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Free as a Bird: Event-based Dynamic Sense-and-Avoid
for Ornithopter Robot Flight

J.P. Rodrı́guez-Gómez, R. Tapia, M.M. Guzmán, J.R. Martı́nez-de Dios and A. Ollero

Abstract— Autonomous flight of flapping-wing robots is a ma-
jor challenge for robot perception. Most of the previous sense-
and-avoid works have studied the problem of obstacle avoidance
for flapping-wing robots considering only static obstacles. This
paper presents a fully onboard dynamic sense-and-avoid scheme
for large-scale ornithopters using event cameras. These sensors
trigger pixel information due to changes of illumination in the
scene such as those produced by dynamic objects. The method
performs event-by-event processing in low-cost hardware such
as those onboard small aerial vehicles. The proposed scheme
detects obstacles and evaluates possible collisions with the robot
body. The onboard controller actuates over the horizontal and
vertical tail deflections to execute the avoidance maneuver. The
scheme is validated in both indoor and outdoor scenarios using
obstacles of different shapes and sizes. To the best of the
authors’ knowledge, this is the first event-based method for
dynamic obstacle avoidance in a flapping-wing robot.

Index Terms— event camera, ornithopter, flapping-wing
robot, reactive sense-and-avoid.

I. INTRODUCTION

Flapping-wing robots, also known as ornithopters, have
recently attracted significant R&D interest. They can perform
agile maneuvers [1] and combine flapping and gliding modes
to reduce energy consumption [2]. Besides, flapping-wing
robots are often made of soft materials making them less
dangerous than multirotors in case of collision [3]. Flapping-
wing flight describes novel perception challenges different
from those in multirotor flight. First, ornithopters generate lift
and thrust by flapping strokes, causing mechanical vibrations
and wide abrupt movements that highly impact onboard
perception [4]. Besides, they have strict payload and en-
ergy limitations, which strongly constrain the installation of
sensors and additional hardware, involving strict limitations
on the onboard processing capacity. In fact, most reported
ornithopter perception and control methods, e.g., [5], [6],
are executed offboard and use measurements from external
sensors such as motion capture systems. We are interested in
autonomous navigation of ornithopter robots, and particularly
in avoidance of dynamic obstacles. While static obstacles can
often be assumed within the map (and addressed through
trajectory planning) or detected with additional sensors such
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Fig. 1: Image sequence of the E-Flap robot performing an
obstacle avoidance maneuver in an experiment.

as LiDAR, this work deals with the avoidance of unexpected
dynamic obstacles in ornithopters, which require fast onboard
detection and avoidance in contrast to the strict payload
and resource constraints of these platforms. The perception
scheme is based on event cameras. They are robust to mo-
tion blur and lighting conditions and have moderate weight
and low energy consumption. Hence, they are suitable to
deal with the flapping-wing flight perception challenges [4].
Besides, event cameras are suitable for dynamic obstacle
detection by directly providing pixel information of mov-
ing objects in the scene. Additionally, efficient event-based
processing techniques can provide estimates at very high
rates. Many successful event-based perception techniques
have been developed [7].

This paper presents a dynamic obstacle sense-and-avoid
method for ornithopter robots. By processing only one
onboard event camera, the robot rapidly detects dynamic
obstacles and modifies its trajectory to avoid them, exploit-
ing the low latency of event cameras and the agility of
ornithopters’ flight. Dynamic obstacles are segmented using
the spatio-temporal event information from objects that move
with a different velocity than the background. An event
optical flow method estimates its direction, and a reactive
evasive maneuver strategy rapidly evaluates and prevents
collisions. The method is implemented for online execution
in resource-constrained hardware and is evaluated in the
GRIFFIN E-Flap large-scale ornithopter [1], see Fig. 1, in
indoor and outdoor experiments. To the best of the authors’
knowledge, this is the first event-based obstacle avoidance
method designed for and validated in flapping-wing robots.

The main contributions of the paper are: (1) an event-
based dynamic object motion estimation method designed
to perform in low-resource hardware; (2) a reactive obstacle
avoidance method for large-scale ornithopters providing low
latency onboard perception and control; and (3) experimental
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validation indoors and outdoors on a large-scale ornithopter.
This paper is organized as follows. Section II briefly

summarizes the main works in the topics addressed in the
paper. The general diagram of the event-based ornithopter
dynamic obstacle avoidance scheme and its main components
are described in Sections III and IV. Section V presents the
experimental validation and robustness analyses. Section VI
closes the paper and highlights the main future steps.

II. RELATED WORK

Reactive obstacle avoidance focuses on generating avoid-
ance robot actions without relying on globally consistent
map information. It can be categorized into map-based and
map-less approaches [11]. The first builds a local map to
compute obstacle-free trajectories [12], while the second,
aims at detecting nearby obstacles and directly performs
the avoidance action [8]. Map-less methods provide faster
obstacle avoidance and are suitable for platforms with limited
processing capacity. A work analysing the perception latency
in a high-speed sense-and-avoid scenario with a quadrotor
is presented in [13]. The work in [14] presents a map-less
obstacle avoidance solution to avoid flying obstacles using a
saliency-based reinforcement learning approach.

Recent advances in ornithopter development have led to
the necessity of developing onboard perception methods
capable of providing information for navigation, landing, and
perching. Optical flow estimation onboard a Micro Aerial
Vehicle (MAVs) flapping-wing robot is presented in [15].
The method sub-samples input images and uses a motion
detection algorithm to compute the optical flow. Authors in
[16] use the object appearance variation and optical flow to
perform obstacle avoidance with a monocular camera. Obsta-
cle detection and avoidance are computed in a ground station
due to the weight limitation of the platform. A stereo-vision
obstacle avoidance strategy for small-scale ornithopters is
presented in [17]. The method computes sparse disparity
maps from points with relatively high certainty for obstacle
depth estimation. Obstacle avoidance is achieved through the
droplet strategy defining the necessary obstacle-free area in
front of the robot to guarantee safe avoidance maneuvers.

The advantages offered by event cameras have increased
the research interest in computer vision and robotics com-
munities [7]. Their temporal µs resolution and high dynamic
range motivate their use for aerial robot perception. An event-
based optical flow approach for autonomous MAV landing
using a downwards orientated event camera is presented in
[18]. The event-based line tracker in [19] provides fast and

Flight
speeds

Proc.
Weight

# of
cam

C/GPU
cores Proc. Accum. Proc.

Time
[8] ∼0 m/s ∼49 g 2 4/0 e-by-e Async –.
[9] ∼0 m/s ∼150 g 2 6/1 e-images 30 ms 12 ms/e-images
[10] [0,1.5] m/s ∼150 g 1-2 6/1 e-images 10 ms 3.56 ms/e-images

Ours [2,4] m/s 28.5 g 1 6/0 e-by-e Async. 4 ms/package

TABLE I: Comparison of our approach with other dynamic
obstacle avoidance methods –for quadrotors. e-by-e regards
to event-by-event, while e-images, to event images.

stable references for quadrotor visual servoing to perform
bionspired landing trajectories. The drone racing dataset [20]
including event data intends to encourage the development
of perception methods for high-speed drone maneuvers. The
work in [21] accumulates events to build event images in
order to estimate the position and orientation of a quadrotor
using a visual odometry method and closing the loop for
autonomous flight subject to rotor failures. In [22], an auto-
tuned event-based vision scheme performs intruder detection
on board an autonomous quadrotor in surveillance missions.

Recently, some event-based methods for reactive obstacle
avoidance for quadrotors have been presented. Work [8]
describes an evasive method for dynamic obstacles using
stereo event cameras on a quadrotor. The object trajectory
is computed and propagated in time to predict collisions. An
event-based dodging system for quadrotors is presented in
[9]. It performs image deblurring, odometry estimation, and
moving object segmentation using Deep Learning. Work [10]
presents a dynamic obstacle avoidance method for quadrotors
that relays in event motion compensation to detect events
triggered by moving obstacles, and uses a potential field ap-
proach to execute the evasive maneuver. These methods were
designed for quadrotors and are not suitable for ornithopters
due to the strong differences between both types of platforms.

Table I compares our approach and the methods in [8]–
[10]. First, none of these methods is designed for platforms
that move at medium-high velocities. They were validated in
quadrotors hovering (or moving up to 1.5 m/s in the case of
[10]), in which the majority of the triggered events are caused
by the obstacle’s motion –simplifying obstacle detection.
Our method has been designed for flapping-wing robots
which require a minimum flight speed of 3 m/s to flight [1]
and suffer from vibrations and angular and linear velocities
[4], which trigger additional events caused by the static
background, requiring specific moving obstacle detection
methods. Moreover, methods [8]–[10] require significantly
high onboard weight and computational resources, which
could not be mounted on a large-scale ornithopter. Methods
[9] and [10] use a powerful embedded computer, a flight
board, and an autopilot. Besides, the three methods use
two event cameras, which also increases their computational
requirements. Although [10] includes a solution with a
monocular camera, it uses an additional board to run vision-
based state estimation. Conversely, our method uses one
only event camera and runs in a single lightweight onboard
computer with low computational capacity to satisfy the or-
nithopter payload restrictions while providing a fast response
(control loop closing at 250 Hz) to deal with the high flight
velocities. Finally, [9] and [10] segment moving objects by
processing event images resulting from accumulating the
incoming events. Hence, on these methods event processing
starts after the events have been accumulated, resulting in de-
lays between event generation and processing, even in cases
in which event image processing times are lower than the
event image accumulation times, such as in [10]. Conversely,
our method adopts event-by-event processing exploiting the
asynchronous nature of event generation and enabling shorter
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obstacle detection times, which is interesting in our case due
to the medium-high ornithopter flight velocities.

III. GENERAL DESCRIPTION

Sense-and-avoid of agile aerial robots such as ornithopters
requires low latency perception for fast obstacle detection.
Event cameras provide visual information with µs resolution
triggered by changes of illumination. These sensors have a
high dynamic range (∼120 dB) and are robust to illumination
conditions and to motion blur, typically desired features
in aerial robotics [22]. Previous works have explored the
advantages of event cameras in ornithopters [23] [24] and
agile quadrotors [20]. Event cameras are compact, have
moderate weight, and report low-energy consumption.

The development and integration of sense-and-avoid sys-
tems for ornithopters entail additional requirements to those
considered in other UAVs such as multirotors. First, or-
nithopters have strict payload capacity and space restrictions
which limit the installation of powerful processing hardware,
mechanical stabilizers (e.g., gimbals), and sensors. Thus,
onboard hardware is carefully selected to satisfy payload
and weight balance restrictions and enable real-time onboard
processing. Moreover, flapping-wing robots present complex
kinematics and dynamics. They are non-holonomic robots
using few actuators to control their position and orientation.
They generate lift and thrust by flapping their wings, also
producing forward, backward, or lateral movements. These
aspects set additional requirements for obstacle avoidance in-
cluding low latency obstacle detection and evasion strategies
that consider the platform kinematics and dynamics.

The general diagram of the proposed sense-and-avoid
scheme is shown in Fig. 2. The Dynamic Obstacle Motion
Estimation method, see Section IV-A, detects dynamic obsta-
cles and estimates their motion in the image plane. It uses the
spatio-temporal information of events triggered by dynamic
objects moving with a different velocity than the background.
Although many motion-based segmentation methods using
traditional framed cameras have been proposed [25], the
use of event-based vision has interesting advantages in
our problem. First, event-based processing provides natural
robustness against motion blur and changes in lighting con-
ditions. Further, motion segmentation using framed cameras
process full frames, while event-based methods only analyse
asynchronous events enabling faster processing, 250 Hz in
the experiments shown in Section V.

The Collision Risk Evaluation Strategy module evaluates
the risk of collision considering the robot geometry, see
Section IV-B. If a collision risk situation is detected an avoid-
ance maneuver is performed by the ornithopter. The optical
flow of detected obstacles is used to reactively command
the ornithopter to avoid collisions. The adopted Tail Control
method meets both robustness and simplicity requirements.
It actuates on the vertical and horizontal tail deflections to
change the ornithopter flight direction. The value of the
control commands is adjusted using a simplification of the
robot model to consider the dynamic constraints enclosed
in the evasion maneuver. The event processing method

Fig. 2: General diagram of the proposed event-based sense-
and-avoid scheme for flapping-wing flight.

leverages ASAP [26], which adapts event packaging such
that events are processed as soon as possible while avoiding
computational overflows, and ensures control closing at 250
Hz with onboard resource-constrained hardware.

IV. METHODS

A. Dynamic Object Motion Estimation
The proposed method performs event-by-event processing

to exploit the asynchronous nature of event cameras. Each
event is defined by the tuple e = (x, ts, p), where x
represents the pixel coordinates (u, v), ts is the timestamp of
the event and p is the polarity either positive or negative. The
block diagram of the proposed method is shown in Fig. 3.
The Time Filter module detects events belonging to moving
objects using as reference the timestamp of the current and
previous events. The event-based Corner Detector module
finds relevant features from the events triggered by dynamic
objects. The Optical Flow module determines the direction of
motion of the corners belonging to moving objects. Optical
flow is computed only from corner events to reduce the
computational cost. Finally, Clustering gathers optical flow
measurements to compute the average flow of the detected
dynamic objects. Algorithm 1 describes the proposed dy-
namic obstacle motion estimation method.

Previous event-based methods for dynamic obstacle de-
tection rely either on optimization methods [27] or motion
compensation techniques [10] to distinguish events belong-
ing to moving objects. Our approach focuses on detecting
events from dynamic objects performing low computational
processing and low latency response suitable for sense-and-
avoid onboard ornithopters. The Time Filter module detects
events generated from moving objects using as reference
the timestamp difference of the events triggered at the same
pixel location. The surface of active events (SAE) S ∈ R2

maps the event coordinates x with the timestamp ts of
the last occurring event at S(x). Thus, S describes a 2D
representation of the timestamp evolution of triggered events.
Under the assumption that objects move with a high relative
velocity w.r.t. the robot, the events triggered by dynamic
objects are detected using a time threshold τ . If the time
difference ∆ts between an incoming event ek and S(xk) is
lower than τ the event is considered to belong to a moving
object. Next, the timestamp of ek updates S by S(xk) = tsk
for the future evaluations. The value of τ depends on the
velocity of the robot, defined by τ = ατvz

+ (1 − α)τωx
,

where τvz and τωx
are the contributions due to the current
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linear forward and pitch angular velocities of the robot (vz
and ωx, respectively), and α ∈ [0, 1] sets the contribution of
each velocity component. τvz and τωx are defined as follows:[

τvz
τωx

]
=

[
τH
τH

]
− (τH − τL)

[
(vz − vL)(vH − vL)

−1

(ωx − ωL)(ωH − ωL)
−1

]
, (1)

where [vL, vH ] and [ωL, ωH ] are the typical velocity ranges
of the robot flight. The operation range [τL, τH ] is empiri-
cally selected, see Section V.

Algorithm 1: Event-based moving obstacle detection
Input: ek(xk, tsk, p)
Output: (vx, vy)
if tsk − S(xk) < τ then ▷ Time Filter evaluation

updateCurrentSlice(ek)
if isCorner(ek) then ▷ Corner Detector

(vx, vy) ←− computeOpticalFlow()
id← updateClusters(ek, vx, vy)
(vx, vy)← getClusterFlow(id)

end
updateClusters(tsk) ▷ Retrieve obstacle flow

end
S(xk) = tsk ▷ Update time reference at xk

d, τc ← sliceRotation(ek)

Next, the events belonging to dynamic obstacles are pro-
cessed to estimate their direction of motion, module Optical
Flow in Fig. 3. That optical flow provides the relative motion
estimation between the camera and the objects. Our approach
uses the event-based optical flow method ABMOF [28].
It is based on block matching operations between event
slices. Slices are 2D histograms of events collected during
the accumulation time d. ABMOF includes two different
control strategies to vary d depending on the event gen-
eration through time. Despite using slices of accumulated
events to compute optical flow, it performs event-by-event
processing by computing the flow of each incoming event.
Our method integrates an adapted version of ABMOF to
reduce the onboard processing. First, event slices are fed
only with events triggered from moving objects. This reduces
the computational load by processing only <32% of the
event stream in the experiments of Section V. Second, the
optical flow is computed only from events considered as
corners. The *eFast event Corner Detector in [29] is selected
for this task given its fast response and low False Positive
Rate. Computing optical flow only from corners reduces the

computational cost in >25% while providing a stable optical
flow estimation as described in Section V.

Finally, the resulting event optical flow estimations are
clustered to obtain an approximation of the object’s optical
flow. For this task, we used an adapted version of the
event-by-event clustering algorithm described in [30]. This
algorithm clusters events with spatio-temporal continuity
within an adaptive time window. The algorithm was modified
to cluster optical flow from events. It receives as input the
tuple f = (x, ts,v), where v = (vx, vy) represents the
optical flow estimation of the event with pixel coordinates x
and timestamp ts. Clustering is performed by evaluating the
proximity of each new event to a randomly selected event
from each of the previous clusters. Each cluster is defined
by its centroid x, which represents the average location of
cluster events, the average optical flow v = (vx, vy), and the
list Φ of previous tuples f assigned to the cluster. Each new
valid optical flow estimation updates v as in Eq. 2.

v :=
η

η + 1
v +

1

η + 1
v, (2) v :=

η

η − 1
v − 1

η − 1
v†, (3)

where η is the number of assigned tuples to the cluster (i.e.,
the length of Φ). Similarly, the influence of old samples is
removed from v, see Eq. 3, where v† corresponds to flow
samples with timestamps lower than τc. The parameter τc
defines the maximum lifetime of flow samples in the cluster
and it is dynamically adjusted using the reference feedback
from [28]. Finally, ASAP is used to prevent processing
overflows by dynamically adapting event packaging to keep
the responsiveness of the method.

B. Collision Risk Evaluation Strategy

A reactive evasive maneuver strategy is used to prevent
collision risk situations with incoming obstacles. The pos-
sible collisions with detected obstacles are determined by
considering the geometry of the robot. The ornithopter is
approximated by a 2W ×2H safety volume and the obstacle
is approximated by a sphere of radius R′ (see Fig. 5).
R′ encloses the obstacle volume and a Safety Distance b
considering small sensing uncertainties, i.e., R′=R+b. Thus,
the minimum angles ψ and θ to avoid a possible collision
risk without deviating the flight trajectory are:

ψ∗(t) = arctan
W + 2R′

z(t)− 2R′ , θ∗(t) = arctan
H + 2R′

z(t)− 2R′ , (4)

(a) (b) (c) (d)

Time Filter Optical FlowCorner Detector Clustering

Fig. 3: Block diagram of the Dynamic Object Motion Estimation method: a)
Time Filter detects events triggered by moving objects; b) Corner Detector
finds relevant features of the object; c) Optical Flow estimates the motion of
events in the image plane; and d) Clustering estimates the object flow using
the flow of events belonging to the dynamic object. For clearer visualization
the results are shown in event images accumulating events every 10 ms.

Fig. 4: Event-based dynamic object detec-
tion: right) frame from the APS sensor
of the DAVIS 346; left) event image of
events accumulated during 10 ms (in black)
including events detected to belong to the
moving object (magenta).
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where z(t) is the obstacle depth w.r.t. the camera. For any
pair of angles (ψ, θ) such that |ψ(t1)| ≤ |ψ∗(t1)| and
|θ(t1)| ≤ |θ∗(t1)| a possible collision between the robot and
the obstacle might occur at t ≥ t1 if the robot trajectory is
not modified. In these cases, an evasive maneuver is activated
by guiding the ornithopter away from the obstacle trajectory.
The collision evaluation of Eq. 4 depends of the robot-
obstacle depth z(t) and its size. Three evaluation cases are
considered based on the obstacle available information:

• Assuming z(t) is directly measurable (e.g., using a
time-of-flight sensor) and R is known, the collision risk
evaluation is directly implemented using Eq. 4.

• Assuming only R is known, z(t) can be estimated by
z(t) = λR/L(t), where λ is the camera focal length,
and L(t) is the largest side of a rectangle enclosing
the clustered events. The value of L(t) is computed by
analysing the spatial distribution of events in the cluster.

• If neither z(t) nor R are known, the collision risk cannot
be predicted. Thus, any detected obstacle triggers an
evasive maneuver.

The second case, having prior information of the object
geometry to perform collision risk evaluation, is experimen-
tally validated in Section V. We adopt a conservative strategy
that detects collision risk situations using geometrical con-
siderations and exerts reactive evasion maneuvers using the
information of the obstacle motion. This reduces processing
requirements, enabling low-latency execution.

C. Tail Control

Flapping-wing robots present more complex dynamics
than multirotors and fixed-wing robots. Their non-holonomic
underactuated nature requires considering the robot dynamic
restrictions to evaluate the effect of the actuation commands
in future spatial configurations. Conversely, reactive obstacle
avoidance requires a fast and robust response to perform

Fig. 5: Collision risk evaluation based on geometry con-
straints. ψ∗ and θ∗ are used to determinate collision risk.

aggressive movements. Evasion maneuvers must be per-
formed as fast as possible, thus the control method must
be computationally simple. Additionally, since the robot is
solely controlled using onboard perception –which implies
high levels of uncertainty, obstacle avoidance control must
be robust to minimize their effect.

One feasible control strategy is to perform an avoidance
maneuver with an opposite direction velocity vector w.r.t.
the incoming obstacle velocity. From the obstacle mean
optical flow v estimated in Section IV-A, the controller
computes the longitudinal, δe, and lateral, δr, tail deflections
to perform the evasive maneuver. To accomplish both robust
and computationally efficient requirements, the following
control law is implemented:

ureact = −(κ0 + κ1∥v∥) ◦ v, (5)

where ◦ denotes the Hadamard product, ureact =
[δreacte , δreactr ]T is the control action, and κ0 and κ1 are
controller gains. The values of κ0 and κ1 were experimen-
tally tuned. The followed criterion was to achieve fast control
response when an obstacle is detected.

The previous solution assumes that the best maneuver
to avoid an obstacle is to fly in the opposite direction to
its velocity. However, this strategy is agnostic to the robot
dynamics. To cope with this limitation, our method also
considers a flapping-wing linearized model adapted from
[31] to compute the tail deflections. The model parameters
were initially approximated empirically and then fitted by
performing different tests inside a motion capture system.
The ornithopter linear and angular velocities and its attitude
are estimated using an onboard inertial navigation system.

From the current robot configuration, and given ureact

from Eq. 5, the adapted model is used to compute the
robot acceleration for each tail angle in a discretized range
between δreacte ±10◦ for longitudinal deflection and between
δreactr ± 10◦ for lateral deflection. The selected tail angle
increments, ∆umodel = [∆δmodel

e ,∆δmodel
r ]T , are those

that give the robot the greatest acceleration –i.e., those that
increase the speed of the evasion maneuver the most in
the shortest time. Hence, the tail deflections to command
are composed as u = ureact + ∆umodel. Additionally,
our method constrains the deflection values considering the
restrictions presented in [32] to avoid stall.

V. EXPERIMENTS

The experimental platform is the E-Flap robot, a cus-
tomized ornithopter developed at the GRVC Robotics lab-
oratory. The robot has a total length of 95 cm, a wingspan
of 1.5 m, a weight of 510 g, and a maximum payload of
520 g at the expense of limited maneuverability and reduced
flight time. The sensors and hardware are placed along the
robot body to improve the platform maneuverability. A low-
cost Khadas VIM3 handles onboard online perception and
control. It equips a VectorNav VN-200 inertial navigation
system that provides measurements of the ornithopter’s body
frame velocity. A DAVIS346 event camera provides low
latency polarized events from its integrated dynamic vision
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Fig. 6: Different size objects considered for the experiments:
left) Small Box; center) Stuffed Toy; and right) FitBall.

sensor DVS. The camera weight was reduced to a third of
its original value to satisfy the robot weight restrictions.
The camera mounts a lens with a total weight of 5 g, a
Field of View of 68◦ horizontal and 53.5◦ vertical, and
an IR-Cut filter to cope with the IR emissions from the
motion capture system. The event-based obstacle detector
method, the evasive maneuver strategy and the flapping-wing
controller avoidance were implemented in C++ using ROS. In
all the experiments, ASAP was configured to provide event
packages at 250 Hz to cope with the low computational
restrictions. Thus, the mean optical flow was updated each 4
ms. It is worth mentioning that the event-by-event property
of our algorithm allows configuring the optical flow update
by changing the rate of the packages provided by ASAP.

The proposed dynamic obstacle sense-and-avoid system
was experimentally validated in both indoor and outdoor sce-
narios. The GRVC Testbed is a closed area of 15×21×8 m
with 24 OptiTrack Primex 13 cameras providing millimeter
accuracy pose estimations. The outdoor scenario is a Soccer
Field of 48 × 54 m with surrounding obstacles suitable to
perform short flight experiments with the ornithopter. For all
the experiments, the parameters in Eq.1 were set to vL=3
m/s, vH=6 m/s, ωL=1.3 rad/s, and ωH=3 rad/s, given by the
typical flight kinematics conditions of the robot. Further, α
was set to 0.8, as the robot mainly performs forward motions.
Parameter τ sets the threshold to distinguish the events
triggered by dynamic objects. A large value entails detections
at longer distances while permitting events triggered by static
objects. Besides, a small value of τ performs a quite selective
filtering at the expense of reducing the distance at which the
obstacles are detected. Hence, τ defines a trade-off between
filtering events triggered by static objects and the maximum
distance to detect an obstacle. From our experiments, τL=15
ms and τH=25 ms were empirically selected to provide a
trade-off between having detection distances of 6 m while
filtering 82% of events triggered by the scene background.

The experimental validation was divided into two parts.
First, the dynamic obstacle detection and motion estimation
were evaluated. Second, the evaluation of the full obstacle
avoidance system was performed in experiments in indoor
and outdoor scenarios with different illumination conditions.

A. Obstacle detection and motion estimation evaluation

In these experiments, obstacles were thrown into the
Field of View (FoV) of the camera while the ornithopter
performed forward flight. The experiments were performed

in the Testbed scenario to retrieve the pose information from
the obstacle and the robot. The goal was to evaluate the
detection and motion estimations performance of the method
described in Section IV-A. Three objects with different sizes
were considered (Fig. 6): a Small Box of size 220 × 200
× 150 mm, a Stuffed Toy of size 400 × 450 × 400 mm,
and a Fitball with a diameter of 750 mm. Obstacle detection
was evaluated in distances ranging from 0.5 m to 6 m. At
distances closer than 0.5 m the obstacle body filled a large
zone of the image leading to invalid detections. At large
distances obstacles were represented by few pixel events due
to the camera resolution, which hindered their 2D represen-
tation for obstacle detection. A total of 45 experiments were
performed with each obstacle.

The detection performance was evaluated by comparing
the outcome of our algorithm with the frames provided
by the APS sensor. The centroid of the detected moving
object was rendered into event images obtained each 25 ms.
The distance between the object’s centroid in both frames
was used as evaluation criteria. Each comparison led to a
possible result: False Positive (FP), False Negative (FN),
True Positive (TP), and True Negative (TN). A True Positive
occurred when the Manhattan distance between the centroid
of both objects was ≤η pixels. Fig. 7 shows a histogram
of the distance between the object and the ground of truth
in the performed experiments. The majority of samples at
distances >15 px correspond to False Positives. Choosing η
to 10 was a suitable trade-off between validating the majority
valid samples as True Positives while rejecting False Positive
samples. Next, the overall Accuracy, Precision, True Positive
Rate (TPR), and False Positive Rate (FPR) were computed.
Table II summarizes the detection results of each obstacle at
different distances. The method reported an overall accuracy
of 91.7%. The distance directly affected the detection per-
formance specially with small objects at distances >4 m. At
such distances, small objects triggered few events hampering
object detection, and the lack of triggered events affected the
obstacle detection as many events in S(x) did not satisfy the
τ condition. In general, at distances between 2 to 4 m the
method reported an accuracy above 94.7%. In this range,
the size of the different objects in the image was enough to
perform successful dynamic object detection in the majority
of the experiments. Additionally, the method provided a low
number of False Positives as reported by the average FPR
of 4.2%, and an average Precision of 95.1%. Finally, a few
detections were missed during the experiments as evidenced
by the average TPR of 88.5%.

The obstacle detection method was evaluated in multi-
obstacle experiments in which three objects were thrown
from different directions in the camera FoV at similar times.
It reported an accuracy of 74.2% among all the experiments.
The performance reduction was caused by the generation of
False Positive samples when the obstacles overlapped in the
image plane, which tended to merge clusters hampering the
individual detection of objects. Despite this degradation, the
method results were satisfactory taking into account that the
detection was performed with a single event camera.
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Fig. 7: Histogram of the distance
between the detected object and the
Ground Truth in the overall tests.

1.5− 2.0 m 2.0− 4.0 m 4.0− 6.0 m
Acc Pre TPR FPR Acc Pre TPR FPR Acc Pre TPR FPR

Small Box 0.91 0.95 0.86 0.04 0.97 0.98 0.97 0.03 0.80 0.86 0.75 0.09
Stuffed Toy 0.97 0.95 0.97 0.04 0.93 0.98 0.86 0.02 0.92 0.97 0.85 0.02

Fitball 0.91 0.98 0.82 0.01 0.94 0.94 0.93 0.05 0.92 0.94 0.91 0.08

TABLE II: Accuracy, Precision, True Positive Rate (TPR), and False Positive Rate
(FPR) results of dynamic obstacle detection using the different obstacles while
varying the launching distance.

The motion estimation evaluation consisted of comparing
the mean optical flow direction of the dynamic obstacle
on the image plane with the ground truth direction. The
ground truth was obtained from the motion capture system
by projecting the position of the obstacle in the image and
estimating its motion direction from previous and future
samples. For better validation, the obstacles were launched
from a distance of 8 m to describe larger trajectories. A total
of 30 experiments were performed. The error was defined
as the instantaneous angle difference between the estimated
direction of the obstacle movement and the ground truth
direction. Fig. 8 shows the quartiles, mean, and standard
deviation of the error along each experiment. The resulting
Root Mean Square Error was 11.2◦, which is a reasonable
error to guide the robot in a collision-free direction. Safety
Distance b described in Section IV-B was used to consider
this error by enlarging the obstacle geometry to add extra
safety to the evasion maneuver.

B. Sense-and-avoid evaluation

Next, the full proposed sense-and-avoid system was eval-
uated. Two cases can be distinguished in case the obstacle
detection method fails. A False Positive obstacle detection
triggers an unnecessary evasion maneuver. A False Negative
obstacle detection neglects the evaluation of a collision
risk situation, potentially causing an impact between the
robot and the obstacle. Different sets of experiments were
analysed to evaluate its performance. The ornithopter was
launched towards a goal zone by an operator and performed
forward flight using the controller described in [5]. One
of the obstacles in Fig. 6 was launched to intercept the
ornithopter. The obstacles were launched in various direc-
tions to evaluate different evasive maneuvers. To enhance
repeatability the lightweight obstacles were launched using

a motorized launcher which set their initial speed to a specific
value. Obstacles were thrown from a distance of 10 m and
moved with an average speed in the range of [5, 8] m/s. Our
system checked for collision risk situations and activated an
avoidance maneuver if a collision risk situation was detected.
Three types of analyses were performed.

First, we performed experiments to analyse the perfor-
mance of the system in case an Intersection of the Safety
Volumes (ISV) occurred. An ISV exists when the robot
safety volume and the sphere of radius R′ enclosing the
object intersect along the robot trajectory in case it performs
no evasion maneuver. These experiments were performed
indoors: the ground truth robot and obstacle positions were
recorded using a motion caption system to check if an
ISV occurred. A total of 25 experiments were performed
with each object using regular (760 lx) and dark (<15 lx)
illumination conditions. The average avoidance success rate
with the three objects, see Table III, was 90.7%. The best
result was obtained using the FitBall as obstacle, which
larger size allowed an earlier detection of the collision risk
situation. The experiments with dark illumination conditions
also reported a remarkable success rate: the slight perfor-
mance degradation was caused by the additional noisy events
produced by the poor lighting.

Second, we performed experiments to analyze the system
performance in case ISV situations did not occur. 20 experi-
ments were performed using the Small Box obstacle. In 85%
of the experiments, the system did not detect collision risk
situations. Only in 15% of the cases, it detected collision risk
situations –activating an unnecessary evasive maneuver– in
flights with no ISV situations. This result was mainly caused
by the conservative selection of the radius R′ which enlarged
the obstacle size to reduce impacts with the robot body. False
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Fig. 8: Box plot (left) and mean and standard deviation (right) of the motion direction error along each of 30 experiments.
The direction error is defined as the instantaneous absolute difference between the direction of motion estimated by our
approach and the obstacle direction from the ground truth. The mean error considering all the experiments is 6.97◦. The
mean standard deviation considering all the experiments is 3.89◦, and maximum instantaneous direction error is 19.54◦.
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Positive detections increased in the dark lighting experiments
due to the higher level of noisy events.

Finally, the system performance in outdoor experiments
was analyzed to evaluate its robustness to different scenarios.
In these experiments, the collisions were evaluated visually
due to the lack of motion capture information. A total
of 25 experiments were performed with each object under
light and dark lighting conditions. The results are shown in
Table III. The proposed system had a success rate of 92.0%
with regular illumination conditions, and reported acceptable
results with dark lighting conditions 85.3%.

Validation Small Box Stuffed Toy FitBall
Indoors Motion

Capture Sys.
92% 92% 96%

Indoors Dark 84% 88% 92%
Outdoors Visual 92% 92% 92%

Outdoors Dark 84% 84% 88%

TABLE III: Success rate of the proposed dynamic obstacle
avoidance method in different scenarios.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents the first event-based obstacle avoid-
ance system for large-scale flapping-wing robots. The pro-
posed approach exploits the advantages of event-based vision
to detect dynamic obstacles and perform evasion maneuvers.
Our scheme has been validated in several indoor and outdoor
scenarios with different illumination conditions. It reports an
average avoidance success rate of 89.7% evading dynamic
obstacles of different sizes and shapes. Further, its event-by-
event processing nature and efficient implementation allow
fast onboard computation even in low processing capacity
hardware, providing high rate estimations (250 Hz in our
experiments). Future work includes the validation of our
method in other agile robots. Further, the development of
a map-based method for the avoidance of static obstacles
and its integration in a complete obstacle avoidance system
for static and dynamic objects are object of future research.
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[22] J. P. Rodrı́guez-Gómez, A. G. Eguı́luz, J. R. Martı́nez-De Dios, and
A. Ollero, “Auto-tuned event-based perception scheme for intrusion
monitoring with uas,” IEEE Access, vol. 9, pp. 44 840–44 854, 2021.
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