
Developing Community
standards-based Search Tools for
Earth System Model Data using
STAC
Richard Smith1, Philip Kershaw1, Ag Stephens2, Rhys Evans2,
Aparna Radhakrishnan3, V. Balaji3, Ryan Abernathey4

Overview
1 What are we looking to solve?
A look at our shared problem

2 STAC Overview
What is STAC?

3 Proposed Solution
System including indexing framework, server and clients

Background
The CEDA Archive
• Holds > 13 PB of atmospheric and earth observation data
• Data from many different sources
• 7300 datasets in the CEDA catalogue
• 344+ million files
• +200,000/day
• Our data is stored on POSIX disk, Tape archive and Object Store

Background
ESGF
International collaboration that develops, deploys and maintains software
infrastructure for the management, dissemination, and analysis of model
output and observational data.
Data catalog comprises several observation and modelled datasets.

Pangeo
Community promoting open, reproduceable, scalable science. Aims to
coordinate scientists, software and computing to further research.
Looking for a cataloguing standard (familiar with Intake)
Converting popular data to Cloud Optimised Formats (Zarr) with Google Cloud
and Amazon

What do we want?
Develop a search tool which allows users to perform faceted search and find

the relevant data for their use-case, taking into account the heterogeneity of
the data.

It needs to
● Allow low level search of all items (granules)
● Work with different domains/vocabularies
● Provide faceted search
● Handle heterogeneous datasets
● Be scalable
● Also comprise an indexing framework to generate content

What have we tried?
Intake Catalogs (PANGEO)
• Static
• Scales to a certain extent
• Familiarity in the community

ESGF Search
• Proprietary API format
• Complex publication process
• Provides rich faceted search

File-based Search (CEDA)
• Leverages Elasticsearch
• Quick and scalable search
• Powers light-touch directory browser

Benefits of Shared Approach
• Community only needs to learn one API
• Shared development effort
• Expanding scope and use cases allows solutions to be found for common

issues

Shared Problem
We think this problem is common among data
providers with heterogeneous data.

We are actively looking for collaborators to work with
us on this

STAC Overview

What is STAC?
“The SpatioTemporal Asset Catalog (STAC) specification provides a
common language to describe a range of geospatial information, so it can
more easily be indexed and discovered. A 'spatiotemporal asset' is any
file that represents information about the earth captured in a certain
space and time.

The goal is for all providers of spatiotemporal assets (Imagery, SAR,
Point Clouds, Data Cubes, Full Motion Video, etc) to expose their data as
SpatioTemporal Asset Catalogs (STAC), so that new code doesn't need
to be written whenever a new data set or API is released.”

https://stacspec.org/

https://stacspec.org/

What is STAC?
• Based on OGC API Features
• JSON formatted response and data standard
• Extension is encouraged
• Requires temporal and spatial attributes
• Available as either a static or dynamic API
• Strong community engagement

What is STAC?
“Catalog - a simple, flexible JSON file of links that provides
a structure to organize and browse STAC Items.”

“Collection - an extension of the STAC Catalog with
additional information such as the extents, license,
keywords, providers, etc. that describe STAC Items that fall
within the Collection.”

“Item - the core atomic unit, representing a single
spatiotemporal asset as a GeoJSON feature plus datetime
and links.”

“Assets - an object that contains a URI to data associated
with the Item that can be downloaded or streamed.”

https://stacspec.org/

http://geojson.org/
https://stacspec.org/

What is STAC? - For us
Collection - Set of items with a common vocabulary/DRS
(e.g. CMIP6)

Item - Meaningful group of 1+ files (e.g. ESGF atomic
Dataset)

Asset - Single data file (e.g. one NetCDF file)

STAC – Static or Dynamic?

Static Catalogs – A set of interlinked JSON files which can be navigated
hierarchically (navigation is set)

Dynamic Catalogs – Use the STAC API to provide enhanced navigation
and search capability (can perform item search, faceted search, etc.)

Public listing of catalogs: https://stacindex.org/catalogs#/

http://phttps/stacindex.org/catalogs#/

STAC Ecosystem

https://stacindex.org/ecosystem

Documentation
• STAC Specification (https://github.com/radiantearth/stac-spec)
• STAC API Specification (https://github.com/radiantearth/stac-api-spec)

Active community
• Public register of tools (https://stacindex.org/ecosystem)
• Public register of catalogs (https://stacindex.org/catalogs#/)
• Community Extensions (https://github.com/stac-extensions/)

https://stacindex.org/ecosystem
https://github.com/radiantearth/stac-spec
https://github.com/radiantearth/stac-api-spec
https://stacindex.org/ecosystem
https://stacindex.org/catalogs#/
https://github.com/stac-extensions/

STAC Ecosystem
https://stacindex.org/ecosystem

https://stacindex.org/ecosystem

Some issues
• "ST" (Spatial and Temporal) in STAC is mandatory

 - CEDA holds Martian datasets
• Dynamic facet reduction (based on search context) not yet in the spec

Initially gained traction with Earth Observation
community. Challenges with model data include:
• Rotated grids
• Non-standard dates (paleo-climatology, non-standard calendars)

Given the flexibility of STAC and community
engagement, we feel STAC fulfils the majority of
our requests and can be adapted to fill others.

Progress So Far

Overview

Indexing Server Clients

Indexing Framework – Asset Scanner

https://github.com/cedadev/asset-scanner

https://github.com/cedadev/asset-scanner

Indexing Framework
Plugin architecture can satisfy
different use cases:

This section is fed by a
YAML file to describe the

workflow. Also makes use of
pre/post-processors to

condition the raw
information.

• Based on community server STAC FastAPI
https://github.com/stac-utils/stac-fastapi

• Elasticsearch backend
https://github.com/cedadev/stac-fastapi-elasticsearch

STAC Server

https://github.com/stac-utils/stac-fastapi
https://github.com/cedadev/stac-fastapi-elasticsearch

STAC Extensions

Allow you to write content and feature specifications
to extend the basic STAC specification.

Some things we want:
● Free-text search
● Dynamic facet discovery

STAC Extensions

Two categories:

Content

• Processing –
(processing level
and provenance)

• Datacube –
(variables &
dimensions)

API

• Filter
• Context
• Sort
• Transaction

https://github.com/orgs/stac-extensions/repositories https://github.com/radiantearth/stac-api-spec/blob/master/extensions.md

https://github.com/orgs/stac-extensions/repositories
https://github.com/radiantearth/stac-api-spec/blob/master/extensions.md

STAC Extensions

So far we haven’t looked at content extensions.
The flexible properties attribute can hold rich
metadata.

On the feature side:
● Free-text search

https://github.com/cedadev/stac-freetext-search
● Context collections

https://github.com/cedadev/stac-context-collections

https://github.com/cedadev/stac-freetext-search
https://github.com/cedadev/stac-context-collections

Free-text Search
Powered by Elasticsearch query string

https://github.com/cedadev/stac-freetext-search

Free-text Search any “property”

Free-text Search with wildcard

Free-text Search with logical operators

Free-text Search for specific fields

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html

Clients - Web
Why make our own?
• Existing tools are focussed on

static catalogs
• API supporting UIs are very

map-centric (not relevant for
global model datasets)

• Want to be able to move quickly
and try out new features (free-text
search, faceted-search)

• Loosely based on the STAC
Browser

What's different?
Start, end, orbit number.

https://stac.ceda.ac.uk/search

https://stac-ui-master.130.246.131.9.nip.io/search

Clients - Python
Based upon stac.py,

Fully exposes all the capabilities
provided by the STAC API server.

Retrieve collection and items as
their own models with respective
functions for their model.

The response models are no
different in structure than the
JSON counterpart!

Binder Example Notebook

https://pypi.org/project/stac.py/
https://mybinder.org/v2/gh/cedadev/stac.py-wrapper/HEAD?filepath=docs%2Fexamples%2Fusage.ipynb

• Improving faceted search
https://github.com/radiantearth/stac-api-spec/issues/182

• Improve indexing coverage of the CEDA Archive
• Build out python client, specifically with ESGF community in mind
• Work with others to improve our approach

Where next?

https://github.com/radiantearth/stac-api-spec/issues/182

Thank you!
JASMIN: support@jasmin.ac.uk
CEDA: support@ceda.ac.uk
Twitter - @cedanews
Website - www.ceda.ac.uk

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement N°824084

mailto:support@jasmin.ac.uk
mailto:support@ceda.ac.uk

