
D3.1
Analytical Performance Metrics and

Physical-Layer Solutions
Project number: 101013425

Project acronym: REINDEER

Project title:
REsilient INteractive applications through hyper Diversity in
Energy Efficient RadioWeaves technology

Project Start Date: 1st January, 2021
Duration: 42 months

Programme: H2020-ICT-52-2020

Deliverable Type: Report, Prototype, Demonstrator, Other
Reference Number: ICT-52-2020 / D3.1 / 1.08
Reference Number: ICT-52-2020 / D3.1 / 1.08

Workpackage: WP 03
Due Date: 31st December, 2021 (M12)

Actual Submission Date: 26th January, 2022

Responsible Organisation: Linköping university
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Executive Summary

This is deliverable 3.1 “Analytical performance metrics and physical-layer solutions”. This docu-
ment provides a framework for physical-layer performance evaluation of RadioWeaves. It evalu-
ates complexity of existing centralized vs decentralized algorithms and proposes new algorithms.

Chapter 1 describes the main objective and structure of this deliverable. It introduces the Ra-
dioWeaves technology and explains the advantages of cell-free architectures. It also describes
different cell-free architectures available.

Chapter 2 develops the effective-SINR based physical layer abstraction model that serves as
performance evaluation framework for the RadioWeaves. It describes the system model, channel
models, mobility models, and antenna array configurations supported by the evaluation frame-
work. Furthermore, it presents the channel estimation techniques considered and the design of
precoders and combiners based on the channel estimates obtained. It then explains the SINR
generation process and develops a mapping between effective SINRs and link performance,
based on the exponential effective SINR mapping, a well-established tool for physical-layer ab-
straction of wireless link performance.

Chapter 3 summarizes different fronthaul topologies in a cell-free network. It studies different up-
link data detection/downlink precoding algorithms for the topologies considered. Given the fron-
thaul topology, fronthaul signaling and computational complexity of centralized and distributed
algorithms are compared. The trade-off between the number of connections to the central pro-
cessing unit and computational complexity for better spectral efficiency is studied for centralized
algorithms. Furthermore, the trade-off between the delay and the number of connections to the
central processing unit is studied for distributed algorithms.

Chapter 4 provides an initial discussion of the joint scheduling of communication resources to
users and the corresponding computational resources required in the RadioWeaves infrastructure
to execute the distributed algorithms delivering services. This discussion is to be seen as a
background to take into account when further refining development and selection of algorithms
suitable for energy efficient execution, delivering reliable services.

Chapter 5 discuss efficient algorithm candidates for allocation of compute and fronthaul re-
sources. A Kalman filter implementation for uplink processing is described as well as methods
to reduce the complexity by means of selecting a sub-set of access points for processing the
signals related to each of the users. Furthermore, pros and cons of centralized versus distributed
processing are discussed with special focus on calculation of antenna precoding and combining
weights and other implementation requirements.

Chapter 6 summarizes the main conclusions of this deliverable.
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Chapter 1

Introduction

1.1 Objective of the document

The main aim of this document is to develop a physical-layer performance evaluation framework
for RadioWeaves, evaluate existing centralized and decentralized algorithms (decoding and pre-
coding), and propose new algorithms. It first briefly introduces the RadioWeaves technology
and discusses the benefits of cell-free architectures. It also compares RadioWeaves to exist-
ing cell-free architectures, such as Radio Stripes. It then develops the performance evaluation
framework, which serves as an abstraction model for physical layer. Specifically, an effective-
SINR based abstraction model is adapted, which is shown to be accurate and computationally
efficient. Owing to its simplicity and accuracy, the effective-SINR abstraction is a standard tool to
evaluate wireless standards, and is used for example for LTE [5, 6], WiMAX [7] and 5G-NR [8].
The document also describes different options supported by the current version of the frame-
work. The framework described is an initial version and will be updated at later stages of the
project. This document also evaluates the computational and front-haul signaling complexity of
several existing algorithms for different cell-free topologies. Finally, it proposes new algorithms
for efficient processing of RadioWeaves with centralized and decentralized approaches.

1.2 Structure of the document

The main structure of the document is as follows:

• Chapter 1 introduces the RadioWeaves and discuss different cell-free architectures.

• Chapter 2 develops the physical layer performance evaluation framework.

• Chapter 3 evaluates computational and front-haul signaling complexity of the existing algo-
rithms.

• Chapter 4 provides and overview of energy measures and scheduling of users and compu-
tational resources.

• Chapter 5 proposes new algorithms for efficient distributed processing of RadioWeaves.

• Chapter 6 summarizes the main conclusions of the deliverable.
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1.3 RadioWeaves

RadioWeaves is an emerging wireless access infrastructure, in which a fabric of distributed radio
devices and computing resources serve as a massive distributed antenna array. The technol-
ogy builds upon the foundations of massive MIMO and combines the advantages of distributed
cell-free architectures and large intelligent surfaces to achieve superior coverage and low power
consumption.

Figure 1.1: A pictorial representation of RadioWeaves deployment.

RadioWeaves technology is the key to enabling new, innovative use cases ranging from robotized
factories, warehouses, and logistics to immersive entertainment for crowds of people to care en-
vironments, hospitals, and assisted living to smart homes. It is foreseen to be a fundamental
enabler of future 6G networks and beyond, which will offer consistent service and scalable net-
work capacity at unprecedented energy efficiency. RadioWeaves also provides a connectivity
platform for future applications that require interaction between real and virtual worlds.

1.3.1 Many benefits with RadioWeaves

The RadioWeaves distributed infrastructure is envisioned to achieve many orders of magnitude
improvements in quality-of-service and energy efficiency, compared to a conventional collocated
MIMO system. There are many benefits with deploying RadioWeaves technology. In terms of
spatial processing, RadioWeaves inherits the fundamental advantages of cellular massive MIMO:
operation in TDD, reliance on uplink pilots for all channel estimation tasks, and fully digital RF
processing per antenna. Beyond this, there are many other benefits as detailed below.

Increased Spatial Diversity

The RadioWeaves topology is designed to maximize the probability of a terminal being close to
at least a handful of antennas and in a non/shadowed and favorite direction with respect to the
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arrays. This yields a superior degree of macro-diversity against signal blockage, and provides
favorable propagation conditions. Moreover, the angular directions from a terminal to the service
antennas span a broad range. The phase-aligned transmission towards the terminal results in
signal power strongly concentrated in a small region around the user, creating favorable propa-
gation conditions for the transmission of multiple data streams. Thus, RadioWeaves can improve
coverage, reduce power consumption and increase system capacity.

Ultra Robust Operation

URLLC is an envisioned use case for future wireless networks with real-time systems requir-
ing imperceptible latency at the application level with high reliability. Implementing a connect-
compute fabric that can run applications near the terminals can meet the latency requirements.
Also, the dispersed wireless access structure and the directed antenna arrays can ensure more
robust coverage to time-critical applications.

Energy and Bandwidth Efficiency

The proximity of access points and extreme multiplexing capabilities can reduce the power con-
sumption of user terminals at the expense of local compute engines. Also, computing locally in
RadioWeaves improves the bandwidth efficiency whereas the central cloud computing networks
run into bandwidth bottlenecks. The distributed architecture in RadioWeaves with phase-aligned
transmission helps in generating a strong energy field in the favorable field of view of certain de-
vices thereby exciting them to generate energy. This helps in wireless power transfer to devices
and can bring down global energy consumption. In combination, RadioWeaves can reduce power
consumption by larger orders of magnitude.

1.4 Advantages of The Cell-Free Approach

In a cellular network, where a service point (SP) serves multiple user equipments (UEs) the
received signal power decays rapidly with the propagation distance. The UEs closer to the BS,
i.e., cell-center, experience a higher signal-to-noise ratio (SNR) than those present at the cell
edge. Moreover, neighboring cell base stations affect cell-edge users, making the signal-to-
interference-plus-noise ratio (SINR) low at the cell-edge locations. The data rate is an increasing
function of the SINR; thus, there can be significant variations in data rates in each cell. This
problem persists even with massive MIMO. Towards this, cell-free massive MIMO is projected to
be a potential solution to tackle this issue and provide uniform data rates everywhere. A cell-free
network comprises multiple single/multi-antenna SPs distributed over a geographical area and
serving multiple single-antenna UEs simultaneously [9, 10]. The SPs may be interconnected in
different topologies, see below.

1.5 Comparison of Cell-Free Architectures

There are two different aspects of the network topology: first, the topology of the SP interconnec-
tions, and second, the way the signal processing is organized.

Starting with the interconnect topology, the options are sequential (daisy-chain network), central-
ized (star-like network), tree, and fully connected (mesh network) as shown in Fig.3.1. The choice
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of a particular topology depends on the application of interest. One possible topology for cell-free
networks is radio stripes, which utilize the sequential topology [3,11]. This architecture is suitable
for deployments in dense areas such as sports arenas and railway stations with many SPs and
UEs per km2, and large construction elements that the stripes can be attached to. This network
comprises sequentially connected SPs in a daisy-chain topology and shares the same cable for
fronthaul and power supply [12]. One of the benefits of a sequential network are: (i) ease of
deployment and cable routing in practical applications such as railway stations, museums, facto-
ries, etc., and (ii) Another possible topology is a tree or a mesh that results if at least one SP
or the edge processing unit (EPU) has more than one transmit or receive link [13]. This can add
robustness and provide for lower delays but also adds complexity in the implementation and in the
timing synchronization. Also the design of fault-tolerant routing mechanisms may be challenging
depending on the topology. Moreover, the sequential implementation of cell-free massive MIMO
has the potential to deliver the benefits of massive MIMO with much lower fronthaul requirements
when compared to centralized.

In terms of the signal processing, the methods found in the literature can be broadly categorized
into two types: fully centralized and fully distributed implementation [14–20]. In the former cat-
egory, all the required processing is done at the EPU [1, 9, 15], while in the latter category, all
the processing is done locally at the SPs [3, 4, 13, 14], except for the final fusion at the EPU,
using statistical channel state information (CSI). A centralized implementation has superior per-
formance because of its access to complete information but, the downside is the requirement of
a very large fronthaul compared to other topologies such as sequential processing. There are a
few other methods that do not strictly fall into either of the above categories. For example, the
method proposed in [14] is partially decentralizing the process, i.e., the SPs partially process
the received signals and forward the Gramian of the channel matrix to the EPU, where most of
the signal processing and estimation of the signal is done. The most of the works cited above
focused on developing algorithms to decentralize linear methods such as maximum ratio com-
bining (MRC), zero forcing (ZF), and linear minimum mean square error (LMMSE). The optimal
centralized MMSE solution for decoding can be computed in a distributed manner, with a fron-
thaul load that is independent of the number of access points. The resulting distributed algorithm,
first presented in [12], can be interpreted as a Kalman filter (sequential MMSE estimator) and is
further refined in Chapter 5.
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Chapter 2

Framework for Physical-Layer Performance
Evaluation of RadioWeaves

In this chapter, we describe the physical-layer abstraction model adopted to evaluate the perfor-
mance of the RadioWeaves system. This model is based on an effective signal-to-interference-
plus-noise ratio (SINR) computation, which will be described later in this chapter. This effective-
SINR based physical-layer abstraction model helps to avoid computationally expensive physical-
layer link-level simulations. The framework accurately predicts the link performance in a compu-
tationally efficient way, and is routinely used for system-level simulation of many standards such
as LTE [5,6], WiMAX [7] and 5G-NR [8].

Outline: A high-level description of the evaluation framework is introduced in Section 2.1. Sec-
tion 2.2 introduces the physical layer model used in developing the framework. It describes differ-
ent aspects such as system model, channel models, and antenna array deployment. Section 2.3
describes the SINR generation block, the first block of the framework. The performance map-
ping block, which is the second block of the framework, is described in Section 2.4. Section 2.5
analyzes the downlink power requirements of RadioWeaves and shows how uniform-quality-of-
service is possible with very lower power. Section 2.6 summarizes the chapter.

2.1 Effective SINR Based Evaluation Framework

We now provide a high level description of the performance evaluation framework that is made
up of two blocks, namely SINR generation block and performance mapping block.

1. SINR Generation Block: The first block calculates a vector of SINRs per user per narrow-
band channel use. Elements of the SINR vector corresponds to the SINR of symbols that
represent the coefficients of the basis functions of the time-frequency space of the transmit-
ted signal [21]. For example, orthogonal-frequency-division-multiplexing (OFDM) symbol,
in which case the symbols correspond to the subcarriers.

2. Performance Mapping Block: The second block takes the vector of SINRs and predicts the
instantaneous packet error rate (PER) based on the modulation and coding scheme (MCS)
used for the transmission.
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Figure 2.1: Performance Evaluation Framework of RadioWeaves

Figure 2.2: SINR Generation Block

2.1.1 SINR Generation Block

This block generates one SINR value for each narrowband channel based on a specification of
the scenario, which includes a channel model (coherence time, coherence bandwidth), a mo-
bility model, and other parameters (carrier frequency and bandwidth). The block also takes as
input the number of users, user locations, number of antennas, antenna gain patterns, antenna
configurations, channel estimates, precoder and combiner, pilot and noise power. The resulting
vector of SINRs depends on the locations of transmitter and receiver, the precoder employed at
the transmitter or combiner employed at the receiver, interfering transmissions, and the impact of
large and small scale fading. This vector of SINRs is generated per user. This SINR computation
is explained later in Section 2.3.

2.1.2 Performance Mapping Block

This block contains two stages. The first stage takes the vector of SINRs of each user generated
by the SINR generation block and maps them onto a scalar called the effective SINR. This process
is referred to as SINR compression. The second stage, which is known as the quality mapping,
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maps the effective SINR to the PER. This block is explained in detail later in Section 2.4 and
calibration process of mapping block is explained in Section 2.4.2.

Figure 2.3: Performance Mapping Block

The vector of SINRs contains SINRs for the different coherence blocks over which data is en-
coded. The mapping of the vector of SINRs onto the effective SINR combines all the different
SINRs seen by the block of data into a single scalar number. Specifically, this mapping models
the link as an equivalent AWGN channel and the effective SINR can be interpreted the equiv-
alent SNR on an AWGN channel. This mapping in general depends on the MCS employed,
and predicts the performance in a computationally efficient manner. Link-level simulations of the
RadioWeaves are performed initially to calibrate this quality mapping block. Once calibration
has been performed, the computationally intensive link-level simulations need not be performed
again.

2.2 Physical Layer

This section provides a detailed overview of physical layer parameters, modes of operation, dif-
ferent deployment settings of RadioWeaves, and how they are used in the evaluation framework
model. These parameters are user configurable in the code framework. Various configurable
parameters supported by the code framework are tabulated in Table 2.1.

The following notation is used in the sequel. Boldface lowercase letters denote column vectors
and boldface uppercase letters denote matrices. The superscripts (·)∗, (·)T, and (·)H denote
the conjugate, transpose, and conjugate transpose, respectively. The notation IN represents
the N × N identity matrix. The (m,n)th element of a matrix A is denoted by [A]mn. A block-
diagonal matrix is represented by diag(A1, · · · ,AN) for matrices A1, · · · ,AN . The notation Da

represents a diagonal matrix with entries from vector a. The absolute value of a scalar and l2-
norm of a vector are denoted by | · | and ‖·‖, respectively. The real value of a scalar is denoted by
<{·}. We denote the expectation and variance by E{·} and Var{·}, respectively. z ∼ CN (0,C)
denotes that z is a multi-variate circularly symmetric complex Gaussian random vector with zero
mean and covariance matrix C.

Spherical Coordinate System

This chapter majorly uses the spherical coordinate system to specify the position of a point.
Consider a point (x, y, z) in the Cartesian coordinate system. The spherical coordinates (r, θ, ϕ),
where r is the distance to the point from the origin, θ ∈ [0, π] is the elevation angle and ϕ ∈
[−π, π) is the azimuth angle, can be obtained from (x, y, z) as

r =
√
x2 + y2 + z2 (2.1)

cos θ =
(z
r

)
(2.2)

tanϕ =
(y
x

)
. (2.3)

REINDEER D3.1 Page 7 of 60



D3.1 - Analytical Performance Metrics and Physical-Layer Solutions

Table 2.1: Configurable parameters for the performance evaluation framework

Parameter Supported Values/Units
Channel Type LoS, Rayleigh, Rician, Custom
Mobility Model Static, Random Walk, Custom
Antenna Configuration ULA, UPA, RadioStripes, Custom
Antenna Gain Pattern Omni, Patch
Channel Estimator MMSE, LS, PCSI
Signal bandwidth Hz
Carrier Frequency Hz
Subcarrier bandwidth Hz
Base station power W
Base station noise figure dB
Number of BS antennas
Antenna Spacing (in multiples of λ)
Number of users
User power W
Pilot power W
User noise figure dB
Room Size (Length, Width, height) m
Precoding/Combining ZF, MR
Operation Mode Downlink, Uplink
Temperature of Operation K

2.2.1 System Model

We consider a RadioWeaves system, where we have M antennas jointly serving K single an-
tenna users. Let G ∈ CM×K be the channel matrix between the M transmit antennas and the K
users defined by

G =


g11 g12 . . . g1K

g21 g22 . . . g2K
...

... . . . ...
gM1 gM2 . . . gMK

 . (2.4)

For the antenna modeling (see below), we assume that the coupling is insignificant among the
service antennas.

Noise Power

Thermal noise is present in all electrical circuits and the noise power N0 is calculated as

N0 = kB · T ·BW · 10−NF/10 (2.5)

where kB = 1.23 × 10−23 is the Boltzmann constant, T is the temperature in Kelvin, BW is the
bandwidth under consideration, and NF is the noise figure in dB, which is a hardware dependent
parameter.
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Uplink

In the uplink, all the users coherently transmit data to the base station. The collective signal
received at the service antennas, y ∈ CM×1, is

y =
√
ρulGx + w, (2.6)

where ρul is the uplink transmit power and x = D
1
2
ηq ∈ CK×1. Dη = diag{η}, where η =

[η1 η2 · · · ηK ]T is the power control vector satisfying 0 ≤ ηk ≤ 1, ∀k. q ∈ CK×1 is the data from all
users and w ∼ CN (0, N0IM) is the noise.

Downlink

In the downlink, the service antennas jointly transmit the data q = [q1 q2 · · · qK ]T, where qk is
the data intended for user k. The collective signal received at the users is denoted by the vector
y ∈ CK×1 and is expressed as

y =
√
ρdlG

Hx + w (2.7)

where ρdl is the downlink transmit power, x is the downlink transmitted signal given by

x = AD
1
2
ηq. (2.8)

A ∈ CM×K is the precoding matrix to spread the K signals into M antennas. Dη = diag{η},
where η = [η1 η2 · · · ηK ]T is the power control vector such that

∑K
k=1 ηk ≤ 1 and w ∼ CN (0, N0IK)

is the noise. Also we assume that the data q have maximum transmit power of 1, i.e., E{‖q‖2} ≤
1.

2.2.2 Channel Models

The code framework supports some simplistic canonical textbook channel models, and the use
of custom channel models devised for RadioWeaves and are briefly outlined below.

Line-of-Sight Channel Model

A line-of-sight (LoS) channel is a simplistic channel model when the transmitter and receiver are
assumed to be in free space. We assume that there is only one direct propagation path from
transmitter to receiver and no scatterers in the environment. Let the UE be relatively at (r, θ, ϕ)
from the transmitter. Let Ptx be the transmitted power. Then the received power assuming an
omni-directional antenna at the UE operating at a wavelength λ is given by,

Prx =
Ptx
4π

G(θ, ϕ)
1

r2

λ2

4π
. (2.9)

G(θ, ϕ) is the directional power gain of the transmit antenna and given by

G(θ, ϕ) =
4π U(θ, ϕ)∫ ∫

U(θ, ϕ) sin(θ)dθdϕ
= α2 U(θ, ϕ), (2.10)

and U(θ, ϕ) is the normalized directional radiation intensity. For an isotropic transmitting antenna,
U(θ, ϕ) = 1

4π
and hence G(θ, ϕ) = 1 and when G(θ, ϕ) is a constant, (2.9) gives Friis’ free space

equation [22].
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Under LoS channel model, two antenna models are supported by the framework: omni-directional
antennas and rectangular microstrip patch antennas.

Omni-directional Antenna: For omni-directional antenna, the directional power gain G(θ, ϕ) = 1
in any direction. Thus, the deterministic channel gain g is given by

g =
λ

4πr
e−j

2πr
λ (2.11)

Microstrip Patch Antenna: To get the directional power gain of patch antenna, let h, L, and W
denote the height, length, and width, respectively, of the patch antenna. Let εr and f be the
dielectric constant of the substrate and resonant frequency, respectively. Let c be the speed of
light. For a given h, the design of the patch antenna is given as follows

W =
c

2f

√
2

εr + 1
, (2.12)

L =
c

2f
√
εreff

− 2∆L, (2.13)

where εreff and ∆L are obtained as

εreff =
εr + 1

2
+
εr − 1

2

(
1 + 12

h

W

)−1/2

(2.14)

∆L

h
= 0.412

(εreff + 0.3)(W
h

+ 0.264)

(εreff − 0.258)(W
h

+ 0.8)
. (2.15)

Using the above design parameters, the gain pattern of the patch antenna is given by

G(θ, ϕ) =

(
α sin(θ)

sin(X)

X

sin(Z)

Z

)2

(2.16)

where

X =
πh

λ
sin(θ) cos(ϕ), (2.17)

Z =
πW

λ
cos(θ), (2.18)

α2 =
4π∫ π

θ=0

∫ π
2

ϕ=−π
2

(
sin(X)

X

sin(Z)

Z

)2

sin3(θ)dθdϕ

. (2.19)

Note that, the integration limits for ϕ is from −π
2

to π
2

to consider the fact that the antennas are
transmitting forward and not back into the walls. With vertical polarization and with no polarization
losses the deterministic channel gain g for a microstrip patch antenna is given by

g =
αλ

4πr
e−j

2πr
λ sin(θ)

sin(X)

X

sin(Z)

Z
. (2.20)
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Independent Rayleigh Fading Channel Model

When we have a rich scattering environment, we consider the channel to be Rayleigh distributed
with independent fading across antennas. Each channel gain g is distributed as g ∼ CN (0, β),
where β is the large scale path loss fading coefficient between the transmitter and the receiver
antenna. The following micro-cell propagation model used in [1] is considered for the large-scale
fading coefficient β:

β[dB] = −30.5− 36.7 log10

(
d

1m

)
. (2.21)

With a Rayleigh fading channel model, we consider the use of omni-directional antennas, to
capture all the scatterers.

Rician Fading Channel Model

If there is a strong line of sight component in a rich scattering environment, the channel can be
considered Rician distributed with factor κ. The channel gain is then given by

g =

√
κβ

κ+ 1
+

√
β

κ+ 1
X, (2.22)

where X ∼ CN (0, 1). A Rician fading channel with κ = 0 reduces to a Rayleigh fading channel.

Custom Channel Model

The framework also supports custom channel models. It can take arbitrary channel matrices
generated by a custom channel model as input. This specifically will enable the integration of
new channel models for RadioWeaves being developed in work package 1.

2.2.3 Mobility Model

The framework offers the possibility of integrating different mobility models.

Static

With the static model, we consider that users in the system have fixed locations and their locations
do not change with time. Thus the coherence interval can be considered very large, if nothing
else in the environment moves.

Random walk

In random walk, the users change their location every coherence time interval. They move in a
random direction from their current location, and the movement depends only on the previous
location.

Custom movement

The framework also supports custom mobility patterns. The movement pattern need to be given
as a vector of positions for each user at each time step.
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2.2.4 Antenna Array Deployment

The framework supports arbitrary topologies for the deployment of antennas. In what follows, we
give some specific examples that are used later in the performance analysis.

Reference Case: Co-Located Array

For the co-located reference case, we consider an indoor environment with a candelabrum type
array on the ceiling of the room, see in Fig. 2.4. With directional antennas, this shape guarantees
that there are antennas pointing towards every corner of the room.

Figure 2.4: Co-located massive MIMO array in the shape of a candelabrum over the ceiling.

Multiple Radio Stripes on the Walls

In the following examples, the service antennas are arranged in multiple radio “stripes” mounted
on the walls and are user configurable to consider different deployment options. We consider the
following configurations:

1. Single stripe on 1 wall: The antennas are deployed horizontally over a single wall.

2. Single stripe on 4 walls: The antennas are deployed horizontally over all walls.

3. Double stripes on 1 wall: The antennas are deployed horizontally as two separate stripes
on a single wall.

4. Double stripes on 4 walls: The antennas are deployed horizontally as two separate stripes
over all walls.

5. Quadruple stripes on 1 wall: The antennas are deployed horizontally as four separate
stripes on a single wall.

6. Quadruple stripes on 4 walls: The antennas are deployed horizontally as four separate
stripes over all walls. A typical scenario is shown in Fig. 2.5.

In general, when we consider stripes on the walls, we do not restrict the antenna spacing to be
λ/2. In the performance evaluation code framework, the spacing of the antennas and the height
at which the stripes are placed are user configurable.
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Figure 2.5: Quadruple strip deployed on all four walls of the room with 8λ spacing between
adjacent antenna elements and each stripe is placed at 2m vertical distance.

Uniform Linear Array

Another deployment scenario considers multiple uniform linear array (ULA) placed on different
walls. Within each ULA, antennas are placed such that they have λ/2 spacing. The framework
supports the placement of ULAs on a single wall as well as four walls. Each ULA is placed in
the middle of each wall of the room and a typical scenario is shown in Fig. 2.6 where four ULAs
are placed on all four walls. All the ULAs are connected to EPU through backhaul network and
act as a single large network. Moreover, we could consider a ULA as a single strip of radio
elements placed with λ/2 spacing. Considering the implementation standpoint, the configurable
parameters for ULA scenario is limited only to height at which ULA is placed.
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Figure 2.6: Multiple ULA deployed over multiple walls at a vertical height of 3m above ground.

Uniform Planar Array

Another deployment scenario considered is multiple uniform planar array (UPA) placed on dif-
ferent walls. Within each UPA, antennas are placed such that they have λ/2 spacing. The code
framework supports placing of UPA on one or four walls. Each ULA is placed in the middle of each
wall of the room and a typical scenario is shown in Fig. 2.6 where four UPAs are placed on all
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Figure 2.7: Single ULA deployed on single wall.

four walls. In the code framework, the height at which the ULA is placed and planar configuration
are user configurable.

Figure 2.8: Multiple ULA deployed over four walls at vertical height of 3m with a planar configura-
tion of 2× 64.

Custom Antenna Configuration

The performance evaluation code framework supports a user defined antenna configuration and
the same can be provided to the code as a file containing antenna locations.

2.2.5 Channel Estimation

In practice, obtaining perfect channel state information (PCSI) is difficult and we need to do chan-
nel estimation. The channel estimation technique depends on the channel model under con-
sideration, i.e., whether it is deterministic or stochastic. Accordingly, we categorize the channel
estimation into two parts: one for line-of-sight-channels, and the other for the Rayleigh fading
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Figure 2.9: Single UPA deployed on single wall with a planar configuration of 2× 64.

channel. Towards this, let τc denote the length of the coherence interval (see, e.g., Chapter 2
of [23]) and we assume there are τp mutually orthogonal pilot sequences of τp length such that
τc ≥ τp ≥ K. We employ the following pre-processing of the received pilot signal before estimat-
ing the channel.

Let φk ∈ Cτp×1 be the pilot sequence associated with user k, which is the kth column of the
τp×K unitary matrix Φ and ΦHΦ = I. All UEs collectively transmit Xp =

√
τpΦ

H over τp symbols
and the signals received at the SP Yp ∈ CM×τp can be written using (2.6) as

Yp =
√
ρulGXp + Wp, (2.23)

where ρul is a scalar to scale the uplink transmit power and Wp is the noise matrix with i.i.d
elements CN (0, N0). De-spreading operation is performed at the base station on the received
signal Yp and is given by

Y′p = YpΦ =
√
ρulτpG + W′

p. (2.24)

Since Φ is a unitary matrix, the elements of W′
p = WpΦ are i.i.d. CN (0, N0). Let Ĝ ∈ CM×K be

the estimated channel matrix whose (m, k)th element is ĝmk, where ĝmk is the channel estimate
of gmk. Also, let ĝk = [ĝ1k, . . . , ĝMk]

T is the kth column of the channel estimation matrix Ĝ. The
following sections provide commonly used methods to compute Ĝ.

Least Squares (LS) Channel Estimation

The least squares method is commonly employed when no prior statistical knowledge of the
channel is available. The LS estimate of the channel gmk between kth user and mth antenna is
given by

ĝLS
mk =

[Y′p]mk√
ρulτp

(2.25)

where [Y′p]mk is the (m, k)th element of Y′p. The LS method applies to channel models without
prior knowledge such as LoS channel.

Minimum Mean Square Error (MMSE) Channel Estimation

The MMSE channel estimation is one of the most widely employed estimation techniques in the
massive MIMO literature. This is because, among its various attractive benefits, the important
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property that the channel estimate and the channel estimation error are independent enables
computing closed-form spectral efficiency (SE) expression in many scenarios. Let the (m, k)th

element of G be gmk ∼ CN (0, βmk) where βmk is the large-scale fading coefficient between user
k and antenna m. We assume that the prior distribution of gmk is known at the receiver. Then the
MMSE channel estimate is

ĝMMSE
mk = E

{
gmk|Y

′

p

}
=

√
ρulτpβmk

1 + τpρulβmk
[Y′p]mk

(2.26)

The mean-square of the channel estimate is denoted by γmk and given by

γmk = E
{
|ĝmk|2

}
=

τpρulβ
2
mk

1 + τpρulβmk
.

(2.27)

The channel estimation error g̃mk is given as

g̃mk = ĝmk − gmk. (2.28)

The mean-square estimation error is given by

E
{
|g̃mk|2

}
=

βmk
1 + τpρulβmk

= βmk − γmk.
(2.29)

The MMSE channel estimates is applicable in with and without prior knowledge of the channel
model. However, it is more suitable in case with prior knowledge of the channel such as Rayleigh
fading channel.

2.2.6 Precoding/Combiners

Uplink Receiver Combiners

The uplink receive combiners should be selected taking into consideration the performance metric
of interest. The most commonly employed receivers are maximum-ratio combining (MRC) and
zero-forcing (ZF).

The MRC receiver matrix defined by VMR = [vMR
1 , . . . ,vMR

K ]H where

vMR
k =

ĝk
‖ĝk‖

. (2.30)

The ZF receiver is given by

VZF =
(
ĜHĜ

)−1

ĜH. (2.31)

Downlink Precoders

The downlink precoders can also be selected considering different performance targets. The
most commonly used precoders are maximum-ratio transmission (MRT) and ZF.
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The MRT matrix defined by AMR = [aMR
1 , . . . , aMR

K ] where

aMR
k =

ĝk
‖ĝk‖

. (2.32)

The ZF precoder is in turn given by

AZF = ĜH
(
ĜĜH

)−1

. (2.33)

2.2.7 Power Control

Uplink Power Control

In uplink, the power control coefficient for user k should satisfy the condition 0 ≤ ηk ≤ 1,∀k. In
the framework, the power control coefficient for user k is given by [10, Ch. 7]

ηk =

(∑M
m=1 βmk

)ν
maxi={1,2,··· ,K}

(∑M
m=1 βmi

)ν (2.34)

where ν ∈ [−1, 1]. When ν = 0, we have full power allocation and when ν = −1, we will have
max-min fairness power control. See also [9], where these two special allocation policies were
first derived and analyzed. The parameter ν is provided to the user as a configuration parameter.

Downlink Power Control

For the downlink, the power control coefficients should satisfy the condition 0 ≤
∑K

k=1 ηk ≤ 1. In
the framework, it is common to consider a max-min fairness power control policy which results in
rather computationally heavy optimization problems [9]. We consider a simpler policy, described
in [10, Ch. 7]

ηk =

(∑M
m=1 βmk

)ν
∑K

i=1

(∑M
m=1 βmi

)ν (2.35)

where ν ∈ [−1, 1], with interpretations similar to uplink power control policy. This policy, or more
accurately a minor variation of it, was first proposed in [11] and works well in practice; however, it
cannot yield the max-min fairness solution exactly.

2.3 SINR Generation

In this section, we outline the signal-to-interference-plus-noise ratio (SINR) computation for both
uplink and downlink scenarios in the SINR generation block (Fig. 2.2). Computations shown
below are per one narrow band channel where the channel remains same.

Downlink

In downlink, the collective signal received at all the users is given by

y =
√
ρdlG

HAD
1
2
ηq + w. (2.36)
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Table 2.2: Simulation Parameters for SINR analysis

Frequency of operation, f 2 GHz
Antenna Deployment ULA over four walls
Signal bandwidth 20 MHz
Subcarrier bandwidth 200 kHz
Mobility Static
Base station power 1 mW
Base station noise figure 5 dB
User power 1 µW
Pilot power 20 µW
User noise figure 9 dB
Channel type LOS
Channel estimator LS / PCSI
Precoding/Combining ZF / MR
Dielectric constant, εr 10.2
Height of patch antenna, h 0.1588 cm
Temperature of Operation 300 K

Thus at each user, the received signal can be written as

yk =
√
ρdlg

H
kAD

1
2
ηq + wk (2.37)

=
√
ρdlηkg

H
kakqk +

K∑
i=1,i 6=k

√
ρdlηig

H
kaiqi + wk. (2.38)

The instantaneous SINR at user k, is then given by

SINRinst.
k =

ρdlηk|gH
kak|2∑K

i=1,i 6=k ρdlηi|gH
kai|2 +N0

. (2.39)

Note that for this instantaneous SINR to have a rigorous information-theoretic operational mean-
ing, each UE needs to know the instantaneous value of gH

kak as well as the instantaneous SINR.
These can be estimated to a good degree of accuracy by using techniques from for example [24]
and for the purpose of obtaining an approximate performance prediction we will here assume that
they are known.

Figs. 2.10 and 2.11 show the downlink SINR variations as CDFs in a RadioWeave deployment
in two different scenarios. The used simulation setup is provided in Table 2.2. From the figure, it
can be seen that ZF performs much better than MR as ZF can suppress interference from other
users. Moreover, the impact of imperfect channel estimates is large in the case of ZF compared
to MR. The gain from the patch antennas can be exploited well by the ZF approach, while MR
is not able to exploit the antenna gain as the interference term dominates. The randomness
in this simulation is due to the random spatial distribution of the users, the channel estimation
errors, and variations of the channel response (in LOS) among the subcarriers. An important
observation is that the CDFs are very stable (i.e., the distributions have small variance). This
means that the probability of having a scenario (in terms of coordinates of the users) or seeing a
realization of the estimation errors that result in poor performance is miniscule. Specifically, even
with the simplest MRT precoder, the probability of obtaining an SINR below 0 dB is much less
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than 1%. Note that, this SINR corresponds to a gross spectral efficiency of 1 bit/s/Hz, which is by
virtue of the stableness of the CDF almost guaranteed for all terminals simultaneously. (Spectral
efficiencies of similar orders of magnitude were also considered in the case studies in [23] when
applying a uniform quality-of-service power control policy.)

Figure 2.10: Downlink SINR for a room with 40 m × 40 m × 10m size, M = 512, and K = 100.
The legend is to be read as antenna Type/Estimation Method/Precoder
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Figure 2.11: Downlink SINR for a room with 140 m × 70 m × 15m room size (the production hall
in Page 46 deliverable 1.1), M = 1024, K = 200.

Uplink

In the uplink, the collective signal received from all the users at the EPU is given by

y =
√
ρulGD

1
2
ηq + w. (2.40)
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At the EPU a combining operation by a matrix V ∈ CK×M (Sec. 2.2.6) is done and the processed
signal is given by

Vy =
√
ρulVGD

1
2
ηq + Vw. (2.41)

Therefore, the kth component of the processed signal at EPU is given by

vH
ky =

√
ρulv

H
kGD

1
2
ηq + vH

kw (2.42)

=
√
ρulηkv

H
kgkqk +

K∑
i=1,i 6=k

√
ρulηiv

H
kgiqi + vH

kw. (2.43)

As the combining vector vk is unit-norm, the instantaneous SINR at user k at the EPU is

SINRinst.
k =

ρulηk|vH
kgk|2∑K

i=1,i 6=k ρulηi|vH
kgi|2 +N0

. (2.44)

Figure 2.12: Uplink SINR for a room with 40mx40mx10m size, M = 512, K = 100.

Fig. 2.12 shows the uplink SINR variations for a RadioWeave deployment. We make similar
observations as in the downlink case.

To obtain the link-level performance, we compute the SINR for each coherence block and forward
a vector of the so-obtained SINRs to the performance mapping block, which is explained in the
next section.

2.4 Performance Mapping

In this section, the performance mapping block, which is briefly introduced in Section 2.1.2, will
be explained in detail. As explained earlier, the performance mapping accurately predicts the
link-level performance in a computationally efficient manner and helps speed up the system-level
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simulations. For this reason in literature, this abstraction model has been used in system-level
simulations of many systems and standards, including LTE [25], WiMAX [7] and 5G-NR [8].

As shown in Figure 2.3, the performance mapping block contains two stages, namely, SINR
compression and quality mapping. The SINR compression block takes in a vector of SINRs cor-
responding to subcarriers per channel use for each UE and outputs a scalar, which is known as
effective SINR. The quality mapping block maps this effective SINR to the PER. To understand
the accuracy of the mapping, its predicted performance is compared with actual performance
obtained through link-level simulations. First, we will explain the concept of effective SINR map-
ping and different mappings studied in the literature. We then elaborate on a specific mapping
called the exponential effective SINR mapping (EESM), which is shown to be accurate and has a
computationally simple form.

2.4.1 SINR Compression

Here, the vector of SINRs a packet has seen is compressed into a scalar effective SINR. This
results an equivalent AWGN channel whose SNR that captures the effect of the vector of SINRs
seen by the packet. Subsequently, for a given MCS, the quality mapping step can then map the
effective SINR onto a PER.

Let N denote the number of different SINRs seen by the packet. Let γ = [γ1, . . . , γN ]T denote the
vector of SINRs and γeff denote the effective SINR. Then, the general form of mapping is given
by [7,26]

γeff = βf−1

(
1

N

N∑
n=1

f

(
γn
β

))
, (2.45)

where f (·) is a application dependent mapping function [26, 27] and β is an MCS-dependent
parameter. This parameter β should be calibrated empirically to achieve accurate prediction.
The accuracy of this mapping is, as it turns out, very robust and a value of β optimized for one
scenario can also be used in many other, quite different scenarios. See Section 2.4.2 for more
specifics on this point. However, importantly, each MCS has a different associated β.

We now briefly describe some mapping functions considered in the literature.

Average Value Interface [26, 28]: Here, the mapping function is given by f(γn) = γn and the
effective SINR is the arithmetic average of the vector of SINRs. It is given by

γeff =
1

N

N∑
n=1

γn. (2.46)

This is generally used to model flat-fading channels and is not an accurate measure for other
channels such as frequency selective channels [26,28]. It is also independent of the MCS used.

Capacity Based Mapping [26, 29, 30]: Here, the AWGN channel capacity formula is used as the
mapping function, i.e., f (γn) = log2 (1 + γn). Therefore, the effective AWGN SINR is computed
based on the channel capacity of parallel channels with SINRs γ1, . . . , γN resulting in

γeff = β

[
N∏
n=1

(
1 +

γn
β

)] 1
N

− β. (2.47)
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2.4.2 Exponential Effective SINR Mapping (EESM)

With the background just given, we now present EESM which has very good accuracy and is
easy to calibrate, and has low computational complexity. Here, the mapping function f (γn) =
1− exp (−γn) [26,31,32]. Therefore, the effective SINR mapping is given by

γeff = −β log

(
1

N

N∑
n=1

exp

(
−γn
β

))
. (2.48)

Due to the shape of the mapping function, EESM is mostly impacted by lower SINR values. This
emphasis given to low SINR values allows it to accurately predict the PER.

The EESM has been shown to achieve a good trade-off between accuracy and computational
complexity. For this reason, it is widely used in physical-layer abstraction models. It is also shown
to be applcable to systems with inter-cell interference [7, 33] and to OFDM systems with hybrid
automatic repeat request (HARQ) [34]. We, therefore, focus on EESM due to its simplicity and
proven accuracy. This mapping is obtained by generalizing the PER of an uncoded BPSK trans-
mission over an AWGN channel. This generalization is done by introducing an MCS-dependent
parameter β. The steps involved in the derivation of EESM are given in [26,35].

EESM has been validated to perform accurately for several wireless standards such as WiMax
and LTE. In Figure 3.1 of [28], it is shown how to predict the performance accurately for MCS
employed in IEEE 802.16 WiMAX [36]. A similar study of EESM is done for LTE in [5, 6] and 5G
NR in [8].

Calibration of β

The parameter β has to be calibrated for each MCS. The calibration procedure, which is described
in [28], is as follows. We generate Nr realizations of the vector of SINRs. This set includes the
channel realizations of different channel models supported, which makes the calibration apply
to various channel models [8]. Including realizations of different channel models allows to gen-
eralize the calibration to all channels belonging to these classes. Then, link-level simulations of
RadioWeaves are performed to obtain the actual PER for each vector of SINRs. Let Pi denote
the actual PER of the ith vector of SINRs. These Pi values are then mapped to the equivalent
AWGN SNR by using the corresponding AWGN channels PER curve. Let ΓA = [γA,1, . . . , γA,Nr ]
denote the vector of AWGN equivalent SINRs of the Nr realizations of the vector of SINRs.

Let γeff,i(β) denote the effective SINR value for the ith vector of SINRs for a given β obtained
using (2.48). Let Γeff(β) = [γeff,1(β), . . . , γeff,Nr(β)] denote the vector of effective SINRs. We then
calibrate the value of β to obtain the optimized value β∗ that minimizes the squared error between
ΓA and Γeff(β). It is given by

β∗ = argmin
β
||ΓA − Γeff(β)||2. (2.49)

This calibration only needs to be performed once for each MCS with the resulting values for β∗

is stored in a lookup table. Table 2.3 and Table 2.4 show the calibrated values of β∗ for Ra-
dioWeaves for different MCS with LDPC coding and polar coding, respectively. With polar coding,
cyclic redundancy check (CRC) bits, interleaving and rate matching are taken into consideration.
Also, as stated in Section 2.3, the PER simulations assume that the receiver has knowledge of
the instantaneous SINRs presented in the SINR generation section and also the corresponding
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Table 2.3: Calibrated β∗ values for RadioWeaves with LDPC codes

MCS index Modulation Code rate β∗

0 BPSK 1/2 0.78
1 QPSK 1/2 1.55
2 16-QAM 1/2 4.16

Table 2.4: Calibrated β∗ values for RadioWeaves with polar codes

MCS index Modulation Code rate β∗

1 QPSK 1/2 0.624

effective channel gain, for instance in the downlink it is gH
kak. Note that SINR contains the infor-

mation of the interference and these (SINR and the effective channel) are required to compute
the bit log-likelihood ratio (LLR) that required for channel decoders like LDPC.

Figure 2.13 shows the simulated PER of RadioWeaves on the vertical axis (shown as red x)
versus the effective SINR γeff(β

∗) (obtained through the EESM mapping with calibrated β∗) on
the horizontal axis, for different realizations of the vector of SINRs. This is done for different
MCS’s to illustrate the effectiveness of calibration. The calibrated β values for different MCSs,
which are tabulated in Table 2.3, are used in generating the plot. Also shown is the PER curve of
AWGN channel with SNR equal to the effective SINR, and for the same choices of MCS. We see
that the markers, which represent the actual performance of the RadioWeaves system, match
well with the AWGN PER values, which represent the predicted values. This establishes that the
prediction accuracy of EESM is very good.

Robustness of β: To verify the robustness of the calibrated parameter β, for a given MCS, we
repeated the calibration with different values of antenna elements and subcarriers. Table 2.5
shows the calibrated β values with different parameters. This is in line with the conclusions in [8],
where the variation in β∗ values is shown to be independent of the subcarrier spacing and other
5G-NR numerology.

Furthermore, we compared the simulated PER and the predicted PER for different parameters
values for which calibration is not performed. Here, the simulated PER is obtained through the
RadioWeaves link-level simulations and the predicted PER is obtained by the EESM-based per-
formance mapping. Table 2.6 compares the simulated PER with predicted PER for two values of
β∗ from Table 2.5. We see that the predicted values are in general very close to the simulated
values. However, there are exceptions, for example, for a PER of 0.0015 the prediction of 0.0009
is 40% off, and quite overconfident. We also see that the predicted value changes only by a small
value as β varies slightly.

Extreme SINR profile: We now consider an extreme, artificial example in order to demonstrate

Table 2.5: Calibrated β∗ values for different parameter values

MCS index Modulation Code rate Number of antennas Number of subcarriers β∗

1 QPSK 1/2 48 2 1.54
1 QPSK 1/2 48 18 1.55
1 QPSK 1/2 64 2 1.54
1 QPSK 1/2 64 18 1.55
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Figure 2.13: PER for AWGN channel and also link-level simulation with vector of SINRs is plotted
against AWGN SNR (same axis for effective SINR). This plot provides the validation of EESM

Table 2.6: Comparison of simulated PER with predicted PER for different values of β∗ (M=72,
QPSK, and rate=0.5)

Simulated PER Predicted PER (β∗=1.54) Predicted PER (β∗=1.55)
0.0008 0.0006 0.0005
0.0015 0.0009 0.0009
0.0027 0.0039 0.0038
0.2760 0.2714 0.2693
0.2920 0.3081 0.3059
0.5040 0.4849 0.4830
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Table 2.7: Comparison of simulated PER with predicted PER for extreme SINR profile shown in
Figure 2.14 for M=72, QPSK, and rate=0.5.

Simulated PER Predicted PER (β∗=1.54)
0.0118 0.0162
0.0138 0.0156
0.0145 0.0163
0.0187 0.0173
0.0222 0.0188
0.0251 0.0254
0.0255 0.0212
0.0256 0.0199

how robust the EESM mapping technique is. We specifically study the behavior of the perfor-
mance mapping for an SINR profile that was synthesized only for the purpose of this robustness
check, and not used for calibration of β (and not obtained from an actual RadioWeaves simula-
tions). This SINR profile has a set of SINR values that are extremely low, as shown in Figure 2.14.
Table 2.7 compares the simulated PER with the predicted PER for β∗=1.54. We see that the pre-
dicted PERs are reasonably close to the simulated PER values even for this extreme SINR profile.
We conclude that the EESM mapping is a highly robust way of mapping a vector of instantaneous
SINRs to link-level performance in terms of PERs for a variety of scenarios, where the specific
scenario selected for the calibration is not particular important.
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Figure 2.14: Extreme SINR profile as a function of sub-carrier index. Here, different curves
correspond to different realizations for which PER’s are shown in Table 2.7.

2.5 Analysis of Required Transmit Power in RadioWeaves

In this section, we consider the performance of the RadioWeaves system in terms of transmit
power required. The basic theory here follows [37], and we will consider downlink operation in an
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LOS scenario.

Power Required with Zero Forcing

We consider zero-forcing precoding [38] in the downlink in order to give all the users similar rates.
In this subsection, we compute the power spent at the base station for zero forcing operation. Let
qk ∼ CN (0, 1) be the downlink signal intended for user k and let q = [q1 q2 . . . qK ]T ∈ CK×1.
The zero-forcing precoded signal x ∈ CM×1 is given by

x = Ĝ(ĜHĜ)−1q. (2.50)

The power spent at the transmitter to achieve the zero-forced signal is given by

P = ‖x‖2 = Tr((ĜHĜ)−1). (2.51)

Downlink Spectral Efficiency

In each coherence block, up to τc − τp symbols can be used for downlink. We consider zero-
forcing precoding using the channel estimates for downlink, and the signal from base station to
all users is given by

x = Aq, (2.52)

where A = 1√
Tr((ĜHĜ)−1)

Ĝ(ĜHĜ)−1 = [a1 a2 . . . aK ] such that E{‖x‖2} = 1. The collective

signals received at the user terminals is given by (2.7). Now, the signal received at each user k,
can be written as

yk =
√
ρdl

K∑
i=1

gH
kaiqi + wk, (2.53)

which can be equivalently written as

yk =
√
ρdlE{gH

kak}qk +
√
ρdl(g

H
kak − E{gH

kak})qk

+
√
ρdl

K∑
i=1,i 6=k

gH
kaiqi + wk.

(2.54)

The terms in (2.54) are uncorrelated, and thus using the use and forget bound technique [23, Ch.
2, Sec. 2.3.2], the signal-to-interference-plus-noise-ratio (SINR) at user k is given by

SINRk =
ρdl|E{gH

kak}|2

σ2 + ρdl
∑K

i=1,i 6=k E{|gH
kai|2}+ ρdlvar{gH

kak}
. (2.55)

In (2.55), all the randomness is in the channel estimation errors and the ergodicity is with respect
to the channel estimation errors. Thus, the achievable rate for user k is given by

Rk =

(
1− τp

τc

)
log(1 + SINRk). (2.56)
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Table 2.8: Simulation Parameters

Frequency of operation, f 2 GHz
Wavelength, λ 15 cm
Room size 40 m x 40 m x 10 m
Number of transmit antennas, M 512
Number of users, K 200
Mobility Static
Noise figure, F 9 dB
Bandwidth, B 20 MHz
Noise power, σ2 −92 dBm
Dielectric constant, εr 10.2
Height of patch antenna, h 0.1588 cm

Figure 2.15: Probability of required transmit power to achieve minimum spectral efficiency of 4
bit/s/Hz per user.

Case Study

As an example of a simple scenario that can be modeled in the general framework, we consider a
simulation setup consisting of an indoor room of size 40×40×10 m3. The simulation parameters
are summarized in Table 2.8 with all the UEs are assumed to be static. In this study, radio stripes
over the walls are considered and the antenna spacing is adjusted so as to have 512 antennas
are spreaded uniformly. For example, for single stripe over 1 wall, 512 antennas are placed at
λ/2 spacing, while for single stripe over 4 walls the antenna spacing is 2λ. Thus quadruple stripe
over 4 walls will have an antenna spacing of 8λ.

Simulations show that the total downlink power required when we deploy RadioWeave technology
is very low compared to the co-located deployment when zero-forcing precoding is used at the
base station. As the channel estimation quality depends on the uplink power, for the comparison
of required downlink power among different topologies, we consider an uplink power of 0dBm,
such that the channel estimation errors are negligible. From (2.51), we can see that the required
transmit power P depends on the channel matrix Ĝ and hence is random depending on user lo-
cations. For simulations, we consider 106 random user locations and as a metric for comparison,
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we plot the probability of required transmit power, i.e., Pr{P ≥ power} to achieve a minimum
downlink spectral efficiency requirement of 4 bit/s/Hz per user. Fig. 2.15 shows the probability of
required transmit power for different antenna deployment topologies keeping the total number of
transmit antennas the same. It can be seen that the power required in the co-located deployment
is higher compared to all the RadioWeaves deployment scenarios considered in the paper. From
Fig. 2.4, it can be observed that not all antennas will be able to serve each user, as some anten-
nas point in the wrong direction. Hence, in the co-located case, we are not able to achieve the
full multiple antenna power gain. The transmit power in the RadioWeaves deployment topologies
considered is lower since the users can be spatially separated as all the transmit antennas can
see all users, thus achieving a higher power gain from coherent transmission. Also, we observe
that, if the antennas are divided over all four walls, the required transmit power is much less com-
pared to keeping all the antennas on the same wall. This means that the capability of the antenna
array to spatially resolve each user improves as the antennas are spread over all the walls. Thus,
for a RadioWeaves deployment, distributing the antennas over all the walls of the room is pre-
ferred. Also, the power savings or spatial resolution capability of the array is negligible when the
array is deployed vertically over the walls. From the plot, it can be seen that RadioWeaves with
deploying antennas over all the four walls of the indoor building can provide a minimum downlink
rate of 4 bit/s/Hz for 200 users with a total required transmit power of −23 dBm.

In the antenna array literature, it is known that the larger than half the wavelength antenna element
spacing deployments are not desirable due to the grating lobes. This is true when we consider
an equal aperture array and compare the performance between antenna elements spaced half
a wavelength and antenna elements spaced more than half a wavelength by removing antenna
elements. In the latter case, we get grating lobes which reduces the spatial resolution of users.
However, if we put the removed antenna elements at another location or on a different wall,
thereby allowing a larger array, we get an improvement in spatial resolution that outweigh the
losses caused by the grating lobes. As the antenna separation is increased, the total angular
window covered when pointing the main lobe into a particular direction remains more or less
unchanged even though the lobes get narrower and more grating lobes appear. Thus when all
the antenna elements are used and deployed all around the indoor space, the grating lobes have
no effect whatsoever on the performance.

Moreover, we show that with low power levels high rates are achievable with RadioWeaves tech-
nology. Fig. 2.16 shows the 99.9% likely rates users can achieve with different uplink and down-
link power levels. From (2.25), the channel estimates depend on the uplink power. At low uplink
power levels, the channel estimates are not good and the downlink rate reduces. As the uplink
power is increased, first we see a gradual improvement in rates after which the channel esti-
mates quality becomes close to perfect channel state and the rate saturates. As the downlink
power is increased, the rates increases gradually. This simulations support the assumption that
the RadioWeave deployment can provide high rates to the users by spending very little power.

2.6 Summary

To summarize, in this chapter, we described the performance evaluation framework for Ra-
dioWeaves. The framework supports different channel models and antenna gain patterns. It
also supports different antenna deployment configurations including ULA and UPA. These an-
tenna configurations can be placed on a single wall or they can be spread on all four walls.
Furthermore, the framework supports different channel estimators such as LS and MMSE and
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Figure 2.16: 99.9% likely achievable rate per user in a “double strip on 4 walls” configuration
under different uplink downlink power levels.

precoders such as ZF and MR. Finally, we showed that the presented performance mapping
model enables the prediction of the RadioWeaves physical layer performance in a computation-
ally efficient manner with high accuracy. It can especially be used to speed up system-level
simulations of RadioWeaves. We showed that the EESM can achieve a good trade-off between
the PER prediction accuracy and the computational complexity for performance evaluation of Ra-
dioWeaves. Our simulations also showed that EESM performs well for different MCSs. The study
has also shown that the calibration parameter β is mainly dependent on the MCS used and that
once β is obtained for a particular MCS, it can be used across a wide range of scenarios with dif-
ferent parameters such as the number of antennas and the number of subcarriers. We have also
shown that performance prediction is accurate even for extreme SINR profiles, which confirms
the robustness of the physical-layer abstraction model studied.
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Chapter 3

Performance Comparison of Centralized
vs. Decentralized Algorithms

3.1 Introduction

In this chapter, the existing combining/precoding algorithms are compared in terms of latency and
computational complexity. Also, the most common topologies that are considered in the literature
are presented.

Note that all the fronthaul signaling and computational complexity calculation of the combin-
ing/precoding vectors are valid only for one coherence block which is a frequency/time grid over
which the channel vector of a particular User Equipment (UE) to the antennas remains constant.
In one coherence block which has τc samples, τp samples are assigned to pilot training, τu and τd
samples for uplink and downlink transmission, respectively. Furthermore, as most of the existing
methods consider Contact Service Points (CSPs) with more than one antenna, assume that we
have L CSPs, each having N antennas (Total number of antennas in the network is M = N ×L)
and serving K UEs in the rest of this chapter.

3.1.1 Centralized vs. distributed processing

The existing algorithms can be mainly categorized into two main groups: distributed vs. central-
ized.

• In centralized processing, all the computation for combining/precoding is done in a PE, and
the CSPs act as relays, sending the pilot and data signal to the PE/UEs. Even though
great performance improvement can be achieved using centralized processing, the amount
of data to be exchanged between different nodes (front haul signaling) as well as a huge
number of computations lower the motivation of using these algorithms in real-life networks.
Most of the centralized algorithms are implemented using the star-like architecture shown
in Fig. 3.1b.

• In distributed processing, the main objective is to lower the fronthaul signaling as well as
computation by using smarter CSPs that can contribute to the processing locally, of course
without compromising performance much.
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(a) (b) (c)

Figure 3.1: Different connection topologies for cell-free networks. Topology (a) is a tree with depth
two. Topology (b) is star topology is tree with depth 1. Topology (c) is a tree with depth L.

3.1.2 Network topology

In many existing works on centralized and distributed processing, the connection between differ-
ent entities can be modeled as a tree. For example, the topology considered in [1], [2], is a star
topology which is a tree with the depth of one. On the other hand, the radio stripe sequential
processing considered in [3] is a tree with depth L. The larger the depth of the tree, the larger
is the delay of propagating information between nodes which are CSPs and PEs in our case.
Different topologies are depicted in Fig. 3.1.

In Fig. 3.1, we do not specify the role of the nodes as the aim is to show the possible topolo-
gies considered in the literature. However, root nodes are usually processing nodes and the
nodes at the branches are the CSPs which can be a sophisticated radio unit, able to do combin-
ing/precoding in the uplink/downlink, or a simple radio unit receiving and sending data to the PE
and UEs.

The advantage of a tree topology with a smaller depth is the smaller delay imposed on the signal
processing of UEs both in uplink and downlink. However, the number of the links connected to
the PE is large as well as the rate of the data entering or exiting PE in the uplink and downlink.
On the other hand, a tree with a large depth, such as sequential topology in Fig. 3.1c, imposes
a large delay because of sequential fronthaul, but it requires just one connection to the PE. Also,
generally, tree topologies have the disadvantage of low fault tolerance, in case of a broken link,
one or multiple CSPs will be disconnected from the rest of the network. It is worth mentioning that
authors in [4] consider a closed daisy chain topology rather than a tree topology between entities
which is more fault-tolerant in comparison with the other methods mentioned.

In networks with single-antenna CSPs, the star topology requires the PE to handle a lot of con-
nections at the same time. Also, the pure sequential topology may not be the best solution as
some services are delay-sensitive. The reasonable topology can be a mixture of star and se-
quential topology, as it is shown in Fig. 3.1a. In the next section, some of the existing works are
elaborated on and compared in terms of computational cost as well as fronthaul signaling.

3.2 Centralized processing

Most of the works on centralized processing consider a star topology [1], [2].

3.2.1 Centralized MMSE combining/precoding (CMMSE) in [1]

In [1], the authors consider a centralized algorithm for uplink combining/downlink precoding using
the minimum mean square error method (MMSE) in the PE. Each CSP first estimates the local
channel vectors to all the UEs and then sends the channel estimates to the PE at the end of the
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pilot training phase. The PE calculates the combining/precoding vectors based on the received
CSI and uses them in the uplink detection/downlink precoding. The MMSE combining matrix
( with its columns be the combining vector of the corresponding UEs ) calculated in the PE is
formulated as follows:

VMMSE = (ĜĜH +
K∑
i=1

Ci +
σ2

ρul
IM)−1Ĝ, (3.1)

Where VMMSE ∈ CM×K and Ci is the correlation matrix of UE i’s channel estimation error.
Specifically

G̃ = G− Ĝ, (3.2)

E{[G̃]:,i[G̃]H:,i} = Ci, (3.3)

[G̃]:,i is the ith column of matrix G̃. Ci is usually a block diagonal matrix, in which each block is
the channel estimation error of UE i to the corresponding CSP’s antennas.

Fronthaul signaling

Considering a star topology, assume that the links connecting the CSPs have a bandwidth of R
real scalars

second .

• Uplink: To be more specific about the number of real scalars that need to be sent to the PE
in the uplink, we consider pilot training and uplink data transmission separately. Then the
total amount of delay caused by fronthaul signaling is calculated.

– After pilot training by the UEs in the uplink, the CSPs estimate the local channel vec-
tors of the UEs and send their local estimates to the PE, which is in total 2MK real
scalars (MK complex scalars).

– After reception of the UEs’ data signals, the CSPs send the received signal vectors to
the PE for every sample that is allocated to the uplink transmission which is 2Mτu real
scalars in total.

So in total, the total number of real scalars to be transmitted between PE and CSPs in the
uplink is 2MK + 2Mτu. As the CSPs send these scalars in parallel in a star topology, the
delay associated with these transmissions will be 2MK+2Mτu

LR
in a star topology.

• Downlink: In the downlink, the PE can first calculate the precoded signal vectors that should
be transmitted by every CSP to the UEs, and then send the precoded vectors to the cor-
responding CSPs. Therefore, the total number of real scalars to be transmitted from the
PE to the CSPs is 2Mτd. So, the delay caused by this transmission will be 2Mτd

LR
in a star

topology.

In both directions, fronthaul signaling scales linearly with the number of antennas which can be
large in a dense network. So such a topology is out of the question for ultra-dense practical
implementations.

Computational complexity

The computational complexity of combining vectors is mainly dominated by the M ×M matrix
inversion which has a complexity order of O(M3).

REINDEER D3.1 Page 32 of 60



D3.1 - Analytical Performance Metrics and Physical-Layer Solutions

3.2.2 Parallel Interference Cancellation (PIC) combining/precoding in [2]

In [2], the authors considered a different approach than MMSE to come up with combining/precoding
vectors for the UEs. To avoid the large matrix inversion, their method is based on the simple
maximum ratio combining method. For any particular UE k, the combining/precoding vector is
calculated as follows:

vPIC
k = [Ĝ]:,k −

∑
i 6=k

SINRinst,MR
i

1 + SINRinst,MR
i

[Ĝ]H:,k[Ĝ]:,i

[Ĝ]H:,i[Ĝ]:,i
[Ĝ]:,i (3.4)

The effect of the other interfering UE such as UE i on combining/precoding vector direction of UE
k depends on two aspects:

• SINRinst,MR
i which is the instantaneous signal to interference plus noise ratio of UE i when

using maximum ratio combining:

SINRinst,MR
i =

|[Ĝ]H:,i[Ĝ]:,i|2∑
j 6=i |[Ĝ]H:,i[Ĝ]:,j|2 + σ2

ρul
[Ĝ]H:,i[Ĝ]:,i

(3.5)

• The similarity of the estimated channel vector of UE i to the estimated channel vector of
UE k: the bigger is their similarity (inner product), the more weight is given to the estimated
channel vector of UE i in the combining vector of UE k.

Fronthaul signaling

In [2], the amount of signaling between the PE and the CSPs and consequently the associated
delay are same as in the case of the centralized approach in [1], so it is omitted here.

Computational complexity

In [2], the computation complexity of computing combining vectors is O(KM) which is way less
than in the case of the centralized MMSE approach in [1].

3.3 Distributed processing

Most distributed processing algorithms in the literature consider a star or sequential topology
which has high fronthaul signaling/connections or large fronthaul delay respectively.

3.3.1 Local MMSE (LMMSE) combining/precoding in [1]

The LMMSE combining/precoding scheme proposed in [1] assumes that the CSPs calculate the
local combining/precoding vectors using the MMSE approach locally. In the uplink, after the pilot
training phase, the CSPs estimate the local channels of UEs. Then, based on the local CSI, they
calculate a local combining vector using the MMSE method for each of the UEs. This algorithm is
implemented using a star topology but it can also be implemented using other types of fronthaul
topologies. The local combining vectors of the UEs at CSP l is calculated as:

VLMMSE
l = (ĜlĜ

H
l +

K∑
i=1

Cil +
σ2

ρul
IN)−1Ĝl (3.6)
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where Ĝl is composed of the rows of matrix Ĝ which correspond to the antennas of CSP l and
Cil is the lth diagonal block of matrix Ci which has been defined in equation 3.3.

Fronthaul signaling

• Uplink: using these local combining vectors, CSPs estimate the signal of the UEs locally.
Then, they send the local estimates of the UEs’ signal to the PE, in which the local estimates
of a particular UE will be combined, e.g, via weighted averaging, to come up with the global
estimate of the UE’s signal. Therefore, unlike in the centralized processing approach in
which the CSPs send the local channel estimates as well as the received vectors to the
PEs, in the local MMSE approach, the CSPs send only the local estimates of the UEs’
signal to the PE in the uplink which is 2KLτu real scalars in total. Assuming the same link
rate in fronthaul links, the delay imposed because of fronthaul signaling is 2Kτu

R
.

• Downlink: in the downlink, the PE only sends the UEs’ signals to the CSPs which are in
total 2KLτd real scalars, causing the delay of 2Kτd

R
seconds, and then, the CSPs precode

the UEs’ signal using their local precoding vectors. While in the centralized methods, PE
could precode and then send the vectors to the CSPs that could be immediately transmitted
to the UEs. Consequently, the fronthaul signaling from the PE to the CSPs in the downlink
may be lower in centralized schemes when L is large or, in other words, antennas are more
distributed. Therefore, using LMMSE when having completely distributed antennas, e.g,
L = M , makes the fronthaul requirements of the LMMSE method more demanding than
the centralized MMSE method in the downlink.

Computational complexity

Similar to the centralized MMSE approach described in the previous section, the computational
complexity associated with LMMSE combining/precoding vector computation is mainly caused by
the matrix inversion and is in total of the order O(LN3).

3.3.2 Sequential combining/precoding using Radio Stripe (SRS) in [3]

Another topology considered in distributed processing is radio stripe which is a tree topology with
depth L. In [3], the authors proposed a distributed processing algorithm in the uplink assuming
that the antennas are connected via a radio stripe. CSP l − 1 computes the local combining
vector for each UE based on the local CSI and the effective scalar channel information it receives
from the previous CSP. Then it sends this local information to CSP l and this procedure goes on
for all L CSP. For the sake of simplicity, only the algorithm describing the method in [3] is shown
in algorithm 1. Note that the correlation matrix of interference plus noise at CSP l, Σl, is:

Σl = ρul

K∑
i=1

Ci + σ2IN . (3.7)

In fact, in the radio stripe sequence, CSP l − 1 will act as an additional antenna for the CSP l,
when computing the combining vector of the UEs in CSP l.
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Algorithm 1 Sequential processing using radio stripe [3].

1: Compute normalized LMMSE combining vector at CSP 1,V1 ∈ CN×K given Ĝ1 and Σ1

2: Estimate UEs’ signal locally, ŝ1 = VH
1 y1 and initialize Ĝ′k1 = Ĝ1, Σ′k1 = Σ1, ∀k ∈

{1, 2, . . . , K}
3: for l = 2 : L do
4: for k = 1 : K do
5: Compute LMMSE combining vector [Vl]:,k for UE k given augmented
6: channel estimates, Ĝ′kl = [Ĝ′Hk(l−1)[V(l−1)]:,k, Ĝ

H
l ]H,

7: and augmented noise covariance matrix, Σ′kl = diag([V(l−1)]
H
:,kΣ

′
k(l−1)[V(l−1)]:,k,Σl)

8: Compute ŝkl = [Vl]
H
:,k[ŝk(l−1)y

T
l ]T

9: end
10: end

Fronthaul signaling

• Uplink: Besides the local estimates of UEs’ signal which are 2Kτu real scalars, CSP l − 1
sends 2K2 real scalars as effective channel estimates and K real scalars as the statistics
of the effective channels, to CSP l in one coherence block. In total, the amount of data
transferred between the CSPs and form CSP L to the PE add up to (2K2 + K + 2Kτu)L.
As the signaling between the CSPs is sequential, the delay imposed by fronthaul signaling
will be L (2K2+K+2Kτu)

R
.

This algorithm reduces the amount of data to be transmitted to the PE to 3K2 +2Kτu which
is way less than the alternative centralized algorithm described in previous sections.

• Downlink: The authors did not specifically consider the downlink, but because of channel
reciprocity, each CSP can use their local combining vector to locally precode the UEs’ data.
Only the PE should send the intended signal for the UEs to the CSP L and then each CSP
should communicate them to the next CSP in the sequence which requires transmitting
of 2KLτd real scalars in total, equal to the LMMSE algorithm in [1]. But because of the
sequential nature of the fronthaul, the imposed delay due to downlink fronthaul signaling will
be L2Kτd

R
, which is L times larger than the corresponding delay in the LMMSE algorithm [1].

Computational complexity

Each CSP uses a local normalized MMSE approach to compute the combining vectors of UEs.
For one particular UE, the complexity of computing the combining vector in one particular CSP is
O(N3), which isO(LN3) in total for all L CSPs. However, unlike the centralized and local method
proposed in [1], the computation of one particular UE combining vector is not reusable for other
UEs due to the use of different effective scalar channels.

3.3.3 Decentralized massive MIMO (DmMIMO) combining/precoding using
Daisy chain architecture [4]

In [4], the authors proposed a decentralized approach for uplink detection/downlink precoding with
minimal intervention of a PE. They start with the least square (LS) error formulation and state that
solving the LS problem using gradient descent (GD) is not possible in a completely decentralized
way and therefore, a PE should be appointed for some matrix operations. Thus, they tried to

REINDEER D3.1 Page 35 of 60



D3.1 - Analytical Performance Metrics and Physical-Layer Solutions

approximate the gradient decent solution in a decentralized way. CSP l contributes sequentially
in the calculation of the gradient function by estimating the UEs’ data locally and sends oneK×K
matrix to the next CSP l + 1, so it can compute/update UEs’ local combining/precoding vectors
based on that. The off-diagonal elements of this matrix that get updated in each CSP, show the
amount of interference between any two UEs and these off-diagonal elements get smaller each
time the matrix is updated in a CSP. Although [4] considered the sequential processing to happen
among the antennas of a CSP with a large number of antennas, it can be generalized to multiple
CSP case. The algorithm of updating the combining/precoding vector in the CSPs are shown in
Algorithm 2. Note that for the sequential procedure to happen in one CSP with multiple antennas,

Algorithm 2 Decentralized GD based combining/precoding vector [4].

1: Input Ĝ
2: Initialize A0 = IK
3: for l = 1 : L do
4: Vl = µlĜlAl−1

5: Al = Al−1 − ĜH
l Vl

6: end

the iteration in the algorithm will be over the antennas of the CSP and therefore, matrix Gl will
be replaced by a vector, representing the channel estimates of the users to one antenna. The
algorithm can have multiple iterations over the CSPs (closed-loop) which will result in more inter-
UE interference cancellation (smaller off-diagonal elements in matrix A). It is worth mentioning
that, in the uplink, instead of sending a K×K matrix, the CSPs can only communicate their local
estimates of the UEs’ signal vector and keep updating only this signal vector from AP 1 until CSP
L which can announce the final estimates. However, as the CSPs also need to know the vectors
for downlink precoding, the computation of combining vectors is only possible by communicating
matrix A.

Fronthaul signaling

• Uplink: In the uplink, each CSP sends a K × K symmetric matrix as well as the local
UEs’ signal estimates to the next CSP in the sequence, which is in total K2 + 2Kτu real
scalars. This happens between any two CSPs and the last CSP and the PE. So in total,
the fronthaul signaling in the uplink would be (K2 + 2Kτu)L and the delay imposed due to
uplink fronthaul signaling is LK2+2Kτu

R
.

• Downlink: In the downlink, the PE sends the UEs’ signal to CSP L and then each CSP
sends the signal vector to the next CSP. Also, each CSP precodes the data by the UEs’
local precoding vectors and sends the precoded data to the UEs. So in every chunk of
the chain, 2Kτd real scalars are transmitted which sum up to 2KLτd in total. The imposed
delay is L2Kτd

R
.

Computational complexity

The computational complexity of the distributed sequential algorithm 2 is due to the multiplication
of two K ×K matrices which is of order O(K3).
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3.4 Summary

In this chapter, some existing centralized/distributed algorithms and fronthaul topologies for up-
link combining/downlink precoding in massive MIMO networks are reviewed. It is observed that
as opposed to the star topology, the sequential fronthaul topology reduces the number of con-
nections as well as the amount of fronthaul signaling to the PE at the cost of increased delay in
UEs’ signal detection. Moreover, the mentioned distributed algorithms aim to trade performance
for reduced computational complexity and fronthaul signalling, when compared to the central-
ized MMSE approach [1]. In Table 3.1, the fronthaul signaling of different combining/precoding
methods are compared.

Method Topology Uplink FS Downlink FS
CMMSE [1] star 2MK + 2Mτu 2Mτd
PIC [2] star 2MK + 2Mτu 2Mτd
LMMSE [1] star 2KLτu 2KLτd
SRS [3] sequential (2K2 +K + 2Kτu)L -
DmMIMO [4] sequential (closed) (K2 + 2Kτu)L 2KLτd

Table 3.1: Fronthaul signaling comparison of different combining/precoding methods using differ-
ent fronthaul topologies.
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Chapter 4

User and Computational Resource
Scheduling

Algorithms used to deliver services to users/devices in RadioWeaves need to adapt to changes
both in user traffic and the computational resources available across the deployed RadioWeaves
infrastructure. While scheduling of communication resources between users is a well known
topic, the simultaneous scheduling of computational resources for the associated (distributed)
processing algorithms across an infrastructure of the RadioWeaves type is an entirely new area
of research.

User and computational resource scheduling for RadioWeaves is in its general form an optimiza-
tion problem, where energy consumption of the entire RadioWeaves infrastructure should be
minimized under a set of restrictions, such as service requirements, available distributed algo-
rithm types, available computational resources, and the topology of the infrastructure. While this
optimization problem remains to be more precisely formulated and addressed in the REINDEER
project, it is expected that sub-optimal ad-hoc solutions will be employed in any practical setting.

Development of distributed algorithms for RadioWeaves services should, for the above reasons,
be done with energy consumption in mind and under the awareness of basic mechanisms gov-
erning the scheduling of computational resources for their execution. Below we present a first
set of measures that influence energy consumption when executing distributed algorithms and
high-level observations about the scheduling challenges, which the processing algorithms them-
selves are subject to. Algorithms should be designed so that their computational resources can
be re-scheduled without excessive cost or interruption of the services they are providing.

4.1 Measures That Influence Energy Consumption

Table 4.1 lists the high-level power consumption model of different hardware components in Ra-
dioWeave systems, including analog processing, digital processing, memory systems, intercon-
nections, and synchronization systems. The power consumption model is a mixture of config-
urable design parameters and results extracted from implementation examples.

The choice of design parameters depends on many aspects. For instance, the PA output power,
the resolution and sampling rate of data converters depend on the system setup (e.g., number
of antennas, system bandwidth), the use cases (e.g., number of users, the required quality of
service), and the channel environments. The general trend is that we can use less powerful
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Table 4.1: Hardware components in RadioWeave and power consumption model.

Analog processing
Power amplifier (Pin+Pout/η W) × # transmittersa [39]
ADC (α2bfW) × # digital pathsb [40]
DAC (β2bf W)× # digital pathsc

Digital computation and storage
Operation (multiplier/MAC) 3.1pJ × # operation per second (32bit mult., 45nm) [41]
On-chip SRAM memory access 5pJ × # SRAM accesses per second (32bit for 32KB SRAM) [41]
Off-chip DRAM memory access 640pJ × # DRAM accesses per second (32bit) [41]

Data transfer and interconnection
Local links 5.34pJ/bit × # bps (SerDes, 65nm) [42]
Back-plane 45pJ/bit × # bps (100G Ethernet, 65nm, PHY only, no switch/router)d [43]

5.2nJ/bit × #bps (100G Ethernet, switch) [44]

Synchronization
Clock distribution 2.2W × # white rabbit nodes [45] (Can be partially merged with back-plane)

a Pin is the PA input power, Pout is the PA output power, η is the PA efficiency, e.g., 0.15-0.25 for class AB.
b α is ADC FoM factor (fJ/conv-step), e.g., 165 for 28nm 10bit, 5GS/s ADC; 44 for 28nm 600MS/s, 12bit ADC, b
is effective bit resolution, f is conversion rate.
c β is DAC FoM factor, b is effective bit resolution, f is conversion rate.
d Similar results in the power consumption (1-3W) of QSFP module for 100G Ethernet.

PAs and lower resolution data converters when increasing the number of antennas. The power
on computation and memory access highly depend on the processing algorithm selected, the
architecture (e.g., topology) of the RadioWeave, as well as the frame structure. The power con-
sumption of data transfer between different hardware units inside RadioWeave can be significant,
especially when the units are distributed over long distances. The data rate on the interconnec-
tions will be decided by the RadioWeave architecture and how the processing is distributed. The
synchronization system power consumption will depend on the frequency band the system is op-
erating at, the geometrical distribution of RadioWeaves, and also the system-level requirement
on synchronization.

4.2 Scheduling of computational resources for distributed al-
gorithms

Distributed execution of algorithms on the RadioWeaves infrastructure, in terms of which compu-
tational resources are allocated and how processing data is exchanged between computational
nodes (typically contact service points/CSPs, as defined in D2.1), will depend on the choice of
RadioWeaves topology. The topology choice may differ between different deployments and what
services a certain deployment is expected to deliver. For the most critical services, where we
have strict requirements on latency, reliability and/or a high density of devices served, mesh-like
topologies may be required, while for less critical services cost benefits of topologies with fewer
connections between nodes with computational resources may suffice. On top of this, the feder-
ations formed to deliver different services may be dynamic in several ways. Computational load
on the CSPs forming a federation may vary over time, depending on traffic variations inside the
federation’s coverage area. This is illustrated in Fig. 4.1, where served users move inside the
coverage area of a fixed federation of CSPs, changing the traffic and computational resource re-
quirement on individual CSPs in the federation. The federation may also move spatially, following
served users as they move in the environment, in the sense that new CSPs are included and
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Figure 4.1: Illustration of RadioWeaves CSPs where a shift in user positions (from black to blue
dots) influences the computational resources assigned to distributed algorithms at the different
CSPs in a federation (light maroon). RadioWeaves CSPs shown as maroon squares.

Figure 4.2: Illustration of RadioWeaves CSPs where a shift in user positions (from black to blue
dots) results in a move of the federation of CSPs (light maroon with black to blue dashed stroke)
serving these users. RadioWeaves CSPs shown as maroon squares.

others removed from the serving federation. This is illustrated in Fig. 4.2, where a group of users
move (from black to blue positions), requiring the federation of CSPs to ”move along” to deliver
the service. These variations will have to be controlled and computational resources scheduled
dynamically in time, adapting to these changing conditions.

An initial discussion about the concept of federations and different topology choices is found in
deliverable D2.1, while the detailed analysis is still an ongoing task for the rest of the REIN-
DEER project. There are, however, a number of high-level observations of general interest when
developing distributed algorithms for RadioWeaves, all depending on the chosen RadioWeaves
topology:

• Latency is introduced when exchanging data between computational nodes, which, through
service requirements, limit the number of nodes that can be used for executing distributed
algorithms.

• Energy consumption of the RadioWeaves infrastructure depends not only on the amount of
operations executed, but also to a high degree on the amount of processing data exchanged
between computational nodes and the number of hops data has to traverse reaching its
destination.

• Re-scheduling of computational resources assigned to algorithms will be necessary when
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traffic characteristics change or federations move. Algorithms should be able to handle this
re-scheduling, without excessive cost or interruption of services.

The above observations and related concerns are of particular interest when service require-
ments include low latency and/or high reliability in combination with mobility.
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Chapter 5

Efficient Algorithm Candidates for
Resource Allocation

5.1 Uplink D-MIMO Processing Using Kalman Filtering

Four different levels of D-MIMO (distributed multiple input multiple output) uplink processing co-
operation, from a fully centralized method to locally distributed methods, were introduced in [1]
and [10]. The fully centralized approach, which is denoted level 4 implementation, uses global
minimum mean-square error (MMSE) combining, and hence it provides the best performance in
terms of spectral efficiency (SE) and equivalently SINR. However, level 4 implementation is ex-
tremely difficult to realize in practical implementations, due to a very high fronthaul connection
requirement and computational complexity at the D-MIMO central processing unit (EPU). To re-
duce the computational complexity at the EPU, three alternative methods, denoted level 1-3, first
process the signals at each Access Point (SP) based on local information, and then pass them to
the EPU for final combining and decoding. Level 1-3 do reduce the fronthaul requirement, how-
ever, these methods still require centralized combining, which has an impact on the processing
latency. The performance of level 1-3 reaches below 40% of the upper bound performance pro-
vided by level 4. To find the possibility to reach the upper bound performance, we propose to use
a decentralized partial level-4 method by defining a subset of SPs for each UE. The subset can
be defined from one SP to all SPs that are connected to a EPU. When the subset consists of
only one SP, which we call sub-1, it turns D-MIMO network into the “small cell” network; when
the subset consists of all SPs connected to the EPU, it is equivalent to the level 4. We show in
this section that the subset method provides a scalable trade-off between complexity and perfor-
mance. Moreover, we propose to use a Kalman filter when adding new SPs into the subset since
the Kalman filter [46] implementation provides the combining vector that minimizes estimation
error (MSE) at each step of incrementation, from a subset of one SP to a subset of all SPs. We
also show that the performance with the subset consisting of all SPs is equivalent to the upper
bound performance of a full centralized level 4 implementation.

The rest of the section is organized as follows, we introduce the D-MIMO network in Section 5.1.1.
A brief description of the four uplink processing combining levels are provided in Section 5.3. The
decentralized methods together with the Kalman filter implementation is described in Section 5.4.
The implementation cost and requirements are discussed in Section 5.6.
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Figure 5.1: Uplink transmission from UE and to receiving SPs.

5.1.1 D-MIMO Network

A D-MIMO network consists of L geographically distributed SPs, each equipped with N antenna
elements. The total number of antenna elements in the network isN×L. The SPs are connected
via fronthaul links to a EPU, which facilitates the coordination among SPs. The SPs cooperate
to serve K UEs (User Equipments) in the coverage area jointly by coherent transmission in the
downlink and coherent reception in the uplink, see Fig. 5.1.

The focus of this work is on the the uplink processing. In the uplink, as shown in Fig. 5.1, each SP
receives two types of signals from UEs, the pilot signals for channel estimation and data signals
for data transfer. When the UEs transmit their pilot signals, the received pilot signal Zl ∈ CN×τP

at SP l is
Zl =

K∑
k=1

√
pk hlkφ

T
tk

+Nl, (5.1)

where pk ≥ 0 is the transmit power of UE k, Nl ∈ CN×τP is the receiver noise with independent
NC(0, σ2) entries, and σ2 is the noise power. The channel between UE k and SP l is denoted by
hlk ∈ CN . The elements of the channel vector are modelled by a complex Gaussian distribution,
hlk ∼ NC(0, Rlk) where Rlk ∈ CN×N is the spatial correlation matrix. Assume that the D-MIMO
network has τP mutually orthogonal pilot signals φ1, . . . , φτP with ‖φt‖2 = τP for t = 1, . . . , τP ,
which are used for channel estimation. The pilots are assigned to the UEs in a deterministic
but arbitrary way. In a network with K > τP several users can be assigned to the same pilot.
We denote the index of the pilot assigned to UE k as tk ∈ {1, . . . , τP} and Pk ⊂ {1, . . . , K}
the subset of UEs that use the same pilot as UE k. The interference generated by the pilot-
sharing UEs causes pilot contamination which degrades the system performance. To estimate
the channel, each SP correlates the received signal with the associated normalized pilot signal
φtk√
τp

to obtain

Zltk ,
1
√
τp
Zlφ

∗
tk
. (5.2)

Applying the MMSE to estimate the channel hlk, we get

ĥlk =
√
pkτpRlkψ

−1
ltk
Zltk (5.3)

where ψltk = E
{
ZltkZ

H
ltk

}
=
∑
i∈Pk

τPpiRli + IN (5.4)
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is the correlation matrix of the received signal. The estimate ĥlk and estimation error h̃lk = hlk −
ĥlk are independent vectors distributed as ĥlk ∼ NC

(
0, pkτPRlkψ

−1
ltk
Rlk

)
and h̃lk ∼ NC (0, Clk)

with the covariance matrix

Clk = E{h̃lkh̃H
lk} = Rlk − pkτPRlkψ

−1
ltk
Rlk. (5.5)

During the uplink data transmission, all SPs will receive a superposition of the signals sent from
all UEs. The received signal yl ∈ CN at SP l can be written as

yl =
K∑
k=1

hlksk + nl, (5.6)

where sk ∼ NC(0, pk) is the signal transmitted by UE k with a power pk = E{|sk|2} during the
uplink data transmission. The independent receiver noise is nl ∼ NC(0N , σ

2IN).

The performance metrics used here is the achievable Spectral Efficiency (SE) [bit/s/Hz] based on
the Shannon formula, which is the same as it was used in [1] and [10].

5.2 Decentralized sub-set combining for UL processing

We propose a decentralized processing and combining method that utilizes sub-sets of SPs for
processing of uplink signals. Instead of sending all signals or estimated signals to the EPU to
determine the combining vector, a subset of SPs is selected for each UE, L ⊂ {1, . . . , L}, and
one of the SPs in the subset is assigned to be the aggregating SP for this UE. This enables the
fronthaul communication to send information to different aggregation SPs, using different sections
of the fronthaul, all at the same time. It further enables parallel processing of uplink signals
from multiple UEs in different aggregating SPs. The processing for each UE is also significantly
reduced when a sub-set of SPs is used for reception compared to the full set of SPs.

We denote the subset by sub-` when ` out of L SPs are selected. The minimum subset, sub-1,
can be selected based on the best path gain for each UE. The maximum subset, sub-L, consists
of all SPs that are connected to the same EPU. As more SPs are selected for processing uplink
signals from a UE, the better performance and the larger complexity in processing we obtain.
There is a trade-off between the performance and complexity that need not be identical for each
UE active in an uplink transmission time interval (TTI). In Fig. 5.2, a subset of ` = 3 is used to
illustrate the sub-3 selection. In this example, the subset for UE 1 is LUE1 = {4, 5, 8} where SP 5
is assigned to be the aggregating SP where antenna signals from other two SP 4 and SP 8 are
collected. The subset for UE 2 is LUE2 = {3, 6, 7} where SP 6 is assigned to be the aggregating
SP and the subset for UE 3 is LUE3 = {8, 9, 11} where SP 9 is assigned to be the aggregating SP.

In [47], the square-root implementation of the Kalman filter is proposed to find the optimal solution
for mean square error. It is shown in [47] that such implementation provides the same result as
the MMSE method used in [1] and [10]. However, the square-root Kalman filter is shown to be
more efficient and numerically sound when inverting the covariance matrix.

To apply the Kalman filter, we rewrite the signal and the channel between all UEs and SP l in
more compact vector or matrix forms in the following. The received data signal at SP l can be
written as yl = Hls + nl, where the channel is Hl =

[
hl1 · · ·hlK

]
, and transmitted signals from

all UEs is the state vector sT = [s1, . . . , sK ]. The Kalman filter provides the estimate of the state
vector ŝ at SP l as

ŝ = ŝ0 +K (yl −Hlŝ0) (5.7)

REINDEER D3.1 Page 44 of 60



D3.1 - Analytical Performance Metrics and Physical-Layer Solutions

Figure 5.2: Subset that consists of three SPs for each UE.

which minimizes the mean-square error MSE = E{|s − Kyl|2} by the Kalman filter gain K. The
initial estimate state vector ŝ0 = 0 and the initial covariance matrix P0 = diag(p1, . . . , pK).

The combining vector vk given by (5.19) assumes that the channel Hl is unknown, but the esti-
mate of the channel can be done locally at each SP based on known pilot signals transmitted from
UEs. Let Ĥl = [ĥl1, . . . , ĥlK ] be the estimate of channel Hl, see [48] for a detailed description of
channel estimation. Applying the estimation of the channel, the estimate of the state vector (5.24)
can then be written as

ŝ = ŝ0 +K(yl − Ĥlŝ0), l = 1, . . . , L (5.8)

and covariance matrix becomes

P = P0 − P0Ĥ
H
l (ĤlP0Ĥ

H
l +Rl)

−1ĤlP0. (5.9)

The Kalman filter gain is given by

K = P0Ĥ
H
l (ĤlP0Ĥ

H
l +Rl)

−1. (5.10)

It is shown in [47] that the Kalman filter gain K is equivalent to the combining vector vk given by
(5.19). The covariance matrix P in (5.26) has two parts, the initial value P0 = diag [p1, . . . , pK ]
and the updating part, which can be written as KĤlP0 by using K in (5.27). Hence (5.26) can be
written as

P = P0 −KĤlP0. (5.11)

Proposition 1. The performance measure SINRk for each UE k is equivalent to the inverse of
the covariance matrix given by the Kalman filter

SINRk =
pk
Pkk
− 1, (5.12)

where pk is the power of UE k to transmit data signal and Pkk is the diagonal element of covari-
ance matrix P .

Proof. The SINR represents the ratio between desired signal power and undesired total signal
power, which is often called the interference and noise. For UE k, it can be rewritten as

SINRk =
sk

Ak − sk
=

sk
Ak

I − sk
Ak

, (5.13)
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where sk is desired signal power and Ak is the total sum of received signal power. The ratio of
desired signal to the total sum is a part of the covariance matrix as

sk
Ak

= pkĥ
H
lk(ĤlP0Ĥ

H
l +Rl)

−1ĥlk = vkĥlk. (5.14)

From (5.11) we get KĤl = (P0 − P )P−1
0 , (5.15)

and hence
vkĥlk = uT

kKĤluk = uT
k (P0 − P )P−1

0 uk (5.16)

where uT
k = [0 . . . 1 . . . 0] is a vector with 1 at k

th
element.

SINRk =

sk
Ak

1− sk
Ak

=
uT
k (P0 − P )P−1

0 uk

1− uT
k (P0 − P )P−1

0 uk
=

pk
Pkk
− 1. (5.17)

Proposition 2. The upper bound performance provided by the fully centralized level 4 can be
achieved by sub-L when all SPs in the same cluster are added to the subset L.

Proof. The estimate of the state vector (5.25) can be used for any aggregating SP, from sub-1
update to sub-2, and then from sub-2 update to sub-3, when a new SP is added into the subset.
Each new SP brings the new measurement into the Kalman filter. Each update reduces the
estimation error hence reduces the covariance matrix. As SINR can be written as the inverse of
the covariance matrix

SINRk =
pk

Pkk(L)
− 1. (5.18)

Each update of the covariance with a new SP increases SINR. When all SPs are added in the
subset L, the minimum covariance is reached, and hence the maximum SINR is reached. The
best performance is achieved by sub-L, which has the same performance as fully centralized
method level 4, given by (5.20) and (5.21).

The advantage of using the Kalman filter in this context is that the same maximum SINR or equiv-
alently the spectral efficiency (SE) as fully centralized processing and combing can be reached
by sub-L, however the processing processing complexity can be adapted for each UE and com-
bining can be both centralized or distributed at any aggregating SPs.

5.3 Centralized Combining

In [1], four levels of receiver cooperation were proposed. From the most complex and advanced
level, which is denoted level 4 to less complex level 1. We summarize these four levels briefly in
this section, more details to be found in [1].

5.3.1 Level 4: Fully centralized Processing

Level 4 is a method with fully centralized processing and combining. It requires that all L SPs
that are connected to a EPU of a D-MIMO network send all received pilot signals {Zlt : l =
1, . . . , L, t = 1, . . . , τP} and received data signals {yl : l = 1, . . . , L} to the EPU. For each UE,
the EPU estimates the channel {ĥlk : l = 1, . . . , L, k = 1, . . . , K} using received pilot signals
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and channel statistics obtained from SPs. Then EPU selects combining weights vk ∈ CLN for
UE k based on the collective channel estimate

ĥk =

 ĥlk
...

ĥLk

 and y =

y1
...
yL

 .
The MMSE combining vector for UE k that maximizes the instantaneous SINR minimizes the
mean-squared error MSEk = E{|sk − vH

k y|2 | ĥk}, see [48] for details, is given by

vk = pk

(
K∑
i=1

pi

(
ĥiĥ

H
i + Ci

)
+ σ2ILN

)−1

ĥk. (5.19)

The maximum value of SINR is

SINR(4)
k =pkĥ

H
k

(
K∑

i=1,i 6=k

piĥiĥ
H
i +

K∑
i=1

piCi+σ
2ILN

)−1

ĥk. (5.20)

Using level 4 combining, an achievable SE of UE k is shown to be

SE(4)
k =

(
1− τP

τc

)
E
{

log2

(
1 + SINR(4)

k

)}
. (5.21)

The level 4 provides the highest SE, however the computational complexity is very high since it
requires first the computation of LN ×LN matrix inverse and then a matrix-vector multiplication.

5.3.2 Level 1-3: Local Processing and Centralized Combining

Level 1-3 are the methods based on local processing and centralized combining. Instead of
sending the N -dimensional vector {yl : l = 1, . . . , L} and channel estimates to the EPU, each
SP pre-processes its signals by computing the local estimates of the data that are then passed
to the EPU for further combining. The local estimate for UE k at SP l is ˘mathbfskl = vH

lkyl where
the local MMSE combining vector is

vlk = pk

(
K∑
i=1

pi

(
ĥliĥ

H
li + Cli

)
+ σ2IN

)−1

ĥlk. (5.22)

The maximum value of SINR with the local MMSE combining (5.22) is given by

SINR(1)
kl =pkĥ

H
lk

(
K∑

i=1,i 6=k

piĥliĥ
H
li+

K∑
i=1

piCli+σ
2IN

)−1

ĥlk. (5.23)

Different from level 4, SP l uses only its own local channel estimates {ĥlk : k = 1, . . . , K} for the
design of vlk. The local estimates {s̆kl : l = 1, . . . , L} are then sent to the EPU where they are
combined in three different methods, which are defined in [1]:

Level 1: ŝk = argmax
s̆kl

SINR(1)
kl , l = 1, . . . , L
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Level 2: ŝk = 1
L

∑L
l=1 s̆kl

Level 3: ŝk =
∑L

l=1 a
∗
lks̆kl

The weighting coefficients alk at level 3 can be obtained based on the channel statistics, see [1]
for more details.

5.4 Decentralized Combining

In [49] a decentralized processing and combining method was proposed. Instead of sending all
signals and statistical parameters to the EPU for centralized combining, see Fig. 5.3 (a), they are
sent to predefined aggregating SPs, or local processing unit (LPU) for decentralized processing
and combining first and then forwarded to the EPU for final decoding. The predefined aggregating
SP consists of a subset of SPs, which is selected for each UE, L ⊂ {1, . . . , L}. The subset
is denoted by sub-` where ` out of L SPs are selected. The subset can process the signals
sequentially if SPs are serially connected; the subset can also process the signals in parallel, as
illustrated at the top and bottom of Fig. 5.3 (b) respectively.

5.5 Semi-localized processing for weight computation

Based on internal report description.

(a) Centralized
(b) Decentralized

Figure 5.3: Examples of centralized and decentralized combining methods.

We propose to use the square-root implementation of the Kalman filter in [50] for decentralized
processing and combining at aggregating SPs. The square-root implementation is known to be
more numerically sound when inverting the covariance matrix, as it always assures the covariance
matrix to be symmetric and positive semi-definite.

To enable the formulation of the Kalman filter, we rewrite the signal and the channel between all
UEs and SP l in more compact vector or matrix forms in the following. The received data signal
at SP l can be written as yl = Hls+ nl, where the channel is Hl =

[
hl1 · · ·hlK

]
, and transmitted

signals from all UEs is the state vector s =

 s1
...
sK

. The Kalman filter provides the estimate of the
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state vector ŝ at SP l as
ŝ = ŝ0 +K (yl −Hlŝ0) , (5.24)

which minimizes the mean-square error MSE = E{|s − Kyl|2} by the Kalman filter gain K. The
initial estimate state vector ŝ0 = 0 and the covariance matrix P0 = diag(p1, . . . , pK).

Proposition 3. The combining weights for all UEs can be calculated by the Kalman filter gain K,
which is equivalent to the MMSE combining vector given by (5.19).

Proof. The MMSE combining vector vk given by (5.19) assumes that the channel Hl is unknown,
but the estimate of the channel can be done locally at each SP based on known pilot signals
transmitted from UEs. Let Ĥl = [ĥl1, . . . , ĥlK ] be the estimate of channel Hl, see [48] for a
detailed description of MMSE channel estimation. Applying the estimation of the channel, the
estimate of the state vector (5.24) can then be written as

ŝ = ŝ0 +K(yl − ĥlŝ0), l = 1, . . . , L (5.25)

and the covariance matrix becomes

P = P0 − P0Ĥ
H
l (ĤlP0Ĥ

H
l +Rl)

−1ĤlP0. (5.26)

The Kalman filter gain is given by

K = P0Ĥ
H
l (ĤlP0Ĥ

H
l +Rl)

−1, (5.27)

where Rl is the covariance matrix including both the correlation matrix of the channel estimation
error and receiver noise, Rl =

∑K
k=1 pkClk + σ2I. The equation (5.27) provides the combining

weights the minimizes the MSE for all UEs, K =

v1
...

vK

. Thus, for UE k the combining vector vk

is the same as it is given in (5.19).

Remark 1. In the square-root implementation of the Kalman filter the covariance matrix is re-
placed by its square-root, S, such that P = SST.

Corollary 1. The performance measure SINR for each UE k is equivalent to the inverse of the
covariance matrix given by the Kalman filter

SINRk =
pk
Pkk
− 1, (5.28)

where pk is the power of UE k use for transmitting data signals and Pkk is the k
th

diagonal element
of the covariance matrix P .

Proof. The proof is to be found in [49].

We have introduced the Kalman filter to estimate the data signals by (5.25)-(5.27). They can be
applied to any SPs locally. They can also be applied to any aggregating SPs or local processing
unit (LPU), such as the subset, sub-l, or at EPU where signals from other SPs are collected as
shown in Fig. 5.3(a). Furthermore, when SPs are connected sequentially where one SP forwards
the estimates to another SP, the update of the state vector (5.25) can be generalized with the
proposition below.
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Proposition 4. The estimate of a data signal at any aggregating SP can be obtained by the esti-
mation of the state vector from the Kalman filter whenever a new measurement from an additional
SP l becomes available.

Proof. Let L be the subset consisting of ` SPs, and the new measurement from an additional
SP l be yl, l 6∈ L. The subset of ` SPs is denoted by sub-`. The new subset L ∪ l has `+ 1 SPs,
sub-(`+ 1). Applying the Kalman filter, the estimate of the state vector is given by

ŝ(L ∪ l) = ŝ(L) +K(yl − Ĥl ŝ(L)) (5.29)

and the covariance matrix is given by

P (L ∪ l) = P (L)−P (L)ĤH
l (HlP (L)ĤH

l +Rl)
−1ĤlP (L). (5.30)

The Kalman filter gain that minimizes the mean-square errors between the state and estimated
state is given by

K = P (L)ĤH
l

(
ĤlP (L)ĤH

l +Rl

)−1

. (5.31)

The equation (5.29) updates the state vector from ŝ(L) to ŝ(L ∪ l) with the new measurement
yl at the aggregating SP and the equation (5.30) updates the covariance matrix from P (L) to
P (L∪ l) when the SP l is added to the subset. The Kalman filter gain (5.31) updates the estimate
of the state vector which is the new combining weights that minimizes the MSE for all UEs.

Corollary 2. The best performance in terms of SINR or equivalently SE is achieved by sub-L
when all SPs in the same cluster are added to the subset L.

Proof. By using the Kalman filter, the estimate of the state vector is updated by (5.24) when a new
SP is added into the subset. Each new SP brings the new measurement into the Kalman filter
and reduces the estimation error hence the corresponding covariance matrix is decreased. Each
update increases SINR as SINR is the inverse of the covariance matrix as shown in Corollary 1.
Hence the best performance in terms of SINR or equivalently SE is achieved by sub-L when all
SPs in the same cluster are added to the subset L.

Remark 2. If the new measurements in Proposition 4 are collected from several SPs, l1, . . . , lr 6∈
L. The proposition is still valid by defining Lnew = {l1, . . . , lr} and replacing l by Lnew , the new
subset L ∪ Lnew has thus `+ r SPs and is denoted as sub-(`+ r).

ŝ(L ∪ Lnew) = ŝ(L) +K(ŝ(Lnew)− ŝ(L)) (5.32)

and the covariance matrix is given by

P (L∪Lnew) = P (L)−P (L)(P (L) + P (Lnew))−1P (L). (5.33)

The Kalman filter gain that minimizes the mean-square errors between the state and estimated
state is given by

K = P (L) (P (L) + P (Lnew))−1 . (5.34)

The advantage of using the Kalman filter in this context is that the same maximum SINR or SE
as fully centralized processing and combing (level 4) can be reached by sub-L. However the
processing of sub-L can be done either centralized or decentralized at any aggregating SPs by
using (5.25)-(5.27); it can also be done by distributing the processing at aggregating SPs and
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(a) Serially connected.

(b) Parallelly connected.

Figure 5.4: Equivalent implementation of the Kalman filter.

push the estimate to another SP, as shown in Fig. 5.4(a). The aggregation can also be done
when SPs are connected in parallel, as shown in Fig. 5.4(b). Note that the initial covariance
matrix needs to be scaled accordingly with the number of parallel connected SPs.

Proposition 5. The Kalman filter provides the equivalent results no matter if the signals are col-
lected and proceessed centralized at an EPU or decentralized at aggregating SPs, or distributed
at SPs.

Proof. Since the Kalman filter minimizes the estimation error between the signal and estimate of
the signal based on the available inputs and measurements at the current stage, the estimate of
the signal contains the same amount of information that is available to the Kalman filter at any
subset. They can be forwarded to another SP or aggregating SP without loss of the information
of that subset.

Remark 3. With Proposition 5, the Kalman filter can be applied to any topology of SPs, e.g. star,
serial, parallel, grid connections. The estimate of data signal at any aggregating SP is the same
whether new measurements are collected from several SPs or sequentially aggregated from the
first SP to the aggregating SP.

5.6 Implementation requirements

We analyse two important aspects that need to be considered when it comes to the implementa-
tion of D-MIMO systems.

Firstly, we analyze the fronthaul connection capacity requirement, i.e., the number of signals and
measurements that are required to send from SPs to EPU in order to calculate the combining
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weights. The four different implementation levels process the signals either at EPU (level 4) or
locally at SPs (level 1-3). All signals yl or the estimated signals s̆kl are collected at the EPU,
as shown in Fig. 5.3(a), to be able to make the centralized combining decisions as described in
Section 5.3. In contrast, the decentralized subset method based on the Kalman filter implemen-
tation has the flexibility to estimate the signals and aggregate the estimated signal, sequentially
or partially at aggregating SPs or the EPU, as shown in Fig. 5.3(b).

Table 5.1: The fronthaul capacity requirement.
signal name elements of signal to get covariance matrix total elements

level 4 yl τCLN Rlk LKN2/2

level 3 s̆kl (τC − τP )LK alk LK + L2K2+LK
2

level 1-2 s̆kl (τC − τP )LK - -
subset ŝ(L) (τC − τP )LK S(L) LK2/2

In Table 5.1, we summarize the fronthaul capacity requirement. The column signals can be the
received signals or the estimated signals at each SP depending on the implementation methods.
The column total signals contains the total sum of signals sent from of all SPs to the EPU for
final decoding. Level 3 and subset with sub-L have no dependency on the number of antenna
elements at each SP, however, level 4 does.

The second aspect to consider is the time delay, i.e. how much time is required for processing and
estimating the signals. The time delay depends on computational processing time and the time
for collecting the signals. Here, the highest computational demanding operation is to calculate the
inverse of the covariance matrix and the sizes or the number of elements in the covariance matrix
determines the computational complexity. The fully centralized level 4 method requires collecting
all signals and estimating a full-sized covariance matrix at EPU before the processing can start,
the number of operations is in the order of ∼ (LN)3. Level 4 thus has very high requirement
on the hardware processing capabilities. However it has very low requirement on the SPs since
SPs simply push everything to the EPU. Level 4 is difficult to realize in practice partly because
the time delay for collecting all measurements and partly high computational complexity to invert
the very large covariance matrices. Level 3 process the signals locally at each SP, which put
some requirement on the processor at SPs. The number of operations is in the order of ∼ LN3.
The combining vector based on level 1-3 is calculated at the EPU which still requires to collect
estimated signals from all SPs. By using the Kalman filter in the decentralized subset combining
method, the signals can be processed locally at each SPs or collected at aggregating SPs. The
aggregating SPs that are not overlapping can process the signals in parallel, which reduces
the delay for processing and collecting the estimated signals. However, the aggregating SPs
has certain requirements on processing capabilities. With the square-root implementation of the
Kalman filter, see Remark 1, the number of the operations is in order of ∼ LNK(N +K).

Corollary 3. Applying the Kalman filter implementation, the required hardware capacity can be
gathered at EPU or distributed among SPs.

Proof. In Proposition 5 it is shown that the Kalman filter provides equivalent results whether
the signals are collected at EPU or at SPs. This implies that the required hardware capacity
to process the signals has different requirements whether the signals are processed centralized
at EPU or distributed at SPs. The Kalman filter implementation enables parallelization of the
processing to many less capable processors at the distributed SPs.
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Chapter 6

Conclusions

This deliverable presented a RadioWeaves physical layer performance evaluation framework.
The abstraction model based on effective SINR equivalent to the AWGN channel is shown to
be implemented in computationally efficient manner. This deliverable established the robustness
of EESM based effective SINR mapping for RadioWeaves. It also showed that the dependency
of calibration parameter on parameters such as number of antennas and number of subcarriers
is negligibly small. They study also showed that the proposed physical layer abstraction model
performs well even with extreme SINR profiles for which the calibration is not performed. These
observations, which are not known earlier, shows that the physical layer performance evaluation
of RadioWeaves can be predicted accurately in a computationally efficient manner. Furthermore,
this abstraction model, which depends on the MCS dependent parameter, can be used to im-
plement system-level simulations of RadioWeaves in a time efficient manner. The comparison
of fronthaul signaling of algorithms implemented on different fronthaul topologies has shown that
the deeper the tree topology, the fewer real scalars need to be transmitted to the EPU. Moreover,
the number of connections to the EPU is decreased in deep-tree topologies. However, increasing
the depth of the tree will impose a delay in the users’ data detection.

In Chapter 4 we discuss preliminary energy consumption measures that can be used as a start-
ing point for evaluation and optimization of energy consumption in the scheduling of users and
compute resources for distributed algorithms on an infrastructure of the RadioWeaves type. High-
level observations about specific algorithm design challenges are also provided, related to re-
scheduling of compute resources assigned to algorithms, when traffic load changes or a service
providing federation moves. These discussions are preliminary and will be further detailed in later
stages of the REINDEER project.

In Chapter 5 we introduce a decentralized subset method for the receiver combining in a D-
MIMO network. The proposed sub-set combining method is scalable in the sense that the more
SPs you deploy the more distributed processing resources and the more fronthaul segments you
get. This enables simultaneous and parallel forwarding of antenna data over different fronthaul
segments. It also enable simultaneous and parallel processing of UE uplink signals in different
aggregation SPs. The proposed method provides both good performance and low complexity
compared to single SP decoding (Level 1) or sequential SP aggregation (Level 2 or Level 3). The
method approaches the performance of fully centralized processing (Level 4) as the size of the
cooperating set expands. Diminishing returns once the SPs closest to the UE are included in the
sub-set imply that for most UEs a small sub-set will provide sufficient performance. This ensures
that only the most relevant antenna elements in the D-MIMO system are processed for each UE.
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This leads to less demanding processing (e.g. smaller matrix inversions) and less forwarding of
information over the fronthaul, resulting in reduced power consumption and reduced hardware
cost. Furthermore, Chapter 5 introduces the Kalman filter to estimate the uplink signals in a D-
MIMO network. The Kalman filter provides an optimal estimate by minimizing the estimation error.
It can be applied both centralized and decentralized processing and combining. When applied
to the decentralized combining methods it provides the flexibility to aggregate the estimates in
different topologies, star, serial, parallel or grid. Applying the Kalman filter, the performance
upper bound can be approached by incrementing the subset size stepwise. With a Kalman filter
implementation, it is simple to decide the most cost efficient trade-off between performance and
implementation cost.
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Chapter 7

List of Abbreviations

Abbreviation Translation
5G-NR Fifth generation new radio

EC European Commission

AP Access point

AWGN additive white Gaussian noise

BS Base station

BPSK Binary phase shift keying

CE Channel estimation

CSI Channel state information

CPU Central processing unit

LoS Line-of-sight

MIMO Multiple-input multiple-output

MISO Multiple-input single-output

MRT Maximum ratio transmission

MRC Maximum ratio combining

MCS Modulation and coding scheme

OFDM Orthogonal frequency division multiplexing

HARQ Hybrid automatic repeat request.

EESM Exponential Effective SINR Mapping

ZF Zero forcing

MR Maximal ratio

MMSE Minimum mean square error
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Abbreviation Translation
LMMSE Linear minimum mean square error

LTE Long term evolution

LS Least squares

NR New radio

PER Packet error rate

RF Radio frequency

SINR Signal-to-interference-plus-noise ratio

SNR signal-to-noise ratio

TDD Time division duplexing

UE user equipment

ULA uniform linear array

UPA uniform planar array

WiMAX Worldwide Interoperability for Microwave Access
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[40] M. Sarajlić, L. Liu, and O. Edfors, “When are low resolution adcs energy efficient in massive
mimo?” IEEE Access, vol. 5, pp. 14 837–14 853, 2017.

[41] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “Eie: Efficient infer-
ence engine on compressed deep neural network,” ACM SIGARCH Computer Architecture
News, vol. 44, no. 3, pp. 243–254, 2016.

REINDEER D3.1 Page 59 of 60



D3.1 - Analytical Performance Metrics and Physical-Layer Solutions

[42] H. Okuhara, A. Elnaqib, D. Rossi, A. Di Mauro, P. Mayer, P. Palestri, and L. Benini, “An
energy-efficient low-voltage swing transceiver for mw-range iot end-nodes,” in 2020 IEEE
International Symposium on Circuits and Systems (ISCAS), 2020, pp. 1–5.

[43] J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Study of 100 gigabit ethernet
using carrierless amplitude/phase modulation and optical ofdm,” Journal of Lightwave Tech-
nology, vol. 31, no. 9, pp. 1367–1373, 2013.

[44] S. Aleksic, “Power efficiency of 40 gbit/s and 100 gbit/s optical ethernet,” in 2009 11th Inter-
national Conference on Transparent Optical Networks, 2009, pp. 1–1.

[45] “White rabbit node reference design,” https://ohwr.org/projects/white-rabbit/wiki/
WRReferenceDesign, accessed: 2021-11-26.

[46] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans, ASME, J.
Basic Eng.,, vol. 82, pp. 35–45, March 1960.

[47] K. W. Helmersson, P. Frenger, and A. Helmersson, “Optimal uplink D-MIMO processing
using Kalman filtering,” 2022, submitted for publication.

[48] E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO network: Spectral, energy and
hardware efficiency,” Foundations and Trends ®in Signal Processing, vol. 11, pp. 154–655,
2017.

[49] K. W. Helmersson, P. Frenger, and A. Helmersson, “Uplink D-MIMO with decentralized sub-
set combining,” 2022, submitted for publication.

[50] J. E. Potter and R. G. Stern, “Statistical filtering of space navigation measurements,” in Proc.
of the 1963 AIAA Guidance and Control Conference, AIAA, New York, 1963, pp. 333–1 –
333–13.

REINDEER D3.1 Page 60 of 60

https://ohwr.org/projects/white-rabbit/wiki/WRReferenceDesign
https://ohwr.org/projects/white-rabbit/wiki/WRReferenceDesign

	Introduction 
	Objective of the document
	Structure of the document
	RadioWeaves
	Many benefits with RadioWeaves

	Advantages of The Cell-Free Approach
	Comparison of Cell-Free Architectures

	Framework for Physical-Layer Performance Evaluation of RadioWeaves
	Effective SINR Based Evaluation Framework
	SINR Generation Block
	Performance Mapping Block

	Physical Layer
	System Model
	Channel Models
	Mobility Model
	Antenna Array Deployment
	Channel Estimation
	Precoding/Combiners
	Power Control

	SINR Generation
	Performance Mapping
	SINR Compression
	Exponential Effective SINR Mapping (EESM)

	Analysis of Required Transmit Power in RadioWeaves
	Summary

	Performance Comparison of Centralized vs. Decentralized Algorithms
	Introduction
	Centralized vs. distributed processing
	Network topology

	Centralized processing
	Centralized MMSE combining/precoding (CMMSE) in bjornson2019making
	Parallel Interference Cancellation (PIC) combining/precoding in pic

	Distributed processing
	Local MMSE (LMMSE) combining/precoding in bjornson2019making
	Sequential combining/precoding using Radio Stripe (SRS) in icc2020
	Decentralized massive MIMO (DmMIMO) combining/precoding using Daisy chain architecturerls2

	Summary

	User and Computational Resource Scheduling
	Measures That Influence Energy Consumption
	Scheduling of computational resources for distributed algorithms

	Efficient Algorithm Candidates for Resource Allocation
	Uplink D-MIMO Processing Using Kalman Filtering
	D-MIMO Network

	Decentralized sub-set combining for UL processing
	Centralized Combining
	Level 4: Fully centralized Processing
	Level 1-3: Local Processing and Centralized Combining

	Decentralized Combining
	Semi-localized processing for weight computation
	Implementation requirements

	Conclusions
	List of Abbreviations
	Bibliography

