE 9 - REGISTER FORM

At the bottom of the register page there exist the Terms of Service of the PolicyCLOUD Marketplace, and
by clicking the provided link, the users are redirected to the corresponding page, in order to be informed
about the Marketplace terms of use before their registration.

Login Page: The login page consists of a simple form in which the users must insert their credentials, and
depending on whether the users are indeed registered users of the Marketplace or not, they are
redirected to the Account page or they get an error message, respectively.

Insert your credentials
The following information is required to log you in

Username *

[adminuser J

Password *

Log in

Don't have an account yet? You can register now to obtain full access to the Marketplace

FIGURE 10 - LOGIN FORM

Account Page: In the account page, the logged in users are able to see details of their profiles. More
specifically, the Overview tab presents an about section of a Marketplace user along with some statistics

for the provided solutions of the user. The Assets tab shows the assets uploaded by the user, and the
Information tab shows detailed information of the user.

Regarding the Overview tab, some of the statistics that the page presents are the following: how many
descriptions have been offered by the user, the number of views of the user's offered descriptions, the
number of offered assets and the number of their downloads, etc. (Figure 11).

63

Overview

Assets

Information

D75-v.1.0

Mr. John Doe

University of Piraesus Research Center

Overview

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce eleifend vehicula feugiat. Sed dignissim leo sed lacus tristique, sit amet
gravida lectus eleifend. Suspendisse vitae felis et lorem suscipit consequat facilisis vitae diam. Nulla porta tortor sapien, quis egestas mi
sodales non. Nulla nec consequat ligula. Ut lacinia ligula nec vestibulum sodales. In ligula nisi, dictum id auctor et, bibendum eget ipsum.
Suspendisse elementum, massa et varius luctus, lectus orci imperdiet nulla, a sollicitudin dolor lectus facilisis diam. Mauris non orci odio.
Morbi accumsan est in dui ultricies, vitae lacinia ex interdum. Donec a sollicitudin sapien, a sollicitudin nulla. Pellentesque venenatis
consequat accumsan. Etiam laoreet sodales porta. Proin quis magna leo.

Linkedin GitHub

12 324

Approved descriptions Assets uploaded
4.2 151

Average rating Total descriptions
12 12

Total downloads Total reviews

12

Total views

FIGURE 11 - ACCOUNT OVERVIEW FOR A SIMPLE USER

With regards to the Assets tab, it shows how many assets the user has uploaded per category (Figure 12),
whilst the Information tab illustrates the account information of the user (e.g., full name, geneder, etc.).

Mr. John Doe

Mr. John Doe

Assols Sorily Messdind B por page § Infarmation
Bamaary
ey e
sgmeten
Cverview verviem
Ansaiz ‘Care minute record sen impact particular front, asata
Erand i
information Informaton
S dm— errmamy
) Tl rama o o Do
Hali fund meeting second take get population
Zander [
R Erpien ity o P, Rkt Co
ol bt e
P vt smanmar
W [FIr Re——
arces Laca s

FIGURE 12 - ACCOUNT INFORMATION AND ASSETS FOR A SIMPLE USER

The account owners, can see an additional tab of reviews (Reviews tab), in which they can see the reviews
that the user made to the descriptions of other users (the providers are not able to review their

descriptions) (Figure 13).

64

Policy Cloud

Cloud for Data-Driven Policy

Overview
Assets
Reviews
Information

Log Out

Managemen

t

D75-v.1.0

Mr. John Doe

University of Piraeus Research Center

Overview

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce eleifend vehicula feugiat. Sed dignissim leo sed lacus tristique, sit amet
gravida lectus eleifend. Suspendisse vitae felis et lorem suscipit consequat facilisis vitae diam. Nulla porta tortor sapien, quis egestas mi

sodales non. Nulla nec consequat ligula. Ut lacinia ligula nec vestibulum sodales. In ligula nisi, dictum id auctor et, bibendum eget ipsum.
Suspendisse elementum, massa et varius luctus, lectus orci imperdiet nulla, a sollicitudin dolor lectus facilisis diam. Mauris non orci odio.

Morbi accumsan est in dui ultricies, vitae lacinia ex interdum. Donec a sollicitudin sapien, a sollicitudin nulla. Pellentesque venenatis
consequat accumsan. Etiam laoreet sodales porta. Proin quis magna leo.

Linkedin GitHub

12 324

Approved descriptions Assets uploaded
4.2 151

Average rating Total descriptions
12 12

Total downloads Total reviews

12

Total views

FIGURE 13 - ACCOUNT ASSETS FOR AN OWNER

On this page the account owners can see their information, and the assets they uploaded, by category.
They can also create a new description/solution, while in the tab information they can change/update
their personal details.

PpETy

Mr. John Doe

Care minute record son impact particular front (e

L el . DI TETEE

Hailf fund meeting second take get population (e

Take image scldier positive though (e)

L]

*

Mr. John Doe

s e e D

FIGURE 14 - ACCOUNT ASSETS AND INFORMATION FOR AN OWNER

65

PQlicy _Cloud D7.5-v.1.0

Discover: The discover page, is the page where all the descriptions/solutions are displayed, illustrating
the main image of each description, and its basic information, including its title, short description,
provider, last updated date, views, reviews, average ratings, categories and subcategories (Figure 15). On
the right side of the page, through the provided sidebar, the users can search for solutions based on
their title, by filling in the search bar. They can also filter the results by a specific provider, their categories,
the number of views and the time periods. On the upper-right side of the page, a button for sorting the
results is also included. When the users click on a solution, they are redirected to the Single Asset Page.
To this end is should be noted that the Discover page has the same view either for the logged in users or
not. It communicates with the back-end via the REST APl and loads the information dynamically. In
addition, through responsive mode and in relation to the type of device the user possesses, the display
is adapted accordingly, while the side bar appears only as a drop down menu.

Filters Newest first

Select the options below to
narrow your search.

Types

[algorithms] { containers J Care minute record son

impact particular front.

Financial natur

Care minute record son
datasets impact particular front.

Owner

n window according
ork attorney entire entire

O University of Piraeus University of Nicosia updstes 1 nourage University of Nicosia updstes 1 nour ao: University of Nicosia updstes 1 nourags
O Public Power Company % 4,3 (128 reviews) 1238 Views W 4,3 (128 reviews) 1238 Views % 4,3 (128 reviews) 1238 Views
(O Alpha Bank SA algorithms datasets | algorithms | (datasets algorithms | (datasets |
O Mitilineos SA
View all
Views
Date Care minute record son Care minute record son Care minute record son
impact particular front. impact particular front. impact particular front.
Fin; atural southern window g Financial natural s nw C al natur hern window according.
‘ “ develop network attorney e A network atto lof ork attorney entire entire
‘ N Apply filters ‘ University of Nicosia updstes 1 hourags University of Nicosia updates 1 nour ag: University of Nicosia updsted 1 nourago
% 4,3 (128 reviews) 1238 Views W 4,3 (128 reviews) 1238 Views % 4,3 (128 reviews) 1238 Views
algorithms, datasets | algorithms | (datasets algorithms | (datasets |

FIGURE 15 - DISCOVER PAGE

Single Asset Page: The single asset page displays an asset's main information, where a logged in user has
different views than a non logged in user. All the users can view the title of the asset, the provider, the
owner, the categories and sub-categories, the fields of use, the average ratings, the number of reviews
and the number of views. In the case of logged in users, the latter have access to the full description, the
gallery with images of the solution and they are also able to download all the offered assets/files. In case
of non logged in/unauthorized users, the latter do not have access to the assets and the gallery and they
can see only the short description. If the users are the providers or the administrator, they can update
the information that is displayed. All descriptions/solutions need permission from an administrator in

66

&S Polcy Cloud 7.5 -v.19

order to be displayed and according to this, if a description is approved, an indication “approved” is
displayed, otherwise, an indication of “pending"” is displayed.

Registered User View: A logged in user sees the entire description, the image gallery, and has access to

the assets, as depicted in Figure 16.

Care minute record son impact
particular front.

University of Nicosia algorithms datasets ML Regression FinTech ¥ 4,3 (128 reviews) 1248 views

Assets Description

Name Version Size 1L I
extraction.py 2.3.1 1.3MB y court
[ancial

analysis.py 1.1.0 727KB T ock gl
cleaning.py 1.0.3 150KB
graph.r 1.3.0 209KB Ga"ery

Images

Videos

FIGURE 16 - SINGLE ASSET PAGE FOR LOGGED IN USERS

Owner View: If the user is the provider, an edit and a delete button appears that enables the editing of
the information, and the management of the assets (upload, update, delete). Every change made to the
information of the description has to be approved by an administrator in order to be displayed.

Care minute record son impact
particular front.

University of Nicosia algorithms) (datasets ML Regression FinTech % 4,3 (128 reviews) | 1248 views m
Assets Description

Name Version Size

extraction.py 2.3.1 1.3MB

analysis.py 110 727KB natur 7 window sure relationship court rock glass

d o cal large often
cleaning.py 1.0.3 150KB
graphr 130 ook Gallery

| Images |

| Videos |

FIGURE 17 - SINGLE ASSET PAGE OWNER

67

@ Policy Cloud D7.5-v.1.0

Non-authorized User View: A non-authorized user sees only the basic information of a desctription (short
desctription), e.g. a short description, main / default image, provider, owner, reviews, and downloads, as
illustrated in Figure 18.

Care minute record son impact
particular front.

University of Nicosia algorithms) (* datasets L Regression FinTech % 4.3 (128 reviews) | 1248 views

Description

| natural southern window according. Ahead develop network attorney entire entire worker. Measure relationship court
ss. Risk lose question image old development put claim. Before very go give now. Share political large often.

Gallery

Please log in to view and
download assets.

Please log in to view the image
gallery.

FIGURE 18 - SINGLE ASSET PAGE FOR UNAUTHORIZED USERS
Create page: The create page can be only accessed by a registered user with authorization, who can
access and create a new description / solution. It contains a form for filling in the basic information of
the new offered solution (e.g. category, field of use, description). At a later stage, a user will be able to
upload his/her assets, through the Single Asset pages. This page is only available to registered users who
can find it either from the header or from their account page (i.e. Assets tab - Create button).

About Page: The about page contains information about the PolicyCLOUD Data Marketplace.

Error Message: In case of an error, a red bar appears with the appropriate message received from the
back-end.

You need to be logged in to create a Description Object.

FIGURE 19 - ERROR MESSAGE BAR

68

@ Policy Cloud D7.5-v.1.0

2.3 Baseline Technologies and Tools

The following sub-sections are describing the baseline technologies that both the back-end and the front-
end of the Data Marketplace exploit in order to implement its capabilities and functionalities.

2.3.1 Back-end

The back-end is the core base of the market platform and it has been developed using a variety of
technologies/tools. First of all, its components are containerized in Docker images [3] that, among others,
offer more efficient management and maintenance, enabling continuous updates and integration.
Python [4] is used as the programming language along with the Flask framework [5], which is a Web
Server Gateway Interface (WSGI) developed in Python, implements RESTful APIs to handle the respective
HTTP requests.

The offered assets are stored in a MongoDB No-SQL database [6] that is used in combination with GridFS
specification [7] for storing and retrieving large files/objects, of any format. Moreover, Gunicorn [8], a
Python WSGI HTTP Server for UNIX, is utilized with NGINX [9], an open-source high-performance HTTP
web server and reverse proxy, since Flask is not optimum for production mode, and thus, both tools will
extend the Flask framework in order to enable access to multiple users at the same time.

2.3.2 Front-end

The front-end has been implemented using various web technologies (HTML, CSS, Bootstrap, PHP,
JavaScript, jQuery) and it is functional using PHP and JavaScript technologies. It also exploits WordPress
[10] and various plugins of it, in order to manage the content that is presented. More specifically, for the
implementation of the front-end, the following tools were used:

e WordPress: A major part of the platform was designed with customized code based on the
architecture logic of WordPress. A minor part was introduced, manually, by utilizing the
Elementor editor of WordPress [11].

e Elementor: Utilized at various stages of design, mainly for the header.

Except for these, a custom-made plugin with the name “PolicyCloud Plugin” was implemented, for the
connection between the front-end and the back-end, as well as for the correct display of the Assets
information. The main methods of the plugin are called from WordPress with hooks, and by placing short
code names of methods on each page, for each interaction with the back-end.

The plugin contains authentication methods, checks if the user is valid, connects to the back-end with
post request, creates the user's token and returns the JSON response to the WordPress page. To be more
specific, when a user tries to log in, after filling in the login form, the information from the browser is sent
by ajax request to the WordPress custom-made functions, checking if the values are empty. The login
information is then sent, by post request, to the back-end API for verification. The back-end API returns
the JSON response with user's information and the user's token or Error and a WordPress's encrypted
security token (nonce) is created. If the token is valid, the information from the database (the dynamic

69

@ Policy Cloud D7.5-v.1.0

content) is displayed with HTML, jQuery, PHP in the browser and the encrypted token is temporarily
stored in the browser storage. The aforementioned process is also depicted in Figure 20.

Front-end access middleware T —
Log in sequence diagram @ ~nxrequest / response
]

POST request / response
API WordPress

Shortcode
+ Localise

script
Serve page

Browser

Local storage operation

Fillin
form

Log In Information

3 A

Log In Information &
values

Token / Error
-

Encrypt Token (Encrypted) / Error

Token (Encrypted) Cookie Browser

Storage

Success
redirect

Server Client

FIGURE 20 - FRONT-END ACCESS MIDDLEWARE

The admin class is responsible for the extensions that are added to the WordPress dashboard, to which

administrators have access (Figure 21).

Dashboard

Policy Cloud Admin

add_settings_page()

register_settings()

FIGURE 21 - DASHBOARD ADD SETTINGS
With the add_admin_settings () method, the administrator adds a field to their menu to save the key with
which the system will communicate with the back-end. The key is valid until it expires, after one month,

for security reasons.
70

PQ“‘C‘\/_QQLKJ D7.5-v. 1.0

% Snippets PolicyCloud Marketplace Settings

é Users This is the options page for the PolicyCloud Marketplace API

& Toals Access Credentials

B Settings

Insert your credentials for the Marketplace API.

General

Writing Marketplace Host |—|

The Marketplace server address endpoint.

Marketplace Key |—|

Permalinks The Marketplace server token decoding key.

Encryption Key | |

The Marketplace authentication token encryption key. This key must be generated by you and kept security confidential.

Privacy

Menu Settings

Select your preferred operating settings.

Selected Menu | Primary Menu v |

FIGURE 22 - DASHBOARD ADMIN VIEW SETTINGS

When a user tries to an Access Display Asset's information’s pages, such as the Discover page, the
WordPress functions browser sends a post request to the back-end API that returns the response with
JSON assets information or an error message. If the assets information is valid, it is displayed to the
browser dynamic content with HTML, jQuery and PHP. If the token exists, it is stored in a cookie in the
browser storage. The aforementioned process is also depicted in Figure 23.

Read description objects
Authenticated (token-based) actions

e B
i ‘token
Token (Encrypted) Cookie rowser
Request content Storage
Response .
Shortcode
Serve page
>
Dynamic web server
AJAX request / response
POST request / response
Local storage operation
Server Client

FIGURE 23 - TOKEN BASED ACTIONS

71

Q) oty owd 07:5-1.1.0

3 Source Code

3.1 Availability

This section provides information with regards to the actual code repositories of the Data Marketplace.

3.1.1 Back-end

The software prototype of the Data Marketplace's back-end will be provided in PolicyCLOUD's GitLab
repository in the future version of the current deliverable (D7.12), since for the moment the back-end of
the Data Marketplace is under validation and testing in a private GitLab repository.

3.1.2 Front-end

The software prototype of the Data Marketplace's front-end will be provided in PolicyCLOUD's GitLab
repository in the future version of the current deliverable (D7.12), since for the moment the front-end of
the Data Marketplace is under validation and testing in a private GitLab repository.

3.2 Exploitation

This section provides information about where the components of the Data Marketplace are deployed
and how they can be accessed and run.

3.2.1 Back-end

As described in section 3.1.1, the band-end of the Data Marketplace is currently in a private GitLab
repository, and thus it cannot be exploited. This information will be fully available in the next version of
the current deliverable (D7.12).

3.2.2 Front-end

As described in section 3.1.2, the front-end of the Data Marketplace is currently in a private GitLab
repository, and thus it cannot be exploited. This information will be fully available in the next version of
the current deliverable (D7.12).

72

Q) oty owd 07:5-1.1.0

4 Conclusion

This deliverable described and analysed the implemented prototype of the Data Marketplace based on
the design and the architecture specifications described in section 2.1 in short, and in deliverable D7.4 in
more detail.

Moreover, the interfaces of the components have been introduced. Regarding the interfaces of the back-
end, the actions that are triggered after specific HTTP requests were described also using examples of
the requests. In terms of the front-end, the first version of Data Marketplace's web pages was presented
along with some descriptions about them.

Finally, the baseline technologies and tools that are used in the Data Marketplace’s components were
reported, specifying the status of both the availability and the exploitation of the implemented source
codes.

The final version of the Data Marketplace prototype will be analysed in D7.12 Data Marketplace: Software
Prototype M34, due in October 2022.

73

Policy Cloud D7.5-v.1.0

Cloud for Data-Drven Policy

References

[1] JSON Web Tokens (JWT), Homepage, https://jwt.io

[2] AuthO, JSON Web Tokens, https://auth0.com/docs/security/tokens/json-web-tokens

[3] Docker, Homepage, https://www.docker.com

[4] Python, Homepage, https://www.python.org

[5] The Pallets Projects, Flask, https://palletsprojects.com/p/flask

[6] MongoDB, Homepage, https://www.mongodb.com

[7] MongoDB, GridFS, https://docs.mongodb.com/manual/core/gridfs

[8] Gunicorn, Homepage, https://gunicorn.org

[9]1 NGINX, Homepage, https://www.nginx.com

[10] WordPress, Homepage, https://wordpress.com

[11] Elementor, Homepage, https://elementor.com

[12] cURL, Homepage, https://curl.se

www.policycloud.eu

74

https://jwt.io/
https://auth0.com/docs/security/tokens/json-web-tokens
https://www.docker.com/
https://www.python.org/
https://palletsprojects.com/p/flask
https://www.mongodb.com/
https://docs.mongodb.com/manual/core/gridfs
https://gunicorn.org/
https://www.nginx.com/
https://wordpress.com/
https://elementor.com/
https://curl.se/

