INVITED: Towards Fail-Operational Ethernet Based
In-Vehicle Networks

Mischa Méstl
IDA - Institute of Computer
and Network Engieering
Technische Universitat
Braunschweig

moestl@ida.ing.tu-bs.de

ABSTRACT

In the future, vehicles are expected to act more and more au-
tonomously. The transition towards highly automated and
autonomous driving will push the safety requirements for
in-vehicle networks. Such networks must support isolation
between mixed-critical traffic (e.g. critical control and non-
critical infotainment) and must be fail-operational. This
paper will present new concepts and mechanisms to achieve
these goals in Ethernet-based networks. It will cover ad-
vanced topics such as software defined networking (SDN) to
implement isolation, fault recovery, and controlled degrada-
tion, e.g. to maintain (degraded) operation until the driver
takes over or to reach a safe stop.

1. INTRODUCTION

Ever increasing bandwidth requirements from infotain-
ment applications with best-effort delivery on the one hand
and quickly growing sensor traffic with tight network latency
requirements push traditional bus-based networks over their
limits. Especially with the advent of highly automated driv-
ing high resolution and redundant image sensors for robust
environment perception require bounded latencies at high
volume data transmissions. A further trend is an increas-
ingly complex low latency between different car domains
ranging from legacy to highly interactive driving functions
and control loops. The idea is to transition to switched
Ethernet due to its high grade of standardization and band-
widths that grow with technology, i.e. from 100 Mbit/s to
1 Gbit/s. Furthermore Ethernet promises open network ca-
pabilities with IP as a standard protocol on top of approved
technologies. Shared technology cost is a key driver as it
avoids domain specific and expensive technologies as, e.g. a
next generation FlexRay technology.

However the traffic in automotive systems is often time
and safety critical, since reliable service delivery depends on
sufficiently early delivery of data, i.e. before a certain dead-
line. Nevertheless, some traffic streams are more critical
than others or have no safety-requirements at all, i.e. are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

DAC 16, June 05 - 09, 2016, Austin, TX, USA

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4236-0/16/06. .. $15.00

DOL: http://dx.doi.org/10.1145/2897937.2905021

Daniel Thiele
IDA - Institute of Computer
and Network Engieering
Technische Universitat
Braunschweig

thiele@ida.ing.tu-bs.de

Rolf Ernst
IDA - Institute of Computer
and Network Engieering
Technische Universitat
Braunschweig
ernst@ida.ing.tu-bs.de

best effort streams where deadline misses are undesirable
but not critical or have no deadline constraint. This paper
is organized as follows, in Section 2 we elaborate on possi-
ble source of interference in switched Ethernet network that
endanger the safety of a design. Subsequently the safety im-
plications on switched Ethernet in fail-operational designs
are considered in Section 3. Section 4 concludes

2. THE INTERFERENCE CHALLENGE

Systems with more than one criticality are commonly re-
ferred to as mixed-critical systems. In mixed-critical as well
as safety-critical systems in general, freedom of interference
between the criticalities must be established in order to be
able to argue the safety of the system. In switched Ethernet
networks the isolation property must be investigated at mul-
tiple points, starting from the protocol stacks that perform
packaging and are responsible for message routing down to
the network hardware, i.e. switches and links.

2.1 Switch Considerations

For sufficient isolation between traffic streams the switch
matters to a great deal if traffic with real-time constraints is
sent over the network. One challenge for real-time Ethernet
designs is that freedom of implementation for the switches
exists between different vendors as long as the switch is in
accordance with the respective set of IEEE 802.1 standards.
To the greatest possible extent, we focus our assessment of
switch characteristics on generic or where not possible on
typical Ethernet switch structures.

Ethernet switches receive frames on individual inputs re-
ferred to as ingress stage and emit frames from the egress
stage. In the egress stage different queues can be present
to perform link arbitration, i.e. according to IEEE 802.1Q
priorities. Furthermore this queues again can be governed
by different kinds of schedulers, depending on the switch
and its configuration. Conceptually ingress and egress are
connected via the switch fabric, realizing the forwarding of
frames from ingress to egress. This process is conducted by a
switch control logic by means of a forwarding table, mapping
frames to egress stages based on their destination addresses.
However, for the implementation of the fabric various possi-
bilities exist, i.e. where buffers are located or necessary and
whether arbitration of the fabric is necessary. In cases where
arbitration of the fabric is necessary, this has to happen with
a strict upper bound and clear separation of frame priorities
for real-time capability of a switch. In this paper we focus
on conceptually typical store-and-forward implementations
of switches as depicted in Figure 1. For real-time capabil-
ity, the ingress and egress stages must be able to store/read

frames to/from a global shared frame buffer contention free
or with bounded overhead even if all switch ports are busy,
i.e. sending and receiving. Since frames are stored in the
global shared memory, this implies that along the datapath
only pointers to frames in this memory are passed rather
than the whole frame itself.

i 1
! Swilch j#| Packet Handling — Forwarding Table
I Management |
-------- Y
=)
- il
£ N e
- - 5 e
= [] Switch Fabric -
g_ R incl. ‘g-
E : Shared Memory —-’CI.:EI % o
S o 18
S —Poo— S =
(7] = 5
(7]

Figure 1: Typical Store-and-Forward Switch Archi-
tecture

Switch management functionality can be implemented in
hardware, software or as a mixture of both. While high level
protocols, that can also involve configuration of the switch,
are usually handled in software others such as Medium Ac-
cess Control (MAC) address learning, i.e. entering the des-
tination port for a MAC address into the forwarding table
based on received frames with the respective source address,
can be hardware based. A further task of packet handling
as seen in Figure 1 is to check for layer 2 protocol confor-
mity. The goal of the remainder of this section is to raise
awareness for the crucial points along the datapath and the
hazards there that can cause interference between different
traffic streams.

MAC address management.

Our first focus is on the forwarding table, how it is ac-
cessed and managed. Forwarding tables usually exhibit a
predictable timing behavior since they are typically imple-
mented as indexed data structures with constant access la-
tency, e.g. as a hash table. Therefore the 48 bits wide MAC
addresses are hashed by a vendor specific and often undis-
closed hash function, resulting in an index space that is typ-
ically in the order of 27 to 2!° indexes. These indexes are
then used to perform the lookup in the forwarding table.
Obviously hash collisions can appear here due to the (in-
tended) reduction of the value space. What is particularly
challenging here is that OEMs might obtain MAC address
pools and again allocate these to their suppliers in segments
leading to constellations where devices with conflicting re-
sulting hashes end up int the same car. To minimize the
effect of hash collisions, often set-associative tables are used
where more than one entry per index can be stored. Yet
this does not fully mitigate the problem since limited index
space or limited associativity of an index can always lead to
forwarding table collisions, i.e. two or more values would be
written to the same place in memory.

While in a commodity network this is usually not a prob-
lem, since address can be evicted from the table and learned
again this leads to a loss of predictable timing in real-time
networks. The reason therefore is that the usual behavior
when an address can not be found in the forwarding table
is to flood the frame on all egress ports until this destina-
tion address is seen as a source address and again written to
the table. However, flooding a frame on an unintended link

can cause congestion there, due to the unexpected frame,
leading to interference.

In order to prevent that critical MAC addresses are evicted
from the forwarding table, appropriate MAC address man-
agement within each Layer 2 network , i.e. collision domain,
is necessary. Possible approaches are (managed) forward-
ing tables with static entries for critical traffic streams, or
a fully associative forwarding table. However, even a fully
associative forwarding table remains a security concern.

Queuing buffers & Flow Control.

The second possible spot for interference between different
traffic streams is the frame buffer of the switch. As Ethernet
typically embraces store-and-forward frame passing the lim-
ited buffer space of a switch can cause interference among
frames since occupied buffers can lead to message drops.
Furthermore this aspect is tightly linked to the effects intro-
duced by the frame schedulers in the egress stage. Due to
the fact that schedulers as for instance Credit Based Shap-
ing (CBS) in Audio-Video Bridging (AVB) limit the rate at
which frames can be sent out again, the introduced delay in-
creases the time the frame occupies the queuing buffer. This
leads to increased same-priority blocking in an egress port
when multiple streams from different ingress ports compete
for the same egress port. Furthermore it also contributes to
increased delays for all competing traffic streams.

Blocking effects lead to unintended dependencies between
traffic streams over the same switch. Since backlog of pack-
ets can ultimately lead to the occupation of the whole global
frame buffer and thus inevitably to frame drop in the ingress
ports since no memory can be allocated for arriving frames.
This is a particular source of interference and not only if
frames of higher criticality are dropped at the ingress be-
cause of lower criticality frames that filled up the frame
buffer. Here a system-level analysis is necessary to ascertain
that even under worst-case conditions no buffer overruns can
happen. This is possible with common performance analysis
tools and mechanisms, e.g. [8]. Alternatively the analysis
results can be used to find a configuration of the switch such
that the memory can be partitioned in a way that critical
frames always have sufficient memory available. However,
this is only possible if the switch allows a partitioning of
memory that explicitly ties memory partitions to individ-
ual priorities or queues and ports. The effects of different
schedulers on delay and thus generated backlog for switched
Ethernet have been studied extensively in [21, 20, 18, 6, 9].
The importance thus not only is on the appropriate port
scheduler but also on the fact if and how buffer space can
be reserved for specific queues that transport high critical
streams to ensure freedom from interference.

Especially challenging with Ethernet here is the limited
number of only up to eight priorities in 802.1Q compared to
e.g. Controller Area Network (CAN) with 22° priority lev-
els. Striking in this context is that not necessarily all of
the priorities defined in IEEE 802.1Q must be mapped to
independent queues making the situation even more compli-
cated, as it can lead to head-of-line blocking. This implies
interference between the priority level mapped to the same
queue. These facts make a fine grained separation of criti-
cality by priority impossible, which suggests that a different
design strategy must be employed here. Typically switches
support at least three distinct priority classes with separate
priority queues per class. Here a design scheme that can pro-
vide hard real-time guarantees for time critical traffic can be
combined with flexibility for less time critical traffic due to

the separation properties of priority-based scheduling.

Therefore, we suggest to classify the traffic according to
its time criticality, starting with the most urgent frames on
the highest priority, e.g. control traffic with a small load
share to avoid shaping on this level. On the intermediate
priority level more bulky medium time-critical traffic can be
distributed, possibly with traffic shaping enabled to leave
resources for lower priorities. A possible candidate could
be camera traffic. Experiments with realistic automation
control traffic show that this approach is reasonable and
achieves the required latency bounds required for automo-
tive applications [9][19]. For less time-critical traffic or traffic
that is not that well defined, a “less-than worst-case” design
principle is then possible on the lower priorities, just like
found in ECU or CAN bus designs. Methods to validate
such a design could for instance be simulative or measure-
ment based since they are not guaranteed to capture the
worst-case but allow early design-space exploration. The
threshold on which priority levels worst-case design is actu-
ally applied and where the transition to a less-than worst-
case design happens can of course be altered depending on
the criticality of the traffic and the individual functionality
backed by the Ethernet network.

2.2 Protocol Considerations

Besides the interference points in the switches themselves
the network level also exhibits further sources of interference
or exposes obstacles for a predictable network design.

2.2.1 Communication Protocols

Firstly, complex protocol choices have to be made in or-
der to decide how to transport and address the data over
the network. There exist a wide range of possibilities which
all expose different advantages but also drawbacks that can
lead to interference or loss of e.g. time predictability. While
fixed length UDP packet communication on top of IP and
MAC protocols allows real-time predictability, this choice
of protocols might be unhandy with respect to applications
that need to perform (dynamic) service discovery or trans-
port varying length payloads. Thus middleware protocols
such as SOME/IP are defined in the scope of AUTOSAR
with the aim of making Ethernet communication manage-
able for automotive use cases [4]. However, the increasing
complexity that comes with these protocols can make tim-
ing analysis of the network a hard challenge [15] especially
if they also introduce connection oriented protocols such as
TCP. In the case of TCP, the sliding window technique that
is used for flow and congestion control as well as Transport
Control Protocol (TCP)’s three-way handshake make TCP
streams hard to model.

2.2.2 Packaging

Another point of possible interference on switched Ether-
net is the packaging of data. This is as a particular obstacle
if the Ethernet network is used as a high-capacity backbone
for communication between other sub networks, often legacy
buses. The challenge here is that a change in the communi-
cation paradigm happens. While signal communication on
buses is typically a publisher-subscriber communication, i.e.
the receiving party decides whether the message should be
processed, on switched Ethernet dedicated sender-receiver
pairs exist, i.e. the receiver(s) of a message have to be ex-
plicitly specified at the source.

In such setups the task of translating IDs that identify
the data, e.g. in CAN frames, to destination addresses on the

Ethernet network is fulfilled by bus-Ethernet gateways. The
same happens vice versa if signals from Ethernet frames are
fed onto other can buses, attached to the receiving gateway.

To transport CAN frames (i.e. their ID and signal pay-
load) over an Ethernet network, various strategies are possi-
ble. The two extrema are: (a) sending each CAN frame via
a dedicated Ethernet frame and (b) multiplexing (packing)
as many CAN frames as possible into an Ethernet frame.
While the first approach intuitively results in low latencies
(each CAN frame is sent immediately), it has a large Ether-
net protocol overhead (= 90%) and introduces a high load on
the domain gateways and the Ethernet (packing and send-
ing many small frames). The latter approach only has a
minimal Ethernet protocol overhead, however, suffers from
potentially large latencies as Ethernet frames are only sent
when they are full, which might take some time. As a con-
sequence various ways to group signals or can frames exist
as well as different triggering mechanisms when a buffer for
a group of signals (or frames) is released [11]. Challenging
in these setups is that all variants that group frames suffer
from the fact that they introduce dependencies between in-
dividual and otherwise independent frames which can lead
to interference, e.g. critical impact on response-times.

In summary interference on the domain gateway can ei-
ther originate from blocking in one of the buffers that awaits
its trigger condition or from packed and already triggered
frames being in the transmit queue of the gateway before
the respective frame. An overview of different packaging
strategies and their impact on end-to-end latencies is pre-
sented in [23].

3. TOWARDS FAIL-OPERATIONAL

Ethernet networks are a promising candidate for future
vehicle networks because they provide the bandwidth re-
quired for future automotive Advanced Driver Assistance
System (ADAS) systems. Yet, these systems strive more to-
wards highly automated and autonomous driving. However,
with increasing autonomy of the vehicle and longer reaction
or take-over times of the driver, the vehicle network must be
capable of delivering fault-free service. This property adds
another challenge to the design goals of the network, as it
requires fail-operational properties rather than fail-safe as in
legacy driver assistance systems. This is due-to the longer
reaction times until a driver can be brought back into the
loop to fully perceive the current driving situation and react
accordingly, which is not possible by simply switching off a
faulty functionality. In the context of network and platform
design, this means that faults have to be considered in order
to derive mechanisms for fail-operational capability. In or-
der to address fault events and their impact on the network,
a classification of the fault types and an understanding of
their probability of occurrence is necessary.

Here we distinguish fault events according to their behav-
ior over time: transient and permanent faults. Faults are
classified as transient if normal, i.e. fault free, operation is
restored after a bounded time interval without any special
repair effort. Permanent faults leave an affected component
in the corrupted, i.e. faulty, state for the rest of a system’s
lifetime or until repair.

3.1 Transient Fault Effects

Typical transient faults are bit flips due to electromagnetic
interference or other sources. This leads to frame loss since
the frames are detected as corrupted frames by a Cyclic Re-
dundancy Check (CRC) logic on the receiving switch. The

reason why this type of fault is particularly important when
designing a fail-operational network sub system is the Bit
Error Rate (BER) one can expect. For the two-wire Eth-
ernet standard BroadR Reach for example a Physical Layer
Transceiver (PHY) chip is compliant with the standard if it
exhibits a BER of less than or equal to 10™!° [7]. While ap-
pearing reasonably low for a single link this corresponds to a
bit error approximately every two minutes on a 100 Mbit/s
Ethernet link. Such a high transient error frequency is only
acceptable if transient error handling is part of regular op-
eration including timing constraints.

As fault events are not a rare event, a fail-operational
strategy should be efficient and simple w.r.t. the introduced
overhead. The situation is comparable to transmissions on
bus based connections. These also experience electromag-
netic interference and thus also frame loss. CAN and FlexRay
are designed with this challenge in mind and thus handle bit
errors directly on the protocol level. For small overhead
strong error detection coding is combined with repeated
transmission in case of an error. This approach mitigates the
risk of undetected (residual) errors at low overhead in reg-
ular operation. For instance, if an erroneous bit is detected
on CAN either by the sender or through the CRC sequence
at the end of a frame, the error is directly signaled to all bus
participants which then can discard the message. Assum-
ing only a transient fault on the wire, the sending node can
then again enter arbitration to retransmit the frame. In case
of Ethernet, a resend mechanism must cover the complete
network.

Furthermore, large volume data are typically not sent in
bare Ethernet frames but are encapsulated in a higher level
transport protocol that can fragment messages over more
than one Ethernet frame. Thus further fault classes can con-
tribute to packet loss in an Ethernet network. One particu-
lar issue in this context is tail drop due to frame buffer over-
run as discussed in Section 2.1. Consequently, switched Eth-
ernet requires an end-to-end error-control mechanism that
addresses transient fault scenarios, tail drop and transmis-
sion bit errors. This can be found in higher level transport
protocols such as Automatic Repeat ReQuest (ARQ) that
provide reliable data transfer with guaranteed in-order de-
livery [17] [13].

Obviously, for or a fail-operational real-time network ar-
chitecture the transient error correction time must be pre-
dictable in order to also give guarantees under the pres-
ence of transmission errors. To predictably analyze the re-
sponse times of ARQ mechanisms for bus-based communica-
tion such as CAN, several mechanisms exist, however, they
are not applicable to switched Ethernet as for bus-based
communication all participants directly detect the packet
corruption. In a switched network the unsuccessful delivery
of a packet is only detected after an acknowledgment, time-
out or negative acknowledgment (depending on the actual
protocol), i.e. detection efforts by the sender or receiver. In
the literature various forms of ARQ protocols are described
(cf. [17] or [13]), among which the most popular are Stop
and Wait, Go-back-N and Selective Repeat.

Stop and Wait is illustrated in Figure 2. For Stop and
Wait ARQ the receiver acknowledges every packet of the
sender with a positive acknowledgment packet (ACK). Only
after the sender has received the ACK a new packet is emit-
ted. If no ACK is received after a timeout of t,¢, the packet
is retransmitted.

Go-back-N ARQ is an extension thereof and is illustrated
in Figure 3. In go-back-n ARQ there can be up to nsw

o four oo fouwr

A

E B B

Figure 2: Example for Stop and Wait ARQ (c.f. [5])

sender

receiver

packets in-flight from the sender that are unacknowledged
by the receiver. If a data packet is lost, the sender will
resend the last packets again in-order, starting with the un-
acknowledged packet, i.e. max. ngw packets.

Lout
P

Figure 3: Example of Go-Back-N ARQ (c.f. [5])

For a worst-case analysis of both protocols the worst-case
round-trip time RT7T has to be computed. For Stop and
Wait ARQ this is the longest time between release of the
frame from the application to reception at the sink. The
reason therefore is that the RT'T dictates the minimum dis-
tance in time two packet releases can be apart in Stop and
Wait ARQ. Note that the artificial delays that are intro-
duced by the ARQ protocol alter the event models that de-
scribe the emission of packets from the application. In cases
where no ARQ is used these event models would be used for
a worst-case analysis. In the case of Go-Back-N the RTT,
however, describes the time between sending the first packet
of a window of up to nsw packets and the reception of the
Acknowledgement (ACK) for this first packet. Knowledge
of the RT'T then allows to alter the event models such that
at most nsw packets are in flight.

Despite the fact that ARQ protocols have been regarded
as inapplicable for hard real-time communication in the past
since in the worst-case the latency must be bounded, Axer
et.al. in [5] present and efficient end-to-end latency analysis
based on this considerations for Stop and Wait as well as
Go-Back-N ARQ enabling low overhead selective repeat in
a few milliseconds. The latency bounds provided are for
the fault free case as well as for lossy communication with
a parameterizable amount of lost packets k. The selective
repeat protocol as used in TCP however is more complex.
To the extent of the authors knowledge so far no analysis
that can provide formal worst-case bounds exists.

Predictable and fast end-to-end handling of transient er-
rors in switched Ethernet networks can match that of ex-
isting bus standards. This is highly important as it avoids
special error modes for regular operation.

3.2 Permanent Fault Effects

While, due to their high frequency, transient faults are
a primary concern, permanent fault effect handling is also
needed to reach the required functional safety. However,
since it is many orders of magintude more unlikely, it may
include switching to a fail operational mode.

In the Ethernet context permanent faults are effects that
leave a specific path along switches and links in an erroneous
state, such that even if continuous resending of messages,
e.g. due to an ARQ protocol, is unable to convey the mes-
sage along the path. The affected element of such a path
can be either the switch or the connection in between, i.e.
the cabling including the connectors. Permanent faults are
thus all types of influence that leaves an element of a route
permanently unusable. This explicitly also includes faulty
switches as they lead to permanent loss of all routes that
traverse the particular switch. Although this effects are less
likely by orders of magnitude compared to transient faults,
but they are still significant over the lifetime of a fleet of
cars.

First of all, in order to be able to handle such situations
faults must be detectable to mitigate their possibly safety-
critical effects. Errors can be detected in each switch in the
network by monitoring packet loss and corruption. Possible
detection mechanisms are error detecting code fields that
are part of packets anyway, e.g. by monitoring the CRCs
of Ethernet frame and User Datagram Protocol (UDP) for
that purpose. Alternatively timeout-based mechanisms are
possible if guaranteed arrival times of packets are known,
e.g. form worst-case analysis. Another well known protocol
to detect link faults is link-based bidirectional detection as
described in RFC 5880 [10].

Second, to consider any real-time network that is sub-
ject to strict fail-operational timing requirements, an up-
per bound on the time between the occurrence of the fault
and until it is resolved is necessary. This time is denomi-
nated as fault recovery time. For critical automotive control
applications fault recovery must thus be fast. The AVnu
Alliance suggests fault recovery times of less than 100 ms
[16], whereas other sources even suggest times of less than
50ms [2].

In order to survive a permanent network error routing
around the defective network element is necessary. This is
obviously only possible if sufficient redundancy, i.e. alterna-
tive paths, exist in the network to reach all end stations with
a fail-operational requirement. The first option to achieve
this and to fulfill the fault recovery time requirement is to
design the network with direct dual modular redundancy
with error detection for the required terminals. This implies
that each required stream is sent over two fully indepen-
dent routes from the source to its sink. That is possible
and used in AFDX [3] (and as an option in FlexRay buses).
However, this is not cost effective as the redundancy is in
the physical network as well as the logical layers above, i.e.
packets are also duplicated. Especially in the fault free case
this setup leads to a significant waste of resources since the
physical network needs to provide twice as much capacity
as logically can be used. As an alternative to this approach
physical layer redundancy can be used in an on demand
fashion for streams that require to stay operational after a
fault occurs, i.e reconfigure the network such that the critical
streams utilize the remaining links.

3.2.1 Network Reconfiguration

Network reconfiguration allows the network to return to
an operational state in the presence and detection of a com-
ponent (link or switch) failure by switching to an alterna-
tive, valid configuration. After a successful reconfiguration,
the network resumes regular or degraded operation and lost
packets can be retransmitted e.g. on the basis of ARQ as de-
scribed in Section 3.1. This could imply that after a recon-

figuration (after failure), the network operates with reduced
performance where some traffic streams of low importance
are disabled in order to provide the required guaranteed ser-
vice for highly critical streams.

There are two requirements to reconfiguration, the avail-
ability of redundant connections, and the ability to adapt the
network service to using the redundancy. The first problem
can be modeled as a standard graph problem with many
available solutions, the second requirement needs a network
control mechanism that is fast and reliable enough to be used
as part of a fail-operational mechanism. Standard Ethernet
would start a set-up sequence to find new routes but this is
not fast nor predictable enough for our application.

An example of a possible network reconfiguration is Soft-
ware Defined Networking (SDN), which is an emerging topic
in the time-sensitive Ethernet community. SDN leverages
that a network comprises a control and a data plane and
introduces network-wide interfaces for managing the control
plane. While the data plane is responsible for frame for-
warding based on forwarding tables, the control plane is in
charge of configuring the data plane accordingly. In SDN the
control plane is not distributed as the data plane, i.e. present
in every switch, it is instead merged in a (logically) central-
ized SDN controller. However, SDN is not a fault-recovery
technology in the first place, it is rather a generic network
management framework. In the context of fault tolerance
SDN can be used to reroute the critical streams (after a
failure) via different links. The SDN controller receives the
reconfiguration requests, grants or dismisses them and af-
terwards issues reconfiguration commands to the data plane,
i.e. mainly to update the forwarding tables accordingly. The
reconfiguration commands are then put into action by SDN
agents that are able to control the switch fabrics, e.g. are
part of the switch management. Controller redundancy can
be added to protect against controller faults. An comprehen-
sive survey of SDN techniques that is yet not particularly
targeted at real-time systems is given by Kreutz et.al. in
[12]. It covers interfaces and controllers, current fields of
application as well as standardization efforts.

3.2.2 SDN and Real-Time Guarantees

The SDN idea can also be found in the upcoming Eth-
ernet Time-Sensitive Networking (TSN) standards family
which aims to introduce real-time capability to IEEE 802.1.
With the IEEE P802.1Qac draft standard a (central) path
computation element (PCE) is introduced to explicitly com-
pute (potentially redundant) paths [24]. Where the PCE
fulfills the functionality of an SDN controller. Further, in
IEEE P802.1Qcc centralized network configuration for time-
sensitive networks is proposed [25].

A standard for a SDN interface in commodity networks
is OpenFlow [14]. However, it is built on TCP as transport
protocol, which is unsuitable for latency critical real-time
traffic, as pointed out before.

In consequence other protocols are necessary to be able
to obtain formal worst-case guarantees for the configuration
latency R}'D - The fault-recovery time then comprises the
time for fault detection and the configuration latency.

In contrast to OpenFlow’s TCP-based protocols, [22] pro-
poses a UDP-based protocol for network reconfiguration. As
illustrated in Figure 4, the contributing factors for R;rDN are
the request by an SDN agent to the controller, the necessary
computation and distribution time of a new configuration to
all agents as well as an enabling the configuration at the re-
questing agent, to finally redirect the traffic stream. Yet for

real-time automotive networks precomputed solutions are
preferable since they upper bound the latency 7€ of the
SDN controller. Possible precomputations are for example
all possible fault scenarios for one failed link. Such sim-

Switch 1 SDN Switch 2
SDN Agent1 Controller SDN Agent 2
Frame 1

Figure 4: SDN configuration flow (cf.[22])

ple UDP based protocols can then be analyzed with perfor-
mance analysis methods. A full evaluation thereof is avail-
able in [22]. It further demonstrates the suitability of the
SDN concept for real-time networks and for fault recovery
in such networks. SDN is also a candidate to improve net-
work security in case of denial-of-service attacks on network
terminals. This application is investigated in the European
SAFURE project [1].

4. CONCLUSION

Switched Ethernet is a suitable basis for future automotive
applications requiring fail-operational behavior. However,
many traps in switch and protocol design require a system-
atic design and verification approach to avoid violations of
safety guarantees. Robust network operation with real-time
transient error handling is possible using low overhead end-
to-end protocols. Permanent errors and security challenges
can be addressed using appropriate SDN techniques with
real-time capabilities. These topics require further research,
as in the European project SAFURE [1].

S. ACKNOWLEDGEMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 644080.

6. REFERENCES

[1] SAFURE - Safety And Security By Design For
Interconnected Mixed-Critical Cyber-Physical Systems.
https://safure.eu/.

[2] N. L. M. v. Adrichem, B. J. v. Asten, and F. A. Kuipers.

Fast Recovery in Software-Defined Networks. In 2014 Third

European Workshop on Software Defined Networks

(EWSDN), Sept. 2014.

ARINC. ARINC 664, P7 - Avionics Full-Duplex Switched

Ethernet (AFDX) Network, 2009.

[4] AUTOSAR. AUTOSAR Specification Release 4.2, 2015.

[5] P. Axer, D. Thiele, and R. Ernst. Formal timing analysis of
automatic repeat request for switched real-time networks.
In 2014 9th IEEFE International Symposium on Industrial
Embedded Systems (SIES), June 2014.

[6] P. Axer, D. Thiele, R. Ernst, and J. Diemer. Exploiting
Shaper Context to Improve Performance Bounds of
Ethernet AVB Networks. In Proceedings of the 51st Annual
Design Automation Conference, DAC ’14, New York, NY,
USA, 2014. ACM.

3

[7] Broadcom Corporation. BroadR-Reach Physical Layer
Transceiver Specification For Automotive Applications -
Version 3.0, May 2014.

[8] J. Diemer, P. Axer, and Ernst, Rolf. Compositional
Performance Analysis in Python with pyCPA. In
Proceedings of the 3rd International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time
Systems, ECRTS, Pisa, July 2012.

[9] J. Diemer, J. Rox, R. Ernst, F. Chen, K. Kremer, and
K. Richter. Exploring the worst-case timing of Ethernet
AVB for industrial applications. In IJECON 2012 - 38th
Annual Conference on IEEE Industrial Electronics Society,
2012.

[10] D. Katz and D. Ward. Bidirectional forwarding detection
(BFD). RFC 5880, RFC Editor, June 2010.

[11] A. Kern, D. Reinhard, T. Streichert, and J. Teich. Gateway
Strategies for Embedding of Automotive CAN-Frames into
Ethernet-Packets and Vice Versa. In M. Berekovic,

W. Fornaciari, U. Brinkschulte, and C. Silvano, editors,
Architecture of Computing Systems - ARCS 2011, number
6566 in Lecture Notes in Computer Science. Springer Berlin
Heidelberg, Jan. 2011.

[12] D. Kreutz, F. M. Ramos, P. Esteves Verissimo,

C. Esteve Rothenberg, S. Azodolmolky, and S. Uhlig.
Software-defined networking: A comprehensive survey.
proceedings of the IEEE, 103(1), 2015.

[13] S. Lin, D. J. Costello, and M. J. Miller.
Automatic-repeat-request error-control schemes. IEEE
Communications Magazine, 22(12), Dec. 1984.

[14] Open Networking Foundation. Openflow. [Online].
Available:
https://www.opennetworking.org/sdn-resources/openflow.

[15] J. R. Seyler, T. Streichert, M. Gla8}; N. Navet, and J. Teich.
Formal analysis of the startup delay of SOME/IP service
discovery. In Design, Automation Test in FEurope
Conference Ezhibition (DATE), 2015, Mar. 2015.

[16] J. Takeuchi. Requirements for automotive AVB system
profiles. Technical report, AVnu Alliance, April 2011.

[17] A. S. Tanenbaum. Computer networks. Prentice Hall PTR,
2003.

[18] D. Thiele, P. Axer, and R. Ernst. Improving Formal Timing
Analysis of Switched Ethernet by Exploiting FIFO
Scheduling. In Proceedings of the 52Nd Annual Design
Automation Conference, DAC ’15, New York, NY, USA,
2015. ACM.

[19] D. Thiele, P. Axer, R. Ernst, J. Diemer, and K. Richter.
Cooperating on Real-Time Capable Ethernet Architecture
in Vehicles. In VDI Elektronik im Fahrzeug, Baden Baden,
October 2013.

[20] D. Thiele, P. Axer, R. Ernst, and J. R. Seyler. Improving
Formal Timing Analysis of Switched Ethernet by
Exploiting Traffic Stream Correlations. In Proceedings of
the 2014 International Conference on Hardware/Software
Codesign and System Synthesis, CODES ’14, New York,
NY, USA, 2014. ACM.

[21] D. Thiele, J. Diemer, P. Axer, R. Ernst, and J. Seyler.
Improved Formal Worst-case Timing Analysis of Weighted
Round Robin Scheduling for Ethernet. In Proceedings of
the Ninth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis,
CODESHISSS ’13, Piscataway, NJ, USA, 2013. IEEE Press.

[22] D. Thiele and R. Ernst. Formal Analysis Based Evaluation
of Software Defined Networking for Time-Sensitive
Ethernet. In Proceedings of the Design Automation and
Test in Europe, DATE ’16, 2016.

[23] D. Thiele, J. Schlatow, P. Axer, and R. Ernst. Formal
Timing Analysis of CAN-to-Ethernet Gateway Strategies in
Automotive Networks. Real-Time Syst., 52(1), Jan. 2016.

[24] Time-Sensitive Networking Task Group of IEEE 802.1.
P802.1Qca: Standard for Local and metropolitan area
networks — Path Control and Reservation (Draft 2.1), June
2015.

[25] Time-Sensitive Networking Task Group of IEEE 802.1.
P802.1Qcc: Standard for Local and metropolitan area
networks — Stream Reservation Protocol (Draft 0.4), June
2015.

