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Abstract
Aims: Reliable estimation of the time spent in different glycaemic ranges 
(time-in-ranges) requires sufficiently long continuous glucose monitoring. In a 
2019 paper (Battelino et al., Clinical targets for continuous glucose monitoring 
data interpretation: recommendations from the international consensus on time 
in range. Diabetes Care. 2019;42:1593-1603), an international panel of experts 
suggested using a correlation-based approach to obtain the minimum number 
of days for reliable time-in-ranges estimates. More recently (in Camerlingo et al., 
Design of clinical trials to assess diabetes treatment: minimum duration of con-
tinuous glucose monitoring data to estimate time-in-ranges with the desired pre-
cision. Diabetes Obes Metab. 2021;23:2446-2454) we presented a mathematical 
equation linking the number of monitoring days to the uncertainty around time-
in-ranges estimates. In this work, we compare these two approaches, mainly fo-
cusing on time spent in (70-180) mg/dL range (TIR).
Methods: The first 100 and 150  days of data were extracted from study A 
(148 subjects, ~180 days), and the first 100, 150, 200, 250 and 300 days of data 
from study B (45 subjects, ~365 days). For each of these data windows, the mini-
mum monitoring duration was computed using correlation-based and equation-
based approaches. The suggestions were compared for the windows of different 
durations extracted from the same study, and for the windows of equal duration 
extracted from different studies.
Results: When changing the dataset duration, the correlation-based approach 
produces inconsistent results, ranging from 23 to 64 days, for TIR. The equation-
based approach was found to be robust versus this issue, as it is affected only by 
the characteristics of the population being monitored. Indeed, to grant a con-
fidence interval of 5% around TIR, it suggests 18 days for windows from study 
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1   |   INTRODUCTION

In the last decade, the use of standardized continuous glu-
cose monitoring (CGM)-based metrics to streamline data 
interpretation and to provide actionable information was 
largely recommended in several consensus panels.1–4 In 
particular, the use of the so-called ‘time-in-ranges’ (TIRs), 
that is, the percentage of time spent within different gly-
caemic ranges, was suggested by an international con-
sensus panel convened by the Advanced Technologies & 
Treatments for Diabetes (ATTD).4  The same consensus 
panel recommended a minimum of 14  days of CGM to 
reliably estimate TIR. This recommendation was based 
on the results of analyses performed on data from rand-
omized controlled trials,5,6 which assessed the correlation 
between TIRs computed over 3 months of CGM data and 
TIRs calculated in shorter periods of increasing durations. 
Specifically,5  showed that TIRs (and other glucose met-
rics) estimated over 12–15 days of CGM monitoring corre-
late well with the same metrics computed over the whole 
3-month trial, using old generation sensors. The same 
result was obtained later,6 using the Abbott FreeStyle 
Libre Pro (Abbott Diabetes Care, Inc.) and the Dexcom G4 
Platinum (Dexcom, Inc.) CGM systems.

This correlation-based approach was also used in sev-
eral other works.7–9 In particular, Leelarathna et al.7 used 
3-month hybrid closed-loop data and suggested a similar 
monitoring period as optimal. A longer optimal monitor-
ing period of 4 weeks was suggested in a paediatric study,8 
which analysed a longer dataset of 4-month duration. 
Finally, data with an even longer duration of 8  months 
were analysed using Abbott FreeStyle Libre and Dexcom 
G6 data, suggesting a minimum monitoring period of 
5–9 weeks.9

Apparently, the results of the correlation-based anal-
ysis seem to be strongly dependent on the total duration 
of the dataset employed. As recently noticed by Herrero 
et al.,10 this represents a limitation for the generalizabil-
ity of the approach. Furthermore, the correlation-based 
approach does not provide a measure of the precision 
of the TIRs estimated over the suggested monitoring 
duration.

In other works,10–12 instead of computing the correla-
tion, the estimation error between TIRs computed over 
CGM portions of increasing duration and TIRs assessed 
over the whole dataset was considered. Specifically, in 
Ref. [11] our group proposed a new approach to an-
alytically derive a suitable CGM period on statistical 
grounds, relying on a mathematical equation linking the 
CGM duration with the precision of TIR estimates. In 
addition, in Ref. [12] we showed that the proposed meth-
odology effectively predicts the variability observed on 
CGM data collected in two different populations of par-
ticipants with heterogeneous characteristics and wear-
ing sensors with different sampling periods. Finally, we 
showed how to use this approach proactively, when de-
signing new clinical trials, to determine the optimal trial 
duration to achieve a desired level of precision in the 
estimation of TIRs.

In this work, we first describe how the correlation-
based approach and the analytical approach work, focus-
ing on TIR, that is, the fraction of time spent with CGM 

A, and 17 days for windows from study B. Similar considerations hold for other 
time-in-ranges.
Conclusions: The equation-based approach offers advantages for the design 
of clinical trials having time-in-ranges as final end points, with focus on trial 
duration.

K E Y W O R D S

continuous glucose monitoring, correlation, estimation error, time-in-ranges, trial design

What is new?
•	 Numerous published papers focus on the iden-

tification of the minimum duration of CGM re-
cordings in a clinical trial to reliably estimate 
time-in-ranges, by implementing a correlation-
based approach.

•	 While the correlation-based approach is em-
pirical and provides inconsistent results, we 
recently proposed a more robust analytical 
approach that suggests the minimum CGM 
duration to achieve the desired precision in 
time-in-ranges estimates.

•	 3-weeks of CGM grant confidence-intervals of 
5% around TIR and TAR, and 1.5% around TBR. 
Nevertheless, on https://computecgmduration.
dei.unipd.it one can compute the adequate 
number of days needed to the purpose.
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in [70–180]  mg/dl ([3.9–10]  mmol/L). Then, we imple-
ment the two approaches using two independent datasets, 
and evaluate the reliability of the minimum CGM dura-
tion identified. Specifically, for each approach, we assess 
whether the monitoring durations suggested are consis-
tent to each other when changing the dataset used for the 
analysis.

2   |   METHODS

2.1  |  Datasets

We considered the datasets collected in two different 
studies.

Study A13 involves 148 participants (71 women) with 
T1D monitored for up to 6  months, using an unblinded 
CGM sensor without confirmatory fingerstick. The sen-
sor used is a Dexcom G4 Platinum (Dexcom, Inc.) with 

enhanced accuracy through Software 505,14 provid-
ing one sample every 5  min. On mean  ±  standard de-
viation (SD), participants were 44  ±  14  years old, with 
HbA1c of 54  ±  7  mmol/mol (7.1  ±  0.7%), mean glucose 
of 161.6 ± 23.9 mg/dl, TIR of 61.8 ± 13.0%, time below 
range (TBR) of 3.92  ±  2.75%, time above range (TAR) 
of 33.1  ±  13.9% and coefficient of variation (CV) of 
37.0  ±  5.05%. The available hours of CGM data were 
3831 ± 598 h per person (data availability of 92.17%).

Study B is an observational study involving 45 par-
ticipants (16 women) with T1D monitored for up to 
1  year, conducted at the Medical University of Graz 
(IRB approval number: 29/522 ex 16/17). In this case, 
the CGM sensor used is Abbott Freestyle Libre, Abbott 
Laboratories, providing one sample every 15  min. 
On mean  ±  SD, participants were 39  ±  14  years old, 
with HbA1c of 60  ±  13  mmol/mol (7.7  ±  1.2%), mean 
glucose of 172.8  ±  34.1  mg/dl, TIR of 54.0  ±  17.7%, 
TBR of 5.15 ± 4.32%, TAR of 41.8 ± 19.3% and CV of 
48.6  ±  6.69%. The available hours of CGM data were 
7973 ± 689 h per person (data availability of 90.85%).

To ensure that an adequate amount of CGM data is 
available for each participant, only participants with 
at least 173 days of monitoring are retained for study A 
(90.67%) and only participants with least 330 days are re-
tained for study B (88.89%), resulting in the exclusion of 
about the 10% of all the participants.

2.2  |  Correlation-based approach

The correlation-based method can be illustrated as fol-
lows. Suppose that participants are monitored in a long-
term trial lasting N days (e.g. N  >  90  days). For each 
participant p = 1, 2, ⋯, Npar, the most accurate estimate 
of the TIR, TIR(p,N), can be evaluated over the whole trial 
duration N. The optimal trial duration noptis defined as the 
minimum number of days needed to accurately reflect 
TIR(p,N). To determine this value, several windows of in-
creasing duration n, ranging in [1,N]days, are extracted, 
simulating short-term trials. Then, TIR(p,N) is computed 
for each of them.

Repeating this procedure for all the Npar participants, 
the association between long-term TIR in the population, 
TIR(N), and short-term TIR in the same population, 
TIR(N), is assessed by resorting to the Pearson's correla-
tion coefficient �:

The correlation coefficient �(n,N) assumes values in 
[0, 1] and it is expected to increase as the duration n in-
creases, reaching the maximum value of 1 when n = N.

Note that Spearman's correlation coefficient can be 
used for variables which are not normally distributed, as 
suggested in Ref. [7]. Moreover, �2 (also known as coeffi-
cient of determination) can be used instead of �. The key 
message of this paper remains valid also when considering 
these two alternative quantities to assess the correlation.

Once computed � (n,N) for n = 1, 2, ⋯, N days, the op-
timal CGM duration nopt to assess long-term TIR is se-
lected as the number of days providing a desired value of 
correlation coefficient � (or coefficient of determination 
�
2 ). For example, in Ref. [7] � (n,N) = 0.95 was consid-

ered, while in Ref. [9] the optimal duration nopt was se-
lected as the one providing �2 (n,N) = 0.9.

2.3  |  Equation-based approach

The analytical approach of Camerlingo et al.11 can be 
briefly illustrated as follows. In the same framework pre-
viously described, the estimation error committed using 
short-term TIR, TIR(p,n), instead of the more accurate 
TIR(p,N) is computed for each participant 
p = 1, 2, ⋯, Npat , as follows:

(1)
� (n,N) =

∑Npar
p=1

(TIR (p,n) −mean (TIR (p,n))) (TIR (p,N) −mean (TIR (p,n)))
�

∑Npar
p=1

(TIR (p,n) −mean (TIR (p,n)))2
�

∑Npar
p=1

(TIR (p,N) −mean (TIR (p,n)))2
n = 1, 2,⋯, N
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This quantity can be both positive and negative and 
it is distributed around 0 with a certain SD SD[e(n)]. The 
larger this quantity, the more uncertain the estimate 
TIR (p,n).

We previously derived and validated an equation to cal-
culate the SD of the estimation error SD [e (n)] as a func-
tion of the length of the monitoring period n11:

This equation proved effective in predicting the uncer-
tainty of several TIRs estimates, computed retrospectively 
by CGM data collected in two large populations of T1D 
individuals, using different sensors.12

Equation (2) involves three parameters: k, pr and �. The 
first parameter, k, depends only on the sensor sampling 
period, that is, how often the sensor provides a measure-
ment (usually every 5 or 15 min). Specifically, k amounts 
to the number of CGM samples produced in 1 day when 
no data gaps occur. For example, k = 288 for a CGM sen-
sor providing measurements every 5 min, while k = 96 for 
CGM measurements collected every 15 min.

The second parameter, pr, depends on the considered 
glycaemic range and on the population under study. In 
particular, it represents the average TIRs in the popu-
lation. This value is unknown when designing a new 
study, thus a clinical practitioner should be set it to the 
expected TIRs in the population under analysis, based 
on pilot study, clinical experience of previously reported 
data or educated guess (analogously to power calcula-
tion tools, that requires setting a priori the expected ef-
fect size.15

The third parameter, �, is poorly sensitive to the popu-
lation under analysis, while it depends the most on the 
considered glycaemic range and the CGM sensor sam-
pling period. Moreover, small errors in setting the value of 
� impact very slightly on the predicted uncertainty.16 
Hence, in Ref. [12] some plausible TIRs-specific values of 
� were suggested: using a CGM sensor providing one mea-
surement every 5 min, �5 = 0.961 for the TIR, �5 = 0.940 
for the TBR and �5 = 0.968 for the TAR. Then, according 
to the rule provided in Ref. [12], these values can be 
adapted for sensors with different sampling periods: in 
general, when a sensor providing one measurement every 
T minutes is used, the previous values should be adjusted 
accordingly as 

�T = �5

T
5.

Given the above considerations, for the TIR and a  
5-min CGM sensor Equation (2) becomes:

Finally, once obtained the explicit formula, the opti-
mal CGM duration nopt is determined as the number of 
days n granting a desired level of uncertainty around the 
TIR estimate, SD

[

eTIR (n)
]

. To facilitate this computa-
tion, an online calculator was developed and made 
freely available at: http://compu​tecgm​durat​ion.dei.
unipd.it.

2.4  |  Comparison of the two approaches

To compare the two approaches, we investigated how 
the minimum monitoring duration, suggested by each 
method, changes:

1.	 When the length N of the trial used for the analysis 
changes, but both the populations of participants under 
study and the CGM sensor used remain unchanged;

2.	 When the length of the trials used remain the same 
but the population of participants under study and the 
CGM sensor used change.

These two analyses are relevant since one would like 
to get from the methods a minimum duration that is inde-
pendent on the trial duration used to determine it. On the 
contrary, it is reasonable that different populations might 
require a different minimum monitoring time based on 
their inherent characteristics.

To investigate the first question, we selected portions 
of increasing duration from study B (the longer of the two 
under analysis) all starting from the first day, thus simu-
lating trials with different durations N, conduced on the 
same participants with the same sensors. Specifically, we 
obtained the trials B1, B2, B3, B4 and B5 lasting 100, 150, 
200, 250 and 300  days respectively. Then, we compared 
the results obtained by the correlation-based and the 
equation-based approaches.

To investigate the second question, we extracted the 
first 100 and 150  days from study A, thus obtaining the 
trials A1 and A2, and compared the results obtained by 
applying the correlation-based and the equation-based ap-
proaches for A1 versus B1 and A2 versus B2.

In the implementation of the correlation-based ap-
proach, the coefficient of determination �2 (n,N) was 
computed, retrospectively, by CGM data of each trial. 
Then, the optimal CGM duration was selected as the min-
imum number of days nopt providing �2 (n,N) = 0.9, as in 
Ref. [9] To obtain a stable value of �2 (n,N), we employed 
a sliding window approach.10 Further notes in this regard 

e (p,n,N) = TIR (p,n) − TIR (p,N) , n = 1, 2,⋯, N

(2)

SD [e (n)] =

√

√

√

√

pr
(

1 − pr
)

k n

(

1 +
2�

1 − �
+
2�

k n

(

�k n − 1
)

(1−�)2

)

(3)SD
[

eTIR (n)
]

≃

√

pr(1 − pr)

96n

(

18.05 −
1.691

n

)

http://computecgmduration.dei.unipd.it
http://computecgmduration.dei.unipd.it
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are reported in the Supplementary Material (see, for ex-
ample, Figure S1).

In the implementation of the equation-based approach, 
we used the online tool available at http://compu​tecgm​
durat​ion.dei.unipd.it, setting the parameters as follows. 
The sensor sampling period was set to 5 min for study A 
and to 15 min for study B; the parameter pr was computed, 
for each trial, as the mean TIR in the population; the de-
sired uncertainty SD [e (n)] was set to 5%. So, the optimal 
CGM duration was selected as the minimum number of 
days nopt providing SD [e (n)] = 0.05.

Note that the threshold values of 0.9 for �2 and 0.05 for 
SD [e (n)] do not have a specific clinical meaning, and are 
not linked between each other (i.e. having a �2 equal to 
0.9 is not equivalent to have a SD[e(n)] of 5% and there is 
not a straightforward way to define such an equivalence). 
Therefore, we cannot directly compare the results ob-
tained by the two approaches on the same trial, but we can 
analyse how the results obtained by each approach vary 
for different trials.

For a more comprehensive assessment, independent 
of the threshold value, we also analysed the pattern of 
�
2 (n,N) as a function of n, for the correlation-based ap-

proach, and the pattern of SD [e (n)] as a function of n, for 
the equation-based approach, considering initial trials of 
different durations N (B1, B2, B3, B4 and B5).

3   |   RESULTS

Table 1 reports the optimal number of monitoring days, 
nopt, provided by the correlation-based approach with tar-
get �2 equal to 0.9 (column 5) and the equation-based ap-
proach with desired SD [e (n)] of 5% (column 6), for the 
trials A1, A2, B1, B2, B3, B4 and B5. For each trial, the 
whole trial duration N is reported (column 3), as well as 

the TIR computed on the overall trial (column 4), ex-
pressed as mean ± SD.

First, let us compare the results obtained for the trials 
of different durations extracted from study B.

The equation-based approach returns a unique op-
timal trial duration of 18 days for all the trials extracted 
from study B. Indeed, the trial duration N, not present in 
Equation (3), does not affect the result of this approach. 
Conversely, the correlation-based approach yields dif-
ferent results for each trial. In particular, the longer the 
trial the more days are needed to reach the desired �2: for 
B1, whose duration is 100 days, the optimal trial duration 
is 23  days, while it reaches 64  days for B5, which lasts 
300 days. This shows that the minimum monitoring time 
suggested by the correlation-based approach is influenced 
by the duration of the trial used for the analysis. Notably, 
this happens even if the TIR values for B1, B2, B3, B4 and 
B5 are very similar to each other, thus reasonably allow-
ing to exclude that the correlation approach is offering 
different suggestions because the population is changing 
during the study.

To generalize these considerations to different �2 and 
SD [e (n)] target values, in Figure 1 we report the curves 
of �2 (n,N) versus n obtained with the correlation-based 
approach (Figure  1a) and the curves of SD [e (n)] versus 
n obtained with the equation-based approach (Figure 1b), 
for trials of different duration N: B1 (circle green), B2 
(triangle cyan), B3 (square blue), B4 (diamond red) and 
B5 (asterisk black). On one hand, the �2 (n,N) curves are 
shifted for different trials: the lower the trial duration N
, the faster they increase. Thus, for any �2 threshold, the 
minimum number of days returned by this approach 
varies with the overall trial duration N. For example, it is 
smaller for B1 (N = 100 days) than for B5 (N = 300 days). 
On the other hand, the SD [e (n)] curves showed in panel 
b for different trials are perfectly overlapped, since the 

T A B L E  1   Optimal trial duration obtained with the correlation-based approach and the equation-based approach, considering TIR, for 
trials extracted by study A (A1 and A2) and study B (B1, B2, B3, B4 and B5)

Study Trial
Trial duration
N [days]

TIR (N)
[mean ± SD]

Optimal trial duration nopt[days]

Correlation based Equation based

B B1 100 55.8 ± 15.3% 23 18

B B2 150 55.1 ± 14.9% 27 18

B B3 200 54.8 ± 14.4% 35 18

B B4 250 54.9 ± 14.0% 46 18

B B5 300 54.7 ± 13.7% 64 18

A A1 100 62.0 ± 13.5% 24 17

A A2 150 62.3 ± 13.3% 28 17

Note: The �2 target for the correlation-based approach is 0.9, while the SD[e (n) ] target for the equation-based approach is 5.0%.
Abbreviations: SD, standard deviation; TIR, time-in-range.

http://computecgmduration.dei.unipd.it
http://computecgmduration.dei.unipd.it
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overall trial duration N does not affect the results of the 
equation-based approach and the pr values are quite simi-
lar among the trials.

In Table  1 we can also compare the results obtained 
for the trials of equal durations N extracted from dif-
ferent studies, in particular trials A1, B1 of duration 
N = 100 days, and trials A2, B2 of duration N = 150 days.

The equation-based approach suggests that the mini-
mum CGM duration to reflect TIR of both trials A1 and 
A2 is 17 days, that is, slightly lower than the one obtained 
for the trials extracted from study B (18 days). Such small 
difference is due to the different TIR values for the pop-
ulations of study A and study B (nearly 10% difference 
in TIR), which are taken into account by the parameter 
pr . This means that the results of the equation-based ap-
proach may be different for different populations, but, as 
previously noticed before, they are not sensitive to the 
overall trial duration. Also considering the correlation-
based approach, the different characteristics of the pop-
ulation slightly impact on the results (e.g. the minimum 
CGM duration estimated for trial A1 is 24 days vs. 23 days 
for trial B1). Nevertheless, the results of the correlation-
based approach are significantly affected by the trial dura-
tion: for trials lasting 150 days (A2 and B2) the minimum 
CGM duration obtained is 4  days higher than that ob-
tained for trials lasting 100 days (A1 and B1).

In summary, the correlation-based approach results 
more sensitive to the trial duration N than to the char-
acteristics of the population under study. Conversely, the 
equation-based approach is by design independent on the 

trial duration N, although it can be influenced by the pop-
ulation characteristics, which are summarized by parame-
ter pr, representing the population average long-term TIR.

As a further note, interestingly, expressing the results 
obtained by the correlation-based approach in terms of 

F I G U R E  1   Curves of squared correlation coefficient �2 (n,N) versus trial duration n obtained for the TIR with the correlation-based 
approach (a) and curves of standard deviation of estimation error SD [e (n)] versus trial duration n obtained for the TIR with the equation-
based approach (b), for trials with different durations N obtained from study B: B1 (circle green), B2 (triangle cyan), B3 (square blue), 
B4 (diamond red), B5 (asterisk black), of 100, 150, 200, 250 and 300 days respectively. TIR, time-in-range 

F I G U R E  2   Curves of squared correlation coefficient �2 (n,N) 
versus the fraction of the trial duration, n∕N, obtained by the 
correlation-based approach for the TIR, for trials with different 
durations obtained from study B: B1 (circle green), B2 (triangle 
cyan), B3 (square blue), B4 (diamond red), B5 (asterisk black), A1 
(triangle yellow) and A2 (star purple) of 100, 150, 200, 250, 300, 100 
and 150 days respectively. TIR, time-in-range 
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fraction of the trial duration n∕N, they are all around the 
20% (23.0% for B1, 18.0% for B2, 17.5% for B3, 18.4% for 
B4, 21.6% for B5, 24.0% for A1 and 18.6% for A2). This re-
sult suggests that the correlation-based approach identi-
fies only the fraction of the trial duration, n∕N, needed 
to match the long-term TIR. This consideration remains 
valid also with different �2 thresholds, as shown in 
Figure 2, where �2 (n,N) is reported against the fraction 
of trial duration n/N, for the trials A1 (triangle yellow), 
A2 (star purple), B1 (circle green), B2 (triangle cyan), B3 
(square blue), B4 (diamond red) and B5 (asterisk black). 
All the curves are almost overlapped, driving to the con-
clusion that, for any �2 threshold values, the optimal trial 
duration returned by the correlation-based approach is a 
fixed fraction of the trial duration, whose specific value 
depends on the �2 threshold. For example, for �2 = 0.9, the 
method returns a number of days that is about 20% of the 
total trial duration (n/N = 20%), while for a �2 threshold 
of 0.95 the method returns a number of days that is about 
40% of the total trial duration (n/N = 40%).

4   |   DISCUSSION

Setting a suitable duration of a clinical trial is fundamen-
tal to grant the reliability of the experimental findings. In 
this work, we focused on trials having TIRs as final end 
points and compared two approaches to determine the 
minimum CGM duration to precisely estimate TIR. The 
first approach, commonly employed in the literature, as-
sesses the correlation between the TIRs computed over a 
whole dataset and the TIRs computed over shorter peri-
ods of increasing durations. The optimal number of days 
provided as a result by this approach can be read as the 
minimum monitoring period required to achieve TIR val-
ues strongly correlated with those computed over a long-
term dataset. The second approach, recently proposed by 

our group, relies on a mathematical equation linking the 
trial duration to the precision of a TIR estimate, by means 
of three parameters. Among them, only the parameter pr , 
that is, the expected TIRs of the population being ana-
lysed, should be set based on pilot studies, educated guess, 
clinical experience of previously reported data. The opti-
mal number of days provided as a result by this approach 
represents the minimum monitoring period required to 
achieve a desirable precision in the final TIRs estimates. 
While in Ref. [11] we illustrated the mathematical for-
mulation of the problem, and in Ref. [12] we validated 
the resulting mathematical equation over different TIRs, 
different populations of participants with heterogene-
ous characteristics and different CGM sampling periods, 
in this work we compared the new analytical approach 
against the correlation-based approach by assessing 
whether their results are consistent to each other when 
changing the dataset used for the analysis. Specifically, we 
considered portions of data of different duration extracted 
from the same study and datasets of equal duration ex-
tracted from different studies. The analysis showed that 
the correlation-based approach yields different results for 
different trial durations: the longer the dataset employed, 
the longer the suggested minimum duration. On the con-
trary, the minimum duration indicated by the analytical 
approach is, by design, independent on the duration of the 
dataset used, and reflects the TIRs of the population being 
analysed. In this regard, we recently demonstrated16 that 
plausible errors in guessing the TIRs in the population to 
be monitored (up to ±13% for TIR) slightly impact on the 
results of the proposed mathematical formula and, thus, 
do not tamper the applicability of the analytical approach.

REPLACE-BG dataset (referred herein to as study A)13 
was used in this paper to illustrate with a retrospective ex-
ample the comparison of the two approaches, because of 
the large number of participants, but it should be acknowl-
edged that it includes only participants without significant 

T A B L E  2   Optimal trial duration obtained with the correlation-based approach and the equation-based approach, considering TBR, for 
trials extracted by study A (A1 and A2) and study B (B1, B2, B3, B4 and B5)

Study Trial
Trial duration
N [days]

TBR (N)
[mean ± SD]

Optimal trial duration nopt[days]

Correlation based Equation based

B B1 100 4.74 ± 4.47% 35 13

B B2 150 4.77 ± 4.21% 43 13

B B3 200 4.98 ± 4.31% 60 14

B B4 250 5.21 ± 4.43% 72 14

B B5 300 5.20 ± 4.34% 84 14

A A1 100 3.61 ± 2.60% 36 10

A A2 150 3.64 ± 2.57% 45 10

Note: The �2 target for the correlation-based approach is 0.9, while the SD[e (n) ] target for the equation-based approach is 2.0%
Abbreviations: SD, standard deviation; TBR, time below range.
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hypoglycaemia unawareness and with low risk of devel-
oping severe hypoglycaemia. Instead, the second dataset 
considered in this work (referred to as study B) included 
participants with a higher exposure to hypoglycaemia (TBR 
of study B is around 40% greater than in study A).

For illustration purposes, we focused on TIR only and 
showed that the correlation approach provides different 
results when applied to datasets with different lengths, 
while the analytical approach offers consistent sugges-
tions. This message holds also for other TIR indices as 
well, for example, the fraction of time spent with CGM 
<70 mg/dl (TBR) and the fraction of time spent with CGM 
>180 mg/dl (TAR) as shown in Tables 2 and 3 for a target 
uncertainty of ±2% in TBR, and ±5% in TAR. Nonetheless, 
the optimal duration of CGM data depends on the TIR 
index considered as outcome metric, with markedly 
long durations of CGM data needed to precisely estimate 
TBR, compared to TIR and TAR, as pointed out in several 
works.7,10,12 This is also predicted by the proposed analyt-
ical approach, as illustrated in Figure S2 that shows how 
TIR, TBR and TAR relative uncertainties decrease as the 
trial duration increases.

According to the analyses presented in this work, it 
could be worth extending the minimum monitoring dura-
tion from 2 weeks (as suggested by the current ATTD con-
sensus4) to 3 weeks, that would grant about 5% confidence 
interval around TIR and TAR estimates, and about 1.5% 
confidence interval around TBR estimates. Moreover, if 
other levels of accuracy are deemed necessary to draw 
solid scientific conclusions, the analytical approach can 
be used to compute an adequate number of days for the 
purpose. In this regard, the use of the analytical approach 
is analogous to power calculation tools, allowing comput-
ing the number of subjects to be recruited in a trial based 
on the desired power and population-specific quantities.

The analytical approach may be used in clinical practice 
both to assess the precision of TIRs obtained in published 

studies, and in future studies, in combination with standard 
power calculation tools, to optimize the cost-benefit ratio 
of a clinical trial. While nowadays the correlation-based 
approach suggests a standard CGM duration of 14 days to 
evaluate TIR, the analytical approach can provide the confi-
dence interval (i.e. the precision) around the final estimate, 
for any monitoring duration: the longer the study, the tighter 
the confidence interval (i.e. the more precise the estimate). 
Diabetologists would benefit of this approach (by means of 
the free user-friendly online calculator) to determine the 
minimum number of days needed to draw solid scientific 
conclusions, based on the purpose of the trial.

In conclusion, the correlation-based approach provides 
results that are sensitive to the original trial duration, and 
as such, they cannot be generalized for the planning of 
trials of different duration. For this reason, the equation-
based approach offers advantages for the design of clinical 
trials having TIRs as final end points.
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