

Science and Natural Technology Environment Facilities Council Research Council

Earth System Grid Federation Future Architecture, Copernicus, Cloud and ESA

ClimateData.ca Meeting, 23 November 2021

Philip Kershaw, Technical Manager Centre for Environmental Data Analysis

Earth System Grid Federation: a globally distributed data archive for climate data

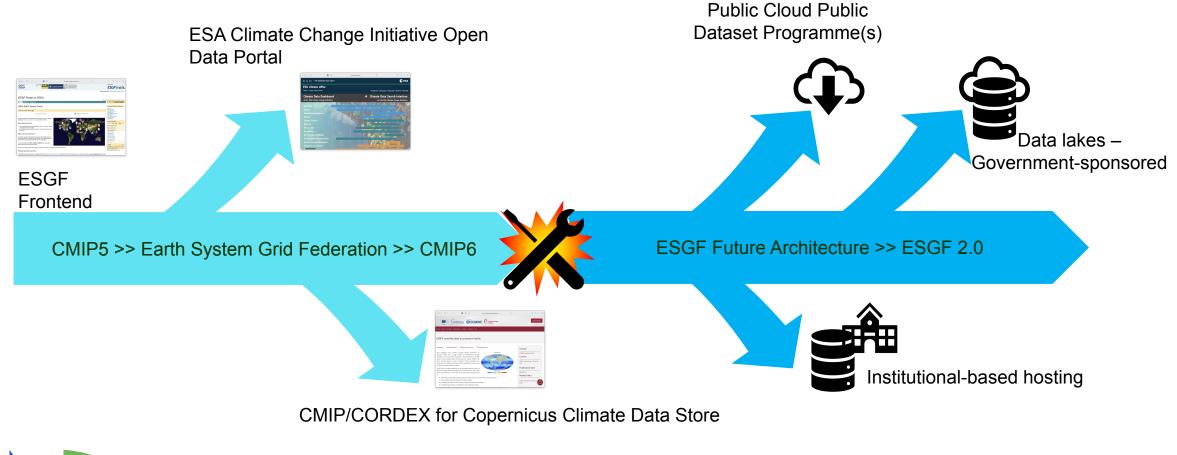
		Q		2	8
31 Projects	170 Countries	24 Data nodes	12,870,551 published datasets	722,400,940 files downloaded	25.24 PB downloaded

ESGF Dashboard: http://esgf-ui.cmcc.it

ESGF Federation

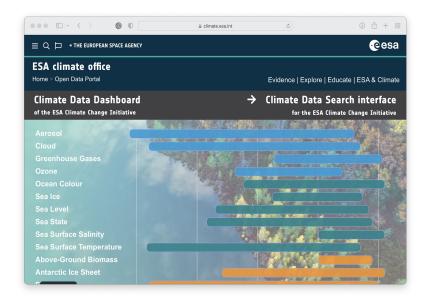
Data usage

ge Data publication



National Centre for Atmospheric Science

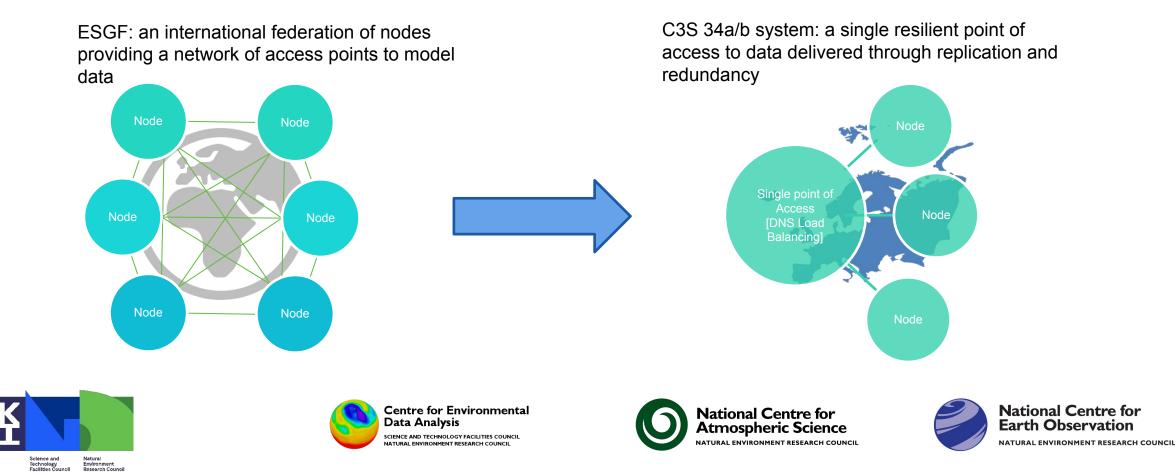
ESGF – Application and Evolution

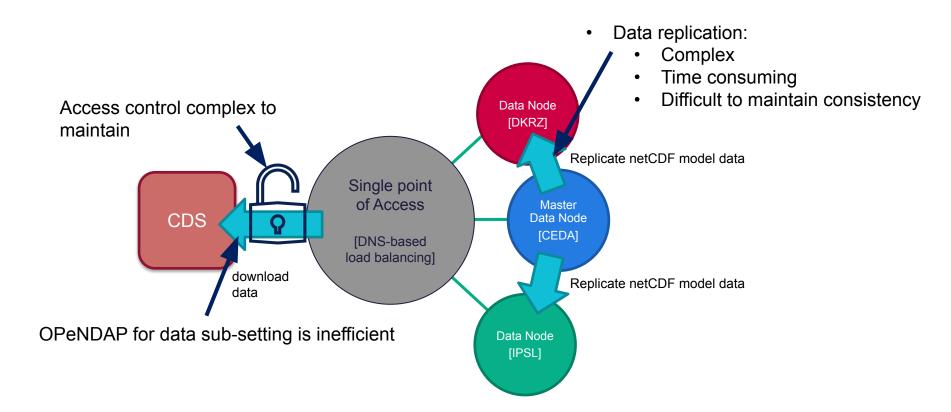


ESA Climate Change Initiative Open Data Portal

2 Phases:

- 1) Leveraged ESGF
 - 1) Quick win with search and download
 - 2) Bespoke search API incompatible with other community standards OGC CSW
 - 3) THREDDS Data Server couldn't scale to our needs
- 2) Redesigned to address issues
 - 1) OpenSearch API replaced ESG Search
 - 2) Scalable data service with Kubernetes
 - 3) Zarr format cache of netCDF data on object store for performance

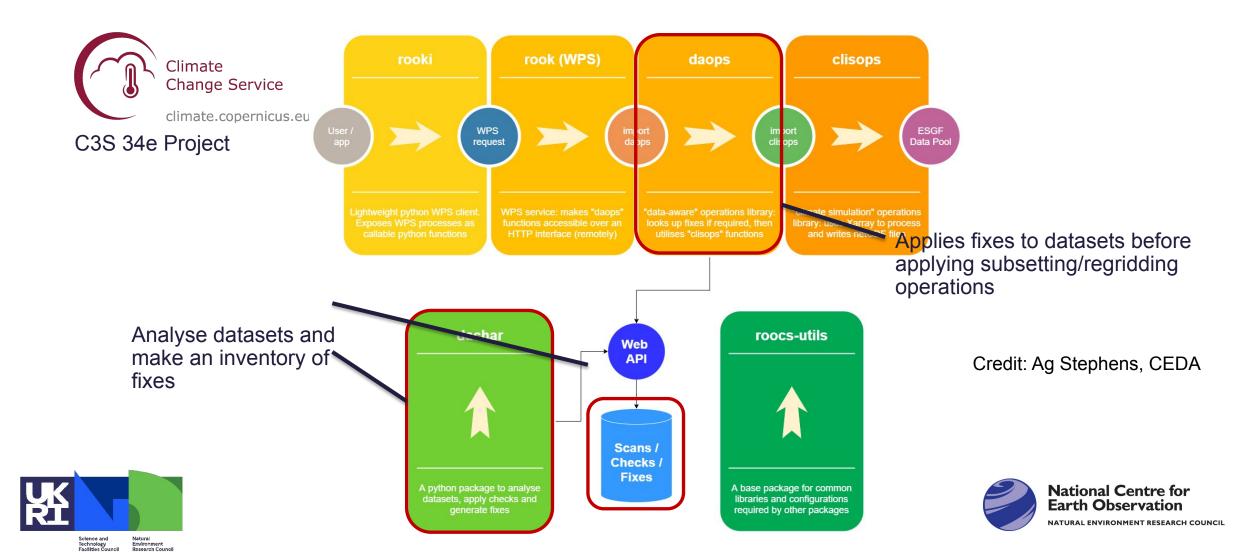

Centre for Environmental Data Analysis science and technology facilities council natural environment research council



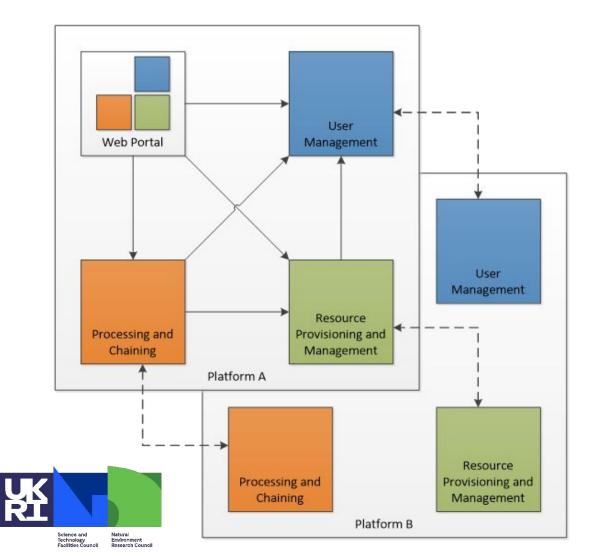
C3S 34[a-f] Projects for the CDS

 Architected a system for delivering resilient CMIP5 and CORDEX data access for the CDS by creative application of federated architecture for Earth System Grid Federation

C3S Resilient CMIP and CORDEX Data Access



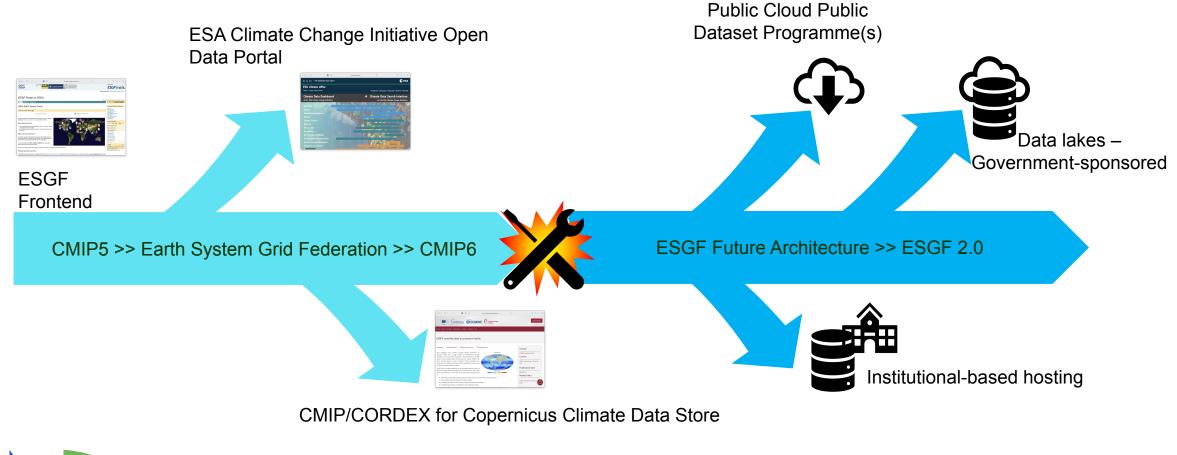
Sub-setting Services for C3S 34e Project


https://nbviewer.org/github/roocs/rooki/blob/master/notebooks/demo/demo-rooki-subset-by-point.ipynb

💭 jupyter	demo-rooki-subset-by-point	2	Visit repo	Copy Binder link
File Edit V	iew Insert Cell Kernel Widgets Help	Not Trusted	Pyth	on 3 (ipykernel) (
 E ★ Download 	 ▲ ↓ ▶ Run ■ C ▶ Markdown ↓ ④ GitHub Binder 		Memory	: 154.7 MB / 2 GE
	Run subset by (time) point op Rooki calls climate data operations on the rook processing		n	
In []:	<pre>import os os.environ['ROOK_URL'] = 'http://rook.dkrz. from rooki import rooki</pre>	.de/wps'		
	parameters of subset operation			
In []:	rooki.subset?			
	subset by time interval			
In []:	<pre>resp = rooki.subset(collection='c3s-cmip6.ScenarioMIP.INM.] time='2016-01-01/2016-12-30',) resp.ok</pre>	INM-CM5-0.	.ssp245.r	li1p1f1.day.

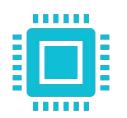
National Centre for Earth Observation NATURAL ENVIRONMENT RESEARCH COUNCIL

ESA Earth Observation Exploitation Platform Common Architecture (EOEPCA)



- Architectural blueprint for the federation of *platforms*
- Interlinked with the work on recent OGC testbeds
- CEDA involved with consultancy role
- Processing and chaining of particular interest
 - ADES and EMS
 - Ability to push customised shrink-wrapped processes to 3rd party WPS instances
- Innovations with ID management: UMA

ESGF – Application and Evolution



ESGF Future Architecture

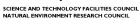
Platforms and systems administration

Modular, scalable architecture: Containers, **Kubernetes**

Embrace infrastructure-as-code approach

Achievements Progress and

- Container and ٠ Container+Kubernetes installs available
- Deployed on AWS (GFDL) and at **CEDA**



Technology

Centre for Environmental Data Analysis

•

Major community engagement on use of STAC for ESM data

- Prototype developed by CEDA ٠
- CoG and MetaGrid futures??

National Centre for Atmospheric Science

Search services

Modernise, centralise and simplify Use community standards: STAC

ID Management and Access Fntitlement

Modernise, centralise and simplify Use industry standards: OpenID Connect / OAuth 2.0

- OpenID Connect / OAuth 2.0 done
- New Authorisation system with ٠ **Open Policy Agent**
- Authentication integrated with C4I ٠ in test

NATURAL ENVIRONMENT RESEARCH COUNCIL

ESGF Future Architecture

New modes for Data Access + Storage

Augment trad. file serving with object store New models for aggregation and subsetting, retire OPeNDAP

Compute Services

Important but no consensus for ESGF-wide standard offering yet

N	
---	--

Metrics Collection

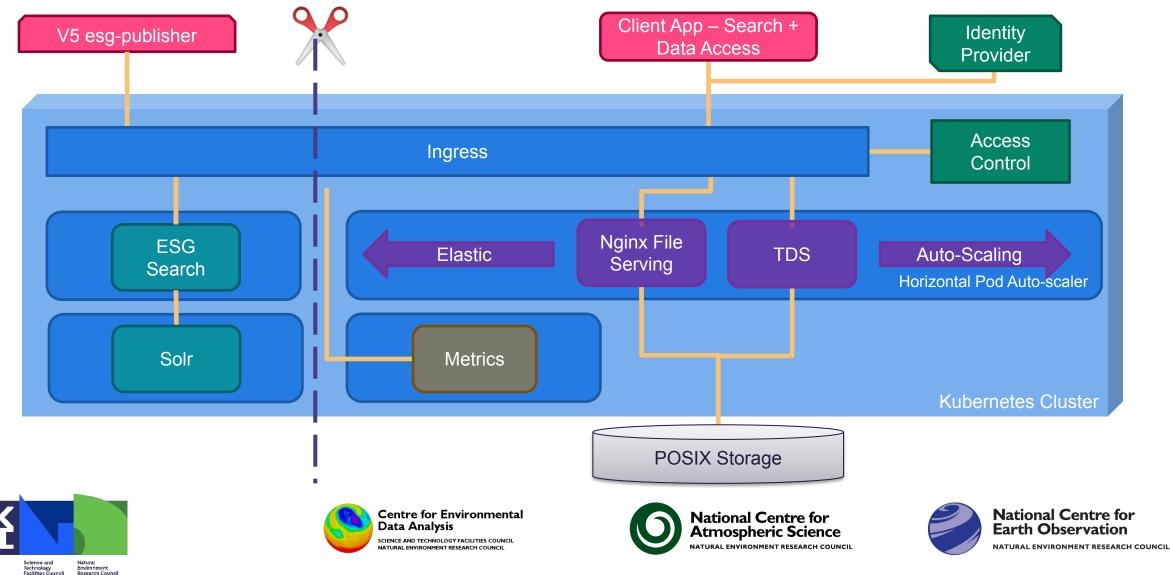
Leverage advances in industry with standard tooling to exploit - Prometheus and InfluxDb, Grafana

- Factored out TDS ٠
- Test CMIP6 data caches on object store at CEDA and DKRZ

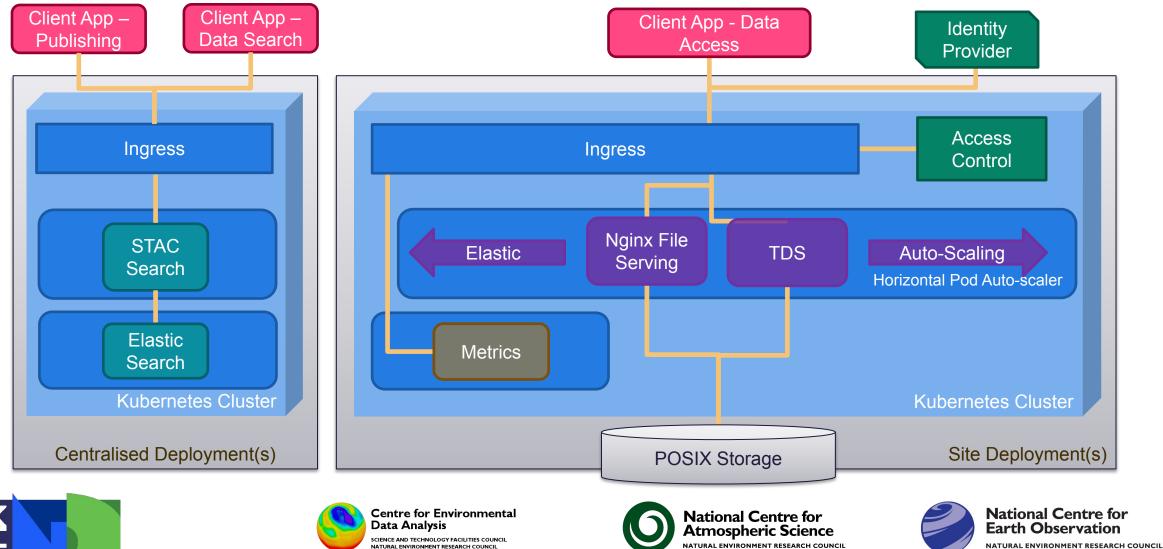
- Ported C3S WPS Data Reduction • Services for use in ENES CDI
- Used with Climate4Impact ٠
- **Reboot of Compute Working Team** ٠

New Metrics system integrated ٠ with CMCC

Achievements **Progress and**


Centre for Environmental Data Analysis SCIENCE AND TECHNOLOGY FACILITIES COUNCIL

National Centre for Atmospheric Science ATURAL ENVIRONMENT RESEARCH COUNCIL


Future Architecture Node – Phase 1

Future Architecture Node – Phase 2

Science and Technology Facilities Council

Environment Research Council

STAC API for ESGF

••• • • <		🔒 stac.ceda.ac.uk	C	Ů + ₩
	酸 React App		G FastAPI	- Swagger UI
CEDA	Search Collections			As JSON
	Facets		CEDA Search	
	Date	Search		Search
Start Date:				
End Date:				
Date.				
	Bbox North 😌			
	West 🗘 East 🤤			
	South 🕞			
			۲.	This service is experimental

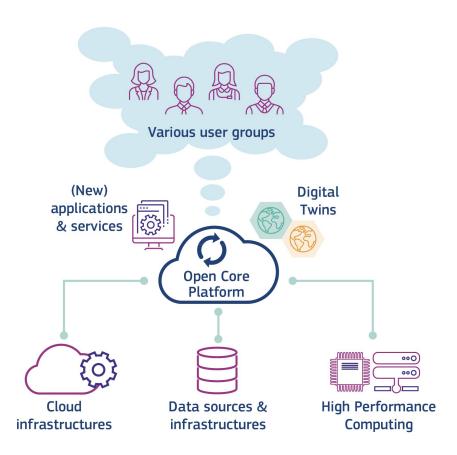
- Implementation of STAC API
- ElasticSearch backend
- Filter extensions to support faceted search
- Fully featured STAC equivalent API to ESG Search
- Simple frontend created to demonstrate its features

Centre for Environmental Data Analysis science and technology facilities council natural environment research council

National Centre for Atmospheric Science

IS-ENES3 - Data Analytics using Notebooks/icclim

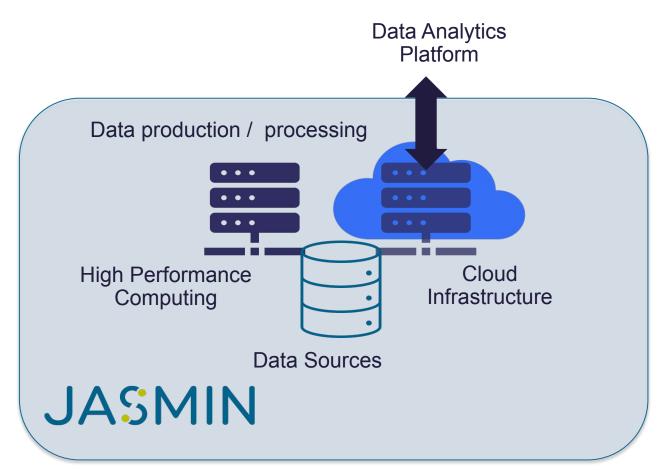
Objective: Extend C4I with Data Driven & Reproducible Workspaces


Science and Fectilities Science and Fectilities Science

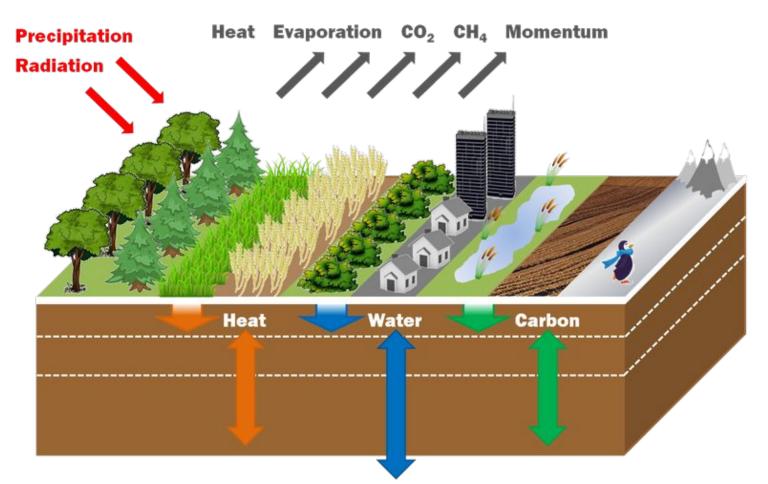
DestinE and Blueprint Architecture

Destination Earth (DestinE) - major EU initiative:

 "to develop a very high precision digital model of the Earth (a 'digital twin') to monitor and predict environmental change and human impact to support sustainable development"

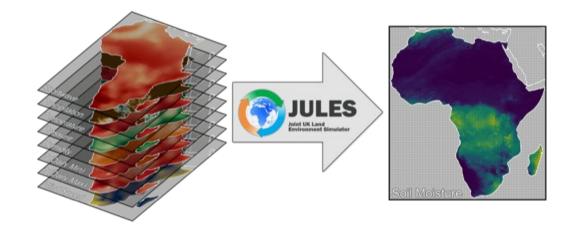


JASMIN



ESA Digital Twin Earth (DestinE) Precursor land surface modelling and climate

- Using JULES (Joint UK Land Environment Simulator)
 - the land surface component in the Met Office Unified Model
- Improvements with Data Asisimilation
 - LaVEnDAR (The Land Variational Ensemble Data Assimilation fRamework)
 - Feed in satellite observations lacksquare– SIF and SMAP data

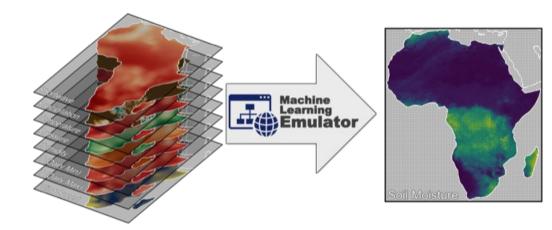


Centre for Environmental CIENCE AND TECHNOLOGY FACILITIES COUNCIL RAL ENVIRONMENT RESEARCH COUNCI

National Centre for Earth Observation NATURAL ENVIRONMENT RESEARCH COUNCIL

What could be the future impact of climate change on the soil moisture?

 JULES driven with climate projections from ISIMIP data (Inter-Sectoral Impact Model Intercomparison Project)



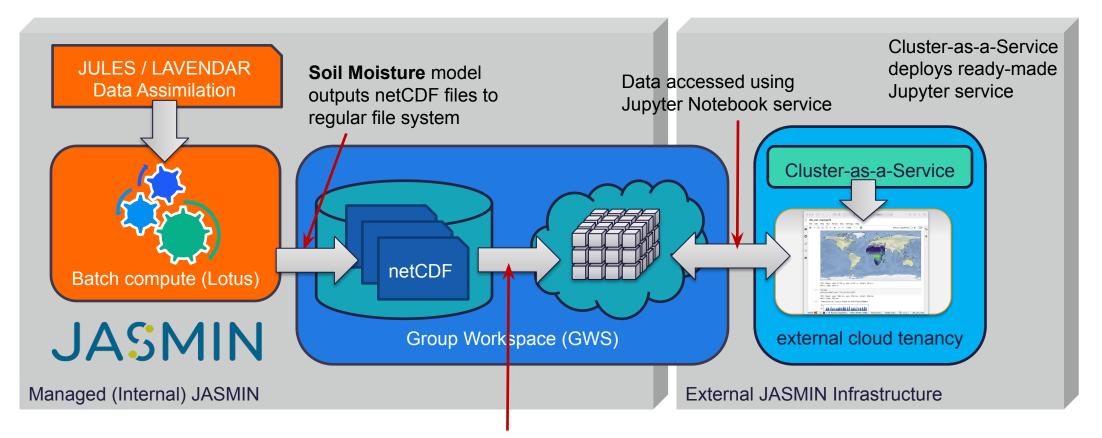
Centre for Environmental Data Analysis science and technology facilities council natural environment research council

Make a surrogate AI model to JULES

Centre for Environmental Data Analysis science and technology facilities council natural environment research council

- Experimented with Machine Learning (ML) techniques
- Goal: a general-purpose algorithm -

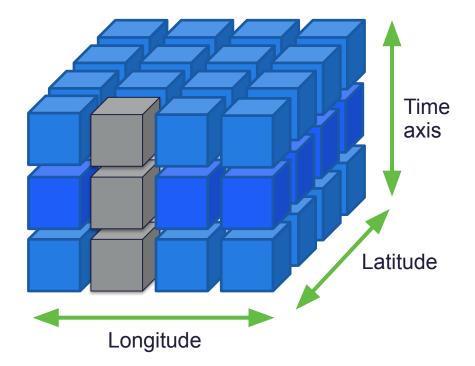
time series of daily weather data □ time series of soil moisture data


- Successfully applied XGBoost (eXtreme Gradient Boosting) algorithm.
- trained on up to 1000 grid cells, representative of the various biomes in continental Africa
- Demonstrated to accurately emulate JULES output at other locations
- The credibility of the model is enhanced by its_transparency and explainability

National Centre for Atmospheric Science

Digital Twin Precursor on JASMIN: HPC for data production, cloud for analysis

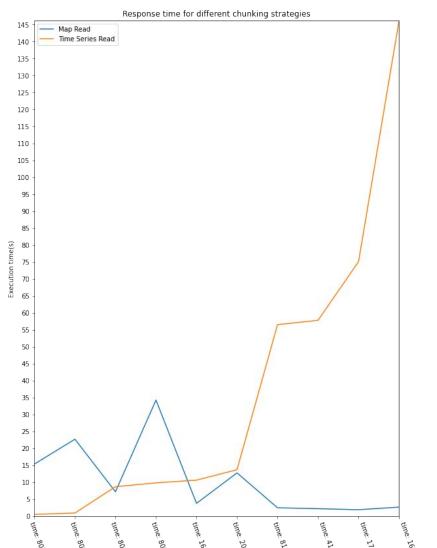
Move data into object store so that it can be accessed by Jupyter Service on JASMIN cloud



Natio

Arrangement of data and efficient access

- Data output from models as netCDF format
- Data in files arranged in spatial dimensions one per time step
- But predominate access pattern for analysis of climate data in the project is time series query (grey blocks)

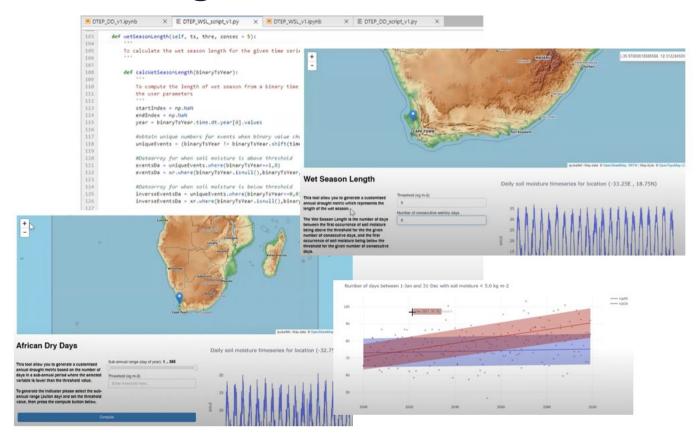


Object Store: Different storage strategies showed radically different performance

- We experimented with different storage chunking arrangements
- · 20-year dataset of soil moisture

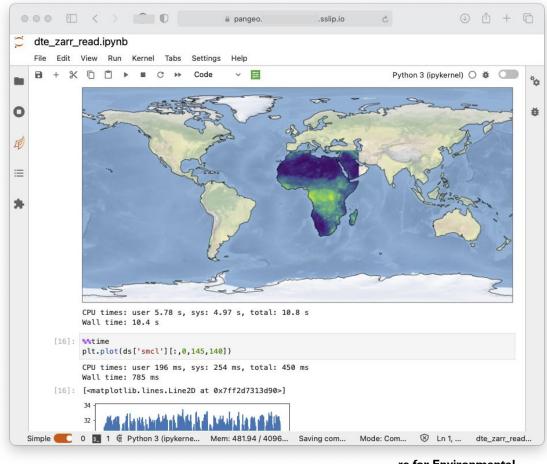
Using Object Store for re-arrangement of data to suite our access patterns

Code Code Code Code Code Code Code Code	ongitude: 278, da , longitude) ik	float32 float32 latetime64[ns] int64			el) ○ #	
atitude) ongitude) ime) :) ime, z, latitude, lon y Chunk B 76.52 MiB	da , longitude) 1k	float32 float32 latetime64[ns] int64	-35.38 -35.12 -17.88 -17.62 1999-01-02 .	51.12 51.38		
atitude) ongitude) ime) :) ime, z, latitude, lon y Chunk B 76.52 MiB	da , longitude) 1k	float32 float32 latetime64[ns] int64	-35.38 -35.12 -17.88 -17.62 1999-01-02 .	51.12 51.38		
ongitude) ime) :) ime, z, latitude, lon y Chunk B 76.52 MiB	, longitude) I k	float32 latetime64[ns] int64	-17.88 -17.62 1999-01-02 .	51.12 51.38		
ongitude) ime) :) ime, z, latitude, lon y Chunk B 76.52 MiB	, longitude) I k	latetime64[ns] int64	1999-01-02.			
ime, z, latitude, lon y Chunk B 76.52 MiB	, longitude) I k	int64		2020-12-20		
ime, z, latitude, lon y Chunk B 76.52 MiB	iB		100 250 650		8	
y Chunk B 76.52 MiB	iB	float32		2000	8	
y Chunk B 76.52 MiB	iB	float32				
B 76.52 MiB	iВ		dask.array <ch< td=""><td>hunksize=(8024</td><td>8</td><td></td></ch<>	hunksize=(8024	8	
2 (8024 1 50		1				
3) 50)				787		
s 144 Chunks	(S		× 278			
2 numpy.ndarray	ay					
3) (S	50 144 Chunl	(8024, 1, 50, 50) 80. 144 Chunks	(8024, 1, 50, 50) 8024 144 Chunks	(8024, 1, 50, 50) 8024 278	(8024, 1, 50, 50) 8024 278	(8024, 1, 50, 50) 8024 & St 144 Chunks 278


re for Environmental Analysis ND TECHNOLOGY FACILITIES COUNCIL ENVIRONMENT RESEARCH COUNCIL

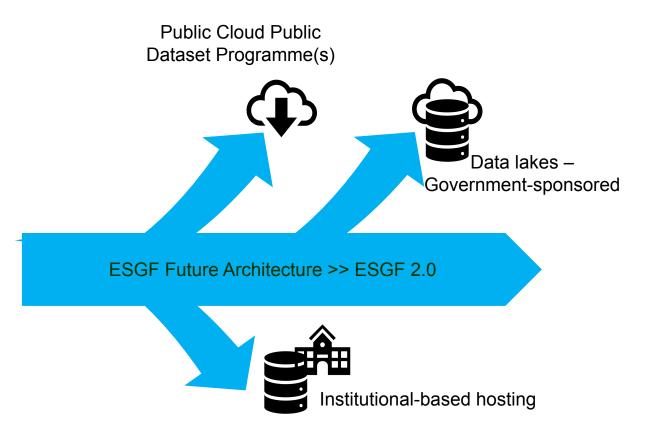
- Using zarr and xarray Python libraries to store and access the data
- Chunked data into a series
 of strips along the time axis

Rechunking of data made possible interactive maps with long time series



re for Environmental Analysis ND TECHNOLOGY FACILITIES COUNCIL ENVIRONMENT RESEARCH COUNCIL

Take home message: object store for analysis-ready cache specific to project needs


re for Environmental Analysis ND TECHNOLOGY FACILITIES COUNCIL ENVIRONMENT RESEARCH COUNCIL

- Object store can be efficient for access on cloud
- It is essential to orient data storage to suit predominant access patterns
- Good news re-writing data into different orientations was fast

National Centre for Earth Observation

Futures

Acknowledgements + Further Info

0

IS-ENES3 website https://is.enes.org/

Contact us at is-enes@ipsl.fr

Subscribe to the **IS-ENES3 H2020** Youtube channel !

@ISENES_RI

@PhilipJKershaw

@cedanews

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°824084

ESGF Future Architecture Report: https://doi.org/10.5281/zenodo.3928222

National Centre for Earth Observation