

Reproducibility of the Experimental Result of BERT for Evidence Retrieval
and Claim Verification

Thummaoon Kunauntakij

MSc Data Science Student,
Technische Universität Wien,

e12122522@student.tuwien.ac.th

András Bonifác Kónya

MSc Data Science Student,
Technische Universität Wien,

e01502933@student.tuwien.ac.th

Branimir Raguž

MSc Data Science Student,
Technische Universität Wien,

e12123474@student.tuwien.ac.th

ABSTRACT

We attempt to reproduce the result of BERT for Evidence Retrieval and Claim Verification [1]. The original paper use BERT for the
task of evidence-based claim verification using FEVER dataset 50K Wikipedia pages [2] and it achieves a new state of the art recall of
87.1 for retrieving evidence sentences the dataset, and scores second in the leaderboard with the FEVER score of 69.7. We discuss their
experiment design, metric used and attempt to reproduce their result. By reviewing the process describe by the original paper, we
conclude that their experiment design is questionable, and the result might not be able to generalize well. Although we are not able to
confirm the number due to various difficulties encountered for recreating the dataset and the time frame limitation, we document the list
of problem and our effort we have done to resolve them in the process.

CCS CONCEPTS • Evidence retrieval • Claim verification • BERT

1 INTRODUCTION

1.1 SUMMARY OF THE ORIGINAL PAPER

BERT for evidence retrieval and claim verification is a method that utilize BERT, Bidirectional Encoder Representations
from Transformers, which is a natural language processing (NLP) pre-training machine learning technique developed by
Google. Two BERT models are proposed in the paper, one for retrieving evidence sentences supporting or rejecting
claims, and another for verifying claims based on the retrieved evidence sentences. To train the BERT retrieval system,
they used pointwise and pairwise loss functions and examined the effect of HNM (Hard Negative Mining). They applied
the method to a shared task, FEVER: a Large-scale Dataset for Fact Extraction and VERification [2] which provided a
benchmark dataset. The resulting model scored second in the leaderboard with the FEVER score of 69.7.

Their methods can be divided into 3 discrete modules.

2

1.1.1Document retrieval

In this step, a claim is given, the module finds English Wikipedia articles containing information about this claim. The
paper uses a module found in UKP-Athene [3] to collect a set of top documents.

1.1.2Sentence retrieval

The sentence retrieval step extracts the top five evidence sentences. BERT is trained for predicting the next sentence so it
can be used for finding top relevant sentences for the documents retrieved in the first module. They use it by adding a
softmax at the last hidden state of the classification token and trained together with the pre-trained layers. They fine-tune
it using two different pointwise and pairwise approaches. To prevent training on trivial samples, they applied online hard
negative mining (HNM) to focus the training on harder pair of claim and evidence.

1.1.3Claim verification

Each claim is compared against the top sentences from the previous module and the final claim classification is
determined by aggregating the five individual decisions. The default label is not enough information (NEI) unless there is
any supporting evidence to predict the claim as supported. If there is at least one rejecting evidence and no supporting
fact, the label is refuted. They trained another BERT as a three-class classifier to do the task.

2 EXPERIMENT SETUP

By reviewing the original paper and their GitHub repository [4]. We can summarize their experiment setup as the following.

2.1 Experiment Design

The summarization is listed below.

2.1.1 FEVER dataset [2] release 3 sets of data, training, development, and testing data.

2.1.2 The original authors preprocessed the data using document retrieval system from the UKP-Athene Project and
reformat the result into a specific format.

2.1.3. They used 10 different combination of sentence retrieval and claim verification techniques as candidate methods.
All of them utilize BERT in the sentence retrieval step and either BERT or UKP-Athene in the claim verification step.

2.1.4. Train all the combination using the shuffled training set.

2.1.5. Run the model against the development set and compare the result various metrics; Precision, Recall, F1, label
accuracy and on the shared task metrics, FEVER Score.

2.1.6. Finally, the authors run the model against the test dataset and submit it for evaluation.

2.2 Discussion of the Experiment Design

Because the paper aimed at participating in a shared task of a workshop. The experiment process of the paper is rather
simple, straight forward and probably was not designed for verifying the result scientifically. The setup used all the training
data to train all the candidate methods and the result models are validated against the same development set. The only
randomness feature in the process is in the shuffling of the training data. There is no mention of repeated trials at all, thus

3

there is no report for the variance of the evaluation metrics. Also, because they run multiple methods through the same
process and select the best one without repeating them on a different spilt of the data, we could question about the
generalization of the result on different subset of data and unseen data. We can see that the FEVER score and label accuracy
dropped from the development set, at 72.42% and 74.59% respectively to 69.66%, 71.86% respectively. It beat the next
couple of the best methods by less than 0.5%.

3 REPRODUCIBILITY

3.1 Code

As mentioned, the authors of the original paper released the source code they used in a GitHub repository [4]. Also the
source code of UKP-Athene is available as well.

3.2 Hyperparameter

The authors explicitly stated the hyper parameter they used for training the model in the paper including batch size, learning
rate, the number of epoch and specification an additional method, Hard Negative Mining (HNM).

3.3 Dataset

3.2.1 Raw Data
The authors use the dataset from a shared task, FEVER dataset [2]. The task contains 4 sets of data; training set,
development set, testing set and preprocessed Wikipedia pages.

3.2.2 Preprocessed Data
The authors utilize part of the code from UKP-Athene Project [3], specifically the output of the document retrieval
module of the project. They use this to select a list of most relevant documents for the claim. Then, they reformat the
output into 3 TSV (tab separated values) files; train_sentences_pos.tsv, train_sentences_neg_32.tsv and
dev_sentences.tsv to be used as an input in sentence retrieval step. Lastly, in the claim verification step, they use
train.tsv, train_negative.tsv and dev.tsv as an input. It is unclear what is the structure of the files for this step.

3.4 Attempt to reproduce the result
The main obstacle for reproducing the result of this project is to acquire the data. The raw data from FEVER dataset are
freely available on its webpage. But to preprocess the data as an input to this project, we need to use a script from UKP-
Athene. However, UKP-Athene depended a lot on outdated dependencies. As we have no prior experience in deep
learning and natural language processing, it is not possible for us to develop the software by ourselves. Thus, we invested
almost all of the time we have for debugging the UKP-Athene dependency and still unable to acquire the required data.
As a result, we could not be able to reproduce the result within the given time frame. However, we documented the
issues we experience and how we resolved them to show the effort that we have done.

3.4.1Setting up the environment for UKP-Athene: Project Dependencies
There are several issues we’ve experience with UKP-Athene. As we had not many experiences in related technology.
These problems costed us an enormous amount of time to figure out how to resolve them.

It is developed in an end-of-life version-3.6 Python and contain multiple deprecated software dependencies. First, we
tried to resolve the issues by Pipenv, a Python package manager. We found that a specific Pytorch version is used
(version 0.4.0) and made it unable to be install by a general package manager like Pip or Pipenv as it was not hosted on

4

Pypi repository anymore. The solution suggested by the Pytorch website is to install it via Conda, which is another
package manager that has its own repository. By using Conda, we were also able to specify a specific version of Python
as well.

They were multiple of deprecated software package that were used. Pyfasttext was already deprecated and the developer
pull the package down from the repositories. They suggest us to migrate to the official Fasttext Python-binding package
called Fasttext which required us to migrate the original code to a new library.

Some dependencies are not compatible with current build tools. We must update them up from the required version
specified in requirements.txt, a file containing the list Python dependencies with their exact version. These included
MarkupSafe, Spacy and Sanic.

UKP-Athene also relied on two packages that is hosted in GitHub; DrQA and FeverScorer. These packages contained
some outdate build script. We resolved them by forking both source code and fix the error. Then, we installed them from
our Github repository instead.

After installing the dependencies, we encountered with another issues when we tried to run the code on our local
machine which is operated by Windows 10. We run the code using Ubuntu on Windows Subsystem for Linux version 2
(WSL2). It turned out that WSL2 cannot reliably use a graphic processing unit, GPU, of the host system. We found that
by using Docker the Linux inside it can access the GPU. However, we still could not run the script from UKP-Athene.
This was caused by incompatible between dependency packages, specifically Pytorch and Tensorflow with a recent
CUDA driver, a parallel computing platform and application programming interface (API) for Nvidia GPU. The problem
was resolved by using an old version of Docker container, nvidia/cuda:9.0-cudnn7-devel, hosted by Nvidia containing
CUDA version 9.0 and CUDNN 7.0, a deep neural network library for CUDA.

However, the problem still existed. This time it was the incompatible of the CUDA driver with the GPU in our laptop.
Specifically, we have a laptop with Nvidia RTX 3080, a GPU that had released in January 2021. It had a CUDA compute
capability at 8.6 but CUDA version 9.0 could only operate a GPU with compute capability up to 7.0. To resolve this, we
migrate the whole system to Google Compute Engine, a cloud service which offer NVIDIA V100, a GPU with compute
capability at 7.0. At this point, we could run the script from UKP-Athene.

3.4.2Running UKP-Athene Document Retrieval
We run the document retrieval script from UKP-Athene. The unresolved problem we face was that it tried to pull the
millions of Wikipedia pages from an online service but at halfway, after a couple of hours, the service always rejected
our request due to the traffic at the server. Thus, we could not get the data required.

3.4.3Another Possible Source of dataset
Later, we found that UKP-Athene host some intermediate dataset that was already processed by the document retrieval
script. We hoped that it could be reformat into a TSV file and use them for this project. However, we found that the
dataset used a different Wikipedia document. We could not join them with preprocessed Wikipedia data from FEVER
dataset as there are many documents retrieved in the pre-processed data that were not found.

3.4.4 Imprecise Specification of the input data
Even if we could get the data from UKP-Athene. The authors still were too imprecise about how to format the input data.
As we found the instruction quoted from the project GitHub repository, “We cannot provide the dataset but you should
download it from the FEVER website and use document retrieval codes like Athene's code to get the sentences and then
make a TSV file.”. They only provide a sample data file for sentence retrieval without explaining the structure of it and
they did not give any example for the claim verification step at all. We could only guess what each of the columns in the
file mean and do some trial and error to check if it is accepted by the script.

5

4 CONCLUSION

The paper we attempted to reproduce was a simple and straight forward. However, because of the simpleness of their
experiment design and metric used, it is questionable whether the methods could perform as good if we apply them with
new dataset. Also, even if the authors open source their code for publicly used and the usage of open dataset from the
FEVER shared task, the impreciseness instruction of how to get the processed data required by the script make it difficult
to reproduce the result. Thus, we believe that it is hard for other researchers, especially one with less software development
experience, who interest in the same task to use the result from this paper as a benchmark in the future.

REFERENCES

[1] Soleimani A., Monz C., Worring M.: BERT for Evidence Retrieval and Claim Verification. In: Jose J. et al. (eds) Advances in Information

Retrieval. ECIR 2020. Lecture Notes in Computer Science, vol 12036. Springer, Cham. https://doi.org/10.1007/978-3-030-45442-5_45
[2] Thorne, J., Vlachos, A., Christodoulopoulos, C., Mittal, A.: FEVER: a large-scale dataset for fact extraction and verification. arXiv preprint

arXiv:1803.05355 (2018)

[3] Hanselowski, A., et al.: UKP-Athene: multi-sentence textual entailment for claim verification. In: Proceedings of the First Workshop on Fact

Extraction and VERification (FEVER), pp. 103–108. Association for Computational Linguistics, Brussels, November 2018.

https://doi.org/10.18653/v1/W18-5516

[4] Soleimani A.: ASoleimaniB/BERT_FEVER, Github.com,

https://github.com/ASoleimaniB/BERT_FEVER/tree/d630e7150554c72319b37729f0522b462b63603c (2020)

A APPENDICES

A.1 The final Docker file for creating the environment for UKP-Athene.

FROM nvidia/cuda:9.0-cudnn7-devel

ENV LC_ALL=C.UTF-8

ENV LANG=C.UTF-8

ARG PATH="/root/miniconda3/bin:${PATH}"

RUN apt-get update

RUN apt-get install -y wget && rm -rf /var/lib/apt/lists/*

RUN wget \

 https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh \

 && mkdir /root/.conda \

 && bash Miniconda3-latest-Linux-x86_64.sh -b \

 && rm -f Miniconda3-latest-Linux-x86_64.sh

RUN conda create -y -n myenv python=3.6

ENV PATH /opt/conda/envs/myenv/bin:$PATH

RUN apt update

RUN apt-get install -y software-properties-common

6

RUN add-apt-repository ppa:deadsnakes/ppa

RUN apt install -y git

RUN apt install -y vim

RUN apt install -y unzip gzip

RUN conda install -n myenv pytorch=0.4.0 cuda90 -c pytorch

COPY ./requirements.txt /workspace/requirements.txt

RUN /root/miniconda3/envs/myenv/bin/python -m pip install -r /workspace/requirements.txt

RUN /root/miniconda3/envs/myenv/bin/python -c "import nltk; nltk.download('punkt')"

WORKDIR workspace

A.2 Change Made in requirement.txt for the dependencies of UKP-Athene.

Table 1: Change made in requirement.txt for the dependencies of UKP-Athene

From To
cymem==1.31.2 cymem==1.31.2
cytoolz==0.8.2 cytoolz==0.9.0.1
MarkupSafe==1.0 MarkupSafe==2.0
numpy==1.14.5 numpy>=1.14.5
numpy>=1.14.5 numpy>=1.14.5
pyfasttext==0.4.5 fasttext==0.9.2
fasttext==0.9.2 sanic==0.7.0
sanic==0.7.0 removed
tensorboard==1.8.0 removed
tensorboard-pytorch==0.7.1 removed
tensorboardX==1.2 removed
tensorflow-hub==0.1.0 removed
thinc==6.10.2 thinc==6.12.1
torch==0.4.0 removed
torchvision==0.2.1 removed

 git+git://github.com/j6mes/drqa@parallel git+git://github.com/gentlerainsky/DrQA

 git+git://github.com/sheffieldnlp/fever-scorer@master git+git://github.com/gentlerainsky/fever-scorer

	1 Introduction
	1.1 SUMMARY OF THE ORIGINAL PAPER

	2 Experiment setup
	2.1 Experiment Design
	2.2 Discussion of the Experiment Design

	3 reproducibility
	3.1 Code
	3.2 Hyperparameter
	3.3 Dataset
	3.4 Attempt to reproduce the result
	3.4.1 Setting up the environment for UKP-Athene: Project Dependencies
	3.4.2 Running UKP-Athene Document Retrieval
	3.4.3 Another Possible Source of dataset
	3.4.4 Imprecise Specification of the input data

	4 CONCLUSION

