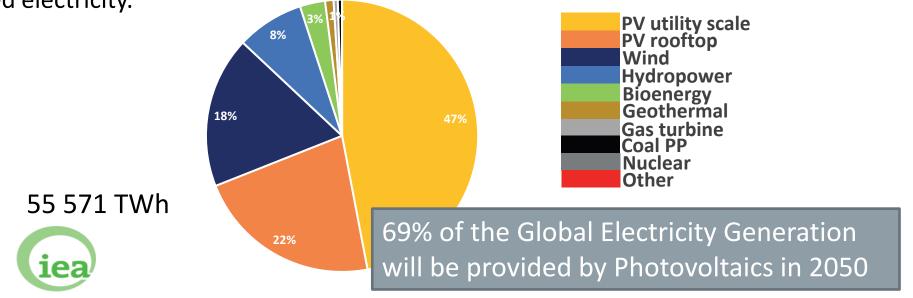


Advanced real-time supervision and centralized control of distributed energy resources in smart grids

Content


- Introduction
- Motivation Scope
- Real-time supervision and centralized control
- Distributed energy resource flexibility
- Distributed energy resource interoperability
- SunSpec control models overview
- Test case UCY nanogrid pilot
- Conclusions

Introduction

- The century-old power grid remains the largest interconnected machine on Earth.
- Today's grid cannot meet the future expectations of the energy (R)evolution, mainly due to the high integration of renewables.
- Solar photovoltaic (PV) is entering a New Era as the global leader in renewable power offering competitively produced electricity.

Source: International Energy Agency (IEA), "Market Report Series: Renewables 2018", 2018

31.10.2021

Key drivers

Europear

- European Climate Action and Energy Policy. European Union (EU) to become climate-neutral by 2050.
- Paris Agreement 2016 to reduce global warming <2°C.
- European Green Deal (EGD) energy policy for 2030 fit for reducing net greenhouse gas emissions by at least 55% by 2030, compared to 1990 levels.

EU ≥ -55%RES share targetGHG emissions reduction(gross final consumption energy)Large-scale electrification of end use sectors such as buildings, industry and transport, as wellas gradual decarbonisation of the power sector, are key for the energy transition.

 $EU \geq 32\%$

Motivation

Main challenges:

- Future supply (renewable-powered grids) and increasing demand trends are affecting grid stability and reliability.
- The capacity of interconnected inverter-based technologies are increasing rapidly and challenge the operation of conventional power systems (centralized vs de-centralized supervision).

Opportunity:

 Modernize the distribution grid for increased distributed energy resources integrated in an optimal manner with real-time supervision and centralized control solutions.

Modernize the Grid (efficient and cost effective)

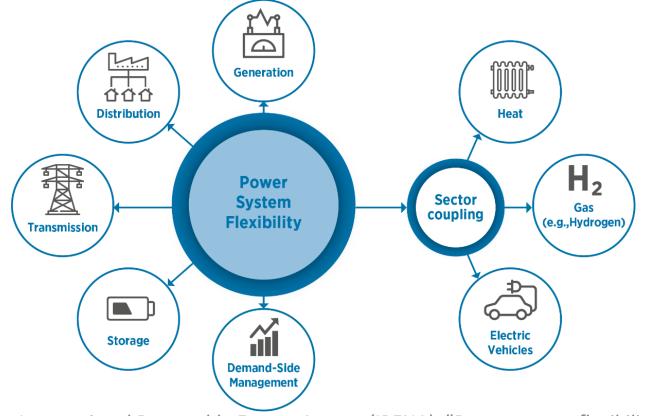
- Observability (supervision)
- Operational management (control)

Reinforce the grid (not efficient and costly)

Provide a conceptual overview of real-time supervision and control of distributed energy resources based on open-communication protocols, grid-edge IoT devices and cloud databases (unified and vendor independent solutions).

Demonstrate concept at University of Cyprus (UCY) nanogrid pilot with actual smart meters, PV and battery storage systems

Distributed energy resources


- Distributed energy resources (DERs) are small and medium-sized power sources connected to the distribution network, that can potentially provide services to the power system.
- The term 'DER' covers a wide range of technologies such as:
 - Solar photovoltaic (PV)
 - Battery storage
 - Demand response solutions (controllable loads, electric vehicles, power-to-heat, etc.)
- Integrating DER to the grid can provide increased flexibility to the power system. DER can be exposed to market signals and provide grid benefits by participating in the:
 - Electricity wholesale markets: Load shifting and peak shaving
 - Ancillary service market: Grid-supportive ancillary services and network congestion management

Distributed energy resource flexibility

 To effectively manage large-scale DER in future smart grids a number of flexibility sources need to be exploited in real-time and planned ahead of time.

Source: International Renewable Energy Agency (IRENA), "Power system flexibility for the energy transition", 2018

Distributed energy resource flexibility

- Integrating DER to the grid can provide increased flexibility to the power system.
- DER can be exposed to market signals and provide grid benefits by participating in the:
 - Electricity wholesale markets: Load shifting and peak shaving
 - Ancillary service market: Grid-supportive ancillary services and network congestion management
 - Capacity market: Improved generation capacity planning

DERs can generate or store energy, or manage consumption depending on type.

Distributed energy resource real-time supervision

- The objective of real-time supervision is the safe and reliable operation of any DER system 24/7.
- In order to fulfil all required tasks for system operation, special tools like 'Supervisory Control and Data Acquisition' systems (SCADA) are used.
- Advances in grid-edge IoT controllers and cloud computing enable to more efficiently supervise DER and deliver the state quickly and reliably.
- In a cloud computing system, there are minimal hardware and software demands on users.

Smart controllers that stream data to cloud computing systems can provide an efficient and cost-effective way to integrate and supervise DER in the smart grid

Distributed energy resource interoperability

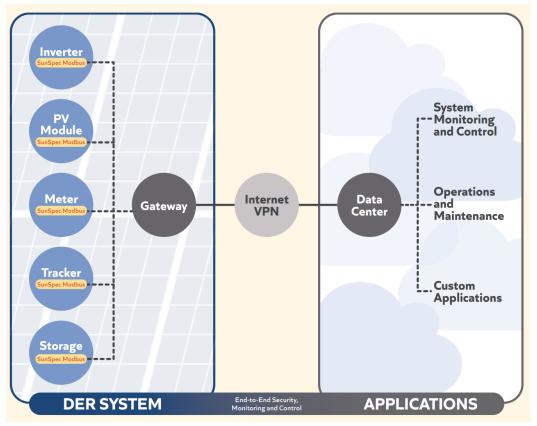
- Eric Smart Grid Infrastruct
- Standardized interfaces and protocols for supervising and controlling DER in power grids are defined by the:

Abstrac

- SunSpec Alliance (Modbus TCP)
- IEC 61850 (IEC/TR 61850-80-7 and IEC 61850-7-420) — Status:

Distributed energy resource interoperability SunSpec

- SunSpec Modbus is an open standard, referenced in IEEE 1547-2018, that enables interoperability.
- Provides data structures for improved interoperability.
- Cost-effective since because the physical network interface exists in most DER devices (80% of DER support Modbus TCP).
- Client-server communication approach leveraging Modbus specifications.

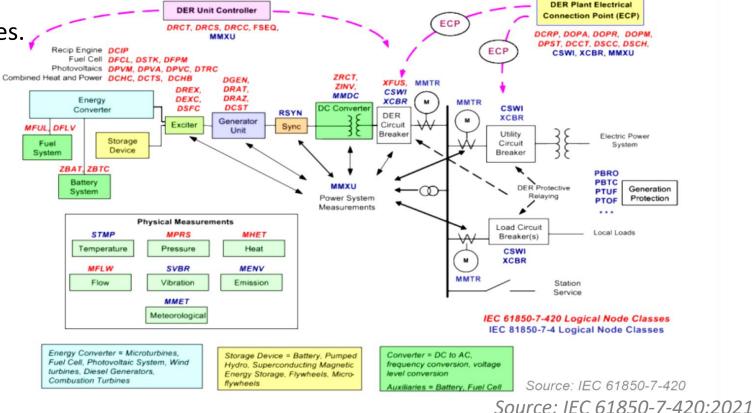

Efficient migration for DER devices that support the Modbus specification

Distributed energy resource interoperability SunSpec

- SunSpec Modbus defines common parameters and settings for monitoring and controlling DERs.
- Information models include:
 - DER AC measurement
 - DER capacity
 - DER enter service
 - DER AC controls
 - DER VOLT-VAR
 - DER VOLT-WATT
 - DER Trip low Voltage and High Voltage
 - DER Frequency droop
 - DER storage capacity
 - DER DC measurement

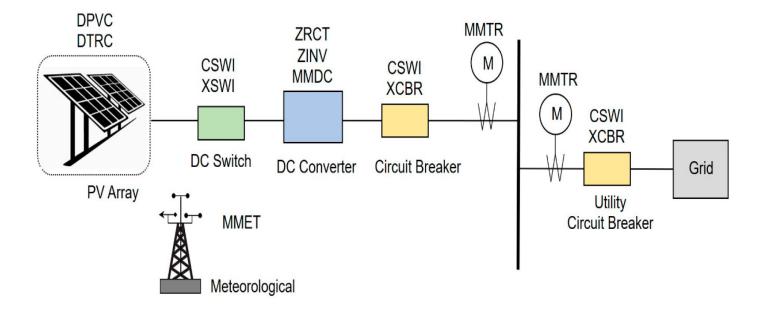
Source: SunSpec Alliance, "SunSpec Modbus interface", 2019

Distributed energy resource interoperability IEC 61850


- The IEC 61850 is the most modern communication protocol in smart grids.
- Report client and Report Server communication approach:
 - There is no serial communication and no server-client
 - IEDs transfer information when new data is present
 - IEDs can also transfer/communicate with each other (not possible in traditional protocols)

Distributed energy resource interoperability IEC 61850

- The IEC 61850 mapping capability (plug and play interoperability).
- Mapping is done by importing/exporting the device ICD file to any automation system.
- High-level concept of DER logical nodes.



Distributed energy resource interoperability IEC 61850

- IEC 61850-7-420 standard defines the general data model for DER.
- The standard describes the information model of the photovoltaic system including PV panels, conversion system, circuit breakers, protection devices, and metering devices.

Source: IEC 61850-7-420:2021

Distributed energy resource interoperability IEC 61850

Logical nodes of PV system based on IEC 61850.

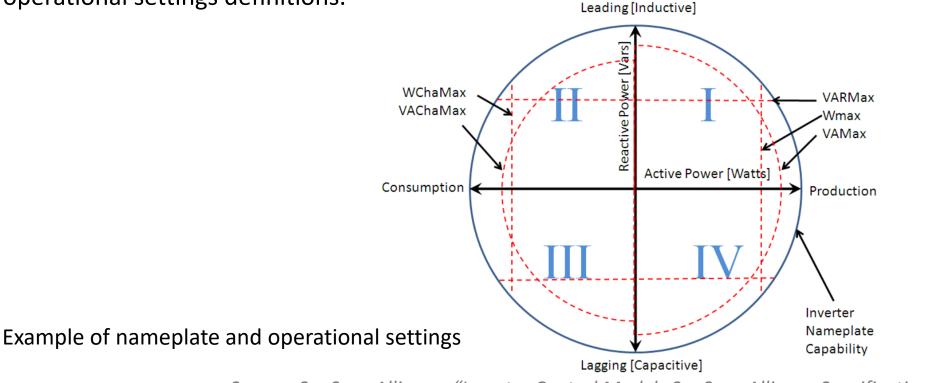
Name	Logical Node	Description
PV array	DPVC	PV array controller
	DTRC	PV tracking controller
DC Switch	CSWI	Switch controller
	XSWI	Circuit switch
DC Converter	ZRCT	Rectifier
	ZINV	Inverter
	MMDC	DC measurement
Circuit Breaker	CSQI	Switch controller
	XCBR	Circuit breaker
Metering	MMTR	Metering
Meteorological Tower	MMET	Meteorological information

Source: IEC 61850-7-420:2021

Comparison of IEC 61850 and SunSpec

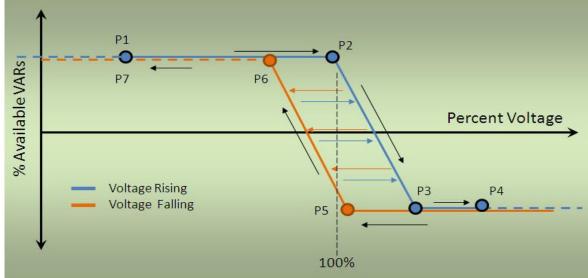
- Information models
 - Similar approaches for the information/data models
- Communication protocols
 - IEC 61850 communication is based on MMS over TCP/IP
 - SunSpec communication is based on Modbus (RTU or TCP/IP)

SunSpec control models overview Data models


- SunSpec data models and Modbus register mappings support of programmed, scheduled and autonomous inverter control operations.
- Many control points are specified in terms of percent of a fundamental setting or nameplate Rating.
- For many supervisory and control registers a scale factor (SF) register is provided to allow higher resolution.

SunSpec control models overview Basic settings

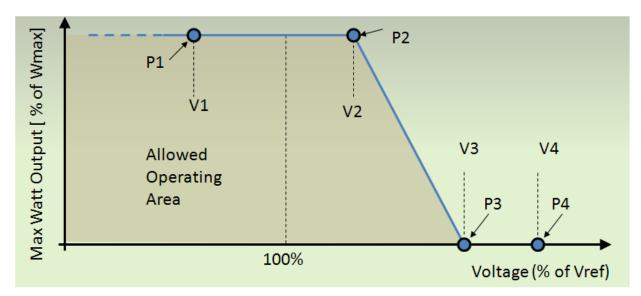
- SunSpec Basic Settings block provides information on how to modify the operating limits of an inverter (compared to the defined nameplate ratings).
- Nameplate and operational settings definitions.


Source: SunSpec Alliance, "Inverter Control Models SunSpec Alliance Specification", 2013

SunSpec control models overview Volt-VAR Arrays

- The Volt-VAr function provides the mechanism to control reactive power based on the local voltage.
- One or more Volt-Var arrays can be defined (pairs of voltage levels and corresponding VAr levels).
- The voltage is in percent of VRef (PCC Voltage).
- The VAr setting depends on the DeptRef which selects percent of available VARs (VArAval), percent of maximum available VARs (VArMax).

Example of Volt-VAr curve and definitions

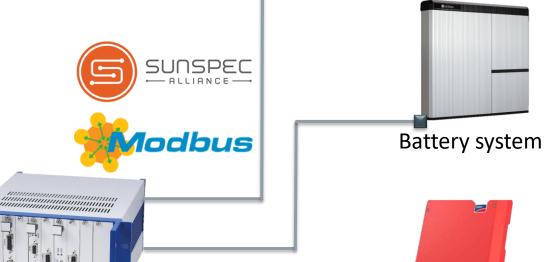

Source: SunSpec Alliance, "Inverter Control Models SunSpec Alliance Specification", 2013

SunSpec control models overview Volt-Watt Arrays

- The Volt-Watt function provides the mechanism to control active power based on the local voltage.
- One or more Volt-Watt arrays can be defined (pairs of voltage levels and corresponding watt levels)
- The voltage is in percent of VRef (PCC Voltage).
- The watt setting is 0% to 100% of the maximum available watts (WMax).

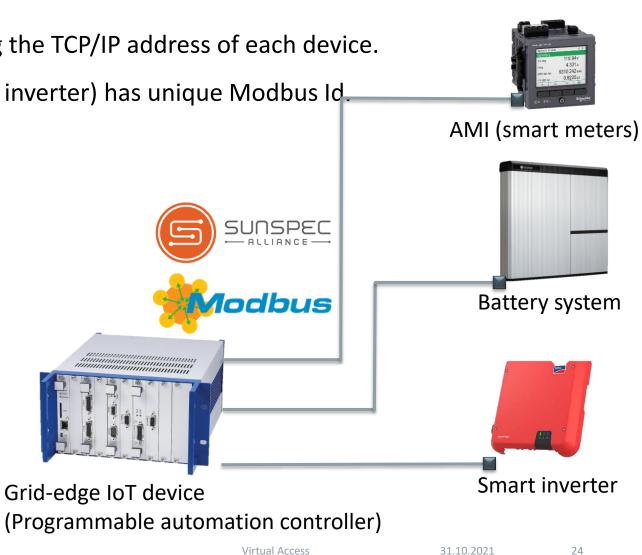
Example of Volt-Watt curve and definitions

Source: SunSpec Alliance, "Inverter Control Models SunSpec Alliance Specification", 2013



Test Case – UCY nanogrid pilot

- Vendor-independent system for dynamic and accurate DER supervision and control (SunSpec).
- Programmable automation controller streaming data from grid assets to cloud.
 AMI (smart meters)
 Smartgriducy cloud
 SUNSPEC

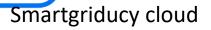

Grid-edge IoT device (Programmable automation controller)

Smart inverter

Test Case – UCY nanogrid pilot Network TCP/IP configuration

- Network configuration at controller by mapping the TCP/IP address of each device.
- Each DER (smart meter, battery inverter and PV inverter) has unique Modbus Id.

Eri


Smart Grid Infrastru

Test Case – UCY nanogrid pilot Controller-to-cloud connection

- Configuration of controller-to-cloud connection using secure network port 443.
- Enable streaming and storing high-resolution data fro grid-edge device to cloud.

Ethernet

Grid-edge IoT device (Programmable automation controller)

Test Case – UCY nanogrid pilot **PV** system AC measurements

- SunSpec Modbus allocation Table (Inverter Integer Map).
- Configuration of main AC monitoring parameters from smart inverter.

Register	Description	Туре
40188	AC current (A), in A×10 ^{A_SF} (40192).	Read Only
40200	Active power (W), in $W \times 10^{W_SF}$ (40201).	Read Only
40202	Power frequency (Hz), in Hz×10 ^{Hz_SF} (40203).	Read Only

Test Case – UCY nanogrid pilot **PV** system AC measurements

- SunSpec Modbus allocation Table (Inverter Integer Map).
- Configuration of main AC monitoring parameters from smart inverter.

Register	Description	Туре
40204	Apparent power (VA), in VA×10 ^{VA_SF} (40205).	Read Only
40206	Reactive power (VAr), in VAr×10 ^{VAr_SF} (40207).	Read Only
40208	Displacement power factor $\cos \phi$ (PF) ×10 ^{PF_SF} (40209).	Read Only

Test Case – UCY nanogrid pilot **PV** system **DC** measurements

- SunSpec Modbus allocation Table (Inverter Integer Map).
- Configuration of main DC monitoring parameters from smart inverter.

Register	Description	Туре
40217	DC power (DCW), in W×10 ^{DCW_SF} (40218).	Read Only

Test Case – UCY nanogrid pilot **PV system Connection Control**

- SunSpec Modbus allocation Table IC 123 (Immediate Inverter Controls).
- Configuration of parameters for immediate connection control of smart inverter.

Register	Description	Туре
40348	Connection control (Conn):	Write Only
	0 = Not connected	
	1 = Connected	

Test Case – UCY nanogrid pilot PV system Active Power Control

- SunSpec Modbus allocation Table IC 123 (Immediate Inverter Controls).
- Configuration of parameters for active power control of smart inverter (percentile set-points).

F	Register	Descr	ription								Туре		
4	40348	Set	power	to	default	value	(WMaxLimPct),	in	%	of	Write Only		
		WMa	ıx×10 ^{₩Ma}	ixLimPo	^{ct_SF} (4036	67)							
2	40353	Chok	king (WM	axLir	n_Ena):						Read / Write		
		1 = A	ctivated										sua o
											1		
								25					
										1 144		O SUMMY BOY	•
								<u>.</u>					
							Grid-ec	lge Io ⁻	T dev	ice		Smar	t inverter
****	© The ERIGrid 2	2 0 Consorti	ium								nation controller)		
**** [*]	EU H2020 Prog										Virtual Access	31.10.2021	30

Test Case – UCY nanogrid pilot **PV system Power Factor Control**

- SunSpec Modbus allocation Table IC 123 (Immediate Inverter Controls).
- Configuration of parameters for power factor control of smart inverter.

Reg	ister	Description	Туре
403	354	Set power factor to a certain value (OutPFSet) ×10 ^{OutPFSet_SF} (40368)	Write Only
403	358	Fixed power factor (OutPFSet_Ena):	Read / Write
		1 = Activated	

Test Case – UCY nanogrid pilot PV system Reactive Power Control

- SunSpec Modbus allocation Table IC 123 (Immediate Inverter Controls).
- Configuration of parameters for reactive power control of smart inverter.

Register	Description	Туре	
40359	Reactive power (VArWMaxPct), in % of WMax×10 ^{VArPct_SF} (40369)	Write Only	
40365	Mode of the percentile reactive power limitation (VArPct_Mod):	Read / Write	
	1 = in % of Wmax		
40366	Control of the reactive power limitation (VArPct_Ena):	Read / Write	
	1 = Activated		о <u>вма</u> •
	Grid-edge IoT device (Programmable automa	tion controllar)	Smart inverter

EU H2020 Programme GA No. 870620

31.10.2021

33

- SunSpec Modbus allocation Table IC 126 (Static Volt-VAr Arrays)
- Configuration of parameters Volt-VAr control of smart inverter

Register	Description		Туре	
40398	Index of the active curve (ActCrv):		Read / Write	
	0 = No curve active (deactivated)			
	1 = Curve 1 active			
40399	Volt-VAR control active (ModEna):		Read / Write	
	Bit 0 = Activated			o sua
© The ERIGri	d 2.0 Consortium	Grid-edge IoT device (Programmable automa	ation controller)	Smart inverter

Virtual Access

- SunSpec Modbus allocation Table IC 126 (Static Volt-VAr Arrays)
- Configuration of all Volt-VAR control points of smart inverter. Repeated block for all curve points.

Register	Description	Туре
40410	Point 1 volt (V1), in % of VRef×0 ^{V_SF} (40405)	Read / Write
40411	Point 1 VAr (VAr1) ×10 ^{DeptRef_SF} (40406)	Read / Write
	Repeated for all defined curve points.	

- SunSpec Modbus allocation Table IC 132 (Static Volt-Watt Arrays)
- Configuration of parameters Volt-Watt control of smart inverter

Register	Description	Туре
40558	Index of the active curve (ActCrv):	Read / Write
	1 = Curve 1 active	
40559	Volt-watt control active (ModEna):	Read / Write
	Bit 0 = Activated	

- SunSpec Modbus allocation Table IC 132 (Static Volt-Watt Arrays)
- Configuration of all Volt-VAR control points of smart inverter. Repeated block for all curve points.

Register	Description	Туре
40570	Point 1 volt (V1), in % of VRef×10 ^{V_SF} (40565)	Read / Write
40571	Point 1 watt (W1), in % of DeptRef×10 ^{DeptRef_SF} (40566)	Read / Write
	Repeated for all defined curve points	

Test Case – UCY nanogrid pilot Battery storage Monitoring

- SunSpec Modbus allocation Table IC 124 (Basic Storage Controls)
- Monitor state of charge and internal voltage of battery storage

Register	Description	Туре
40378	Current available energy (ChaState), in % of AhrRtg×10 ^{ChaState_SF} (40392)	Read / Write
40380	Battery internal voltage (InBatV), in V×10 ^{InBatV_SF} (40394)	Read / Write

Test Case – UCY nanogrid pilot Battery storage Charge / Discharge

- SunSpec Modbus allocation Table IC 124 (Basic Storage Controls)
- Configuration of parameters for charge / discharge of battery storage

Register	Description	Туре
40372	Set value for maximum charging active power (WChaMax), in W×10 ^{WChaMax_SF}	Read / Write
	(40388).	
40375	Activation of the storage control mode (StorCtl_Mod):	Read / Write
	Bit 0 = Battery charging	600 WIII WIII WIII WIII WIII WIII WIII W
	Bit 1 = Battery discharging	
	Grid-edge IoT device	Battery
**)	(Programmable automation contro	ller)

- Real-time supervision and control of DER is a requirement in future smart grids.
- With cost-effective IoT devices, open-communication protocols and cloud computing it is possible to achieve real-time management at grid-edge.
- Main communication protocols include:
 - IEC 61850 communication is based on MMS over TCP/IP
 - SunSpec communication is based on Modbus (RTU or TCP/IP)
- SunSpec data models and Modbus register mappings support of programmed, scheduled and autonomous inverter-based DER functions.
- Proof-of-concept demonstrated at UCY nanogrid pilot.

