

PolicyCloud has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 870675.

CLOUD FOR DATA-DRIVEN POLICY MANAGEMENT

Project Number: 870675 Start Date of Project: 01/01/2020 Duration: 36 months

D7.5 DATA MARKETPLACE: SOFTWARE PROTOTYPE

Dissemination Level PU

Due Date of Deliverable 31/10/2021, M22

Actual Submission Date 28/10/2021

Work Package WP7, Communication, Exploitation,

Standardisation, Roadmapping & Business

Development

Task T7.2

Type Demonstrator

Approval Status

Version V1.0

Number of Pages p.1 – p.74

Abstract: The deliverable D7.5 Data Marketplace: Software Prototype describes the initial

demonstrator of the PolicyCLOUD Data Marketplace. The latter will be a unified web-based

platform consisting of two (2) core services, its front-end and back-end services, offering to its

users various ready-to-use solutions, by supporting different kinds of assets.
The information in this document reflects only the author’s views and the European Community is not liable for any use that m ay be made
of the information contained therein. The information in this document is provided “as is” without guarantee or warranty of any kind,

express or implied, including but not limited to the fitness of the information for a particular purpose. The user thereof us es the information

at his/ her sole risk and liability. This deliverable is licensed under a Creative Commons Attribution 4.0 International License.

 D7.5 – v. 1.0

www.policycloud.eu

2

Versioning and Contribution History

Version Date Reason Author

0.1 06/09/2021 ToC Vasilis Koukos, Argyro

Mavrogiorgou (UPRC)

0.2 15/09/2021 Contribution in Sections 1, 2 Thanos Kiourtis (UPRC)

0.3 28/09/2021 Updates in Sections 2.2.1 Vasilis Koukos (UPRC)

0.4 05/10/2021 Updates in Sections 2.2.2 Eleftheria Kouremenou,

Alexandros Raikos (UPRC)

0.5 12/10/2021 Contribution in Sections 3, 4 Argyro Mavrogiorgou, Thanos

Kiourtis (UPRC)

0.6 19/10/2021 Check and revision of all Sections Argyro Mavrogiorgou (UPRC)

0.7 22/10/2021 Review Giannis Ledakis (UBI),

Panayiotis Michael (ICCS)

0.8 25/10/2021 Changes based on review comments Vasilis Koukos, Eleftheria

Kouremenou (UPRC)

0.9 27/10/2021 Quality check Argyro Mavrogiorgou (UPRC)

1.0 28/10/2021 Submitted version ATOS

Author List

Organisation Name

UPRC Vasilis Koukos

UPRC Eleftheria Kouremenou

UPRC Alexandros Raikos

UPRC Argyro Mavrogiorgou

UPRC Thanos Kiourtis

Abbreviations and Acronyms

Abbreviation/Acronym Definition

API Application Programming Interface

CRUD Create Retrieve Update Delete

EOSC European Open Science Cloud

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

JWT JSON Web Token

 D7.5 – v. 1.0

www.policycloud.eu

3

REST Representational State Transfer

UI User Interface

Contents

Versioning and Contribution History .. 2

Author List .. 2

Abbreviations and Acronyms ... 2

Executive Summary .. 7

1 Introduction ... 8

2 Prototype Overview.. 9

2.1 Main Components ..10

2.1.1 Back-end ...10

2.1.2 Front-end ..10

2.2 Interfaces ..11

2.2.1 Back-end ...11

2.2.1.1 Interfaces related to Users ...13

2.2.1.2 Interfaces related to Descriptions ..25

2.2.1.3 Search functionality on Descriptions ...51

2.2.1.4 Interfaces related to Assets ...54

2.2.1.5 Root Interface ...58

2.2.2 Front-end ..59

2.3 Baseline Technologies and Tools ..69

2.3.1 Back-end ...69

2.3.2 Front-end ..69

3 Source Code ...72

3.1 Availability...72

3.1.1 Back-end ...72

3.1.2 Front-end ..72

3.2 Exploitation ..72

3.2.1 Back-end ...72

 D7.5 – v. 1.0

www.policycloud.eu

4

3.2.2 Front-end ..72

4 Conclusion ..73

References..74

List of Tables
Table 1 - Back-end’s interfaces related to Users ..13

Table 2 - Register a new user Interface ..14

Table 3 - Check availability of a username Interface...15

Table 4 - Authorize a user (Login) Interface ..16

Table 5 - Verify users Interface ..17

Table 6 - Resend verification code to users Interface ...17

Table 7 - Get user’s information Interface ...18

Table 8 - Update user’s information Interface..19

Table 9 - Change user’s password Interface ...20

Table 10 - Reset user’s password request Interface ...20

Table 11 - Reset user’s password Interface ...21

Table 12 - Delete user’s account Interface ..22

Table 13 - Change user’s email Interface ...22

Table 14 - Change user’s profile picture Interface ...23

Table 15 - Remove user’s profile picture Interface ..24

Table 16 - Get user’s statistics Interface ..24

Table 17 - Get user’s account data Interface ..25

Table 18 - Back-end’s interfaces related to Descriptions ...26

Table 19 - Get descriptions’ collections Interface ..27

Table 20 - Get a list with all descriptions Interface ..29

Table 21 - Get a list with all descriptions from a specific collection Interface ...29

Table 22 - Get a specific description (using keyword “all”) Interface ...30

Table 23 - Get a specific description (using description’s “collection”) Interface ..30

Table 24 - Get latest descriptions from all collections Interface ..31

Table 25 - Get latest descriptions from a specific collection Interface ..32

Table 26 - Get random descriptions from all collections Interface ..32

Table 27 - Get random descriptions from a specific collection Interface ...33

Table 28 - Get a list with all descriptions provided by a specific user (using keyword “all”) Interface34

Table 29 - Get a list with all descriptions provided by a specific user and under a specific collection (using

a “collection” value) Interface ...35

Table 30 - Get descriptions’ statistics (useful for front-end’s homepage) Interface36

Table 31 - Upload / Create a new description with random ID Interface ...37

Table 32 - Upload / Create a new description with given ID Interface ..39

 D7.5 – v. 1.0

www.policycloud.eu

5

Table 33 - Update a specific description (using keyword “all”) Interface ..40

Table 34 - Update a specific description (using description’s “collection”) Interface41

Table 35 - Delete a specific description (using keyword “all”) Interface ..42

Table 36 - Delete a specific description (using description’s “collection”) Interface43

Table 37 - Delete all descriptions Interface ...43

Table 38 - Delete all descriptions from a specific collection Interface ..44

Table 39 - Make a review for a description Interface ..44

Table 40 - Update an existing review for a description Interface...45

Table 41 - Delete a review for a description Interface ..46

Table 42 - Get a list with the reviews made by a specific user Interface ..47

Table 43 - Get a list with all descriptions that need permission Interface ...48

Table 44 - Get a list with all descriptions from a specific collection that need permission Interface.........49

Table 45 - Approve or reject a description that needs permission, using keyword “all” Interface49

Table 46 - Approve or reject a description thats needs permission, using description’s “collection”

Interface ..50

Table 47 - Approve or reject all descriptions that need permission, using keyword “all” Interface50

Table 48 - Approve or reject all descriptions that need permission under a specific collection, using a

“collection” value Interface ...51

Table 49 - Back-end’s search operators ...53

Table 50 - Back-end’s interfaces related to Assets ..54

Table 51 - Get a list with the stored assets Interface ..54

Table 52 - Get a specific asset using its ID Interface ...55

Table 53 - Upload a new asset with random ID Interface ..56

Table 54 - Upload a new asset with given ID Interface ...56

Table 55 - Update a specific asset using its ID Interface ..57

Table 56 - Delete a specific asset using its ID Interface ..57

Table 57 - Delete all assets (administrators’ action) Interface ..58

Table 58 - Root Interface ...58

 D7.5 – v. 1.0

www.policycloud.eu

6

List of Figures
Figure 1 - Data Marketplace architecture .. 8

Figure 2 - Data Matketplace's layers and main functionalities ... 9

Figure 3 - Front-end’s headers ...59

Figure 4 - Headers view from Home page ...59

Figure 5 - Sub menu item view from login page ..60

Figure 6 - Discover’s sub-items redirect to Discover page ...60

Figure 7 - Home page: upper view ..61

Figure 8 - Home page: lower view ...61

Figure 9 - Register form ...63

Figure 10 - Login Form ...63

Figure 11 - Account overview for a simple user ...64

Figure 12 - Account information and assets for a simple user ...64

Figure 13 - Account assets for an owner ...65

Figure 14 - Account assets and information for an owner ..65

Figure 15 - Discover page ..66

Figure 16 - Single asset page for logged in users...67

Figure 17 - Single asset page owner ...67

Figure 18 - Single asset page for unauthorized users...68

Figure 19 - Error message bar..68

Figure 20 - Front-end access Middleware..70

Figure 21 - Dashboard add settings ..70

Figure 22 - Dashboard admin view settings..71

Figure 23 - Token based actions ..71

 D7.5 – v. 1.0

www.policycloud.eu

7

Executive Summary

This deliverable (entitled “Data Marketplace: Software Prototype”) describes the initial demonstrator of

the PolicyCLOUD Data Marketplace. The Data Marketplace will be a unified web-based platform

consisting of two (2) core services, its front-end and back-end, offering its users various ready-to-use

solutions.

Into this context, the current deliverable describes an overview of the Data Marketplace architecture,

detailing the main features of its core components (also described in D7.4 - Data Marketplace: Design

and Open Specification, delivered in August 2021), whereas all the implemented interfaces are

thoroughly described accompanied by indicative examples. On top of these, the baseline technologies

that have been used for the realization of the Data Marketplace are analyzed, providing detailed

information on how an external user can exploit and access the Marketplace.

 D7.5 – v. 1.0

www.policycloud.eu

8

1 Introduction

The deliverable D7.4, entitled “Data Marketplace: Design and Open Specification” and delivered in August

2021,was about the initial design and the architecture of the PolicyCLOUD Data Marketplace. As

described and analysed in D7.4, the Data Marketplace is considered as a smart user-based repository of

assets that aims to create a community of users who will be able, through the Marketplace’s platform, to

provide and share various ready-to-use solutions/tools to various subjects and fields of use, related to

the areas of interest of the PolicyCLOUD.

This deliverable describes the first version of the implemented prototype of the Data Marketplace, and

it is an extension of the deliverable D7.4. In summary, the Marketplace has been implemented in order

to provide the means for storing, searching and retrieving several types of assets, which are the outcome

of a requirements analysis which was performed during task 7.2 and described in D7.4. It consists of a

public web-based environment with many different APIs and functionalities, covering all different

requirements of the project’s stakeholders.

The remainder of this deliverable describes an overview of the Marketplace architecture in section 2.1,

detailing the main features of its core components that are also described in deliverable D7.4. In section

2.2 the implemented interfaces of the Data Marketplace’s components are described, while section 2.3

describes the baseline technologies that have been used for the realization of the marketplace. Section

3 provides some access information to the source code, and finally, section 4 concludes with a summary

of the described prototype.

FIGURE 1 - DATA MARKETPLACE ARCHITECTURE

 D7.5 – v. 1.0

www.policycloud.eu

9

2 Prototype Overview

The PolicyCLOUD Data Marketplace is a public web-based environment with various APIs, able to store

several types of assets. It has been structured and developed having two core components. The first and

most important component is the back-end which contains in a structured way the information, stores

the assets offered by the Marketplace and implements the required functionalities. The second

component is the front-end which presents to the users the offered content (the assets and their

information), allowing them to interact with the platform in an easier way.

Generally, the Marketplace provides several functionalities that are mapped to different layers. The back-

end includes three layers (i.e. Assets Storage Layer, Assets Management Layer, and Interaction Layer),

while the front-end includes one layer (i.e. Presentation Layer) that in full consists of four different layers

(as depicted in Figure 2) that realize its capabilities. The four layers of the marketplace are described

below:

• The Assets Storage Layer (part of the back-end) is the layer in which the platform’s offered assets

are stored.

• The Assets Management Layer (part of the back-end) delivers all the needed principles and

techniques for the management of the Marketplace’s assets.

• The Interaction Layer (part of the back-end) supports the communication between the market

platform and its users (i.e. human users, and machine users), by providing discrete APIs for

exploiting each different type of asset.

• The Presentation Layer (part of the front-end) provides the User Interface towards the different

types of users that are willing to use the platform.

FIGURE 2 - DATA MATKETPLACE'S LAYERS AND MAIN FUNCTIONALITIES

 D7.5 – v. 1.0

www.policycloud.eu

10

2.1 Main Components

2.1.1 Back-end

The back-end is the main component of the marketplace. It consists of three different layers and

implements the main functionalities for assets management. The three levels are briefly described

below.

The Assets Storage Layer is responsible for storing the assets that will be offered by the Data

Marketplace. An essential component of this layer is the database that can store files in any format as

well as additional information about the files provided. In this context, the type of database that is used

is a document-oriented NoSQL database, which stores both JSON-like documents (the format of the

descriptions files that are analyzed in the Assets Management Layer) and binary files, using extended

specifications (e.g. file system).

The Assets Management Layer is responsible for the entire life cycle of the assets within the platform

and offers all the principles and techniques for their management. Specifically, this layer handles the

assets from the moment they are entered into the platform through the APIs and then stored in the

database (in Assets Storage Layer), until their final deletion from the platform. Through this layer, the

market platform supports the CRUD operations and searching functionality, which are triggered by the

corresponding APIs of the back-end (Assets Interaction Layer). The back-end is a REST API and receives

different HTTP requests in order to perform an operation/ trigger a functionality. Moreover, there are

mandatory description files for all assets that contain metadata about the described asset (in JSON

format). These description files are mandatory in order to make the assets searchable and retrievable by

the end-users of the Data Marketplace.

The last layer, the Assets Interaction Layer, is responsible for supporting the communication between

the platform and its end-users. It implements the interfaces (APIs) of the back-end (analyzed in section

2.2.1) that will handle the back-end’s operations. As described before, these APIs receive HTTP requests

that trigger the CRUD operations for both assets and description files.

2.1.2 Front-end

The front-end is the fourth layer of the market platform, the Presentation Layer. It is a web-based server

that presents the offered assets to the users, with a friendly UI. In general, the front-end will convert all

interfaces of the back-end (REST API) into user friendly interfaces and provide automated forms and

processes that make it easier for users to interact with the back-end and benefit from its stored assets.

Therefore, it acts as an intermediate among the marketplace users and the back-end, sending the

respective HTTP requests to the latter and presenting its responses.

In short, the front-end allows users to register and sign in to the marketplace (user-based platform),

upload their offered assets by filling out appropriate forms whose fields will be the content of the

description files of the assets (as mentioned in Section 2.1.1); search for assets according to various fields

 D7.5 – v. 1.0

www.policycloud.eu

11

(title, asset's type, fields of use, provider, other metadata, etc.) that can be further filtered or even sorted

by the number of views or the date they were uploaded to the marketplace, etc. Also, there is a page that

presents in detail the information of the assets, and through this page, the users are able to retrieve the

real assets, the files. More details about the front-end and its supported functionalities are described in

the next section, 2.2.2.

2.2 Interfaces

This section provides the description and the core details of the interfaces for both components, back-

end and front-end. The back-end’s subsection describes its interfaces in more technical terms, while the

front-end’s subsection describes the webpages that take advantage of the back-end’s interfaces, along

with their use cases.

2.2.1 Back-end

As described in section 2.1.1, the back-end is a REST API that receives HTTP requests to trigger its

designed and implemented functionalities. This section describes the REST API endpoints that are

introduced in the first version of the back-end. These APIs are categorized into 3 main groups, namely:

APIs related to Users, APIs related to Descriptions and APIs related to Assets.

One of the basic requirements set during the design of the Data Marketplace and described in the

deliverable D7.4, was to become a user-based system. There are many reasons for this requirement,

starting from the fact that it is a web system / server that will offer its users various types of objects

(assets), to the fact that the assets are offered by their providers / owners to all users without special

restrictions (at least in its first version) something that results in intellectual property rights issues, which

are resolved, allowing providers to manage their assets on their own. In case that an offered asset is not

provided by the author of the asset, the providers can specify who is the real author.

Thus, all users of the Marketplace should have their personal accounts in the system, which they will be

able to manage themselves. As is common on all websites with such requirements, the Marketplace’s

administrators are able to audit the accounts and perform actions that will ensure the platform’s smooth

operation, but also of the community that will be created through the Marketplace. To this end, the back-

end has implemented APIs that are related to its users.

As already described, the Data Marketplace consists of two components, running two different servers

but both managing the same information and data, with the storage of these data being done exclusively

in the back-end. Specifically, the binaries of the provided assets and their descriptions (metadata files)

are stored in the back-end, as does for the users’ data. In addition, both components are accessible to

users by direct communication, using HTTP requests for the back-end and through web browsers for the

front-end, which provides information stored in the back-end. Therefore, based on all these, in order to

restrict the access to the information, it was decided that the back-end will be the server that will offer

the authentication and authorization mechanisms to the users for the management of its content. It

should be noted that the latter was decided based on the fact that the Data Marketplace will be publicly

 D7.5 – v. 1.0

www.policycloud.eu

12

available to all the interested users (either they are partners of the PolicyCLOUD consortium or third

parties). As a result, since all the offered solutions will be immediately puclicly available to these users,

the back-end will be independent compared with the rest of the PolicyCLOUD components, supporting

its own authentication and authorization mechanisms to manage its content.

As authorization mechanism, the JSON Web Token (JWT) [1] technology is used. JWT is an open standard

that defines a compact and self-contained way for securely transmitting information between parties as

a JSON object in a way that can be verified and trusted because it is digitally signed. The JWT is a simple

token format and because of its relatively small size, a JWT can be sent through a HTTP request either as

query parameter in the URL or inside the HTTP header, and it is transmitted quickly, and it can be used

very easy within the context of the HTTP.A JWT contains all the required information about an entity (e.g.

information about issuer, subject, expiration time, and any other information) to avoid querying a

database more than once. As described before, it is a secure approach as it is digitally signed for tamper

proof and authenticity, and it can be encrypted to protect the token information using symmetric or

asymmetric approach. It should be noted that by default, a JWT contains the information encoded and

not encrypted (the token can be further encrypted). Some extra benefits of the JWT are that it can be

used as a stateless authentication mechanism (the back-end as REST API is not able to keep users’

sessions) and finally, the fact that its content is a JSON object (as the assets’ descriptions) is makes it

easier to be used and be parsed by the back-end [2].

The following token is an example of a JWT for the next JSON Object, signed with a symmetric key “key”:

JSON Object: {"username": "vkoukos", "name": "Vasilis", "surname": "Koukos", "Organization": "UPRC", "exp":

1516239022}

JWT:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6InZrb3Vrb3MiLCJuYW1lIjoiVmFzaWxpcyIsInN1cm5hbWUiOiJLb3Vrb3MiLC

JPcmdhbml6YXRpb24iOiJVUFJDIiwiZXhwIjoxNTE2MjM5MDIyfQ.31osTPhrxNFwN-moZsDFEiQq6HcOEe7svcGCGnjI9lA

The content of a JWT can also be the key “exp” which sets an expiration time for the JWT, and that reduces

its validation time, which is useful for the back-end. However, the fact that the information is not

encrypted (it is simply encoded) it should not contain sensitive personal data.

The usage of the JWT in the Data Marketplace will be as follows:

• The Marketplace will restrict the access to its assets and specifically to all interfaces related to its

assets as well as to all HTTP requests, e.g. GET, POST, PUT, DELETE. Regarding the interfaces

related to the descriptions, the requests to these interfaces will be restricted too, but not for the

GET HTTP request because the descriptions should be accessible to all (with limited content)

because the Marketplace has to promote its contents to the public.

• The users of the Marketplace need to register / create an account (their information will be stored

in the back-end). In order to access the stored (and permitted) information, users should use an

interface so to authorize themselves, using their credentials. Their authorization will result to the

retrieval of a JWT, which they will use in their HTTP requests to the Marketplace.

 D7.5 – v. 1.0

www.policycloud.eu

13

• The JWT will contain all the necessary information of the users along with the expiration period.

The JWT will be signed from the back-end with a secret key (fake JWTs are addressed from the

back-end through the signature - brute force attacks are not addressed but can be limited).

• The front-end,x during users’ login will retrieve their JWTs and use them on their behalf, in the

headers of the HTTP requests to the back-end. By decoding the JWTs, the front-end will have the

most important information of the users. Also, as long as the JWTs are valid (based on the

expiration field), it should be kept it in the users' sessions. If a JWT expires, the user’s session

must end and therefore, the user must login again in order to get access.

• The back-end, when validating a JWT, will decide if a user is actually able to perform an action /

access stored information (based also to other rules / restrictions / access rights).

• The expiration time of a JWT is different when users retrieve it making a request directly to the

back-end instead of a request through the front-end. The reasons about this decision are that a)

the front-end users will not handle the JWTs by themselves (front-end will do), b) they don’t have

access to it and c) they should have longer session (and more time). Unlike front-end users, the

users/services that have direct access to the back-end will be able to have a limited expiration

time, as they know and handle JWT (they are also able to share it to third parties as if they were

sharing their credentials).

The interfaces of the back-end are described below.

2.2.1.1 Interfaces related to Users

This group of APIs offers functionalities intended for the management of Marketplace’s users. The most

important endpoints are those for the user registration as it is necessary for the usage of the other

endpoints, and the endpoint for their authorization, in order to get a JWT. For all users, except for their

personal information, there will be a unique username. The table below presents the endpoints related

to Users as they are in the first version of the Data Marketplace’s back-end.

Action HTTP Method Endpoint

Register a new user (Sign up) POST {HOST}/accounts/users/registration

Check availability of a username GET {HOST}/accounts/username/availability

Authorize a user (Login) POST {HOST}/accounts/users/authorization

Verify users (their email) GET {HOST}/accounts/users/verification/{vc}

Resend verification code to users POST {HOST}/accounts/users/verification/resend

Get user’s information GET {HOST}/accounts/users/information/{username}

Update user’s information PUT {HOST}/accounts/users/information/{username}

Change user’s password POST {HOST}/accounts/users/password/change

Reset user’s password request POST {HOST}/accounts/users/password/reset

Reset user’s password POST {HOST}/accounts/users/password/reset/{prc}

Delete user’s account DELETE {HOST}/accounts/users/delete/{username}

Update user’s email PUT {HOST}/accounts/users/email/{username}

Change user’s profile picture PUT {HOST}/accounts/users/image

Remove user’s profile picture DELETE {HOST}/accounts/users/image/{username}

Get user’s statistics GET {HOST}/accounts/users/statistics/{username}

Get user’s account data GET {HOST}/accounts/users/data

TABLE 1 - BACK-END’S INTERFACES RELATED TO USERS

 D7.5 – v. 1.0

www.policycloud.eu

14

• {HOST} refers to the hosting server: the domain name and the port running the back-end.

• Some of these actions require additional fields in the headers of the HTTP request. Example of a

required field is the JWT.

Below is a more detailed description of all the developed interfaces, and their corresponding actions:

Title: Register a new user (Sign up)

Endpoint: {HOST}/accounts/users/registration

HTTP Method: POST

Description: From this endpoint, Data Marketplace’s user registrations are made. A POST

request should be submitted and the next JSON schema must be in its body

as raw data. It should be noted that a) the email and the username must be

unique and available b) the schema below should be exactly the same,

whether there are values or not (empty strings “”) – the array “social” can be

empty.
{

 "username": "…", "account": {"password": "…"},

 "info": {

 "name": "…", "surname": "…",

 "title": "…", "gender": "…",

 "organization": "…", "phone": "…", "email": "…",

 "about": "…", social": ["…","…"]

 }

}

The headers of the request may contain the key “x-more-time” which is used

only by the front-end in order to get JWTs that are valid for a longer period

(greater expiration value).

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)

Headers: Key Value

x-more-time [Restricted and available only for the

front-end which use an API key]

Front-end’s API key

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

None

Successful Response: JSON Object with a successful message and user’s JWT.

The following is an example of the request in cURL:
curl --request POST '{HOST}/accounts/users/registration' \

--header 'Content-Type: application/json' --header 'x-more-time: <API_KEY>' \

--data-raw '{

 "username": "…", "account": {"password": "…"},

 "info": {

 "name": "…", "surname": "…", title": "…", "gender": "…",

 "organization": "…", "phone": "…", "email": "…",

 "about": "…", social": ["…","…"]

 }

}'
TABLE 2 - REGISTER A NEW USER INTERFACE

 D7.5 – v. 1.0

www.policycloud.eu

15

After a successful registration, the following JSON document is stored in the database:

{

 "_id": "…", // user’s username

 "account": {

"password": "…", // user’s password (hashed)

"role": "user", // user’s role (user or admin)

"verified": "…", // value = 1 if user is verified,

otherwise, it has a verification code to use it for user’s email/account verification

"registration_datetime": "…" // user’s registration date

 },

 "info": {// info provided during user’s registration

"name": "…", "surname": "…", "title":"…", "gender": "…", "organization": "…",

"phone": "…", "email": "…", "about": "…", "social": []

 },

 "profile_parameters": {

"public_email":0, // parameter that determines if the email will be public or not

(values 1 or 0)

"public_phone":0, // parameter that determines if the phone will be public or not

(values 1 or 0)

"profile_image": "default_image_users" // the ID of the user’s profile image

a default image is used for all users

 }

}

Title: Check availability of a username

Endpoint: {HOST}/accounts/username/availability

HTTP Method: GET

Description: This endpoint is used in order to check the availability of a username during

the registration of the users. A GET request should be made and the key “x-

username” must be included in the headers of the request.

Body Data: None

Headers: Key Value

x-username The username whose availability will be

checked.

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

None

Successful Response: Availability status in JSON Object.

The following is an example of the request in cURL:
curl --request GET '{HOST}/accounts/username/availability' --header 'x-username: <value>'

TABLE 3 - CHECK AVAILABILITY OF A USERNAME INTERFACE

 D7.5 – v. 1.0

www.policycloud.eu

16

Title: Authorize a user (Login)

Endpoint: {HOST}/accounts/users/authorization

HTTP Method: POST

Description: Through this endpoint, the users are authorized in order to log in to their

account. The next JSON schema, containing users’ credentials, must be in

the body of the request as raw data. It should be noted that users can log in

either with their email or with their username.
{ "username": "…", "email": "…", "password": "…" }

A successful response will return the next JSON schema that contains the

JWT in the key “token”: {"_status": "successful", "token": "<JWT>"}

The headers of the request may contain the key “x-more-time” which is used

only by the front-end in order to get JWTs that are valid for a longer period

(greater expiration value).

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)

Headers: Key Value

x-more-time [Restricted and available only for the front-

end which use an API key]

Front-end’s API key

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

None

Successful Response: JSON Object with a successful message and user’s JWT.

The following is an example of the request in cURL:
curl --request POST '{HOST}/accounts/users/authorization' \

--header 'x-more-time: <API_KEY>' --header 'Content-Type: application/json' \

--data-raw '{ "username": "…", "email": "…", "password": "…" }'

TABLE 4 - AUTHORIZE A USER (LOGIN) INTERFACE

Title: Verify users (their email)

Endpoint: {HOST}/accounts/users/verification/{vc}

HTTP Method: GET

Description: Through this endpoint, the users can verify their account using the

verification code {vc} that they received in their email during their

registration. For users’ convenience, the email that they receive contains a

URL that directs to the front-end. It should be noted that this endpoint is

also useful for all the occasions that the users’ account gets locked and

needs verification again (e.g. change email).

The headers of the request may contain the key “x-more-time” that is used

only by the front-end in order to get JWTs that are valid for a longer period

(greater expiration value).

Body Data: None

Headers: Key Value

x-more-time [Restricted and available only for the front-

end which use an API key]

Front-end’s API key

URL Parameters: Parameter Value

 D7.5 – v. 1.0

www.policycloud.eu

17

vc The verification code that sent to user’s

email.

Query Parameters: None

Restrictions / Special

Features:

None

Successful Response: JSON Object with a successful message and user’s JWT.

The following is an example of the request in cURL:
curl --request GET '{HOST}/accounts/users/verification/{vc}' --header 'x-more-time: <API_KEY>'

TABLE 5 - VERIFY USERS INTERFACE

Title: Resend verification code to users

Endpoint: {HOST}/accounts/users/verification/resend

HTTP Method: POST

Description: This endpoint is connected to the endpoint above. Its scope is to resend

users’ account/email verification codes. It is useful mainly for the back-end’s

users (those who communicate directly with the back-end) and not for those

who use the front-end, because the latter has mechanisms to retrieve users’

verification codes and send them to users’ emails.

This request requires user’s JWT in the headers of the request, under the key

“x-access-token”, in order to authenticate the user.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

The endpoint is available only to accounts’ owners.

Successful Response: JSON Object with the verification code.

The following is an example of the request in cURL:
curl --request GET '{HOST}/accounts/users/verification/resend' --header 'x-access-token: <JWT>'

TABLE 6 - RESEND VERIFICATION CODE TO USERS INTERFACE

Title: Get user’s information

Endpoint: {HOST}/accounts/users/information/{username}

HTTP Method: GET

Description: This endpoint is used in order to retrieve information about a user. A GET

request should be made and the user’s {username} is required at the end of

the endpoint. Moreover, this endpoint is restricted and thus, the JWT of a

requester must be included in the headers of the request.

It should be noted that the administrators and the accounts’ owners are able

to retrieve all users’ information, while users that retrieve information of

other users retrieve only public information. Private information can be

users’ email and phone, depending on the values of the profile parameters

“public_email” and “public_phone”.

Below are examples of retrieved users’ information, one by an

administrator/account owner (1) and one by a user that retrieves another

 D7.5 – v. 1.0

www.policycloud.eu

18

user’s information (2) - the examples present information retrieval for the

same user.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

username The username of the user whose

information will be retrieved.

Query Parameters: None

Restrictions / Special

Features:

The administrators and the accounts’ owners are able to retrieve all users’

information, while users that retrieve information of other users retrieve

only public information.

Successful Response: JSON Object with a user’s information.

The following is an example of the request in cURL:
curl --request GET '{HOST}/accounts/users/information/{username}' \

--header 'x-access-token: <JWT>'

TABLE 7 - GET USER’S INFORMATION INTERFACE

Example 1

{"_status": "successful", "result": {

"account": {"registration_datetime": "…", "role": "user", "verified": "1"},

"info": {"about": "…", "email": "…", "gender": "…", "name": "…", "organization": "…",

 "phone": "…", "social": [], "surname": "…", "title": "…"

 },

 "profile_parameters": {

 "profile_image": "default_image_users",

 "public_email": 0, "public_phone": 0

 }, "username": "…"

}}

Example 2

{"_status": "successful", "result": {

"account": {"registration_datetime": "…", "role": "user", "verified": "1"},

"info": {"about": "…", "gender": "…", "name": "…", "organization": "…",

 "social": [], "surname": "…", "title": "…"

 },

 "profile_parameters": {"profile_image": "default_image_users"}, "username": "…"

}}

 D7.5 – v. 1.0

www.policycloud.eu

19

Title: Update user’s information

Endpoint: {HOST}/accounts/users/information/{username}

HTTP Method: PUT

Description: This endpoint handles requests for updating users’ information. A PUT

request should be made and the next JSON schema (it is flexible and thus

may contain fewer fields - but no new fields), containing users’ new

information, must be in its body as raw data.
{"info": { "name": "…", "surname": "…", "title": "…",

 "gender": "…", "organization": "…", "phone": "…",

 "social": ["…", "…"], "about": "…"},

"profile_parameters": {"public_email": 1, "public_phone": 0}}

Moreover, this endpoint is restricted and thus, the JWT of a requester must

be included in the headers of the request. It should be noted that only the

accounts’ owners and the administrators are able to update the information

of a user. The latter are not able to change the profile parameters.

Also, the headers of the request may contain the key “x-more-time” which is

used only by the front-end in order to get JWTs that are valid for a longer

period (greater expiration value).

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)

Headers: Key Value

x-access-token Requester’s JWT

x-more-time [Restricted and available only for the front-end

which use an API key]

Front-end’s API key

URL Parameters: Parameter Value

username The username of the user whose information

will be updated.

Query Parameters: None

Restrictions / Special

Features:

Only the accounts’ owners and the administrators are able to update the

information of a user.

Successful Response: A successful response will return the next JSON Object that contains a new

JWT in the key “token”:
{"_status": "successful", "message": "The information of the user

'{username}' has been updated.", "token": "<JWT>"}

The following is an example of the request in cURL:
curl --request PUT '{HOST}/accounts/users/information/{username}' \

--header 'x-access-token: <JWT>' --header 'x-more-time: <API_KEY>' \

--header 'Content-Type: application/json' \

--data-raw '{"info": { "name": "…", "surname": "…", …}, … }'

TABLE 8 - UPDATE USER’S INFORMATION INTERFACE

Title: Change user’s password

Endpoint: {HOST}/accounts/users/password/change

HTTP Method: POST

Description: This endpoint is used when the users want to change their account’s

password. A POST request should be made and the next JSON schema,

containing users’ new and old password, must be in its body as raw data.

Also, this endpoint is restricted and thus, the JWT of a requester must be

included in the headers of the request. It should be noted that this action is

only available to accounts’ owners.

 D7.5 – v. 1.0

www.policycloud.eu

20

{ "old_password": "…", "new_password": "…", "confirm_new_password": "…"}

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

Only available to accounts’ owners. The new password must not be the same

with previous password.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request POST '{HOST}/accounts/users/password/change' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-raw '{ "old_password": "…", "new_password": "…", "confirm_new_password": "…"}'

TABLE 9 - CHANGE USER’S PASSWORD INTERFACE

Title: Reset user’s password request

Endpoint: {HOST}/accounts/users/password/reset

HTTP Method: POST

Description: This endpoint handles the first step of the password reset process. The users

who forgot their passwords have to make a password reset request first,

sending a POST request to this endpoint with the next JSON schema in its

body. It should be noted that it is not necessary to use both fields – at least

one of the two is sufficient/required.
{"username": "…", "email": "…"}

Another important note is that this endpoint is available only through the

mechanisms of the front-end which sends to the users’ emails a password

reset link that contains a generated password reset code. The generated

password reset codes are valid only for an hour (1 hour).

The password reset link redirects to a front-end’s form from which the users

can set their new password. After the submission of the form, the front-end

uses the next interface in order to change the password of the user.

The headers of the request must contain the front-end’s API key.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)

Headers: Key Value

x-api-key Front-end’s API key

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

Only available to the front-end.

Successful Response: JSON Object with a successful message and the password reset code in its

content.

The following is an example of the request in cURL:
curl --request POST '{HOST}/accounts/users/password/reset' --header 'x-api-key: <API_KEY>' \

--header 'Content-Type: application/json' --data-raw '{"username": "…", "email": "…"}'

TABLE 10 - RESET USER’S PASSWORD REQUEST INTERFACE

 D7.5 – v. 1.0

www.policycloud.eu

21

Title: Reset user’s password

Endpoint: {HOST}/accounts/users/password/reset/{prc}

HTTP Method: POST

Description: This endpoint is connected to the above endpoint and handles the second

step of the password reset process. The users will open the password reset

link that they received in their email, which redirects to a front-end’s form

from which the users are able to set their new password. After the

submission of the form, the front-end sends a request to the current

interface in order finish the process.

The password reset code {prc} that the users received in their email must

be in the request’s URL and the following JSON schema should be in the body

of the request.
{ "new_password": "…", "confirm_new_password": "…"}

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)

Headers: None

URL Parameters: Parameter Value

prc The password reset code that the users’

received in their email.

Query Parameters: None

Restrictions / Special

Features:

None

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request POST '{HOST}/accounts/users/password/reset/{prc}' \

--header 'Content-Type: application/json' \

--data-raw '{ "new_password": "…", "confirm_new_password": "…"}'
TABLE 11 - RESET USER’S PASSWORD INTERFACE

Title: Delete user’s account

Endpoint: {HOST}/accounts/users/delete/{username}

HTTP Method: DELETE

Description: In order to delete an account, this endpoint should be used, making a

DELETE request and providing requester’s password in its body, as raw data

(JSON format). The endpoint must contain the user’s {username} at the end

of the URL.
{ "password": "…" }

The endpoint is restricted and thus, the JWT of a requester must be included

in the headers of the request. This action is available to accounts’ owners

and to administrators who are able to delete users from the Marketplace. If

the action is made by an administrator, the field “password” in the body

should be administrator’s password.

An important note is that the deletion of an account has as result the

deletion of all user’s data, offered descriptions and assets.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

 D7.5 – v. 1.0

www.policycloud.eu

22

username The username of the user whose account

will be deleted.

Query Parameters: None

Restrictions / Special

Features:

Only the accounts’ owners and the administrators are able to delete an

account/user.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request DELETE '{HOST}/accounts/users/delete/{username}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-raw '{ "password": "…" }'
TABLE 12 - DELETE USER’S ACCOUNT INTERFACE

Title: Change user’s email

Endpoint: {HOST}/accounts/users/email/{username}

HTTP Method: PUT

Description: This endpoint is used in order to update the emails of the users. This action

is also possible through the endpoint for update users’ information, but it is

important to have the current endpoint because the email is an important

field for all accounts. The next JSON schema must be in the request’s body

as raw data:
{ "new_email": "…" }

The endpoint is restricted and thus, the JWT of a requester must be included

in the headers of the request. This action is available only to accounts

owners and administrators. If the action is made by the accounts’ owners,

their accounts will get locked until they will verify their new email (using the

endpoint for the emails’ verification). In case that this action is made by an

administrator, the account does not get locked.

Also, the headers of the request may contain the key “x-more-time” which is

used only by the front-end in order to get JWTs that are valid for a longer

period (greater expiration value).

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)

Headers: Key Value

x-access-token Requester’s JWT

x-more-time [Restricted and available only for the front-

end which use an API key]

Front-end’s API key

URL Parameters: Parameter Value

username The username of the user whose email will

be updated.

Query Parameters: None

Restrictions / Special

Features:

Only the accounts’ owners and the administrators are able to update users’

email.

Successful Response: JSON Object with a successful message along with a new JWT. It may contain

a verification code only if the action is made by accounts’ owners.

The following is an example of the request in cURL:
curl --request PUT '{HOST}/accounts/users/email/{username}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-raw '{ "new_email": "…" }'
TABLE 13 - CHANGE USER’S EMAIL INTERFACE

 D7.5 – v. 1.0

www.policycloud.eu

23

Title: Change user’s profile picture

Endpoint: {HOST}/accounts/users/image

HTTP Method: PUT

Description: All users have a default profile image from their registration and through

this endpoint are able to change it. The endpoint is restricted and available

only to accounts owners and thus, the JWT of a requester must be included

in the headers of the request.

Also, the headers of the request may contain the key “x-more-time” which is

used only by the front-end in order to get JWTs that are valid for a longer

period (greater expiration value).

Body Data: Data Type: Form Data

Key Value

asset Binary data / Path to image

Headers: Key Value

x-access-token Requester’s JWT

x-more-time [Restricted and available only for the front-

end which use an API key]

Front-end’s API key

x-mimetype Image’s mimetype (Only JPEG and PNG

images are allowed)

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

Available only to accounts’ owners.

Successful Response: A successful response will return the next JSON Object that contains a new

JWT in the key “token”:
{"_status": "successful", "message": "The profile image of the user

'{username}' has been changed.", "token": "<JWT>"}

The following is an example of the request in cURL:
curl --request POST '{HOST}/accounts/users/image' --header 'x-access-token: <JWT>' \

--header 'x-more-time: <API_KEY>' --header 'x-mimetype: <image’s mimetype>' \

--form 'asset=@"<full_path_to_image>"'
TABLE 14 - CHANGE USER’S PROFILE PICTURE INTERFACE

Title: Remove user’s profile picture

Endpoint: {HOST}/accounts/users/image/{username}

HTTP Method: DELETE

Description: This endpoint is used in order to delete users’ profile images. The

{username} of the user whose profile image will be deleted should be in the

URL. This action deletes users’ images and replaces them with the default

image which is used for all users.

The endpoint is restricted and thus, the JWT of a requester must be included

in the headers of the request. It should be noted that only the accounts’

owners and the administrators are able to delete users’ profile image.

Also, the headers of the request may contain the key “x-more-time” which is

used only by the front-end in order to get JWTs that are valid for a longer

period (greater expiration value).

Body Data: None

Headers: Key Value

 D7.5 – v. 1.0

www.policycloud.eu

24

x-access-token Requester’s JWT

x-more-time [Restricted and available only for the front-

end which use an API key]

Front-end’s API key

URL Parameters: Parameter Value

username The username of the user whose profile

image will be deleted.

Query Parameters: None

Restrictions / Special

Features:

Available only to accounts’ owners and administrators.

Successful Response: A successful response will return the next JSON Object that contains a new

JWT in the key “token”:
{"_status": "successful", "message": "The profile image of the user

'{username}' has been removed.", "token": "<JWT>"}

The following is an example of the request in cURL:

curl --request DELETE '{HOST}/accounts/users/image/{username}' \

--header 'x-access-token: <JWT>' --header 'x-more-time: <API_KEY>'

TABLE 15 - REMOVE USER’S PROFILE PICTURE INTERFACE

Title: Get user’s statistics

Endpoint: {HOST}/accounts/users/statistics/{username}

HTTP Method: GET

Description: This endpoint is used in order to get some statistics about a user whose

{username} is in the URL of the GET request. It is used in users’ profiles

where their contribution with offerings to the Marketplace is presented.

The endpoint is restricted and thus, the JWT of a requester must be included

in the headers of the request.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

username The username of the user whose statistics

will be retrieved.

Query Parameters: None

Restrictions / Special

Features:

Available to all authorized users.

Successful Response: JSON Object with a successful message and statistics as follows:
{"_status": "successful", "results": {

 "total_descriptions": 0, "approved_descriptions": 0,
 "assets_uploaded": 0, "total_downloads": 0,
 "total_views": 0, "total_reviews": 0, "average_rating": 0

}}

The following is an example of the request in cURL:
curl --request GET '{HOST}/accounts/users/statistics/{username}' --header 'x-access-token: <JWT>'

TABLE 16 - GET USER’S STATISTICS INTERFACE

 D7.5 – v. 1.0

www.policycloud.eu

25

Title: Get user’s account data

Endpoint: {HOST}/accounts/users/data

HTTP Method: GET

Description: This endpoint, which is available only to accounts’ owners, returns all

personalized data of the requester. More specifically, it returns users’

information, uploaded descriptions, reviews to descriptions and other

collected statistics.

The endpoint is restricted and thus, the JWT of a requester must be included

in the headers of the request

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

Available only to accounts’ owners.

Successful Response: A JSON Object with users’ data (as file).

The following is an example of the request in cURL:
curl --request GET '{HOST}/accounts/users/data' --header 'x-access-token: <JWT>'

TABLE 17 - GET USER’S ACCOUNT DATA INTERFACE

2.2.1.2 Interfaces related to Descriptions

This group of APIs offers functionalities intended for the management of the descriptions. They support

all CRUD operations as well as the search functionality. Special emphasis was placed on the APIs for the

descriptions’ retrieval, extending them so as to get the latest descriptions or even random descriptions

either from a specific collection (database collection) or from all the collections at once, using the keyword

“all”. The collections of the database as well as the Marketplace’s offered types of assets, vary. The current

list of the collections can be found at the end of Table 18, which presents the endpoints related to the

Descriptions as they were stated in the first version of the back-end.

Action HTTP

Method

Endpoint

Get descriptions’ collections GET {HOST}/descriptions

Get a list with all descriptions GET {HOST}/descriptions/all

Get a list with all descriptions from a specific

collection

GET {HOST}/descriptions/{collection}

Get a specific description (using keyword “all”) GET {HOST}/descriptions/all/{description_id}

Get a specific description (using description’s

“collection”)

GET {HOST}/descriptions/{collection}/{descrip

tion_id}

Get latest descriptions from all collections GET {HOST}/descriptions/all/latest

Get latest descriptions from a collection GET {HOST}/descriptions/{collection}/latest

Get random descriptions from all collections GET {HOST}/descriptions/all/random

Get random descriptions from a specific

collection

GET {HOST}/descriptions/{collection}/random

Get a list with all descriptions provided by a

specific user (using keyword “all”)

GET {HOST}/descriptions/provider/{username

}/all

 D7.5 – v. 1.0

www.policycloud.eu

26

Get a list with all descriptions provided by a

specific user and under a specific collection

(using a “collection” value)

GET {HOST}/descriptions/provider/{username

}/{collection}

Get descriptions’ statistics (useful for front-

end’s homepage)

GET {HOST}/descriptions/statistics

Upload / Create a new description with

random ID

POST {HOST}/descriptions/{collection}

Upload / Create a new description with given

ID

POST {HOST}/descriptions/{collection}/{given_i

d}

Update a specific description (using keyword

“all”)

PUT {HOST}/descriptions/all/{description_id}

Update a specific description (using

description’s “collection”)

PUT {HOST}/descriptions/{collection}/{descrip

tion_id}

Delete a specific description (using keyword

“all”)

DELETE {HOST}/descriptions/all/{description_id}

Delete a specific description (using

description’s “collection”)

DELETE {HOST}/descriptions/{collection}/{descrip

tion_id}

Delete all descriptions (administrators’ action) DELETE {HOST}/descriptions/all/all

Delete all descriptions from a specific

collection (administrators’ action)

DELETE {HOST}/descriptions/{collection}/all

Make a review for a description POST {HOST}/descriptions/review/{description_

id}

Update an existing review for a description PUT {HOST}/descriptions/review/{description_

id}

Delete a review for a description DELETE {HOST}/descriptions/review/{description_

id}

Get a list with the reviews made by a specific

user

GET {HOST}/descriptions/review/{username}

Get a list with all descriptions that need

permission (administrators’ action)

GET {HOST}/descriptions/permit/all

Get a list with all descriptions from a specific

collection that need permission

(administrators’ action)

GET {HOST}/descriptions/permit/{collection}

Approve or reject a specific description that

need permission, using keyword “all”

(administrators’ action)

POST {HOST}/descriptions/permit/all/{descripti

on_id}

Approve or reject a specific description that

need permission, using description’s

“collection” (administrators’ action)

POST {HOST}/descriptions/permit/{collection}/{

description_id}

Approve or reject all descriptions that need

permission, using keyword “all”

(administrators’ action)

POST {HOST}/descriptions/permit/all/all

Approve or reject all descriptions that need

permission under a specific collection, using a

“collection” value (administrators’ action)

POST {HOST}/descriptions/permit/{collection}/a

ll

TABLE 18 - BACK-END’S INTERFACES RELATED TO DESCRIPTIONS

 D7.5 – v. 1.0

www.policycloud.eu

27

• {HOST} refers to the hosting server: the domain name and the port running the back-end.

• {description_id} refers to the ID of a specific description.

• {given_id} is used in upload description action, providing new description’s ID.

• As a {collection} can be one of the following values derived from the current types of offered

assets:

{"algorithms", "tools", "policies", "datasets",

"webinars", "tutorials", "documents", "externals",

"other"}

• Some of these actions require additional fields in the headers of the HTTP request. Example of a

required field is the JWT.

Below is a more detailed description of all table’s interfaces/actions:

Title: Get descriptions’ collections

Endpoint: {HOST}/descriptions

HTTP Method: GET

Description: This endpoint returns a list with the sub-routes of the “description”

endpoint. More specifically, returns the values of the {collection} parameter

which are also the database’s collections and the types of the offered assets.

Body Data: None

Headers: None

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

None

Successful Response: A text/plain list with the back-end’s collections.

The following is an example of the request in cURL:
curl --request GET '{HOST}/descriptions'

TABLE 19 - GET DESCRIPTIONS’ COLLECTIONS INTERFACE

Title: Get a list with all descriptions

Endpoint: {HOST}/descriptions/all

HTTP Method: GET

Description: A request to this endpoint will result in the retrieval of the stored

descriptions from all collections. It uses the keyword “all” instead of a specific

collection and that makes the platform to retrieve descriptions from all

collections at once. The descriptions that return from this request are in a

short schema (short description) and that means that the retrieved

information is limited. An example of a description in short schema is the

following JSON schema:
{"collection": "algorithms", "id": "algorithms_vlLZWaoQN1Fe ",

 "info": {

 "fieldOfUse": ["information"], "owner": "Vasilis Koukos",

 "short_desc": "This is an example", "type": "algorithms",

 "subtype": "-", "title": "Example title."},

 "main_image": "default_image_assets",

 "metadata": {"provider": "vkoukos",

 "reviews": {"average_rating": 4.2, "no_reviews": 14},

 D7.5 – v. 1.0

www.policycloud.eu

28

 "updateDate": "…", "uploadDate": "…", "views": 35

} }

This endpoint can get query parameters in order to search for descriptions

that meet certain conditions. As a query parameter can be any pair of key-

value while additional search operators can be used for more advanced and

enhanced search. More details about searching can be found in section

2.2.1.3. In addition to these, this endpoint offers some standard query

parameters that are described below (Query Parameters).

Body Data: None

Headers: None

URL Parameters: None

Query Parameters: Key Value

sortBy [Optional] Sorts the descriptions by a field – the

default is the “newest” key. The value should be

one of the following:

"newest": sort by date in descending order.

"oldest": sort by date in ascending order.

"rating-asc": sort by average rating in ascending

order.

"rating-desc": sort by average rating in

descending order.

"views-asc": sort by the number of views in

ascending order.

"views-desc": sort by the number of views in

descending order.

"title": sort by title in ascending order.

itemsPerPage [Optional] Returns the results separated in pages

(arrays) of N items. The number N is specified by

the value of this key. The value N must be an

integer number greater or equal to 1. If the key is

not used or has a non-accepted value, the results

are returned on a single page.

page [Optional] This key can only be used if the

“itemsPerPage” key is also used. If it is used, it

returns only the specified (by key’s value) page

instead of all pages created using the key

“itemsPerPage”. The value must be an integer

number greater or equal to 1. The default value is

0, which means that all pages will be returned.

Any key to search

(refer to section

2.2.1.3)

Any value to search (refer to section 2.2.1.3).

Restrictions / Special

Features:

None

Successful Response: A JSON Object with the results (all descriptions from all collections). If the

query parameter “itemsPerPage” is used, then the results contain the total

number of the pages.

 D7.5 – v. 1.0

www.policycloud.eu

29

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/descriptions/all'

+ curl --request GET '{HOST}/descriptions/all?sortBy={value}'

+ curl --request GET '{HOST}/descriptions/all?itemsPerPage={value}'

+ curl --request GET '{HOST}/descriptions/all?itemsPerPage={value}&page={value}'

+ curl --request GET '{HOST}/descriptions/all?sortBy={value}&itemsPerPage={value}'

+ curl --request GET '{HOST}/descriptions/all?sortBy={value}&itemsPerPage={value}&page={value}'

Example of retrieving 10 most viewed descriptions:

+ curl --request GET '{HOST}/descriptions/all?sortBy=views-desc&itemsPerPage=10&page=1'

TABLE 20 - GET A LIST WITH ALL DESCRIPTIONS INTERFACE

Title: Get a list with all descriptions from a specific collection

Endpoint: {HOST}/descriptions/{collection}

HTTP Method: GET

Description: This request is similar to the above request. The only difference between

these two actions is that this request retrieves descriptions from a single

and specific collection (instead of using keyword “all”). For more details, refer

to the above endpoint.

Body Data: None

Headers: None

URL Parameters: Parameter Value

collection Valid values:

{"algorithms", "tools", "policies", "datasets",

"webinars", "tutorials", "documents",

"externals", "other"}

Query Parameters: As in the above request.

Restrictions / Special

Features:

None

Successful Response: A JSON Object with the results (all descriptions in a specific collection).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/descriptions/{collection}'

+ curl --request GET \

 '{HOST}/descriptions/{collection}?sortBy={value}&itemsPerPage={value}&page={value}'
TABLE 21 - GET A LIST WITH ALL DESCRIPTIONS FROM A SPECIFIC COLLECTION INTERFACE

Title: Get a specific description (using keyword “all”)

Endpoint: {HOST}/descriptions/all/{description_id}

HTTP Method: GET

Description: With this request, the users are able to retrieve a specific description. The

retrieval of a specific description is possible using its unique identification

code (ID), known when uploading it. Also, the retrieval of a specific

description can be done using both keyword “all” and the name of the

collection that the description has been stored (next interface). This is

feasible because the back-end ensures that the IDs are unique regardless of

in which collection a description has been stored.

Moreover, the retrieval of a specific description requires a JWT in order to be

retrieved in its “full schema”. If requester’s JWT is missing, then the endpoint

returns the short schema of the description. Example of a full schema is in

the endpoint that handles the uploading of a description.

 D7.5 – v. 1.0

www.policycloud.eu

30

This endpoint, except for the full schema, also returns the reviews of the

specified description.

Body Data: None

Headers: Key Value

x-access-token [Optional, it should be used in order to

retrieve the full schema of a description]

Requester’s JWT

URL Parameters: Parameter Value

description_id The ID of the description that will be

retrieved.

Query Parameters: None

Restrictions / Special

Features:

The full schema is available only to authorized (and verified) users,

otherwise, the short schema is available to all.

Successful Response: A JSON Object with the description in the results.

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/descriptions/all/{description_id}'

+ curl --request GET '{HOST}/descriptions/all/{description_id}' --header 'x-access-token: <JWT>'

TABLE 22 - GET A SPECIFIC DESCRIPTION (USING KEYWORD “ALL”) INTERFACE

Title: Get a specific description (using description’s “collection”)

Endpoint: {HOST}/descriptions/{collection}/{description_id}

HTTP Method: GET

Description: This request is similar to the above request, with the difference that it uses

description’s collection for the retrieval of the description (instead of using

keyword “all”). The value of the {collection} must be the collection in which

the specific description has been stored. More information about the

endpoint can be found on the above endpoint.

Body Data: None

Headers: Key Value

x-access-token [Optional, it should be used in order to

retrieve the full schema of a description]

Requester’s JWT

URL Parameters: Parameter Value

collection Valid values:

{"algorithms", "tools", "policies", "datasets",

"webinars", "tutorials", "documents",

"externals", "other"}

description_id The ID of the description that will be

retrieved.

Query Parameters: None

Restrictions / Special

Features:

The full schema is available only to authorized (and verified) users,

otherwise, the short schema is available to all.

Successful Response: A JSON Object with the description in the results.

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/descriptions/{collection}/{description_id}'

+ curl --request GET '{HOST}/descriptions/{collection}/{description_id}' \

 --header 'x-access-token: <JWT>'

TABLE 23 - GET A SPECIFIC DESCRIPTION (USING DESCRIPTION’S “COLLECTION”) INTERFACE

 D7.5 – v. 1.0

www.policycloud.eu

31

Title: Get latest descriptions from all collections

Endpoint: {HOST}/descriptions/all/latest

HTTP Method: GET

Description: This request is used to retrieve the most recent uploaded descriptions

sorted based on the date that they have been uploaded, with the most

recent being on the top of the list. This request uses the keyword “all” and

returns the K latest descriptions from all collections. The value of K can be

specified through the query parameter “max” (the default value is 20). The

descriptions are returned in their short schema.

This endpoint can get query parameters in order to search for descriptions

that meet certain conditions. As a query parameter can be any pair of key-

value while additional search operators can be used for more advanced and

enhanced search. More details about searching can be found in section

2.2.1.3.

Finally, the endpoint “Get a list with all descriptions” can return the same

results as the current, if the example at the end will be followed.

Body Data: None

Headers: None

URL Parameters: None

Query Parameters: Key Value

max Integer value greater than 0 – Default: 20

Any key to search (refer to

section 2.2.1.3)

Any value to search (refer to section 2.2.1.3).

Restrictions / Special

Features:

None

Successful Response: A JSON Object with the results (latest descriptions from all collections).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/descriptions/all/latest'

+ curl --request GET '{HOST}/descriptions/all/latest?max=5'

Example of similar response by the endpoint “Get a list with all descriptions”:

+ curl --request GET '{HOST}/descriptions/all?sortBy=newest&itemsPerPage=20&page=1'

TABLE 24 - GET LATEST DESCRIPTIONS FROM ALL COLLECTIONS INTERFACE

Title: Get latest descriptions from a specific collection

Endpoint: {HOST}/descriptions/{collection}/latest

HTTP Method: GET

Description: This request is similar to the above request. It uses the value of a specific

collection and not the keyword “all” and this results to return sorted the K

most recent descriptions of the provided collection. The value of K can be

specified through query parameter “max” (the default value is 20). The

descriptions are returned in their short schema.

This endpoint can get query parameters in order to search for descriptions

that meet certain conditions. As a query parameter can be any pair of key-

value while additional search operators can be used for more advanced and

enhanced search. More details about searching can be found in section

2.2.1.3.

 D7.5 – v. 1.0

www.policycloud.eu

32

Finally, the endpoint “Get a list with all descriptions from a specific collection”

can return the same results as the current, if the example at the end will be

followed.

Body Data: None

Headers: None

URL Parameters: Parameter Value

collection Valid values:

{"algorithms", "tools", "policies", "datasets",

"webinars", "tutorials", "documents",

"externals", "other"}

Query Parameters: Key Value

max Integer value greater than 0 – Default: 20

Any key to search (refer to

section 2.2.1.3)

Any value to search (refer to section 2.2.1.3).

Restrictions / Special

Features:

None

Successful Response: A JSON Object with the results (latest descriptions of a collection).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/descriptions/{collection}/latest'

+ curl --request GET '{HOST}/descriptions/{collection}/latest?max=5'

Example of similar response by the endpoint “Get a list with all descriptions from a specific

collection”:

+ curl --request GET '{HOST}/descriptions/{collection}?sortBy=newest&itemsPerPage=20&page=1'
TABLE 25 - GET LATEST DESCRIPTIONS FROM A SPECIFIC COLLECTION INTERFACE

Title: Get random descriptions from all collections

Endpoint: {HOST}/descriptions/all/random

HTTP Method: GET

Description: This endpoint returns a number of random descriptions from all collections

(uses keyword “all”). It is useful in order to suggest and promote different

descriptions each time. It is also used in the home page of the Data

Marketplace, where random descriptions are displayed. Through the query

parameter “max” can return K descriptions, where K can be specified by the

users (the default value is 4). The descriptions are returned in their short

schema.

Body Data: None

Headers: None

URL Parameters: None

Query Parameters: Key Value

max Integer value greater than 0 – Default: 20

Restrictions / Special

Features:

None

Successful Response: A JSON Object with the results (random descriptions from all collections).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/descriptions/all/random'

+ curl --request GET '{HOST}/descriptions/all/random?max=5'

TABLE 26 - GET RANDOM DESCRIPTIONS FROM ALL COLLECTIONS INTERFACE

 D7.5 – v. 1.0

www.policycloud.eu

33

Title: Get random descriptions from a specific collection

Endpoint: {HOST}/descriptions/{collection}/random

HTTP Method: GET

Description: This endpoint is similar to the above endpoint. Instead of keyword “all” it

uses a specific collection and thus it returns a number of K random

descriptions of the provided specific collection. The value of K can be

specified through query parameter “max” (the default value is 4). The

descriptions are returned in their short schema.

Body Data: None

Headers: None

URL Parameters: Parameter Value

collection Valid values:

{"algorithms", "tools", "policies", "datasets",

"webinars", "tutorials", "documents",

"externals", "other"}

Query Parameters: Key Value

max Integer value greater than 0 – Default: 20

Restrictions / Special

Features:

None

Successful Response: A JSON Object with the results (random descriptions of a collection).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/descriptions/{collection}/random'

+ curl --request GET '{HOST}/descriptions/{collection}/random?max=5'

TABLE 27 - GET RANDOM DESCRIPTIONS FROM A SPECIFIC COLLECTION INTERFACE

Title: Get a list with all descriptions provided by a specific user (using keyword

“all”)

Endpoint: {HOST}/descriptions/provider/{username}/all

HTTP Method: GET

Description: This request returns all the descriptions that have been provided by the user

whose {username} is part of the request's URL. It uses the keyword “all”

instead of a specific collection and that makes the platform to retrieve its

provided descriptions from all collections at once. The descriptions are

returned in their short schema.

Moreover, the endpoint is restricted and thus, the JWT of a requester must

be included in the headers of the request. It should be noted that the

accounts’ owners who use this endpoint in order to retrieve their uploaded

descriptions, except for the retrieval of the approved descriptions, they also

retrieve “pending” descriptions (e.g. the descriptions that they uploaded and

need administrators’ approval).

Finally, the endpoint offers some standard query parameters that specify

the format of the results and are described below (Query Parameters).

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

 D7.5 – v. 1.0

www.policycloud.eu

34

username The username of the user whose offered

descriptions will be retrieved.

Query Parameters: Key Value

sortBy [Optional] Sorts the descriptions by a field – the

default is the “newest” key. The value should be one

of the following:

"newest": sort by date in descending order.

"oldest": sort by date in ascending order.

"rating-asc": sort by average rating in ascending

order.

"rating-desc": sort by average rating in descending

order.

"views-asc": sort by the number of views in

ascending order.

"views-desc": sort by the number of views in

descending order.

"title": sort by title in ascending order.

itemsPerPage [Optional] Returns the results separated in pages

(arrays) of N items. The number N is specified by

the value of this key. The value N must be an integer

number greater or equal to 1. If the key is not used

or has a non-accepted value, the results are

returned on a single page.

page [Optional] This key can only be used if the

“itemsPerPage” key is also used. If it is used, it

returns only the specified (by key’s value) page

instead of all pages created using the key

“itemsPerPage”. The value must be an integer

number greater or equal to 1. The default value is

0, which means that all pages will be returned.

Restrictions / Special

Features:

None

Successful Response: A JSON Object with the results (all descriptions provided by a user from all

collections). If the query parameter “itemsPerPage” is used, then the results

contain the total number of the pages.

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/descriptions/provider/{username}/all'

+ curl --request GET '{HOST}/descriptions/provider/{username}/all?sortBy={value}'

+ curl --request GET '{HOST}/descriptions/provider/{username}/all?itemsPerPage={value}'

+ curl --request GET '…?itemsPerPage={value}&page={value}'

+ curl --request GET '…?sortBy={value}&itemsPerPage={value}'

+ curl --request GET '…?sortBy={value}&itemsPerPage={value}&page={value}'

TABLE 28 - GET A LIST WITH ALL DESCRIPTIONS PROVIDED BY A SPECIFIC USER (USING KEYWORD “ALL”) INTERFACE

 D7.5 – v. 1.0

www.policycloud.eu

35

Title: Get a list with all descriptions provided by a specific user and under a

specific collection (using a “collection” value)

Endpoint: {HOST}/descriptions/provider/{username}/{collection}

HTTP Method: GET

Description: This request is similar to the above request. The only difference between

these two actions is that this request retrieves all descriptions provided by

a specific user and from a single / specific collection (instead of using

keyword “all”). The endpoint is restricted and thus, the JWT of a requester

must be included in the headers of the request. For more details, refer to

the above endpoint.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

username The username of the user whose offered

descriptions will be retrieved.

collection Valid values:

{"algorithms", "tools", "policies", "datasets",

"webinars", "tutorials", "documents",

"externals", "other"}

Query Parameters: As in the above request.

Restrictions / Special

Features:

None

Successful Response: A JSON Object with the results (all descriptions provided by a user from a

specific collection). If the query parameter “itemsPerPage” is used, then the

results contain the total number of the pages.

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/descriptions/provider/{username}/{collection}'

+ curl --request GET '{HOST}/descriptions/provider/{username}/{collection}?sortBy={value}'

+ curl --request GET '{HOST}/descriptions/provider/{username}/{collection}?itemsPerPage={value}'

+ curl --request GET '…?itemsPerPage={value}&page={value}'

+ curl --request GET '…?sortBy={value}&itemsPerPage={value}'

+ curl --request GET '…?sortBy={value}&itemsPerPage={value}&page={value}'
TABLE 29 - GET A LIST WITH ALL DESCRIPTIONS PROVIDED BY A SPECIFIC USER AND UNDER A SPECIFIC COLLECTION (USING A

“COLLECTION” VALUE) INTERFACE

Title: Get descriptions’ statistics (useful for front-end’s homepage)

Endpoint: {HOST}/descriptions/statistics

HTTP Method: GET

Description: A request to this endpoint has as result the retrieval of some statistics on

stored (and approved) descriptions (and collections). Briefly, the response

contains:

• the total number of descriptions,

• the number of descriptions per collection, and

• top 3 collections with the most descriptions as well as their

percentages of the total number.

Body Data: None

Headers: None

URL Parameters: None

 D7.5 – v. 1.0

www.policycloud.eu

36

Query Parameters: None

Restrictions / Special

Features:

None

Successful Response: A JSON Object with the descriptions’ statistics. Example of a response:
{"_status": "successful", "results": {

 "all": {"algorithms": 15, "datasets": 22, "documents": 5,

 "externals": 2, "other": 0, "policies": 20, "tools": 6,

 "tutorials": 4, "webinars": 3}, "sum": 77,

 "top": [

 {"collection": "datasets", "descriptions": 22, "percentage": 0.28},

 {"collection": "policies", "descriptions": 20, "percentage": 0.26},

 {"collection": "algorithms", "descriptions": 15, "percentage": 0.19}]

}}

The following is an example of the request in cURL:
curl --request GET '{HOST}/descriptions/statistics'

TABLE 30 - GET DESCRIPTIONS’ STATISTICS (USEFUL FOR FRONT-END’S HOMEPAGE) INTERFACE

Title: Upload / Create a new description with random ID

Endpoint: {HOST}/descriptions/{collection}

HTTP Method: POST

Description: Through this POST request, the users can upload their descriptions. It

requires users-providers to specify (at the end of the endpoint) the collection

in which the description will be stored. Also, the providers should include

their JWTs in the headers of the request because the endpoint is available

only to authorized (and verified) users.

An important note is that all new descriptions uploaded to the Marketplace

must be approved by an administrator before they can be made available

to other users. Moreover, the administrators can upload a description on

behalf of other user, adding the key “x-provider” in the headers of the

request.

The body of the request must contain the description as raw data in JSON

format. The schema of the descriptions’ content varies, and it is flexible to

be extended. The JSON schema below, presents the required fields of a

description.
{

 "title": "<title of the asset>",

 "description ": "<description of the provided asset>",

 "type": "<type of the asset (same as collection’s value)>",

 "subtype": "<the subtype of the asset, if any, otherwise empty

 string or a dash (-)>",

 "comments": "<a private field that is shown only when the full schema

 is retrieved (only by authorized users) – useful for

 provider’s private comments>",

 "fieldOfUse": ["<field 1>", …],

 "owner ": "<organization / author / etc.>",

}

The front-end has appropriate forms that build such descriptions.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)

It should be noted that the descriptions can also be uploaded from binary

files that contain the above JSON schema (example in curl can be found at

the end of the interface).

Headers: Key Value

x-access-token Requester’s JWT

 D7.5 – v. 1.0

www.policycloud.eu

37

x-provider [Optional & only for administrators] The

username of the provider in case that the

description is uploaded by an administrator and

not by the provider.

URL Parameters: Parameter Value

collection Valid values:

{"algorithms", "tools", "policies", "datasets",

"webinars", "tutorials", "documents",

"externals", "other"}

Query Parameters: None

Restrictions / Special

Features:

Available to all authorized (and verified) users. The administrators can

upload a description on behalf of other users.

Successful Response: JSON Object with the new description’s ID in its content.

The following is an example of the request in cURL:
curl --request POST '{HOST}/descriptions/{collection}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-raw '{

 "title": "<title of the asset>", "description ": "<description of the provided asset>",

 "type": "<type of the asset (same as collection’s value)>",

 "subtype": "<the subtype of the asset, if any, otherwise empty string or a dash (-)>",

 "comments": "<a private field that is shown only when the full schema is retrieved

 (only by authorized users) – useful for private comments>",

 "fieldOfUse": ["<field 1>", …], "owner ": "<organization / author / etc.>",

}'

Example of uploading a description through binary data/file:

curl --request POST '{HOST}/descriptions/{collection}' --header 'x-access-token: <JWT>' \

--header 'Content-Type: application/json' --data-binary '@<path_to_json_file>'

TABLE 31 - UPLOAD / CREATE A NEW DESCRIPTION WITH RANDOM ID INTERFACE

Below are some examples of the stored descriptions’ schema:

Example 1 - Newly uploaded description with no assets

{

 "id": "others_P8fYOAX67HkK-8fpe1TlB-KuR4-Zsck",

 "info": {"comments": "Private comment.", "contact": "Vasilis Koukos, email",

 "description": "This is an example of description.",

 "fieldOfUse": ["testing", "documentation"]"], "owner": "UPRC",

 "subtype": "-", "title": "Example.", "type": "others"},

 "main_image": "default_image_assets",

 "metadata": {"approved": 1, //0 for pending / 1 for approved

 "last_updated_by": "vkoukos", "md5": "<md5 hash of the description>",

 "provider": "vkoukos", "reviews": {"average_rating": 3.2, "no_reviews": 5},

 "updateDate": "2021-10-11 13:50:48.420Z", "uploadDate": "2021-10-11 13:50:48.420Z",

 "version": 1, //the version of the description - increases when updating

 "views": 8},

 "assets": {"files": [], //list with the uploaded files for this description

 "images": [], //list with the uploaded images for this description

 "links": [], //list with the external links added to this description

 "videos": [] //list with the uploaded videos for this description

 }

}

 D7.5 – v. 1.0

www.policycloud.eu

38

Example 2 – Description with uploaded file

{

 "id": "others_P8fYOAX67HkK-8fpe1TlB-KuR4-Zsck",

 …

 "assets": {

 "files": [{

 "approved": 0, //0 for pending / 1 for approved

 "downloads": 3, //number of downloads of the file

 "filename": "kmeans.py", "id": "80F7MjRTIxvb-7qIKRAjv-IJ3p-b3vL", //file’s ID

 "md5": "…", "size": "7.92 KB", "updateDate": "Thu, 14 Oct 2021 13:56:52 GMT",

 "version": 1 //the version of the file – increases when updating

 }],

 "images": [], links": [], videos": []

 }

}

Example 3 – Retrieved description (full schema)

{

 "id": "others_P8fYOAX67HkK-8fpe1TlB-KuR4-Zsck",

 "info": {"comments": "Private comment.", "contact": "Vasilis Koukos, email",

 "description": "This is an example of description.",

 "fieldOfUse": ["testing", "documentation"]"], "owner": "UPRC",

 "subtype": "-", "title": "Example.", "type": "others"},

 "main_image": "default_image_assets",

 "metadata": {"approved": 1, last_updated_by": "vkoukos", "md5": "<md5 hash of the description>",

 "provider": "vkoukos", "reviews": {"average_rating": 3.2, "no_reviews": 5},

 "updateDate": "2021-10-11 13:50:48.420Z", "uploadDate": "2021-10-11 13:50:48.420Z",

 "version": 1, "views": 8},

 "assets": {

 "files": [{

 "approved": 0, "downloads": 3, filename": "kmeans.py",

 "id": "80F7MjRTIxvb-7qIKRAjv-IJ3p-b3vL", "md5": "…", "size": "7.92 KB",

 "updateDate": "Thu, 14 Oct 2021 13:56:52 GMT", "version": 1

 }], "images": [], links": [], videos": []

 },

 "reviews": [

 {

 "comment": "Very good!", "description_version": 1, "rating": 4,

 "review_version": 1, "updated_review_date": "2021-10-14 16:02:05.484Z",

 "username": "user_1"

 }, {

 "comment": "Needs improvement…", "description_version": 1, "rating": 2,

 "review_version": 2, "updated_review_date": "2021-10-15 11:06:03.334Z",

 "username": "user_2"

 }, {

 "comment": "Not bad.", "description_version": 1, "rating": 3,

 "review_version": 1, "updated_review_date": "2021-10-15 13:30:00.209Z",

 "username": "user_3"

 }, {

 "comment": "Thank you for this!!", "description_version": 1, "rating": 5,

 "review_version": 1, "updated_review_date": "2021-10-18 10:12:49.956Z",

 "username": "user_4"

 }, {

 "comment": "Good idea but does not perform well for big data.",

 "description_version": 1, "rating": 2, "review_version": 1,

 "updated_review_date": "2021-10-18 14:53:13.410Z", "username": "user_5"

 }

}

 D7.5 – v. 1.0

www.policycloud.eu

39

Title: Upload / Create a new description with given ID

Endpoint: {HOST}/descriptions/{collection}/{given_id}

HTTP Method: POST

Description: This endpoint is similar to above. The only difference is that through the

current endpoint, the users are able to specify the ID of the new description,

providing it at the end of the endpoint {given_id}. Currently, this endpoint

can be used only by the administrators.

Body Data: Raw (JSON) Data - as the schema of the previous endpoint (Content-Type:

application/json).

It should be noted that the descriptions can also be uploaded from binary

files that contain the JSON schema of the previous endpoint (example in

curl can be found at the end of the interface).

Headers: Key Value

x-access-token Requester’s JWT

x-provider [Optional & only for administrators] The

username of the provider in case that the

description is uploaded by an administrator and

not by the provider.

URL Parameters: Parameter Value

collection Valid values:

{"algorithms", "tools", "policies", "datasets",

"webinars", "tutorials", "documents", "externals",

"other"}

given_id The ID to be given to the new description.

Query Parameters: None

Restrictions / Special

Features:

Available only to administrators. The administrators are able to upload a

description on behalf of other users.

Successful Response: JSON Object with the new description’s ID in its content.

The following is an example of the request in cURL:
curl --request POST '{HOST}/descriptions/{collection}/{given_id}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-raw '{

 "title": "<title of the asset>", "description ": "<description of the provided asset>",

 "type": "<type of the asset (same as collection’s value)>",

 "subtype": "<the subtype of the asset, if any, otherwise empty string or a dash (-)>",

 "comments": "<a private field that is shown only when the full schema is retrieved

 (only by authorized users) – useful for private comments>",

 "fieldOfUse": ["<field 1>", …], "owner ": "<organization / author / etc.>",

}'

Example of uploading a description through binary data/file:

curl --request POST '{HOST}/descriptions/{collection}/{given_id}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-binary '@<path_to_json_file>'
TABLE 32 - UPLOAD / CREATE A NEW DESCRIPTION WITH GIVEN ID INTERFACE

 D7.5 – v. 1.0

www.policycloud.eu

40

Title: Update a specific description (using keyword “all”)

Endpoint: {HOST}/descriptions/all/{description_id}

HTTP Method: PUT

Description: With this endpoint, the providers of the descriptions are able to update the

contents of the descriptions. It requires the ID of the description to be at the

end of the endpoint and the body of the request should contain the next

JSON schema (the same schema with the uploading action) as raw data.
{

 "title": "<title of the asset>",

 "description ": "<description of the provided asset>",

 "type": "<type of the asset (same as collection’s value)>",

 "subtype": "<the subtype of the asset, if any, otherwise empty

 string or a dash (-)>",

 "comments": "<a private field that is shown only when the full schema

 is retrieved (only by authorized users) – useful for

 provider’s private comments>",

 "fieldOfUse": ["<field 1>", …],

 "owner ": "<organization / author / etc.>",

}

It should be noted that this endpoint uses the keyword “all” (the descriptions

are already stored in the Marketplace, thus the platform knows the

collections in which have been stored). Moreover, this action is only available

to the providers/creators of the descriptions and to administrators who are

able to update any description. Thus, the JWT of a requester should be

included in the headers of the request. An important note is that all updated

descriptions get locked and must be approved again by an administrator to

get available again to other users.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).

The descriptions can also be updated from binary files that contain the

above JSON schema (curl example can be found at the end of the interface).

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

description_id The ID of the description that will be updated.

Query Parameters: None

Restrictions / Special

Features:

Available only for the providers/creators of the descriptions and for the

administrators who can update any description.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request PUT '{HOST}/descriptions/all/{description_id}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-raw '{

 "title": "<title of the asset>", "description ": "<description of the provided asset>",

 "type": "<type of the asset (same as collection’s value)>",

 "subtype": "<the subtype of the asset, if any, otherwise empty string or a dash (-)>",

 "comments": "<a private field that is shown only when the full schema is retrieved

 (only by authorized users) – useful for private comments>",

 "fieldOfUse": ["<field 1>", …], "owner ": "<organization / author / etc.>",

}'

Example of uploading a description through binary data/file:

curl --request POST '{HOST}/descriptions/all/{description_id}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-binary '@<path_to_json_file>'
TABLE 33 - UPDATE A SPECIFIC DESCRIPTION (USING KEYWORD “ALL”) INTERFACE

 D7.5 – v. 1.0

www.policycloud.eu

41

Title: Update a specific description (using description’s “collection”)

Endpoint: {HOST}/descriptions/{collection}/{description_id}

HTTP Method: PUT

Description: This PUT request is similar to the previous. The only difference is that instead

of using keyword “all” it uses the collection in which the description has been

stored during its creation. The endpoint is restricted and available only to

descriptions’ providers/creators and to administrators who can update any

description. Thus, the JWT of a requester must be included in the headers of

the request. More information about the endpoint can be found on the

above endpoint.

Body Data: Raw (JSON) Data - as the schema of the previous endpoint (Content-Type:

application/json).

It should be noted that the descriptions can also be uploaded from binary

files that contain the JSON schema of the previous endpoint (example in curl

can be found at the end of the interface).

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

collection Valid values:

{"algorithms", "tools", "policies", "datasets",

"webinars", "tutorials", "documents",

"externals", "other"}

description_id The ID of the description that will be updated.

Query Parameters: None

Restrictions / Special

Features:

Available only for the providers/creators of the descriptions and for the

administrators who can update any description.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request PUT '{HOST}/descriptions/{collection}/{description_id}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-raw '{

 "title": "<title of the asset>", "description ": "<description of the provided asset>",

 "type": "<type of the asset (same as collection’s value)>",

 "subtype": "<the subtype of the asset, if any, otherwise empty string or a dash (-)>",

 "comments": "<a private field that is shown only when the full schema is retrieved

 (only by authorized users) – useful for private comments>",

 "fieldOfUse": ["<field 1>", …], "owner ": "<organization / author / etc.>",

}'

Example of uploading a description through binary data/file:

curl --request POST '{HOST}/descriptions/{collection}/{description_id}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-binary '@<path_to_json_file>'

TABLE 34 - UPDATE A SPECIFIC DESCRIPTION (USING DESCRIPTION’S “COLLECTION”) INTERFACE

 D7.5 – v. 1.0

www.policycloud.eu

42

Title: Delete a specific description (using keyword “all”)

Endpoint: {HOST}/descriptions/all/{description_id}

HTTP Method: DELETE

Description: A DELETE request to this endpoint has as a result the deletion of a specific

description, using its ID. The endpoint is restricted and available only to

descriptions’ providers/creators and to administrators who can delete any

description. Thus, the JWT of a requester must be included in the headers of

the request.

It should be noted that this endpoint uses the keyword “all” instead of

description’s collection (the descriptions are already stored in the

Marketplace, thus the platform knows the collections in which have been

stored).

For security reasons, the requesters should provide their password in the

body of their request, as raw data (JSON schema):
{ "password": "…" }

If the action is made by an administrator, the field “password” should be the

password of the administrator.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

description_id The ID of the description that will be deleted.

Query Parameters: None

Restrictions / Special

Features:

Available only for the providers/creators of the descriptions and for the

administrators who can delete any description.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request DELETE '{HOST}/descriptions/all/{description_id}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-raw '{ "password": "…" }'
TABLE 35 - DELETE A SPECIFIC DESCRIPTION (USING KEYWORD “ALL”) INTERFACE

Title: Delete a specific description (using description’s “collection”)

Endpoint: {HOST}/descriptions/{collection}/{description_id}

HTTP Method: DELETE

Description: This request is similar to the previous. The only difference is that instead of

using keyword “all” it uses the collection in which the description has been

stored during its creation. The endpoint is restricted and available only to

descriptions’ providers/creators and to administrators who can delete any

description. Thus, the JWT of a requester must be included in the headers of

the request. More information about the endpoint can be found on the

above endpoint.

Body Data: Raw (JSON) Data - as the schema of the previous endpoint (Content-Type:

application/json).

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

collection Valid values:

 D7.5 – v. 1.0

www.policycloud.eu

43

{"algorithms", "tools", "policies", "datasets",

"webinars", "tutorials", "documents",

"externals", "other"}

description_id The ID of the description that will be deleted.

Query Parameters: None

Restrictions / Special

Features:

Available only for the providers/creators of the descriptions and for the

administrators who can delete any description.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request DELETE '{HOST}/descriptions/{collection}/{description_id}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \
--data-raw '{ "password": "…" }'

TABLE 36 - DELETE A SPECIFIC DESCRIPTION (USING DESCRIPTION’S “COLLECTION”) INTERFACE

Title: Delete all descriptions (administrators’ action)

Endpoint: {HOST}/descriptions/all/all

HTTP Method: DELETE

Description: This endpoint is available only to the administrators who through it, can

delete all descriptions from all collections (the keyword “all” is used instead

of a specific collection). The endpoint is restricted and thus, the JWT of a

requester must be included in the headers of the request.

For security reasons, the requesters should provide their password in the

body of their request, as raw data (JSON schema):
{ "password": "…" }

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

Currently, it is available only to the “superuser” (master admin) of the

Marketplace.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request DELETE '{HOST}/descriptions/all/all' --header 'x-access-token: <JWT>' \

--header 'Content-Type: application/json' --data-raw '{ "password": "…" }'

TABLE 37 - DELETE ALL DESCRIPTIONS INTERFACE

Title: Delete all descriptions from a specific collection (administrators’ action)

Endpoint: {HOST}/descriptions/{collection}/all

HTTP Method: DELETE

Description: This endpoint is similar to the above. It is available only to the administrators

who through it, can delete all descriptions from a specific collection. The

endpoint is restricted and thus, the JWT of a requester must be included in

the headers of the request.

For security reasons, the requesters should provide their password in the

body of their request, as raw data (JSON schema):
{ "password": "…" }

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).

Headers: Key Value

 D7.5 – v. 1.0

www.policycloud.eu

44

x-access-token Requester’s JWT

URL Parameters: Parameter Value

collection Valid values:

{"algorithms", "tools", "policies", "datasets",

"webinars", "tutorials", "documents",

"externals", "other"}

Query Parameters: None

Restrictions / Special

Features:

Currently, it is available only to the “superuser” (master admin) of the

Marketplace.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request DELETE '{HOST}/descriptions/{collection}/all' --header 'x-access-token: <JWT>' \

--header 'Content-Type: application/json' --data-raw '{ "password": "…" }'

TABLE 38 - DELETE ALL DESCRIPTIONS FROM A SPECIFIC COLLECTION INTERFACE

Title: Make a review for a description

Endpoint: {HOST}/descriptions/review/{description_id}

HTTP Method: POST

Description: This endpoint is used in order to make a review for a specific description

whose ID is included in the URL of the request. The endpoint is available to

all registered and verified users whose JWT is required in the headers of the

request.

A review consists of a rating (integer value between 1 and 5) and a comment.

The users are able to make a review for a specific description only once, but

they can update it through the next endpoint. Moreover, the

providers/creators of a description are not able to make a review for their

descriptions.

The next JSON schema should be in the body of the request, as raw data:
{"rating": <value>, "comment": "…"}

After the successful submission of a review, the average rating of the

reviewed description is recalculated.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

description_id The ID of the description for which the

review of a user will be made.

Query Parameters: None

Restrictions / Special

Features:

Available to all registered and verified users. The providers/creators are not

able to make a review for their descriptions.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request POST '{HOST}/descriptions/review/{description_id}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-raw '{"rating": <value>, "comment": "…"}'
TABLE 39 - MAKE A REVIEW FOR A DESCRIPTION INTERFACE

 D7.5 – v. 1.0

www.policycloud.eu

45

After the successful submission of a review, the following JSON document is stored in the database:

{

 "_id": "<review’s ID>", "rating": <integer value between 1 and 5>,

 "comment": "…", "title": "<description’s title>", "did": "<description’s ID>",

 "collection": "<description’s collection>",

 "username": "<username of the user who made the review>",

 "initial_review_date": "<the date of the initial review>",

 "updated_review_date": "<date of the last review>",

 "description_version": <description’s version when the review made>,

 "review_version": <version of the current review>

}

Title: Update an existing review for a description

Endpoint: {HOST}/descriptions/review/{description_id}

HTTP Method: PUT

Description: This endpoint is used in order to update a review that made for a specific

description. The ID of the description should be included in the URL of the

request. The endpoint is available to all registered and verified users whose

JWT is required in the headers of the request. A prerequisite for this action

is that users have already made a review for the specific description.

A review consists of a rating (integer value between 1 and 5) and a comment.

The next JSON schema should be in the body of the request, as raw data:
{"rating": <value>, "comment": "…"}

After the successful submission of an updated review, the average rating of

the reviewed description is recalculated.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

description_id The ID of the description for which the review

of a user will be updated.

Query Parameters: None

Restrictions / Special

Features:

Available to all registered and verified users. A prerequisite for this action is

that users have already made a review for the specific description.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request PUT '{HOST}/descriptions/review/{description_id}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-raw '{"rating": <value>, "comment": "…"}'
TABLE 40 - UPDATE AN EXISTING REVIEW FOR A DESCRIPTION INTERFACE

Title: Delete a review for a description

Endpoint: {HOST}/descriptions/review/{description_id}

HTTP Method: DELETE

Description: This endpoint is used in order to delete a review that made for a specific

description. The ID of the description should be included in the URL of the

request. The endpoint is available to all registered and verified users whose

JWT is required in the headers of the request. A prerequisite for this action

is that users have already made a review for the specific description.

 D7.5 – v. 1.0

www.policycloud.eu

46

It should be noted that the administrators are able to delete reviews that

made from other users, providing the username of a reviewer in the headers

of the request.

After the successful deletion of a review, the average rating of the

description is recalculated.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

x-username [Optional & only for administrators] The username

of the user whose review on the specified

description will be deleted. It is used by

administrators in order to specify the reviewer.

URL Parameters: Parameter Value

description_id The ID of the description for which the review of a

user will be deleted.

Query Parameters: None

Restrictions / Special

Features:

Available to all registered and verified users. A prerequisite for this action is

that users have already made a review for the specific description. The

administrators are able to delete reviews that made from other users.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
+ curl --request DELETE '{HOST}/descriptions/review/{description_id}' \

 --header 'x-access-token: <JWT>'

+ curl --request DELETE '{HOST}/descriptions/review/{description_id}' \

 --header 'x-access-token: <JWT>' --header 'x-username: <value>'

TABLE 41 - DELETE A REVIEW FOR A DESCRIPTION INTERFACE

Title: Get a list with the reviews made by a specific user

Endpoint: {HOST}/descriptions/review/{username}

HTTP Method: GET

Description: This request returns all the reviews made by a specific user whose

{username} is part of the request's URL (the schema of the reviews can be

found in the “Make a review for a description” interface).

The endpoint is restricted and thus, the JWT of a requester must be included

in the headers of the request. Finally, the endpoint offers some standard

query parameters that specify the format of the results and are described

below (Query Parameters).

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

username The username of the user whose reviews will be

retrieved.

Query Parameters: Key Value

sortBy [Optional] Sorts the reviews by a field – the default is the

“newest” key. The value should be one of the following:

"newest": sort by review date in descending order.

"oldest": sort by review date in ascending order.

 D7.5 – v. 1.0

www.policycloud.eu

47

"rating-asc": sort by user’s rating in ascending order.

"rating-desc": sort by user’s rating in descending order.

"title": sort by description’s title in ascending order.

itemsPerPage [Optional] Returns the results separated in pages

(arrays) of N items. The number N is specified by the

value of this key. The value N must be an integer

number greater or equal to 1. If the key is not used or

has a non-accepted value, the results are returned on a

single page.

page [Optional] This key can only be used if the

“itemsPerPage” key is also used. If it is used, it returns

only the specified (by key’s value) page instead of all

pages created using the key “itemsPerPage”. The value

must be an integer number greater or equal to 1. The

default value is 0, which means that all pages will be

returned.

Restrictions / Special

Features:

Available to all registered and verified users.

Successful Response: JSON Object with the reviews made by a specific user.

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/descriptions/review/{username}' --header 'x-access-token: <JWT>'

+ curl --request GET '…?sortBy={value}' …

+ curl --request GET '…?itemsPerPage={value}' …

+ curl --request GET '…?itemsPerPage={value}&page={value}' …

+ curl --request GET '…?sortBy={value}&itemsPerPage={value}' …

+ curl --request GET '…?sortBy={value}&itemsPerPage={value}&page={value}' …

TABLE 42 - GET A LIST WITH THE REVIEWS MADE BY A SPECIFIC USER INTERFACE

Title: Get a list with all descriptions that need permission (administrators’ action)

Endpoint: {HOST}/descriptions/permit/all

HTTP Method: GET

Description: This endpoint returns the descriptions from all collections (since the

keyword “all” is used) that need permission before they become available to

the Marketplace’s users. A description needs permission either when it is

uploaded or after it has been updated.

Moreover, the endpoint is only available to administrators and thus, the JWT

of a requester is required in the headers of the request. Finally, the endpoint

offers some standard query parameters that specify the format of the

results and are described below (Query Parameters).

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: None

Query Parameters: Key Value

sortBy [Optional] Sorts the descriptions by a field – the default

is the “newest” key. The value should be one of the

following:

"newest": sort by date in descending order.

"oldest": sort by date in ascending order.

 D7.5 – v. 1.0

www.policycloud.eu

48

"title": sort by title in ascending order.

itemsPerPage [Optional] Returns the results separated in pages

(arrays) of N items. The number N is specified by the

value of this key. The value N must be an integer

number greater or equal to 1. If the key is not used or

has a non-accepted value, the results are returned on

a single page.

page [Optional] This key can only be used if the

“itemsPerPage” key is also used. If it is used, it returns

the specified (by key’s value) page instead of all pages

created using the key “itemsPerPage”. The value must

be an integer greater or equal to 1. The default value

is 0, meaning that all pages will be returned.

Restrictions / Special

Features:

Available only to the administrators.

Successful Response: JSON Object with the descriptions (from all collections) that need permission

in its content.

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/descriptions/permit/all' --header 'x-access-token: <JWT>'

+ curl --request GET '…?sortBy={value}' …

+ curl --request GET '…?itemsPerPage={value}' …

+ curl --request GET '…?itemsPerPage={value}&page={value}' …

+ curl --request GET '…?sortBy={value}&itemsPerPage={value}' …

+ curl --request GET '…?sortBy={value}&itemsPerPage={value}&page={value}' …
TABLE 43 - GET A LIST WITH ALL DESCRIPTIONS THAT NEED PERMISSION INTERFACE

Title: Get a list with all descriptions from a specific collection that need

permission (administrators’ action)

Endpoint: {HOST}/descriptions/permit/{collection}

HTTP Method: GET

Description: This request is similar to the above request. The only difference between

these two actions is that the current request retrieves the descriptions that

need permission from a specific collection (uses specific {collection} value

instead of the keyword “all”). For more details, refer to the above endpoint.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

collection Valid values:

{"algorithms", "tools", "policies", "datasets",

"webinars", "tutorials", "documents", "externals",

"other"}

Query Parameters: As in the above request.

Restrictions / Special

Features:

Available only to the administrators.

Successful Response: JSON Object with the descriptions (from a specific collection) that need

permission in its content.

The following is an example of the request in cURL:

 D7.5 – v. 1.0

www.policycloud.eu

49

+ curl --request GET '{HOST}/descriptions/permit/{collection}' --header 'x-access-token: <JWT>'

+ curl --request GET '…?sortBy={value}' …

+ curl --request GET '…?itemsPerPage={value}' …

+ curl --request GET '…?itemsPerPage={value}&page={value}' …

+ curl --request GET '…?sortBy={value}&itemsPerPage={value}' …

+ curl --request GET '…?sortBy={value}&itemsPerPage={value}&page={value}' …
TABLE 44 - GET A LIST WITH ALL DESCRIPTIONS FROM A SPECIFIC COLLECTION THAT NEED PERMISSION INTERFACE

Title: Approve or reject a specific description that need permission, using

keyword “all” (administrators’ action)

Endpoint: {HOST}/descriptions/permit/all/{description_id}

HTTP Method: POST

Description: This endpoint is used by administrators in order to approve or reject a

specific description (using its ID) that needs administrators’ permission. The

endpoint is restricted and available only to administrators and thus, the

requesters’ must provide their JWTs in the headers of the request. Also, it

should be noted that this endpoint uses the keyword “all” and not the

collection in which a specific description is stored, as the next endpoint does.

An important parameter/key that must be included in the headers of the

request is the “x-permission” key which should have as a value the text

“approve” so the description to be approved, otherwise the text “disapprove”

so to be rejected. A rejection/disapproval of a description has as a result the

deletion of the description and all of its assets.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

x-permission Valid values:

{“approve”, “disapprove”}

URL Parameters: Parameter Value

description_id The ID of the description that will be approved

or rejected.

Query Parameters: None

Restrictions / Special

Features:

Available only to the administrators.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request POST '{HOST}/descriptions/permit/all/{description_id}' \

--header 'x-access-token: <JWT>' --header 'x-permission: <value>'
TABLE 45 - APPROVE OR REJECT A DESCRIPTION THAT NEEDS PERMISSION, USING KEYWORD “ALL” INTERFACE

Title: Approve or reject a specific description that need permission, using

description’s “collection” (administrators’ action)

Endpoint: {HOST}/descriptions/permit/{collection}/{description_id}

HTTP Method: POST

Description: This request is similar to the above request. The only difference between

these two actions is that the current request uses the value of the

{collection} in which a specific description is stored. For more details, refer

to the above endpoint.

Body Data: None

Headers: Key Value

 D7.5 – v. 1.0

www.policycloud.eu

50

x-access-token Requester’s JWT

x-permission Valid values:

{“approve”, “disapprove”}

URL Parameters: Parameter Value

collection Valid values:

{"algorithms", "tools", "policies", "datasets",

"webinars", "tutorials", "documents",

"externals", "other"}

description_id The ID of the description that will be approved

or rejected.

Query Parameters: None

Restrictions / Special

Features:

Available only to the administrators.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request POST '{HOST}/descriptions/permit/{collection}/{description_id}' \

--header 'x-access-token: <JWT>' --header 'x-permission: <value>'
TABLE 46 - APPROVE OR REJECT A DESCRIPTION THATS NEEDS PERMISSION, USING DESCRIPTION’S “COLLECTION” INTERFACE

Title: Approve or reject all descriptions that need permission, using keyword “all”

(administrators’ action)

Endpoint: {HOST}/descriptions/permit/all/all

HTTP Method: POST

Description: This endpoint is used by administrators in order to approve or reject all

stored descriptions (from all collections, since keyword “all” is used) that

need administrators’ permission. The endpoint is restricted and available

only to administrators and thus, the requesters’ must provide their JWTs in

the headers of the request.

An important parameter/key that must be included in the headers of the

request is the “x-permission” key which should have as a value the text

“approve” so the descriptions to be approved, otherwise the text

“disapprove” so to be rejected. A rejection/disapproval of the descriptions

has as a result the deletion of the descriptions and all of their assets.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

x-permission Valid values:

{“approve”, “disapprove”}

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

Currently, it is available only to the “superuser” (master admin) of the

Marketplace.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request POST '{HOST}/descriptions/permit/all/all ' \

--header 'x-access-token: <JWT>' --header 'x-permission: <value>'
TABLE 47 - APPROVE OR REJECT ALL DESCRIPTIONS THAT NEED PERMISSION, USING KEYWORD “ALL” INTERFACE

 D7.5 – v. 1.0

www.policycloud.eu

51

Title: Approve or reject all descriptions that need permission under a specific

collection, using a “collection” value (administrators’ action)

Endpoint: {HOST}/descriptions/permit/{collection}/all

HTTP Method: POST

Description: This request is similar to the above request. The only difference between

these two actions is that the administrators, using the current endpoint, are

able to approve or reject all descriptions of a specific {collection}. The

endpoint is restricted and available only to administrators and thus, the

requesters’ must provide their JWTs in the headers of the request.

An important parameter/key that must be included in the headers of the

request is the “x-permission” key which should have as a value the text

“approve” so the descriptions to be approved, otherwise the text

“disapprove” so to be rejected. A rejection/disapproval of the descriptions

has as a result the deletion of the descriptions and all of their assets.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

x-permission Valid values:

{“approve”, “disapprove”}

URL Parameters: Parameter Value

collection Valid values:

{"algorithms", "tools", "policies", "datasets",

"webinars", "tutorials", "documents",

"externals", "other"}

Query Parameters: None

Restrictions / Special

Features:

Currently it is available only to the “superuser” (master admin) of the

Marketplace

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request POST '{HOST}/descriptions/permit/{collections}/all ' \

--header 'x-access-token: <JWT>' --header 'x-permission: <value>'
TABLE 48 - APPROVE OR REJECT ALL DESCRIPTIONS THAT NEED PERMISSION UNDER A SPECIFIC COLLECTION, USING A

“COLLECTION” VALUE INTERFACE

2.2.1.3 Search functionality on Descriptions

The search functionality is a vital requirement for most services in order to reduce the number of objects

returned by a query. Thus, the back-end’s endpoints that retrieve multiple descriptions simultaneously,

support some relative query filters. These filters enable the users of the Marketplace to search for assets,

based on various parameters from the content of the stored descriptions.

More specifically, the interfaces of the back-end that return lists of support additional query parameters

with any key-value pair. Query parameters are a defined set of parameters attached to the end of a URL

and are used in order to help search specific content or actions based on the data being passed. In order

to append query parameters to the end of a URL, a question mark “?” is added to the end of the URL,

followed immediately by a pair of a key and a value, separated by an equal symbol “=”. Moreover, a URL

can have multiple parameters, by adding an ampersand symbol “&” between each pair of key-value.

 D7.5 – v. 1.0

www.policycloud.eu

52

In the context of the Marketplace and the descriptions, the keys added to the URLs as query parameters

must be valid, in the sense that they exist as fields in the descriptions and their search has a real value.

Below are some valid syntaxes for advanced search with additional query parameters. The examples use

the “Get a list with all descriptions” interface.

Single key: '{HOST}/descriptions/all?<key_name>=<value>'

Multiple keys: '{HOST}/descriptions/all?<key_1>=<value>&<key_2>=<value>&…'

Moreover, the Python programming language which is used by the back-end (as described in section

2.3.1), enables access to nested fields of dictionary / JSON object using a dot “.” between a key at the first

level of the hierarchy and a key at the second level (this applies to all levels, up to the lowest level). Thus,

the next example is also a valid schema of a query:

For keys in lower hierarchical level:

'{HOST}/descriptions/all?<key_level_1>.<key_level_2>.<…>.<key_level_n>=<value>'

TO SUM UP, GIVEN THE ABOVE SYNTAXES OF A VALID QUERY AND THE JSON OBJECT / DESCRIPTION OF THE “EXAMPLE 1” IN THE

INTERFACE “TABLE 30 - GET DESCRIPTIONS’ STATISTICS (USEFUL FOR FRONT-END’S HOMEPAGE) INTERFACE

”, the following search example request in cURL, returns the descriptions that in their title contain the

value “machine learning” and their provider is the user with username “vkoukos”:

curl --request GET

'{HOST}/descriptions/all?info.title=machine%20learning&metadata.provider=vkoukos'

It should be noted that the value “%20” is the ASCII Encoding Reference of the space character.

Except for these, the back-end supports advanced searching using some operators which extend the

keys of query parameters, using a dot “.” between the keys and the operators. Below are the supported

operators along with a description for their usage.

Operator Usage Example

eq

Full title: equal

This operator performs an equality search and has

exactly the same use with the equality symbol “=”. It

applies to both texts (strings) and numbers.

<key>.eq=<value>

ne

Full title: not equal

This operator performs a non-equality search. It applies

to both texts (strings) and numbers.

<key>.ne=<value>

gt

Full title: greater than

This operator performs searching for a key with a value

greater than the provided. It applies to both texts

(strings) and numbers.

<key>.gt=<value>

gte

Full title: greater than or equal

This operator performs searching for a key with a value

greater than or equal to the provided. It applies to both

texts (strings) and numbers.

<key>.gte=<value>

lt Full title: less than <key>.lt=<value>

 D7.5 – v. 1.0

www.policycloud.eu

53

This operator performs searching for a key with a value

less than to the provided. It applies to both texts (strings)

and numbers.

lte

Full title: less than or equal

This operator performs searching for a key with a value

less than or equal to the provided. It applies to both texts

(strings) and numbers.

<key>.lte=<value>

in

Full title: in (equal to one of the values)

This operator performs searching for a key with a value

equal to one of the provided values. The <value> may

have multiple values separated by a comma “,”. It applies

to both texts (strings) and numbers.

<key>.in=<value_1>,<value_2>

nin

Full title: not in (not equal to any of the value)

This operator performs searching for a key with a value

not equal to any of the provided values. The <value> may

have multiple values separated by a comma “,”. It applies

to both texts (strings) and numbers.

<key>.nin=<value_1>,<value_2>

TABLE 49 - BACK-END’S SEARCH OPERATORS

Below are some examples of the operators’ use.

eq: '{HOST}/descriptions/all?metadata.provider.eq=vkoukos'

ne: '{HOST}/descriptions/all?metadata.version.ne=1'

gt: '{HOST}/descriptions/all?metadata.views.gt=100'

gte: '{HOST}/descriptions/all?info.type.gte=datasets'

lt: '{HOST}/descriptions/all?metadata.uploadDate.lt=2021-10-15'

lte: '{HOST}/descriptions/all?metadata.reviews.no_reviews.lte=20'

in: '{HOST}/descriptions/all?info.title.in=machine,learning,algorithm'

nin: '{HOST}/descriptions/all?info.fieldsOfUse.nin=poverty,crime'

Furthermore, the back-end’s search mechanism uses a ranking system for the results. More specifically,

for each description in the results, maintains a score resulting from the points it receives for each search

argument.

In an equality search (using “=” symbol or “eq” operator) for a specific key, the points that a description

receives can be one of the following:

• 5: if the values are exactly equal (same) and case sensitive.

• 4: if the values are equal (same) but not case sensitive.

• 3: if the values are similar (e.g. the first value contains the second value but are not the same)

and case sensitive.

• 2: if the values are similar but not case sensitive.

• 0: if the values do not match.

The other operators just receive 1 point if the conditions match (“true”). The operator “in” uses the

operator “eq” (or the symbol “=”) for each value in its “array” and thus, it has the same score system.

Finally, the operator “nin” uses the operator “ne” for each value in its “array”.

 D7.5 – v. 1.0

www.policycloud.eu

54

2.2.1.4 Interfaces related to Assets

This group of APIs offers functionalities intended for the management of the assets. They support all

CRUD operations for the assets which are stored in the back-end. Table 50 presents the endpoints related

to Assets as they are in the first version of the Data Marketplace’s back-end.

Action HTTP Method Endpoint

Get a list with the stored assets GET {HOST}/assets

Get a specific asset, using its ID GET {HOST}/assets/{asset_id}

Upload a new asset with random

ID, linked to a specific description

POST {HOST}/assets/{description_id}

Upload a new asset with given ID,

linked to a specific description

POST {HOST}/assets/{description_id}/{given_asset_id}

Update a specific asset, using its

ID

PUT {HOST}/assets/{asset_id}

Delete a specific asset, using its ID DELETE {HOST}/assets/{asset_id}

Delete all assets (administrators’

action)

DELETE {HOST}/assets/all

TABLE 50 - BACK-END’S INTERFACES RELATED TO ASSETS

• {HOST} refers to the hosting server: the domain name and the port running the back-end.

• {asset_id} refers to the ID of a specific asset.

• {given_asset_id} is used in upload asset action, providing new asset’s ID.

• {description_id} refers to the ID of the description with which the new asset will be linked to.

• Most of these actions require additional fields in the headers of the HTTP request. Example of a

required field is the JWT.

Below is a more detailed description of all the provided interfaces and their corresponding actions:

Title: Get a list with the stored assets

Endpoint: {HOST}/assets

HTTP Method: GET

Description: A request to this endpoint will result in the retrieval of a list with the stored

assets and some additional information of them.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

Available only to administrators.

Successful Response: Results in JSON Object

The following is an example of the request in cURL:
curl --request GET '{HOST}/assets' --header 'x-access-token: <JWT>'

TABLE 51 - GET A LIST WITH THE STORED ASSETS INTERFACE

 D7.5 – v. 1.0

www.policycloud.eu

55

Title: Get a specific asset, using its ID

Endpoint: {HOST}/assets/{asset_id}

HTTP Method: GET

Description: This endpoint is used to retrieve a specific stored asset. For its retrieval, the

usage of the asset’s ID is necessary. Also, this endpoint is restricted and thus,

the JWT of a requester must be included in the headers of the request.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

asset_id The ID of the asset that will be

retrieved.

Query Parameters: None

Restrictions / Special

Features:

Available to all authorized (and verified) users.

Successful Response: Binary data

The following is an example of the request in cURL:
curl --request GET '{HOST}/assets/{asset_id}' --header 'x-access-token: <JWT>'

TABLE 52 - GET A SPECIFIC ASSET USING ITS ID INTERFACE

Title: Upload a new asset with random ID, linked to a specific description

Endpoint: {HOST}/assets/{description_id}

HTTP Method: POST

Description: Through this endpoint, the users can upload their assets. It requires to add

(at the end of the endpoint) the ID of the description with which is going to

be linked. It is also necessary to add to the headers of the request a) the JWT

of the provider and b) the asset’s filename. The assets should be uploaded

as form-data with the key “asset”.

Body Data: Data Type: Form Data

Key Value

asset Binary data / Path to file

Headers: Key Value

x-access-token Requester’s JWT

x-filename New asset’s filename.

x-provider [Optional & only for administrators] The

username of the provider in case that the asset

is uploaded by an administrator and not by the

provider.

URL Parameters: Parameter Value

description_id The ID of the description with which the new

asset is going to be linked.

Query Parameters: None

Restrictions / Special

Features:

Available for the providers of the descriptions with which the assets will be

connected, and also for the administrators who can upload assets on behalf

of the providers.

Successful Response: JSON Object with the new asset’s ID in its content.

The following is an example of the request in cURL:

 D7.5 – v. 1.0

www.policycloud.eu

56

curl --request POST '{HOST}/assets/{description_id}' \

--header 'x-access-token: <JWT>' --header 'x-filename: <value>' \

--form 'asset=@"<full_path_to_asset>"'
TABLE 53 - UPLOAD A NEW ASSET WITH RANDOM ID INTERFACE

Title: Upload a new asset with given ID, linked to a specific description

Endpoint: {HOST}/assets/{description_id}/{given_asset_id}

HTTP Method: POST

Description: This endpoint is similar to the previous. The difference is that with the

current endpoint it is possible to specify the ID of the new asset, providing it

at the end of the endpoint {given_asset_id}. Currently, this endpoint can be

used only by the administrators.

Body Data: Data Type: Form Data

Key Value

asset Binary data / Path to file

Headers: Key Value

x-access-token Requester’s JWT

x-filename New asset’s filename.

x-provider [Optional & only for administrators] The

username of the provider in case that the

asset is uploaded by an administrator and

not by the provider.

URL Parameters: Parameter Value

description_id The ID of the description with which the

new asset is going to be linked.

given_asset_id The ID to be given to the new asset.

Query Parameters: None

Restrictions / Special

Features:

Available only for administrators whether they upload an asset for their

descriptions or upload an asset on behalf of the providers.

Successful Response: JSON Object with the new asset’s ID in its content.

The following is an example of the request in cURL:
curl --request POST '{HOST}/assets/{description_id}/{given_asset_id}' \

--header 'x-access-token: <JWT>' --header 'x-filename: <value>' \

--form 'asset=@"<full_path_to_asset>"'

TABLE 54 - UPLOAD A NEW ASSET WITH GIVEN ID INTERFACE

Title: Update a specific asset, using its ID

Endpoint: {HOST}/assets/{asset_id}

HTTP Method: PUT

Description: With this PUT request, it is possible to update an already stored asset. The

asset’s ID which should be at the end of the endpoint, determines which

asset should be replaced by the new asset. As in the uploading, the asset

should be uploaded as form-data with the key “asset” and the headers of

the request should contain provider’s JWT. Note that the users can only

update the assets provided by themselves (except for administrators).

Body Data: Data Type: Form Data

Key Value

asset Binary data / Path to file

Headers: Key Value

 D7.5 – v. 1.0

www.policycloud.eu

57

x-access-token Requester’s JWT

x-filename [Optional]

Asset’s new filename.

URL Parameters: Parameter Value

asset_id The ID of the asset that will be updated.

Query Parameters: None

Restrictions / Special

Features:

Available only for the providers of the descriptions / assets and for the

administrators who can update stored assets on behalf of the providers.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request PUT '{HOST}/assets/{asset_id}' \

--header 'x-access-token: <JWT>' --header 'x-filename: <value>' \

--form 'asset=@"<full_path_to_asset>"'

TABLE 55 - UPDATE A SPECIFIC ASSET USING ITS ID INTERFACE

Title: Delete a specific asset, using its ID

Endpoint: {HOST}/assets/{asset_id}

HTTP Method: DELETE

Description: A request to this endpoint has as a result the deletion of a specific asset, by

using its ID in order to find it. This endpoint is restricted and thus, the JWT

of a requester must be included in the headers of the request. Note that an

asset can be deleted only by its provider and the administrators.

For security reasons, the requesters should provide their password in the

body of their request, as raw data (JSON schema):
{ "password": "…" }

If the action is made by an administrator, the field “password” should be the

password of the administrator.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

asset_id The ID of the asset that will be deleted.

Query Parameters: None

Restrictions / Special

Features:

Available only for the providers of the descriptions / assets and for the

administrators who can delete any stored assets.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request DELETE '{HOST}/assets/{asset_id}' --header 'x-access-token: <JWT>' \

--header 'Content-Type: application/json' --data-raw '{ "password": "…" }'

TABLE 56 - DELETE A SPECIFIC ASSET USING ITS ID INTERFACE

Title: Delete all assets (administrators’ action)

Endpoint: {HOST}/assets/all

HTTP Method: DELETE

Description: This request is similar to the above request, with the difference that it

deletes all assets, as it uses the keyword “all”. Again, it is necessary the usage

of the requester’s JWT, and it is only available to administrators.

 D7.5 – v. 1.0

www.policycloud.eu

58

For security reasons, the requesters should provide their password in the

body of their request, as raw data (JSON schema):
{ "password": "…" }

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

Currently, it is available only to the “superuser” (master admin) of the

Marketplace.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request DELETE '{HOST}/assets/all' --header 'x-access-token: <JWT>' \

--header 'Content-Type: application/json' --data-raw '{ "password": "…" }'
TABLE 57 - DELETE ALL ASSETS (ADMINISTRATORS’ ACTION) INTERFACE

2.2.1.5 Root Interface

One last endpoint that was not mentioned is that of the back-end’s root interface, which presents a

roadmap of the main back-end’s interfaces. It is described below:

Title: Root interface

Endpoint: {HOST}

HTTP Method: GET

Description: This endpoint returns a list with the back-end’s interfaces that are available

to be used by all users. It acts as a roadmap, providing the interfaces along

with short information about the functionalities that they trigger. The

structure of the information follows a tree approach.

Body Data: None

Headers: None

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

None

Successful Response: Back-end’s roadmap in text/plain.

The following is an example of the request in cURL:
curl --request GET '{HOST}'

TABLE 58 - ROOT INTERFACE

 D7.5 – v. 1.0

www.policycloud.eu

59

2.2.2 Front-end

In this section, the main screens of the front-end of the Data Marketplace are presented. All the versions

of the interfaces of the pages that have more information about owners, and registered users, etc. are

presented with screenshots. Thus, the screens for the Header, Login, Register, Home, Discover, Single

Asset and Account pages are illustrated. To this end it should be noted that all these pages are responsive

and are able to adjust accordingly to the screen of each user. In deeper detail:

Header: The Header is common to all the pages, it is located at the top of each page, and it contains the

navigation menu, as depicted in Figure 3. Depending on whether a user is logged in or not, the users can

view the corresponding items in the menu. Logged in users can also view the Account page in the Header.

FIGURE 3 - FRONT-END’S HEADERS

For the convenience of the users, every time they place the mouse in the Discover element, a submenu

with the basic categories of Assets is displayed, where and any category can be selected, redirecting the

user to the corresponding Discover page category. Figure 4 presents the headers’ view from the home

page.

FIGURE 4 - HEADERS VIEW FROM HOME PAGE

In the following example, a user wants to search for Assets categorized as “Algorithms” through the Login

Page. By clicking on the dropdown menu named “Discover”, the main categories of Assets are displayed

in the submenu. To this end, the user selects the “Algorithms” category, as depicted in Figure 5.

 D7.5 – v. 1.0

www.policycloud.eu

60

FIGURE 5 - SUB MENU ITEM VIEW FROM LOGIN PAGE

In sequel, the user is redirected to the Discover page (presents the stored descriptions), where only assets

categorized as “Algorithms” are displayed (Figure 6).

FIGURE 6 - DISCOVER’S SUB-ITEMS REDIRECT TO DISCOVER PAGE

 D7.5 – v. 1.0

www.policycloud.eu

61

Home page: The home page presents some of the most popular and most latest descriptions / solutions

along with some random suggested descriptions, which are differentiating every time that a user reloads

the home page. What is more, the home page represent some relevant statistics about the supported

collections and the offered assets. If a user tries to log in, the front-end sends an ajax request to the

corresponding interface of the back-end to get a valid token (JWT). If the response does not contain a

successful message, the front-end presents to the user a corresponding error. In the case of a successful

log in, the user is redirected to his/her account page. There is also a button that when it is pressed by the

users, it redirects them to the Discover page. It should be noted that the basic assets’ categories are

shown in circles in the beginning of the home page (Figure 7), whereas the home page contains a

background image from the main PolicyCLOUD website, being designed in way that is consistent with it.

FIGURE 7 - HOME PAGE: UPPER VIEW

FIGURE 8 - HOME PAGE: LOWER VIEW

 D7.5 – v. 1.0

www.policycloud.eu

62

Register Page: The register page contains a form that a user must complete to register and access all the

Marketplace information. As depicted in Figure 9, the form is divided into three (3) discrete parts: (i) The

"Account Credentials" in which the users must fill in their usernames and passwords, (ii) The “Account

Details” that contains more detailed information of the users, such as their name, surname, title,

organizations and gender, and (iii) The “Account Contact Details” for the users’ phone and email.

 D7.5 – v. 1.0

www.policycloud.eu

63

FIGURE 9 - REGISTER FORM

At the bottom of the register page there exist the Terms of Service of the PolicyCLOUD Marketplace, and

by clicking the provided link, the users are redirected to the corresponding page, in order to be informed

about the Marketplace terms of use before their registration.

Login Page: The login page consists of a simple form in which the users must insert their credentials, and

depending on whether the users are indeed registered users of the Marketplace or not, they are

redirected to the Account page or they get an error message, respectively.

FIGURE 10 - LOGIN FORM

Account Page: In the account page, the logged in users are able to see details of their profiles. More

specifically, the Overview tab presents an about section of a Marketplace user along with some statistics

for the provided solutions of the user. The Assets tab shows the assets uploaded by the user, and the

Information tab shows detailed information of the user.

Regarding the Overview tab, some of the statistics that the page presents are the following: how many

descriptions have been offered by the user, the number of views of the user’s offered descriptions, the

number of offered assets and the number of their downloads, etc. (Figure 11).

 D7.5 – v. 1.0

www.policycloud.eu

64

FIGURE 11 - ACCOUNT OVERVIEW FOR A SIMPLE USER

With regards to the Assets tab, it shows how many assets the user has uploaded per category (Figure 12),

whilst the Information tab illustrates the account information of the user (e.g., full name, geneder, etc.).

FIGURE 12 - ACCOUNT INFORMATION AND ASSETS FOR A SIMPLE USER

The account owners, can see an additional tab of reviews (Reviews tab), in which they can see the reviews

that the user made to the descriptions of other users (the providers are not able to review their

descriptions) (Figure 13).

 D7.5 – v. 1.0

www.policycloud.eu

65

FIGURE 13 - ACCOUNT ASSETS FOR AN OWNER

On this page the account owners can see their information, and the assets they uploaded, by category.

They can also create a new description/solution, while in the tab information they can change/update

their personal details.

 FIGURE 14 - ACCOUNT ASSETS AND INFORMATION FOR AN OWNER

 D7.5 – v. 1.0

www.policycloud.eu

66

Discover: The discover page, is the page where all the descriptions/solutions are displayed, illustrating

the main image of each description, and its basic information, including its title, short description,

provider, last updated date, views, reviews, average ratings, categories and subcategories (Figure 15). On

the right side of the page, through the provided sidebar, the users can search for solutions based on

their title, by filling in the search bar. They can also filter the results by a specific provider, their categories,

the number of views and the time periods. On the upper-right side of the page, a button for sorting the

results is also included. When the users click on a solution, they are redirected to the Single Asset Page.

To this end is should be noted that the Discover page has the same view either for the logged in users or

not. It communicates with the back-end via the REST API and loads the information dynamically. In

addition, through responsive mode and in relation to the type of device the user possesses, the display

is adapted accordingly, while the side bar appears only as a drop down menu.

FIGURE 15 - DISCOVER PAGE

Single Asset Page: The single asset page displays an asset’s main information, where a logged in user has

different views than a non logged in user. All the users can view the title of the asset, the provider, the

owner, the categories and sub-categories, the fields of use, the average ratings, the number of reviews

and the number of views. In the case of logged in users, the latter have access to the full description, the

gallery with images of the solution and they are also able to download all the offered assets/files. In case

of non logged in/unauthorized users, the latter do not have access to the assets and the gallery and they

can see only the short description. If the users are the providers or the administrator, they can update

the information that is displayed. All descriptions/solutions need permission from an administrator in

 D7.5 – v. 1.0

www.policycloud.eu

67

order to be displayed and according to this, if a description is approved, an indication “approved” is

displayed, otherwise, an indication of “pending” is displayed.

Registered User View: A logged in user sees the entire description, the image gallery, and has access to

the assets, as depicted in Figure 16.

FIGURE 16 - SINGLE ASSET PAGE FOR LOGGED IN USERS

Owner View: If the user is the provider, an edit and a delete button appears that enables the editing of

the information, and the management of the assets (upload, update, delete). Every change made to the

information of the description has to be approved by an administrator in order to be displayed.

FIGURE 17 - SINGLE ASSET PAGE OWNER

 D7.5 – v. 1.0

www.policycloud.eu

68

Non-authorized User View: A non-authorized user sees only the basic information of a desctription (short

desctription), e.g. a short description, main / default image, provider, owner, reviews, and downloads, as

illustrated in Figure 18.

FIGURE 18 - SINGLE ASSET PAGE FOR UNAUTHORIZED USERS

Create page: The create page can be only accessed by a registered user with authorization, who can

access and create a new description / solution. It contains a form for filling in the basic information of

the new offered solution (e.g. category, field of use, description). At a later stage, a user will be able to

upload his/her assets, through the Single Asset pages. This page is only available to registered users who

can find it either from the header or from their account page (i.e. Assets tab – Create button).

About Page: The about page contains information about the PolicyCLOUD Data Marketplace.

Error Message: In case of an error, a red bar appears with the appropriate message received from the

back-end.

FIGURE 19 - ERROR MESSAGE BAR

 D7.5 – v. 1.0

www.policycloud.eu

69

2.3 Baseline Technologies and Tools

The following sub-sections are describing the baseline technologies that both the back-end and the front-

end of the Data Marketplace exploit in order to implement its capabilities and functionalities.

2.3.1 Back-end

The back-end is the core base of the market platform and it has been developed using a variety of

technologies/tools. First of all, its components are containerized in Docker images [3] that, among others,

offer more efficient management and maintenance, enabling continuous updates and integration.

Python [4] is used as the programming language along with the Flask framework [5], which is a Web

Server Gateway Interface (WSGI) developed in Python, implements RESTful APIs to handle the respective

HTTP requests.

The offered assets are stored in a MongoDB No-SQL database [6] that is used in combination with GridFS

specification [7] for storing and retrieving large files/objects, of any format. Moreover, Gunicorn [8], a

Python WSGI HTTP Server for UNIX, is utilized with NGINX [9], an open-source high-performance HTTP

web server and reverse proxy, since Flask is not optimum for production mode, and thus, both tools will

extend the Flask framework in order to enable access to multiple users at the same time.

2.3.2 Front-end

The front-end has been implemented using various web technologies (HTML, CSS, Bootstrap, PHP,

JavaScript, jQuery) and it is functional using PHP and JavaScript technologies. It also exploits WordPress

[10] and various plugins of it, in order to manage the content that is presented. More specifically, for the

implementation of the front-end, the following tools were used:

• WordPress: A major part of the platform was designed with customized code based on the

architecture logic of WordPress. A minor part was introduced, manually, by utilizing the

Elementor editor of WordPress [11].

• Elementor: Utilized at various stages of design, mainly for the header.

Except for these, a custom-made plugin with the name “PolicyCloud Plugin” was implemented, for the

connection between the front-end and the back-end, as well as for the correct display of the Assets

information. The main methods of the plugin are called from WordPress with hooks, and by placing short

code names of methods on each page, for each interaction with the back-end.

The plugin contains authentication methods, checks if the user is valid, connects to the back-end with

post request, creates the user’s token and returns the JSON response to the WordPress page. To be more

specific, when a user tries to log in, after filling in the login form, the information from the browser is sent

by ajax request to the WordPress custom-made functions, checking if the values are empty. The login

information is then sent, by post request, to the back-end API for verification. The back-end API returns

the JSON response with user’s information and the user's token or Error and a WordPress's encrypted

security token (nonce) is created. If the token is valid, the information from the database (the dynamic

 D7.5 – v. 1.0

www.policycloud.eu

70

content) is displayed with HTML, jQuery, PHP in the browser and the encrypted token is temporarily

stored in the browser storage. The aforementioned process is also depicted in Figure 20.

FIGURE 20 - FRONT-END ACCESS MIDDLEWARE

The admin class is responsible for the extensions that are added to the WordPress dashboard, to which

administrators have access (Figure 21).

FIGURE 21 - DASHBOARD ADD SETTINGS

With the add_admin_settings () method, the administrator adds a field to their menu to save the key with

which the system will communicate with the back-end. The key is valid until it expires, after one month,

for security reasons.

 D7.5 – v. 1.0

www.policycloud.eu

71

FIGURE 22 - DASHBOARD ADMIN VIEW SETTINGS

When a user tries to an Access Display Asset’s information’s pages, such as the Discover page, the

WordPress functions browser sends a post request to the back-end API that returns the response with

JSON assets information or an error message. If the assets information is valid, it is displayed to the

browser dynamic content with HTML, jQuery and PHP. If the token exists, it is stored in a cookie in the

browser storage. The aforementioned process is also depicted in Figure 23.

 FIGURE 23 - TOKEN BASED ACTIONS

 D7.5 – v. 1.0

www.policycloud.eu

72

3 Source Code

3.1 Availability

This section provides information with regards to the actual code repositories of the Data Marketplace.

3.1.1 Back-end

The software prototype of the Data Marketplace’s back-end will be provided in PolicyCLOUD’s GitLab

repository in the future version of the current deliverable (D7.12), since for the moment the back-end of

the Data Marketplace is under validation and testing in a private GitLab repository.

3.1.2 Front-end

The software prototype of the Data Marketplace’s front-end will be provided in PolicyCLOUD’s GitLab

repository in the future version of the current deliverable (D7.12), since for the moment the front-end of

the Data Marketplace is under validation and testing in a private GitLab repository.

3.2 Exploitation

This section provides information about where the components of the Data Marketplace are deployed

and how they can be accessed and run.

3.2.1 Back-end

As described in section 3.1.1, the band-end of the Data Marketplace is currently in a private GitLab

repository, and thus it cannot be exploited. This information will be fully available in the next version of

the current deliverable (D7.12).

3.2.2 Front-end

As described in section 3.1.2, the front-end of the Data Marketplace is currently in a private GitLab

repository, and thus it cannot be exploited. This information will be fully available in the next version of

the current deliverable (D7.12).

 D7.5 – v. 1.0

www.policycloud.eu

73

4 Conclusion

This deliverable described and analysed the implemented prototype of the Data Marketplace based on

the design and the architecture specifications described in section 2.1 in short, and in deliverable D7.4 in

more detail.

Moreover, the interfaces of the components have been introduced. Regarding the interfaces of the back-

end, the actions that are triggered after specific HTTP requests were described also using examples of

the requests. In terms of the front-end, the first version of Data Marketplace’s web pages was presented

along with some descriptions about them.

Finally, the baseline technologies and tools that are used in the Data Marketplace’s components were

reported, specifying the status of both the availability and the exploitation of the implemented source

codes.

The final version of the Data Marketplace prototype will be analysed in D7.12 Data Marketplace: Software

Prototype M34, due in October 2022.

 D7.5 – v. 1.0

www.policycloud.eu

74

References

[1] JSON Web Tokens (JWT), Homepage, https://jwt.io

[2] Auth0, JSON Web Tokens, https://auth0.com/docs/security/tokens/json-web-tokens

[3] Docker, Homepage, https://www.docker.com

[4] Python, Homepage, https://www.python.org

[5] The Pallets Projects, Flask, https://palletsprojects.com/p/flask

[6] MongoDB, Homepage, https://www.mongodb.com

[7] MongoDB, GridFS, https://docs.mongodb.com/manual/core/gridfs

[8] Gunicorn, Homepage, https://gunicorn.org

[9] NGINX, Homepage, https://www.nginx.com

[10] WordPress, Homepage, https://wordpress.com

[11] Elementor, Homepage, https://elementor.com

[12] cURL, Homepage, https://curl.se

https://jwt.io/
https://auth0.com/docs/security/tokens/json-web-tokens
https://www.docker.com/
https://www.python.org/
https://palletsprojects.com/p/flask
https://www.mongodb.com/
https://docs.mongodb.com/manual/core/gridfs
https://gunicorn.org/
https://www.nginx.com/
https://wordpress.com/
https://elementor.com/
https://curl.se/

