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Abstract. Algebraic effects offer a versatile framework that covers a
wide variety of effects. However, the family of operations that delimit
scopes are not algebraic and are usually modelled as handlers, thus pre-
venting them from being used freely in conjunction with algebraic oper-
ations. Although proposals for scoped operations exist, they are either
ad-hoc and unprincipled, or too inconvenient for practical programming.
This paper provides the best of both worlds: a theoretically-founded
model of scoped effects that is convenient for implementation and rea-
soning. Our new model is based on an adjunction between a locally
finitely presentable category and a category of functorial algebras. Using
comparison functors between adjunctions, we show that our new model,
an existing indexed model, and a third approach that simulates scoped
operations in terms of algebraic ones have equal expressivity for han-
dling scoped operations. We consider our new model to be the sweet
spot between ease of implementation and structuredness. Additionally,
our approach automatically induces fusion laws of handlers of scoped
effects, which are useful for reasoning and optimisation.

Keywords: Computational effects · Category theory · Haskell · Alge-
braic theories · Scoped effects · Handlers · Abstract syntax

1 Introduction

For a long time, monads [45, 60, 68] have been the go-to approach for purely
functional modelling of and programming with side effects. However, in recent
years an alternative approach, algebraic effects [48], is gaining more traction. A
big breakthrough has been the introduction of handlers [52], which has made
algebraic effects suitable for programming and has led to numerous dedicated
languages and libraries implementing algebraic effects and handlers. In compar-
ison to monads, algebraic effects provide a more modular approach to computa-
tions with effects, in which the syntax and semantics of effects are separated—
computations invoking algebraic operations can be defined syntactically, and the
semantics of operations are given by handlers separately in possibly many ways.

A disadvantage of algebraic effects is that they are less expressive than mon-
ads; not all effects can be easily expressed or composed within their confines.
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For instance, operations like catch for exception handling, spawn for parallel
composition of processes, or once for restricting nondeterminism are not con-
ventional algebraic operations; instead they delimit a computation within their
scope. Such operations are usually modelled as handlers, but the problem is that
they cannot be freely used amongst other algebraic operations: when a handler
implementing a scoped operation is applied to a computation, the computation
is transformed from a syntactic tree of algebraic operations into some semantic
model implementing the scoped operation. Consequently, all subsequent oper-
ations on the computation can only be given in the particular semantic model
rather than as mere syntactic operations, thus nullifying the crucial advantage
of modularity when separating syntax and semantics of effects.

To remedy the situation, Wu et al. [70] proposed a practical, but ad-hoc,
generalisation of algebraic effects in Haskell that encompasses scoped effects,
that has been adopted by several algebraic effects libraries [32, 42, 56]. More
recently, Piróg et al. [46] sought to put this ad-hoc approach for scoped effects
on the same formal footing as algebraic effects. Their solution resulted in a
construction based on a level-indexed category, called indexed algebras, as the
way to give semantics to scoped effects. However, this formalisation introduces
a disparity between syntax and semantics that makes indexed algebras not as
structured as the programs they interpret, where they use an ad-hoc hybrid
fold that requires indexing for the handlers, but not for the program syntax.
Moreover, indexed algebras are not ideal for widespread implementation as they
require dependent typing, in at least a limited form like gadts [25].

This paper presents a more structured way of handling scoped effects, which
we call functorial algebras. They are principled and formally grounded on cat-
egory theory, and at the same time more structured than the indexed algebras
of Piróg et al. [46], in the sense that the structure of functorial algebras directly
follows the abstract syntax of programs with scoped effects. Functorial algebras
enjoy the following advantages over indexed algebras:

– Functorial algebras admit a simpler interface and implementation (Figure 1)
without requiring dependent types or GADTs. This enables the adoption of
scoped effects in a wider range of languages.

– Functorial algebras are easier to reason about due to their structuredness.
In particular, it allows us to derive a one-pass handle function (Theorem 2)
that does not convert syntax to the free functorial algebra. In comparison,
a similar one-pass recursion scheme is much harder for indexed algebras to
derive. Although Piróg et al. showed one in their implementation, they did
not prove its correctness. In this paper, we provide the missing proof by
converting indexed algebras to functorial ones (Example 12).

– These improvements have not sacrificed expressivity, since translating be-
tween functorial algebras and existing approaches is possible (Section 4).

The structure and contributions of this paper are as follows:

– We highlight the loss of modularity when modelling scoped operations as
handlers and sketch how the problem is solved using functorial algebras in
Haskell, along with a number of programming examples (Section 2).
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– We develop a category-theoretic foundation of functorial algebras as a notion
of handlers of scoped effects. Specifically, we show that there is an adjunc-
tion between functorial algebras and a base category, inducing the monad
modelling the syntax of scoped effects (Section 3).

– We show that the expressivity of functorial algebras, Piróg et al. [46]’s in-
dexed algebras, and simulating scoped effects with algebraic operations and
recursion are equal, by constructing interpretation-preserving functors be-
tween the three categories of algebras (Section 4).

– We present the fusion law of functorial algebras, which is useful for reasoning
and optimisation. The fusion law directly follows from the naturality of the
adjunction underlying functorial algebras (Section 5).

Finally, we discuss related work (Section 6) and conclude (Section 7). An ex-
tended version of this paper [71] contains appendices and proofs for this paper.

2 Scoped Effects for the Working Programmer

We start with a recap of handlers of algebraic effects (Section 2.1), and then
we highlight the loss of modularity when modelling non-algebraic effectful op-
erations as handlers (Section 2.2). We then show how the problem is solved by
modelling them as scoped operations and handling them with functorial algebras
in Haskell (Section 2.3), whose categorical foundation will be developed later.

2.1 Handlers of Algebraic Effects

For the purpose of demonstration, in this section we base our discussion on a sim-
plistic implementation of effect handlers in Haskell using free monads, although
the problem with effect handlers highlighted in this section applies to other more
practical implementations of effect handlers, either as libraries (e.g. [27, 33]) or
standalone languages (e.g. [7, 36,40]).

Following Plotkin and Pretnar [52], computational effects, such as exceptions,
mutable state, and nondeterminism, are described by signatures of primitive ef-
fectful operations. Signatures can be abstractly represented by Haskell functors:

class Functor f where fmap :: (a → b)→ f a → f b

The following functor ES (with the evident Functor instance) is the signature
of three operations: throwing an exception, writing and reading an Int-state:

data ES x = Throw | Put Int x | Get (Int → x ) (1)

Typically, a constructor of a signature functor Σ has a type isomorphic to P →
(R → x ) → Σ x for some types P and R. As in (1), the types of the three
constructors are isomorphic to Throw :: ()→ (Void → x )→ ES x , Put :: Int →
(()→ x )→ ES x and Get :: ()→ (Int → x )→ ES x respectively where Void is
the empty type. Each constructor of a signature functor Σ is thought of as an
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operation that takes a parameter of type P and produces a result of type R, or
equivalently, has R-many possible ways to continue the computation after the
operation. Given any (signature) functor Σ, computations invoking operations
from Σ are modelled by the following datatype, called the free monad of Σ,

data Free Σ a = Return a | Call (Σ (Free Σ a))

whose first case represents a computation that just returns a value, and the
second case represents a computation call ing an operation from Σ with more
Free Σ a subterms as arguments, which are understood as the continuation of
the computation after this call, depending on the outcome of this operation.

The inductive datatype Free Σ a comes with a recursion principle:

handle :: (Σ b → b)→ (a → b)→ Free Σ a → b
handle alg g (Return x ) = g x
handle alg g (Call op) = alg (fmap (handle alg g) op)

which folds a tree of operations Free Σ a into a type b, providing a way Σ b → b,
usually called a Σ-algebra, to perform operations from Σ on b and a way a → b
to transform the returned type a of computations to b. The function handle can
be used to give Free Σ a monad instance:

return :: a → Free Σ a
return = Return

(>>=) :: Free Σ a → (a → Free Σ b)→ Free Σ b
m >>= k = handle Call k m

The monadic instance allows the programmer to build effectful computations
using the do-notation in a clean way. For example, the following program updates
the state s to n / s for some n :: Int , and throws an exception when s is 0:

safeDiv :: Int → Free ES Int
safeDiv n = do s ← get ; if s ≡ 0 then Call Throw

else do {put (n / s); return (n / s)}

where the auxiliary wrapper functions (the so-called smart constructors in the
Haskell community) that invoke Call appropriately are

get = Call (Get Return) put n = Call (Put n (Return ()))

The free monad merely models effectful computations syntactically without
specifying how these operations are actually implemented. Indeed, the program
safeDiv above is defined without saying how mutable state and exceptions are
implemented at all. To actually give useful semantics to programs built with free
monads, the programmer uses the handle function above to interpret programs
with Σ-algebras, which are called handlers in this context.

For example, given a program r ::Free ES a for some a, a handler catchHdl r ::
ES (Free ES )→ Free ES that gives the usual semantics to throw is

catchHdl :: Free ES a → ES (Free ES a)→ Free ES a
catchHdl r Throw = r ; catchHdl r op = Call op

(2)
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which evaluates r for recovery in case of throwing an exception, and leaves
other operations untouched in the free monad. An important advantage of the
approach of effect handlers is that different semantics of a computational effect
can be given by different handlers. For example, suppose that in some scenario
one would like to interpret exceptions as unrecoverable errors and stop the exe-
cution of the program when an exception is raised. Then the following handler
can be defined for this behaviour:

catchHdl ′ :: Free ES a → ES (Free ES (Maybe a))→ Free ES (Maybe a)
catchHdl ′ r Throw = return Nothing ; catchHdl ′ r op = Call op

(3)

As expected, applying these two handlers to the program safeDiv 5 produces
different results (of types Free ES Int and Free ES (Maybe Int) respectively):

handle (catchHdl (return 42)) return (safeDiv 5)
= do s ← get ; if s ≡ 0 then return 42 else do {put (n / s); return (n / s)}

handle (catchHdl ′ (return 42)) (return · Just) (safeDiv 5)
= do s ← get ; if s ≡ 0 then return Nothing

else do {put (n / s); return (Just (n / s))}

Note that exception throwing and catching are modelled differently in the ap-
proach of algebraic effects and handlers, one as an operation in the signature
ES and one as a handler, although it is natural to expect both of them to
be operations of the effect of exceptions. This asymmetry results from the fact
that exception catching is not algebraic: if catch was modelled as a binary op-
eration in the signature, then the monadic bind >>= of the free monad earlier,
which intuitively means sequential composition of programs, would imply that
(catch r p) >>= k = catch (r >>= k) (p >>= k), which is semantically undesirable.
Thus the perspective of Plotkin and Pretnar [52] is that non-algebraic operations
like catch should be deemed different from algebraic operations, and they can
be modelled as handlers (of algebraic operations).

2.2 Scoped Operations as Handlers Are Not Modular

However, this treatment of non-algebraic operations leads to a somewhat subtle
complication: as observed by Wu et al. [70], when non-algebraic operations (such
as catch) are modelled with handlers, these handlers play a dual role of (i) mod-
elling the syntax of the operation (the scope for which exceptions are caught
by catch) and (ii) giving semantics to it (when an exception is caught, run the
recovery program). To see the problem more concretely, ideally one would like to
have a syntactic operation catch of the following type that acts on computations
without giving specific semantics a priori,

catch :: Free ES a → Free ES a → Free ES a

allowing to write programs like

prog = do {x ← catch (safeDiv 5) (return 42); put (x + 1)} (4)
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and the semantics of (both algebraic and non-algebraic) operations in prog can be
given separately by handlers. Unfortunately, when catch is modelled as handlers
catchHdl or catchHdl ′ as in the last subsection, the program prog must be written
differently depending on which handler is used:

do x ← handle (catchHdl (return 42)) return (safeDiv 5); put (x + 1)

vs. do xMb ← handle (catchHdl ′ (return 42)) (return · Just) (safeDiv 5)
case xMb of {Nothing → return Nothing

(Just x )→ do r ← put (x + 1); return (Just r)}
The issue is that these handlers interpret the operation catch in different seman-
tic models, Free ES a and Free ES (Maybe a), and this affects both the value x
that is returned, and the way the subsequent put is expressed. Therefore, non-
algebraic operation catch modelled as handlers is not as modular as algebraic
operations, weakening the advantage of programming with algebraic effects.

2.3 Scoped Effects and Functorial Algebras

Now we present an overview of a solution to the problem highlighted above
by modelling exception catching as scoped effects [46] and handle them using
functorial algebras, which will be more formally developed in later sections.

Syntax of Scoped Operations To achieve modularity for (non-algebraic) opera-
tions delimiting scopes, such as catch, which are called scoped operations, Piróg
et al. [46] generalise the free monad Free Σ to a monad Prog Σ Γ accommo-
dating both algebraic and scoped operations. The monad is parameterised by
two functors Σ and Γ , called the algebraic signature and the scoped signature
respectively. The intention is that a constructor Op :: (R → x ) → Σ x of the
algebraic signature represents an algebraic operation Op producing an R-value
as usual, whereas a constructor Sc :: (N → x ) → Γ x of the scoped signature
represents a scoped operation Sc creating N -many scopes enclosing programs.

Example 1. As in the previous subsection, the effect of exceptions has an alge-
braic operation for throwing exceptions, which produces no values, and a scoped
operation for catching exceptions, which creates two scopes, one enclosing the
program for which exceptions are caught, and the other enclosing the recovery
computation. Thus the algebraic and scoped signatures are respectively

data Throw x = Throw data Catch x = Catch x x (5)

Example 2. An effect of explicit nondeterminism has two algebraic operations
for nondeterministic choice and a scoped operation Once:

data Choice x = Fail | Or x x data Once x = Once x (6)

The intention is that this effect implements logic programming [20]—solutions
to a problem are exhaustively searched: operation Or p q splits a search branch
into two; Fail marks a failed branch; and the scoped operation Once p keeps
only the first solution found by p, making it semi-deterministic, which is useful
for speeding up the search with heuristics from the programmer.
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Similar to the free monad, the Prog monad models the syntax of computa-
tions invoking operations from Σ and Γ :

data Prog Σ Γ a = Return a | Call (Σ (Prog Σ Γ a))
| Enter (Γ (Prog Σ Γ (Prog Σ Γ a)))

(7)

Thus an element of Prog Σ Γ a can either (i) return an a-value without
causing effects, or (ii) call an algebraic operation in Σ with more subterms
of Prog Σ Γ a as the continuation after the operation, or (iii) enter the scope of
a scoped operation. The third case deserves more explanation: the first Prog in
(Γ (Prog Σ Γ (Prog Σ Γ a))) represents the programs enclosed by the scoped
operation, and the second Prog represents the continuation of the program after
the scoped operation, and thus the boundary between programs inside and out-
side the scope is kept in the syntax tree, which is necessary because collapsing
the boundary might change the meaning of a program. The distinction between
algebraic and scoped operations can be seen more clearly from the monadic bind
of Prog (the monadic return of Prog is just Return):

(>>=) :: Prog Σ Γ a → (a → Prog Σ Γ b)→ Prog Σ Γ b
(Return a)>>= k = k a
(Call op) >>= k = Call (fmap (>>=k) op)
(Enter sc) >>= k = Enter (fmap (fmap (>>=k)) sc)

For algebraic operations, extending the continuation (>>=k) directly acts on the
argument to the algebraic operation, whereas for scoped operation, (>>=k) acts
on the second layer of Prog . Thus for an algebraic operation o, (o p)>>= k and
o (p >>= k) have the same representation, whereas for a scoped operation s,
(s p)>>= k and s (p >>= k) have different representations, which is precisely the
distinction between algebraic and scoped operations.

The constructors Call and Enter are clumsy to work with, and for writing
programs more naturally, we define smart constructors for operations. Generally,
for algebraic operations Op ::F x → Σ x and scoped operations Sc ::G x → Γ x ,
the smart constructors are

op :: F (Prog Σ Γ a)→ Prog Σ Γ a sc :: G (Prog Σ Γ a)→ Prog Σ Γ a
op = Call ·Op sc = Enter · fmap (fmap return) · Sc

For example, the smart constructor for Catch (Example 1) is

catch :: Prog Σ Catch a → Prog Σ Catch a → Prog Σ Catch a
catch h r = Enter (Catch (fmap return h) (fmap return r))

With all machinery in place, now we can define the program (4) using Prog that
we could not write with Free:

prog = do {x ← catch (safeDiv 5) (return 42); put (x + 1)}

Handlers of Scoped Operations Similar to Free, the Prog monad merely models
the syntax of effectful computations, and more useful semantics need to be given
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data EndoAlg Σ Γ f = EndoAlg {
returnE :: ∀x . x → f x ,
callE :: ∀x . Σ (f x )→ f x ,
enterE :: ∀x . Γ (f (f x ))→ f x }

data BaseAlg Σ Γ f a =
BaseAlg {callB :: Σ a → a

, enterB :: Γ (f a)→ a }

hcata :: (Functor Σ , Functor Γ )⇒ (EndoAlg Σ Γ f )→ Prog Σ Γ a → f a
hcata alg (Return x ) = returnE alg x
hcata alg (Call op) = (callE alg · fmap (hcata alg)) op
hcata alg (Enter scope) = (enterE alg · fmap (hcata alg · fmap (hcata alg))) scope

handle :: (Functor Σ , Functor Γ )
⇒ (EndoAlg Σ Γ x )→ (BaseAlg Σ Γ x b)→ (a → b)→ Prog Σ Γ a → b

handle ealg balg gen (Return x ) = gen x
handle ealg balg gen (Call op) = (callB balg · fmap (handle ealg balg gen)) op
handle ealg balg gen (Enter sc)

= (enterB balg · fmap (hcata ealg · fmap (handle ealg balg gen))) sc

Fig. 1: A Haskell implementation of handling with functorial algebras

by handlers. Although Piróg et al. [46] developed a notion of indexed algebras for
this purpose, indexed algebras turn out to be more complicated than necessary
(we will discuss them in Section 4), and the contribution of this paper is a simpler
kind of handlers for scoped operations, which we call functorial algebras.

Given signatures Σ and Γ , a functorial algebra for them is a quadruple
〈f , b, ealg , balg〉 for some functor f called the endofunctor carrier, type b called
the base carrier. The other two components ealg :: EndoAlg Σ Γ f and balg ::
BaseAlg Σ Γ f b are called the endofunctor algebra and the base algebra. Their
types are fully shown in Figure 1. The intuition is that functor f and ealg inter-
pret the part of a program enclosed by scoped operations, and the type b and
balg interpret the part of a program not enclosed by any scopes.

Example 3. The standard semantics of exception catching (cf. handler (2)) can
be implemented by a functorial algebra with the conventional Maybe functor as
the endofunctor carrier with the following EndoAlg :

excE :: EndoAlg Throw Catch Maybe
excE = EndoAlg {. .} where enterE :: Catch (Maybe (Maybe a))

returnE = Just → Maybe a

callE Throw = Nothing enterE (Catch Nothing r) = join r
enterE (Catch (Just k) ) = k

For the base carrier that interprets operations not enclosed by any catch, a
straightforward choice is just taking Maybe a as the base carrier for a type a,
and setting callB = callE and enterB = enterE , which means that operations
inside and outside scopes are interpreted in the same way.

In general, we can define a specialised version of handle (Figure 1) that only
takes an endofunctor algebra as input for interpreting operations inside and
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outside scopes in the same way:

handleE :: (EndoAlg Σ Γ f )→ Prog Σ Γ a → f a
handleE ealg@(EndoAlg {. .}) = handle ealg (BaseAlg callE enterE ) returnE

Applying handleE excE to the following program produces Just 43 as expected.

do {x ← catch throw (return 42); return (x + 1)} (8)

For the non-standard semantics (cf. (3)) that disables exception recovery, one
can define another endofunctor algebra excE ′ by replacing enterE in excE with

enterE ′ :: Catch (Maybe (Maybe a))→ Maybe a
enterE ′ (Catch Nothing ) = Nothing ; enterE ′ (Catch (Just k) ) = k

With excE ′, handling the program in (8) produces Nothing as expected.

Now we provide some intuition for how functorial algebras work. First note
that the three fields of EndoAlg in Figure 1 precisely correspond to the three
cases of Prog (7). Thus by replacing the constructors of Prog with the cor-
responding fields of EndoAlg , we have a polymorphic function hcata ealg ::
∀x . Prog Σ Γ x → f x (Figure 1) turning a program into a value in f .

The function handle (Figure 1) takes a functorial algebra, a function gen ::
a → b and a program p as arguments, and it handles all the effectful operations in
p by using hcata ealg for interpreting the part of p inside scoped operations and
balg for interpreting the outermost layer of p outside any scoped operations. The
function gen corresponds to the ‘value case’ of handlers of algebraic effects, which
transforms the a-value returned by a program into the type b for interpretation.

We close this section with some more examples of handling scoped effects
with functorial algebras. The supplementary material of this paper also contains
an OCaml implementation of functorial algebras and the following examples.

Example 4. The standard way to handle explicit nondeterminism with the semi-
deterministic operator once (Example 2) is using a functorial algebra with the
list functor as the endofunctor carrier together with the following algebra:

ndetE :: EndoAlg Choice Once [ ] enterE :: Once [[a ]]→ [a ]
ndetE = EndoAlg { . .} where enterE (Once x ) =

callE :: Choice [a ]→ [a ] if x ≡ [ ] then [ ] else head x
callE Fail = [ ] returnE :: a → [a ]
callE (Or x y) = x ++y returnE x = [x ]

Then applying handleE ndetE to the following program produces [1, 2] as ex-
pected. In comparison, if once were algebraic, the result would be [1].

do {n ← once (or (return 1) (return 3)); or (return n) (return (n + 1))}

Example 5. In the last example we used the list functor to interpret explicit
nondeterminism, resulting in the depth-first search (DFS) strategy for searching.
Noted by Spivey [59], other search strategies can be implemented by other choices



10 Yang et al.

of functors. For example, depth-bounded search (DBS) can be implemented with
the functor Int → [a ], and breadth-first search (BFS) can be implemented with
the functor [[a ]] (or Kidney and Wu [31]’s more efficient LevelT functor).

A powerful application of scoped effects is modelling search strategies:

data Strategy x = DFS x | BFS x | DBS Int x

so that the programmer can freely specify the search strategy of nondetermin-
istic choices in a scope. The algebraic signature Choice and scoped signature
Strategy can be handled by a functorial algebra carried by the endofunctor
([a ], [[a ]], Int → [a ]) and a base type [a ] (assuming that depth-first search
is the default strategy). The complete code is in the supplementary material.

Example 6. A scoped operation for the effect of mutable state is the operation
local s p that executes the program p with a state s and restores to the original
state after p finishes. Thus (local s p>>=k) is different from local s (p>>=k), and
local should be modelled as a scoped operations of signature data Local s a =
Local s a. Together with the usual algebraic operations get and put of state,
Local can be interpreted with a functorial algebra carried by the state monad
type State s a = s → (s, a). The essential part of the functorial algebra is the
following enterE for Local (complete code in the supplementary material):

enterE :: Local (State s (State s a))→ State s a
enterE (Local s ′ f ) s = let ( , k) = f s in k s

Example 7. Parallel composition of processes is not an operation in the usual
algebraic presentations of process calculi [61, 62] precisely because it not alge-
braic: (p | q) >>= k 6= (p >>= k) | (q >>= k). Again, we can model it as a scoped
operation, and different scheduling behaviours of processes can be given as dif-
ferent functorial algebras. The supplementary material contains complete code
of handling parallel composition using the so-called resumption monad [11,47].

3 Categorical Foundations for Scoped Operations

We now move on to a categorical foundation for scoped effects and functorial
algebras. First, we recall some standard category theory underlying algebraic
effects and handlers (Section 3.1) and also Piróg et al. [46]’s monad P that
models the syntax of scoped operations, which is exactly the Prog monad in
the Haskell implementation (Section 3.2). Then, we define functorial algebras
formally (Section 3.3) and show that there is an adjunction between the category
of functorial algebras and the base category (Section 3.4) inducing the monad
P , which provides a means to interpret the syntax of scoped operations.

The rest of this paper assumes familiarity with basic category theory, such
as adjunctions, monads, and initial algebras, which are covered by standard
texts [6, 41, 55]. The mathematical notation in this paper is summarised in the
appendices, which may be consulted if the meaning of some symbols are unclear.
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3.1 Syntax and Semantics of Algebraic Operations

The relationships between equational theories, Lawvere theories, monads, and
computational effects are well-studied for decades from many perspectives [23,
30, 45, 48, 54, 57]. Here we recap a simplified version of equational theories by
Kelly and Power [30] that we follow to model algebraic and scoped effects on
locally finitely presentable (lfp) categories [1].

Locally Finitely Presentable Categories The use of lfp categories in this paper
is limited to some standard results about the existence of many initial algebras
in lfp categories, and thus a reader not familiar with lfp categories may follow
this paper with some simple intuition: a category C is lfp if it has all (small)
colimits and a set of finitely presentable objects such that every object in C can be
obtained by ‘glueing’ (formally, as filtered colimits of) some finitely presentable
objects. For example, Set is lfp with finite sets as its finitely presentable objects,
and indeed every set can be obtained by glueing, here meaning taking the union
of, all its finite subsets: X =

⋃
{N ⊆ X | N finite }. Other examples of lfp

categories include the category of partially ordered sets, the category of graphs,
the category of small categories, and presheaf categories (we refer the reader
to the excellent exposition [57] for concrete examples), thus lfp categories are
widespread to cover many semantic settings of programming languages.

Moreover, an endofunctor F : C → C is said to be finitary if it preserves
‘glueing’ (filtered colimits), which implies that its values FX are determined
by its values at finitely presentable objects: FX ∼= F (colimiNi) ∼= colimiFNi
where Ni are the finitely presentable objects that generate X when glued to-
gether. For example, polynomial functors

∐
n∈N Pn × (−)n on Set are finitary

where Pn is a set for every n.

Algebraic Operations on LFP Categories Fixing an lfp category C, we take fini-
tary endofunctors Σ : C → C as signatures of operations on C. Like in Sec-
tion 2.1, the intuition is that every natural transformation

∐
C(R,−) P → Σ−

for some object P : C and a finitely presentable object R : C stands for an
operation taking a parameter of type P and R-many arguments. The category
Σ-Alg of Σ-algebras is defined as usual: it has pairs 〈X : C,α : ΣX → X〉
as objects and morphisms h : X → X ′ such that h ·α = α′ ·Σh as morphisms
〈X,α〉 → 〈X ′,α′〉. The following classical results (see e.g. [2, 5]) give sufficient
conditions for constructing initial and free Σ-algebras:

Lemma 1. If category C has finite coproducts and colimits of all ω-chains and
functor Σ : C → C preserves them, then the forgetful functor UΣ : Σ-Alg → C
forgetting the structure maps has a left adjoint FreeΣ : C → Σ-Alg mapping
every X : C to a Σ-algebra 〈Σ∗X, opX〉 where Σ∗X denotes the initial algebra
µY . X +ΣY and opX : ΣΣ∗X → Σ∗X.

Lemma 1 is applicable to our setting since C being lfp directly implies that
it has all colimits, and finitary functors Σ preserve colimits of ω-chains because
colimits of ω-chains are filtered. Hence we have an adjunction: FreeΣ a UΣ :
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Σ-Alg → C. We denote the monad from the adjunction by Σ∗ = UΣFreeΣ
(which is implemented as the Free Σ monad in Section 2.1). The idea is still
that syntactic terms built from operations in Σ are modelled by the monad
Σ∗, and semantics of operations are given by Σ-algebras. Given any Σ-algebra
〈X,α : ΣX → X〉 and morphism g : A→ X in C, they induce an interpretation
morphism handle〈X,α〉g : Σ∗A→ X s.t.

handle〈X,α〉g = UΣ(ε〈X,α〉 · FreeΣg) : Σ∗A = UΣFreeΣA→ X (9)

where ε〈X,α〉 : FreeΣUΣ〈X,α〉 → 〈X,α〉 is the counit of FreeΣ a UΣ .

Algebraic Effects and Handlers The perspective of Plotkin and Pretnar [52] is
that computational effects are characterised by signatures Σ of primitive effectful
operations, and they determine monads Σ∗ that model programs syntactically.
Then Σ-algebras are handlers [52] of operations that can be applied to programs
using (9) to give specific semantics to operations.

The approach of algebraic effects has led to a significant body of research
on programming with effects and handlers, but it imposes an assumption on
the operations to be modelled: the construction of Σ∗ in Lemma 1 [2,5] implies
that the multiplication µ of the monad Σ∗ satisfies the algebraicity property:
op ·(Σ ◦µ) = µ ·(op ◦Σ∗) : ΣΣ∗Σ∗ → Σ∗ where op : Σ(Σ∗) → Σ∗. This
intuitively means that every operation inΣ must be commutative with sequential
composition of computations. Many, but not all, effectful operations satisfy this
property, and they are called algebraic operations.

Adjoint Approach to Effects The crux of algebraic effects and handlers is the
adjunction FreeΣ a UΣ . However, we have not relied on the adjunction being
the free/forgetful one at all: given any monad P : C→ C that models the syntax
of effectful P rograms, if L a R : D → C is an adjunction such that RL ∼= P as
monads, then objects D in D provide a means to interpret programs PA—for
any g : A→ RD in C, we have the following interpretation morphism

handleDg = R(εD ·Lg) : PA ∼= R(LA)→ RD (10)

The intuition for g is that it transforms the returned value A of a computation
into the carrier RD, so it corresponds to the ‘value case’ of effect handlers [8].
Piróg et al. [46] call this approach the adjoint-theoretic approach to syntax and
semantics of effects, and they construct an adjunction between indexed algebras
and the base category for modelling scoped operations. Earlier, Levy [37] and
Kammar and Plotkin [28] also adopt a similar adjunction-based viewpoint in the
treatment of call-by-push-value calculi: value types are interpreted in the base
category C, and computation types are interpreted in the algebra category D.

Remark 1. A notable missing part of our treatment is the equations that specify
operations in a signature. Following Kelly and Power [30], an equation for a signa-
ture Σ : C→ C can be formulated as a pair of monad morphisms σ, τ : Γ ∗ → Σ∗

for some finitary functor Γ , and taking their coequaliser Γ ∗ Σ∗ M
τ

σ
in
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the category of finitary monads constructs a monad M that represents terms
modulo the equation l = r. Although it seems straightforward to extend this
formulation of equational theories work with scoped effects, we do not consider
equations in this paper for the sake of simplicity.

Remark 2. Working with lfp categories precludes operations with infinite argu-
ments, such as the get operation (1) of mutable state when the state has infinite
possible values, but this limitation is not inherent and can be handled by moving
to locally κ-presentable categories [1] for some larger cardinal κ.

3.2 Syntax of Scoped Operations

Not all operations in programming languages can be adequately modelled as
algebraic operations on Set, for example, λ-abstraction [16], memory cell gener-
ation [38, 48], more generally, effects with dynamically generated instances [62],
explicit substitution [18], channel restriction in π-calculus [61], and their syntax
are usually modelled in some functor categories. More recently, Piróg et al. [46]
extend Ghani and Uustalu [18]’s work to model a family of non-algebraic op-
erations, which they call scoped operations. In this subsection, we review their
development in the setting of lfp categories. Throughout the rest of the paper,
we fix an lfp category C, and refer to it as the base category, and it is intended
to be the category in which types of a programming language are interpreted.
Furthermore, we fix two finitary endofunctors Σ,Γ : C → C and call them the
algebraic signature and scoped signature respectively.

Syntax Endofunctor P Now our goal is to construct a monad P : C → C that
models the syntax of programs with algebraic operations in Σ and non-algebraic
scoped operations in Γ . First we construct its underlying endofunctor. When C
is Set, the intuition for programs PA is that they are terms inductively built
from the following inference rules:

a ∈ A
var(a) ∈ PA

o ∈ Σn k : n→ PA

o(k) ∈ PA
s ∈ Γn p : n→ PX k : X → PA

{s(p); k} ∈ PA

where n ranges over finite sets and o ∈ Σn represents an algebraic operation
of |n| arguments, and similarly s ∈ Γn is a scoped operation that creates |n|
scopes. The difference between algebraic and scoped operations is manifested by
an additional explicit continuation k in the third rule, as it is not the case that
sequentially composing s(p) with k equals s(p; k) like for algebraic operations,
so the continuation for scoped operations must be explicitly kept in the syntax.
When C is any lfp category, these rules translate to the following recursive
equation for the functor P : C→ C:

PA ∼= A+Σ(PA) +
∫X:C∐

C(X,PA) Γ (PX) (11)

where the existentially quantified X in the third rule is translated to a coend∫X:C
in C [41]. Moreover, the coend in (11) is isomorphic to Γ (P (PA)) because
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by the coend formula of Kan extension, it exactly computes LanI(ΓP )(PA), i.e.
the left Kan-extension of ΓP along the identity functor I : C → C, and by
definition LanI(ΓP ) = ΓP . Thus (11) is equivalent to

PA ∼= A+Σ(PA) + Γ (P (PA)) (12)

which is exactly the Prog Σ Γ datatype that we saw in the Haskell implementa-
tion (7). To obtain a solution to (12), we construct a (higher-order) endofunctor
G : Endof (C) → Endof (C) to represent the Grammar where Endof (C) is the
category of finitary endofunctors on C:

G = Id +Σ ◦−+ Γ ◦−◦− (13)

where Id : C → C is the identity functor. Then Lemma 1 is applicable be-
cause Endof (C) has all small colimits since colimits in functor categories can be
computed pointwise and C has all small colimits. Furthermore, G preserves all
filtered colimits, in particular colimits of ω-chains, because −◦= : Endof (C) ×
Endof (C)→ Endof (C) is finitary following from direct verification. Since initial
algebras are precisely free algebras generated by the initial object, by Lemma 1,
there is an initial G-algebra 〈P : Endof (C), in : GP → P 〉 and in is an isomor-
phism. Thus P obtained in this way is indeed a solution to (12)—the endofunctor
modelling the syntax of programs with algebraic and scoped operations.

Monadic Structure of P Next we equip the endofunctor P with a monad struc-
ture. This can be done in several ways, either by the general result about
Σ-monoids [14, 16] in Endof (C), or by [43, Theorem 4.3], or by the following
relatively straightforward argument in [46]: by the ‘diagonal rule’ of comput-
ing initial algebras by Backhouse et al. [4], P = µG (13) is isomorphic to
P ′ = µX. Id + Σ ◦X + Γ ◦P ◦X. Note that P ′ is exactly (Σ + Γ ◦P )∗ as
endofunctors by Lemma 1, thus

P ∼= (Σ + Γ ◦P )∗ : Endof (C) (14)

Then we equip P with the same monad structure as the ordinary free monad
(Σ + Γ ◦P )∗. The implementation in (7) is exactly this monad structure.

3.3 Functorial Algebras of Scoped Operations

To interpret the monad P (12) modelling the syntax of scoped operations, it
is natural to expect that semantics is given by G-algebras on Endof (C) so that
interpretation is then the catamorphisms from µG to G-algebras. And follow-
ing the adjoint-theoretic approach (10), we would like to have an adjunction

G-Alg Ca such that the induced monad is isomorphic to P . However, there

seems no natural way to construct such an adjunction unless we replace G-
algebras with a slight extension of it, which we referred to as functorial algebras,
as the notion for giving semantics to scoped operations. In the following, we first
define functorial algebras formally (Definition 1) and then show the adjunction
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between the category of functorial algebras and the base category (Theorem 1),
which allows us to interpret P with functorial algebras.

A functorial algebra is carried by an endofunctorH : C→ C with additionally
an objectX in C. The endofunctorH also comes with a morphism αG : GH → H
in Endof (C), and the object X is equipped with a morphism αI : ΣX+ΓHX →
X in C. The intuition is that given a program of type PX ∼= X + Σ(PX) +
Γ (P (PX)), the middle P in ΓPP corresponds to the part of a program enclosed
by some scoped operations (i.e. the p in {s(p)>>=k}), and this part of the program
is interpreted by H with αG. After the enclosed part is interpreted, αI interprets
the outermost layer of the program by X with αI in the same way as interpreting
free monads of algebraic operations. More precisely, let I : Endof (C) × C → C
be a bi-functor such that 3

IHX = ΣX + Γ (HX) Iσf = Σf + Γ (σ ·Hf) (15)

for all H : Endof (C) and X : C and all morphisms σ : H → H ′ and f : X → X ′.
Then we define an endofunctor Fn : Endof (C)× C→ Endof (C)× C such that

Fn〈H,X〉 = 〈GH, IHX〉 (16)

Definition 1. A functorial algebra is an object 〈H,X〉 in Endof (C)×C paired
with a structure map Fn〈H,X〉 → 〈H,X〉, or equivalently it is a quadruple〈

H : Endof (C), X : C, αG : GH → H, αI : ΣX + Γ (HX)→ X
〉

where GH = Id+Σ ◦H+Γ ◦H ◦H. Morphisms between two functorial algebras
〈H1,X1,αG1 ,αI1〉 and 〈H2,X2,αG2 ,αI2〉 are pairs 〈σ : H1 → H2, f : X1 → X2〉
making the following diagrams commute:

GH1 H1

GH2 H2

αG
1

αG
2

Gσ σ

ΣX1 + Γ (H1X1) X1

ΣX2 + Γ (H2X2) X2

αI
1

f

αI
2

Σf+Γ (σ ◦ f)

Functorial algebras and their morphisms form a category Fn-Alg.

Example 8. We reformulate our programming example of nondeterministic choice
with once shown Example 4 in the formal definition. Let C = Set in this example
and 1 = {?} be some singleton set. We define signature endofunctors

ΣX = 1 +X ×X ΓX = X

so that Σ represents nullary algebraic operation fail and binary algebraic opera-
tion or , and Γ represents the unary scoped operation once that creates one scope.
Let List : Set→ Set be the endofunctor mapping a set X to the set of finite lists

3 The first argument H to I is written as subscript so that we have a more compact
notation I∗H when taking the free monad of IH : CC with the first argument fixed.
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with elements from X. We define natural transformations αΣ : Σ ◦ List → List
and αΓ : Γ ◦ List ◦ List → List by

αΣX(ι1 ?) = nil , αΣX(ι2 〈x, y〉) = x++y, αΓX(nil) = nil , αΓX(cons x xs) = x

where nil is the empty list; ++ is list concatenation; and cons x xs is the list
with an element x in front of xs. Then for any set X, 〈List , List X 〉 carries a
functorial algebra with structure maps

αG = [ηList ,αΣ ,αΓ ] : GList → List αI = [αΣX ,αΓX ] : IListX → X (17)

where ηList : Id→ List wraps any element into a singleton list.

The last example exhibits that one can define a functorial algebra carried
by 〈H,HX〉 from a G-algebra on H : Endof (C) by simply choosing the object
component to be HX for an arbitrary X : C. In other words, there is a faithful
functor G-Alg→ Fn-Alg, which results in functorial algebras that interpret the
outermost layer of a program—the part not enclosed by any scoped operation—
in the same way as the inner layers. But in general, the object component of
functorial algebras offers the flexibility that the outermost layer can be inter-
preted differently from the inner layers, as in the following example.

Example 9. Continuing Example 8, if one is only interested in the final number
of possible outcomes, then one can define a functorial algebra 〈List ,N,αG,αI〉
where αG is (17) and αI(ι1 (ι1?)) = 0,

αI(ι1 (ι2〈x, y〉)) = x+ y, αI(ι2 nil) = 0, αI(ι2 (cons n ns)) = n

3.4 Interpreting with Functorial Algebras

In the rest of this section we show how functorial algebras can be used to in-
terpret programs PA (12) with scoped operations. We first construct a simple
adjunction ↑ a ↓ between the base category C and Endof (C)×C, which is then
composed with the free/forgetful adjunction FreeFn a UFn between Endof (C)×C
and Fn-Alg for the functor Fn (16). The resulting adjunction (18) is proven to
induce a monad T isomorphic to P (Theorem 1), and by the adjoint-theoretic
approach to syntax and semantics (10), this adjunction provides a means to
interpret scoped operations modelled with the monad P (Theorem 2).

First we define functor ↑ : C→ Endof (C)× C such that ↑X = 〈0,X〉 where
0 : Endof (C) is the initial endofunctor—the constant functor sending everything
to the initial object in C. The functor ↑ is left adjoint to the projection functor
↓ : Endof (C)× C→ C of the second component.

Then we would like to compose ↑ a ↓ with the free-forgetful adjunction
FreeFn a UFn for the endofunctor Fn (16) on Endof (C) × C, and the latter ad-
junction indeed exists.

Lemma 2. The endofunctor Fn (16) on Endof (C) × C has free algebras, i.e.
there is a functor FreeFn : Endof (C) × C → Fn-Alg left adjoint to the forgetful
functor UFn : Fn-Alg→ Endof (C)× C.
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These two adjunctions are depicted in the following diagram:

Fn-Alg Endof (C)× C C⊥
UFn

FreeFn

⊥
↓

↑
T (18)

and we compose them to obtain an adjunction FreeFn ↑ a ↓ UFn between Fn-Alg

and C, giving rise to a monad T = ↓ UFnFreeFn ↑. In the rest of this section, we
prove that T is isomorphic to P (11) in the category of monads, which is crucial
in this paper, since it allows us to interpret scoped operations modelled by the
monad P with functorial algebras Fn-Alg.

We first establish a technical lemma characterising the free Fn-algebra on the
product category Endof (C)×C in terms of the free algebras in C and Endof (C).

Lemma 3. There is a natural isomorphism between FreeFn and the following

F̂reeFn〈H,X〉 =
〈
G∗H : Endof (C), (IG∗H)∗X : C, opG

∗

H , op
(IG∗H)∗

X

〉
where opG

∗

H : G(G∗H) → G∗H and op
(IG∗H)∗

X : IG∗H((IG∗H)∗X) → (IG∗H)∗X
are the structure maps of the free G-algebra and IG∗H-algebra respectively.

Theorem 1. Monads P (12) and T (18) are isomorphic as monads.

Remark 3. In general, the right adjoint ↓ UFn is not monadic since it does not re-
flect isomorphisms, which is a necessary condition for it to be monadic by Beck’s
monadicity theorem [41]. This entails that the category Fn-Alg of functorial alge-
bras is not equivalent to the category of Eilenberg-Moore algebras. Nonetheless,
as we will see later in Section 4, functorial algebras and Eilenberg-Moore algebras
have the same expressive power for interpreting scoped operations.

The isomorphism established Theorem 1 enables us to interpret programs
modelled by the monad P using functorial algebras following (10): for any func-
torial algebra 〈H,X,αG,αI〉 (Definition 1), and any morphism g : A → X in
the base category C, there is a morphism

handle〈H,X,αG,αI〉 g = ↓ UFn(ε〈H,X,αG,αI〉 · FreeFn ↑ g) : TA ∼= PA→ X (19)

which interprets programs PA with the functorial algebra 〈H,X,αG,αI〉. Fur-
thermore, we can derive the following recursive formula (20) for this interpreta-
tion morphism, which is exactly the Haskell implementation in Figure 1.

Theorem 2 (Interpreting with Functorial Algebras). For any functorial
algebra α = 〈H,X,αG,αI〉 as in Definition 1, and any morphism g : A → X
for some A in the base category C, let h = LαGM : P → H be the catamorphism
from the initial G-algebra P to the G-algebra αG : GH → H. The interpretation
of PA with this algebra α and g satisfies

handleα g = [g, αIΣ ·Σ(handleα g), αIΓ ·ΓhX ·ΓP (handleα g)] · in◦A (20)

where in◦ : P → Id+Σ ◦P + Γ ◦P ◦P is the isomorphism between P and GP ;
morphisms αIΣ = αI · ι1 : ΣX → X and αIΓ = αI · ι2 : ΓHX → X are the two
components of αI : ΣX + ΓHX → X.
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To summarise, we have defined a notion of functorial algebras that we use to
handle scoped operations. The heart of the development is the adjunction (18)
that induces a monad isomorphic to the monad P (12) that models the syntax of
programs with scoped operations, following which we derive a recursive formula
(20) that interprets programs with functor algebras. The formula is exactly the
implementation in Figure 1: the datatype EndoAlg represents the αG in (20);
datatype BaseAlg corresponds to αI ; function hcata implements LαGM.

4 Comparing the Models of Scoped Operations

Functorial algebras are not the only option for interpreting scoped operations. In
this section we compare functorial algebras with two other approaches, one being
Piróg et al. [46]’s indexed algebras and the other one being Eilenberg-Moore (EM)
algebras of the monad P (12), which simulate scoped operations with algebraic
operations. After a brief description of these two kinds of algebras, we compare
them and show that their expressive power is in fact equivalent.

4.1 Interpreting Scoped Operations with Eilenberg-Moore Algebras

In standard algebraic effects, handlers are just Σ-algebras for some signature
functor Σ : C→ C, and it is well known that the category Σ-Alg of Σ-algebras
is equivalent to the category CΣ∗ of EM algebras of the monadΣ∗. Thus handlers
of algebraic operations are exactly EM algebras of the monad Σ∗ modelling the
syntax of algebraic operations. This observation suggests that we may also use
EM algebras of the monad P (12) as the notion of handlers for scoped operations.

Lemma 4. EM algebras of P are equivalent to (Σ + Γ ◦P )-algebras. In other
words, an EM algebra of P is equivalently a tuple

〈X : C, αΣ : ΣX → X, αΓ : Γ (PX)→ X〉 (21)

Thus we obtain a way of interpreting scoped operations based on the adjunc-
tion FreeΣ+Γ ◦P a UΣ+Γ ◦P : given an EM algebra α = 〈X,αΣ ,αΓ 〉 of P as in
(21), then for any A : C and morphism g : A→ X, the interpretation of PA by
g and this EM algebra is

handleα g = UΣ+Γ ◦P (εα · FreeΣ+Γ ◦P g) : PA ∼= (Σ + Γ ◦P )∗A→ X (22)

The formula (22) can also be turned into a recursive form:

handleα g = [g, αΣ ·Σ(handleα g), αΓ ·ΓP (handleα g)] · in◦A (23)

that suits implementation (see the appendices for more details).
Interpreting scoped operation with EM algebras can be understood as sim-

ulating scoped operations with algebraic operations and general recursion: a
signature (Σ,Γ ) of algebraic-and-scoped operations is simulated by a signature
(Σ+Γ ◦P ) of algebraic operations where P is recursively given by (Σ+Γ ◦P )∗. In
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this way, one can simulate scoped operation in languages implementing algebraic
effects that allow signatures of operation to be recursive, such as [7, 19, 36], but
not the original design by Plotkin and Pretnar [52], which requires signatures of
operations to mention only some base types.

The downside of this simulating approach is that the denotational seman-
tics of the language becomes more complex and usually involves solving some
domain-theoretic recursive equations, like in [7]. Moreover, this approach typi-
cally requires handlers to be defined with general recursion, which obscures the
inherent structure of scoped operations, making reasoning about handlers of
scoped operations more difficult.

4.2 Indexed Algebras of Scoped Effects

Indexed algebras of scoped operations by Piróg et al. [46] are yet another way
of interpreting scoped operations. They are based on the following adjunction:

Ix-Alg C|N| C
�

�UIx

FreeIx aa (24)

where C|N| is the functor category from the discrete category |N| of natural
numbers to the base category C. That is to say, an object in C|N| is a family of
objects Ai in C indexed by natural numbers i ∈ |N|, and a morphism τ : A→ B
in C|N| is a family of morphisms τi : Ai → Bi in C (with no coherence conditions).
An endofunctor Ix : C|N| → C|N| is defined to characterise indexed algebras:

IxA = Σ ◦A+ Γ ◦(/A) + (.A)

where / and . are functors C|N| → C|N| shifting indices such that (/A)i = Ai+1

and (.A)0 = 0 and (.A)i+1 = Ai. Then objects in Ix-Alg are called indexed
algebras. Furthermore, since a morphism (.A) → A is in bijection with A →
(/A), an indexed algebra can be given by the following tuple:

〈A : C|N|, a : Σ ◦A→ A, d : Γ (/A)→ A, p : A→ /A〉 (25)

The operational intuition for it is that the carrier Ai at level i interprets the
part of syntax enclosed by i layers of scopes, and when interpreting a scoped
operation Γ (P (PX)) at layer i, the part of syntax outside the scope is first
interpreted, resulting in Γ (PAi), and then the indexed algebra provides a way
p to promote the carrier to the next level, resulting in Γ (PAi+1). After the
inner layer is also interpreted as ΓAi+1, the indexed algebra provides a way d to
demote the carrier, producing Ai again. Additionally the morphism a interprets
ordinary algebraic operations.

Example 10. Example 8 for nondeterministic choice with once can be expressed
with an indexed algebra as follows. For any set X, we define an indexed object
A : C|N| by A0 = List X and Ai+1 = List Ai. The object A carries an indexed
algebra with the following structure maps: for all i ∈ N, ai(ι1 ?) = nil and

ai(ι2 〈x, y〉) = x++y, di(nil) = nil , di(cons x xs) = x, pi(x) = cons x nil
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The adjunction FreeIx a UIx in (24) is the free-forgetful adjunction for Ix

on C|N|. The other adjunction �a� is given by � A = A0, (� X)0 = X, and
(�X)i+1 = 0 for all i ∈ N. Importantly, Piróg et al. [46] show that the monad
induced by the adjunction (24) is isomorphic to monad P (12), thus indexed
algebras can also be used to interpret scoped operations

handle〈A,a,d,p〉 g = � UIx(ε〈A,a,d,p〉 · FreeIx � g) (26)

in the same way as what we do for functorial algebras in Section 3.4. Interpreting
with indexed algebras can also be implemented in Haskell with GHC’s DataKinds
extension for type-level natural numbers (which can be found in the appendices).

4.3 Comparison of Resolutions

Now we come back to the real subject of this section—comparing the expressivity
of the three ways for interpreting scoped operations. Specifically, we construct
comparison functors between the respective categories of the three kinds of al-
gebras, which translate one kind of algebras to another in a way preserving the
induced interpretation in the base category. Categorically, the three kinds of
algebras correspond to three resolutions of the monad P , which form a cate-
gory of resolutions (Definition 2) with comparison functors as morphisms. In
this category, the Eilenberg-Moore resolution is the terminal object, and thus
it automatically gives us comparison functors translating other kinds of alge-
bras to EM algebras. To complete the circle of translations, we then construct
comparison functors KEM

Fn
: CP → Fn-Alg translating EM algebras to functorial

ones (Section 4.4) and KFn

Ix
: Fn-Alg→ Ix-Alg translating functorial algebras to

indexed ones (Section 4.5).

Definition 2 (Resolutions [35]). Given a monad M on C, the category
Res(M) of resolutions of M has as objects adjunctions 〈D,L a R : D→ C, η, ε〉
whose induced monad RL is M . A morphism from a resolution 〈D,L a R, η, ε〉
to 〈D′,L′ a R′, η′, ε′〉 is a functor K : D→ D′, called a comparison functor, such
that it commutes with the left and right adjoints, i.e. KL = L′ and R′K = R.

We have seen adjunctions for indexed algebras, EM algebras and functorial
algebras respectively, each inducing the monad P up to isomorphism, so each of
them can be identified with an object in the category Res(E). For each resolution
〈D,L,R, η, ε〉, we have been using the objects D in D to interpret scoped opera-
tions modelled by P : for any morphism g : A→ RD in C, the interpretation of
PA by D and g is handleD g = R(εD ·Lg) : PA = RLA → RD. Crucially, we
show that interpretations are preserved by comparison functors.

Lemma 5 (Preservation of Interpretation). Let K : D→ D′ be any com-
parison functor between resolutions 〈D,L,R, η, ε〉 and 〈D′,L′,R′, η′, ε′〉 of some
monad M : C→ C. For any object D in D and any g : A→ RD in C,

handleD g = handleKD g : MA→ RD(= R′KD) (27)

where each side interprets MA using L a R and L′ a R′ respectively.
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This lemma implies that if there is a comparison functor K from some reso-
lution L a R : D→ C to L′ a R′ : D′ → C of the monad P , then K can translate
a D object to a D′ object that preserves the induced interpretation. Thus the
expressive power of D for interpreting P is not greater than D′, in the sense
that every handleD g that one can obtain from D in D can also be obtained by
an algebra KD in D′. Thus the three kinds of algebras for interpreting scoped
operations have the same expressivity if we can construct a circle of comparison
functors between their categories, which is what we do in the following.

Translating to EM Algebras As shown in [41], an important property of the
Eilenberg-Moore adjunction is that it is the terminal object in the category
Res(M) for any monad M , which means that there uniquely exists a comparison
functor from every resolution to the Eilenberg-Moore resolution. Specifically,
given a resolution 〈D,L,R, η, ε〉 of a monad M , the unique comparison functor
K from D to the category CM of the Eilenberg-Moore algebras is

KD =
(
M(RD) = RLRD

RεD−−−→ RD
)

and K(D
f−→ D′) = Rf

Lemma 6. There uniquely exist comparison functors KIx

EM
: Ix-Alg → CP and

KFn

EM
: Fn-Alg → CP from the resolutions of indexed algebras and functorial

algebras to the resolution of EM algebras.

4.4 Translating EM Algebras to Functorial Algebras

Now we construct a comparison functor KEM

Fn
: CP → Fn-Alg translating EM

algebras to functorial ones. The idea is straightforward: given an EM algebra X,
we map it to the functorial algebra with X for interpreting the outermost layer
and the functor P for interpreting the inner layers, which essentially leaves the
inner layers uninterpreted before they get to the outermost layer.

Since CP is isomorphic to (Σ+Γ ◦P )-Alg, we can define KEM

Fn
on (Σ+Γ ◦P )-

algebras instead. Given any 〈X : C,α : (Σ + Γ ◦P )X → X〉, it is mapped by
KEM

Fn
to the functorial algebra

〈P , X, in : GP → P , α : (Σ + Γ ◦P )X → X〉

and for any morphism f in (Σ + Γ ◦P )-Alg, it is mapped to 〈idP , f〉. To show
KEM

Fn
is a comparison functor, we only need to show that it commutes with the left

and right adjoints of both resolutions. Details can be found in the appendices.

Lemma 7. Functor KEM

Fn
is a comparison functor from the Eilenberg-Moore res-

olution of P to the resolution FreeFn ↑ a ↓ UFn of functorial algebras.

4.5 Translating Functorial Algebras to Indexed Algebras

At this point we have comparison functors Ix-Alg
KIx

EM−−→ CP
KEM

Fn−−→ Fn-Alg. To
complete the circle of translations, we construct a comparison functor KFn

Ix
:
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Fn-Alg → Ix-Alg in this subsection. The idea of this translation is that given
a functorial algebra carried by endofunctor H : CC and object X : C, we map
it to an indexed algebra by iterating the endofunctor H on X. More precisely,
KFn

Ix
: Fn-Alg→ Ix-Alg maps a functorial algebra

〈H : CC, X : C, αG : Id +Σ ◦H + Γ ◦H ◦H → H, αI : ΣX + ΓHX → X〉

to an indexed algebra carried by A : C|N| such that Ai = HiX, i.e. iterating
H i-times on X. The structure maps of this indexed algebra 〈a : ΣA → A, d :
Γ (/A)→ A, p : A→ (/A)〉 are given by

a0 = (αI · ι1) : ΣX → X ai+1 = (αGHiX · ι2) : ΣHHiX → Hi+1X

d0 = (αI · ι2) : ΓHX → X di+1 = (αGHiX · ι3) : ΓHHHiX → Hi+1X

and pi = αGHiX · ι1 : HiX → HHiX. On morphisms, KFn

Ix
maps a morphism

〈τ : H → H ′, f : X → X ′〉 in Fn-Alg to σ : HiX → H ′iX ′ in Ix-Alg such that
σ0 = f and σi+1 = τ ◦σi where ◦ is horizontal composition.

Lemma 8. KFn

Ix
is a comparison functor from the resolution FreeFn ↑ a ↓ UFn of

functorial algebras to the resolution FreeIx � a � UIx of indexed algebras.

Since comparison functors preserve interpretation (Lemma 5), the lemma
above implies that the expressivity of functorial algebras is not greater than
indexed ones. Together with the comparison functors defined earlier, we con-
clude that the three kinds of algebras—indexed, functorial and Eilenberg-Moore
algebras—have the same expressivity for interpreting scoped operations.

Remark 4. Although the three kinds of algebras have the same expressivity in
theory, they structure the interpretation of scoped operations in different ways:
EM algebras impose no constraint on how the part of syntax enclosed by scopes is
handled; indexed algebras demand them to be handled layer by layer but impose
no coherent conditions between the layers; functorial algebras additionally force
all inner layers must be handled in a uniform way by an endofunctor.

On the whole, it is a trade-off simplicity and structuredness: EM algebras
are the simplest for implementation, whereas the structuredness of functorial
algebras make them easier to reason about. This is another instance of the
preference for structured programming over unstructured language features, in
the same way as structured loops being favoured over goto, although they have
the same expressivity in theory [13].

5 Fusion Laws of Interpretation

An advantage of the adjoint-theoretic approach to syntax and semantics is that
the naturality of an adjunction directly offers fusion laws of interpretation that
fuse a morphism after an interpretation into a single interpretation, which have
proven to be a powerful tool for reasoning about and optimising programs ma-
nipulating abstract syntax [12,21,65,66] and in particular handlers of algebraic
effects [69,72]. In this section, we present the fusion law for functorial algebras.
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5.1 Fusion Laws of Interpretation

Recall that given any resolution L a R with counit ε of some monad M : C→ C
where L : C→ D, for any g : A→ RD, we have an interpretation morphism

handleD g = R(εD ·Lg) : MA→ RD

Then whenever we have a morphism in the form of (f · handleD g)—an interpre-
tation followed by some morphism—the following fusion law allows one to fuse
it into a single interpretation morphism.

Lemma 9 (Interpretation Fusion). Assume L a R is a resolution of monad
M : C→ C where L : C→ D. For every D : D, g : A→ RD and f : RD → X,
if there is some D′ and h : D → D′ in D such that RD′ = X and Rh = f , then

f · handleD g = handleD′ (f · g) (28)

Applying the lemma to the three resolutions of P gives us three fusion laws:
for any D : D where D ∈ {Ix-Alg, Fn-Alg,CP }, one can fuse f · handleD g into
a single interpretation if one can make f a D-homomorphism. Particularly, the
following is the fusion law for functorial algebras.

Corollary (Fusion Law for Functorial Algebras). Let α̂1 = 〈H,X1,αG1 ,αI2〉
be a functorial algebra (Definition 1) and g : A → X1, f : X1 → X2 be any
morphisms in C. If there is a functorial algebra α̂2 = 〈H2,X2,αG2 ,αI2〉 and a
functorial algebra morphism 〈σ : H1 → H2,h : X1 → X2〉, then

f · handleα̂1
g = handleα̂2

(f · g)

Example 11. Let α̂ be the functorial algebra of nondeterminism with once in
Example 8 and len : List A → N be the function mapping a list to its length.
Then using the fusion law, len · handleα̂ g = handleβ̂ (len · g) if we can find a

suitable functorial algebra β̂ : Fn-Alg and h : α̂→ β̂ s.t. ↓ UFnh = len. In fact, a
suitable β̂ is just the functorial algebra in Example 9 and h = 〈id , len〉.

Example 12. Although Piróg et al. [46] propose the adjunction (24) to interpret
scoped operations with indexed algebras, their Haskell implementation is not
a faithful implementation of the interpretation morphism (26), but rather a
more efficient one skipping the step of transforming P to the isomorphic free
indexed algebra (� UIxFreeIx �). However, it is previously unclear whether this
implementation indeed coincides with the interpretation morphism (26) due to
the discrepancy between the syntax monad P and indexed algebras.

This issue is in fact one of the original motivations for us to develop functo-
rial algebras—a way to interpret P that directly follows the syntactic structure.
Using the comparison functors to transform between indexed and functorial al-
gebras, we can reason about Piróg et al. [46]’s implementation with functorial
algebras, and its correctness can be established using fusion laws. This extended
case study is in the appendices.
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6 Related Work

The most closely related work is that of Piróg et al. [46] on categorical models of
scoped effects. That work in turn builds on Wu et al. [70] who introduced the no-
tion of scoped effects after identifying modularity problems with using algebraic
effect handlers for catching exceptions [52]. Scoped effects have found their way
into several Haskell implementations of algebraic effects and handlers [32,42,56].

Effect Handlers and Modularity Spivey [60], Moggi [44] and Wadler [67] initiated
monads for modeling and programming with computational effects. Soon after,
the desire arose to define complex monads by combining modular definitions
of individual effects [26, 63], and monad transformers were developed to meet
this need [39]. Yet, several years later, algebraic effects were proposed as an
alternative more structured approach for defining and combining computational
effects [22, 48, 49]. The addition of handlers [52] has made them practical for
implementation and many languages and libraries have been developed since.
Schrijvers et al. [58] have characterised modular handlers by means of modular
carriers, and shown that they correspond to a subclass of monad transformers.

Scoped operations are generally not algebraic operations in the original design
of algebraic effects [48], but as we have seen in Section 4.1, an alternative view
on Eilenberg-Moore algebras of scoped operations is regarding them as handlers
of algebraic operations of signature Σ + ΓP . However, the functor Σ + ΓP
involves the type P modelling computations, and thus it is not a valid signature
of algebraic effects in the original design of effect handlers [51,52], in which the
signature of algebraic effects can only be built from some base types to avoid
the interdependence of the denotations of signature functors and computations.
In spite of that, many later implementations of effect handlers such as Eff [7],
Koka [36] and Frank [40] do not impose this restriction on signature functors
(at the cost that the denotational semantics involves solving recursive domain-
theoretic equations), and thus scoped operations can be implemented in these
languages with EM algebras as handlers.

Other variations of scoped effects have been suggested. Recently, Poulsen
et al. [53] and van den Berg et al. [9] have proposed a notion of staged or
latent effect, which is a variant of scoped effects, for modelling the deferred
execution of computations inside lambda abstractions and similar constructs.
Ahman and Pretnar [3] investigate asynchronous effects, and they note that
interrupt handlers are in fact scoped operations. We have not yet investigated
this in our framework, but it will be an interesting use case.

Abstract Syntax This work focusses on the problem of abstract syntax and se-
mantics of programs. The practical benefit of abstract syntax is that it allows for
generic programming in languages like Haskell that have support for, e.g. type
classes, gadts [25] and so on. As an example, Swierstra [64] showed that it is
possible to modularly create compilers by formalising syntax in Haskell.

Fiore et al. [16,17] first formalise abstract syntax categorically for operations
with variable binding. Subsequently, Ghani and Uustalu [18] model the abstract
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syntax of explicit substitutions as an initial algebra in the endofunctor category
and show that it is a monad. Piróg et al. [46] and this paper use a monad P ,
which is a slight generalisation of the monad of explicit substitutions, to model
the syntax of scoped operations. The datatype underlying P is an instance of
nested datatypes studied by Bird and Paterson [10] and Johann and Ghani [24].

In this paper we have not treated equations on effectful operations, which
are both theoretically and practically important. Plotkin and Power [48] show
that theories of various effects with suitable equations determine their corre-
sponding monads, and later Hyland et al. [22] show that certain combinations of
effect theories are equivalent to monad transformers. Equations are also used for
reasoning about programs with algebraic effects and handlers [34, 50, 72]. Pos-
sible ways to extend scoped effects with equations include the approach in [29]
(Remark 1), the categorical framework of equational systems [14], second order
Lawvere theories [15], and syntactic frameworks like [62].

7 Conclusion

The motivation of this work is to develop a structured approach to the syntax
and semantics of scoped operations. We believe our proposal, functorial alge-
bras, is at a sweet spot in the trade-off between structuredness and simplicity,
allowing practical examples of scoped operations to be programmed and rea-
soned about naturally, and implementable in modern functional languages such
as Haskell and OCaml. We put our model and two other models for interpret-
ing scoped effects in the same categorical framework, and we showed that they
have equivalent expressivity for interpreting scoped effects, although they form
non-equivalent categories. The uniform theoretical framework also induces fusion
laws of interpretation in a straightforward way.

There are two strains of work that should be pursued from here. The first
one would be investigating ways to compose algebras of scoped operations. The
second one would be the design of a language supporting handlers of scoped
operations natively and its type system and operational semantics.
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A. (eds.) Mathematical Foundations of Computer Science 2010. pp. 368–380.
Springer Berlin Heidelberg, Berlin, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15155-2_33

16. Fiore, M.P., Plotkin, G.D., Turi, D.: Abstract syntax and variable binding. In: 14th
Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5,
1999 (1999). https://doi.org/10.1109/LICS.1999.782615

17. Fiore, M.P., Turi, D.: Semantics of name and value passing. In: 16th Annual IEEE
Symposium on Logic in Computer Science, Boston, Massachusetts, USA, June
16-19, 2001, Proceedings (2001). https://doi.org/10.1109/LICS.2001.932486

18. Ghani, N., Uustalu, T.: Explicit substitutions and higher-order syntax. In: Proceed-
ings of the 2003 ACM SIGPLAN Workshop on Mechanized Reasoning about Lan-
guages with Variable Binding. p. 1–7. MERLIN ’03, Association for Computing Ma-
chinery, New York, NY, USA (2003). https://doi.org/10.1145/976571.976580

http://eudml.org/doc/16649
https://doi.org/10.1145/3434305
https://doi.org/10.1145/3434305
https://doi.org/10.1007/3-540-60164-3_25
https://doi.org/10.1007/3-540-60164-3_25
https://doi.org/10.2168/lmcs-10(4:9)2014
https://doi.org/10.2168/lmcs-10(4:9)2014
https://doi.org/10.2168/lmcs-10(4:9)2014
https://doi.org/10.2168/lmcs-10(4:9)2014
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/j.jlamp.2014.02.001
https://arxiv.org/abs/2108.11155
https://arxiv.org/abs/2108.11155
https://doi.org/10.1007/s001650050047
https://doi.org/10.1007/s001650050047
https://doi.org/10.1017/S0956796899003342
https://doi.org/10.1017/S0956796899003342
https://doi.org/10.1145/1291220.1291199
https://doi.org/10.1145/1291220.1291199
https://doi.org/10.1145/1291220.1291199
https://doi.org/10.1145/1291220.1291199
https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/362929.362947
https://doi.org/https://doi.org/10.1016/j.tcs.2008.12.052
https://doi.org/https://doi.org/10.1016/j.tcs.2008.12.052
https://doi.org/https://doi.org/10.1016/j.tcs.2008.12.052
https://doi.org/https://doi.org/10.1016/j.tcs.2008.12.052
https://doi.org/10.1007/978-3-642-15155-2_33
https://doi.org/10.1007/978-3-642-15155-2_33
https://doi.org/10.1007/978-3-642-15155-2_33
https://doi.org/10.1007/978-3-642-15155-2_33
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1109/LICS.2001.932486
https://doi.org/10.1109/LICS.2001.932486
https://doi.org/10.1145/976571.976580
https://doi.org/10.1145/976571.976580


Structured Handling of Scoped Effects 27

19. Hillerström, D., Lindley, S.: Shallow Effect Handlers. Lecture Notes in Com-
puter Science 11275 LNCS, 415–435 (2018). https://doi.org/10.1007/

978-3-030-02768-1_22

20. Hinze, R.: Prological features in a functional setting — axioms and implemen-
tations. In: Sato, M., Toyama, Y. (eds.) Proceedings of the Third Fuji Interna-
tional Symposium on Functional and Logic Programming (FLOPS ’98). pp. 98–
122. World Scientific, Singapore, New Jersey, London, Hong Kong (apr 1998)

21. Hinze, R., Harper, T., James, D.W.H.: Theory and practice of fusion. In: Hage, J.,
Morazán, M.T. (eds.) Implementation and Application of Functional Languages.
pp. 19–37. Springer Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.

org/10.1007/978-3-642-24276-2_2

22. Hyland, M., Plotkin, G., Power, J.: Combining effects: Sum and tensor. Theor.
Comput. Sci. 357(1), 70–99 (Jul 2006). https://doi.org/10.1016/j.tcs.2006.
03.013

23. Hyland, M., Power, J.: The category theoretic understanding of universal algebra:
Lawvere theories and monads. Electronic Notes in Theoretical Computer Science
172, 437–458 (2007). https://doi.org/10.1016/j.entcs.2007.02.019, compu-
tation, Meaning, and Logic: Articles dedicated to Gordon Plotkin

24. Johann, P., Ghani, N.: Initial algebra semantics is enough! In: Typed Lambda
Calculi and Applications, TLCA. Lecture Notes in Computer Science, Springer
(2007). https://doi.org/10.1007/978-3-540-73228-0_16

25. Johann, P., Ghani, N.: Foundations for structured programming with gadts. In:
Necula, G.C., Wadler, P. (eds.) Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, January 7-12, 2008. pp. 297–308. ACM (2008). https://doi.

org/10.1145/1328438.1328475

26. Jones, M.P., Duponcheel, L.: Composing monads. Research Report
YALEU/DCS/RR-1004, Yale University, New Haven, Connecticut, USA (Decem-
ber 1993), http://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf

27. Kammar, O., Lindley, S., Oury, N.: Handlers in action. SIGPLAN Not. 48(9),
145–158 (Sep 2013). https://doi.org/10.1145/2544174.2500590

28. Kammar, O., Plotkin, G.D.: Algebraic foundations for effect-dependent optimisa-
tions. In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. p. 349–360. POPL ’12, Association for
Computing Machinery, New York, NY, USA (2012). https://doi.org/10.1145/
2103656.2103698

29. Kelly, G.M.: Structures defined by finite limits in the enriched context, i. Cahiers
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