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Abstract— Camera-equipped UAVs, or drones, are increas-
ingly employed in a wide range of applications. Thus, ensuring
their safe flight in areas containing people is a top priority. In
this paper, a deep neural network-based method is proposed for
the task of visual human crowd detection from UAV footage,
allowing a drone to rapidly extract semantic segmentation maps
from captured video frames during flight. These maps can be
exploited (e.g., by a path planner) to define no-fly zones over, or
near human crowds and, hence, enhance UAV flight safety. To
this end, a novel neural architecture for binary (crowd/non-
crowd) semantic segmentation from single RGB images is
proposed, based on Convolutional Neural Networks (CNNs).
It consists of a semantic segmentation and an image-to-image
translation (I2I) neural branch. The overall network is trained
using a novel multi-task loss function that addresses both tasks
by processing the output of the corresponding branch. During
inference, information flows across branches through additional
skip synapses to further assist the crowd detection task. In
order to evaluate the proposed method, we introduce a real and
a synthetic human crowd RGB image dataset. The proposed
method outperforms previous aerial crowd detection methods
by a large margin and without any post-processing. Moreover,
it demonstrates increased generalization ability, while running
at real-time and near-real-time speeds on a ground computer
and on embedded AI hardware, respectively.

I. INTRODUCTION

Over the last few years, Unmanned Aerial Vehicles
(UAVs) have been utilized in various applications such as
surveillance [1], area mapping [2] or search and rescue op-
erations [3]. In similar scenarios, UAVs might be required to
operate near groups of people, raising significant safety and
legal issues due to possible malfunctions and/or regulations
that forbid flight in the vicinity of human crowds. Relevant
examples include infrastructure inspection in populated ar-
eas, or cinematography/media production applications [4]–
[8], where it is typical to find crowds within the flight area
(e.g., spectators of an outdoors sports event, etc.). Under
such conditions, autonomous UAV operation requires special
precautions.

Improved safety can be achieved by defining no-fly zones,
in order to avoid operation near/over people. Human crowd
detection on video frames captured from UAV cameras offers
an effective solution, as safety can be ensured by visually rec-
ognizing crowded areas on-frame and, subsequently, actively
avoiding them in 3D space (e.g., by back-projecting them
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onto the 3D area map [31] and correspondingly constraining
the path planner). While a strict definition of human crowd is
not commonly accepted, the national legislation of Germany
prohibits UAV operation at a distance of less than 100 m
from assemblages of more than 12 individuals, which is the
crowd definition adopted in this work.

Human crowd detection entails detecting crowd and non-
crowd regions on the 2D image/video frame. Previous meth-
ods approached the crowd detection problem either by ap-
plying a probabilistic model on extracted image features [9],
[10], or by training a Fully Convolutional Network (FCN)
[11] to classify video frame patches in two classes, crowd
and non-crowd [12]–[14], [28]. Alternatively, Convolutional
Neural Networks (CNNs) [16] were trained to perform crowd
counting [20], [23]–[25] or directly regress crowd density
maps [15], [17]–[19], from which human crowd regions
may be obtained by applying image processing methods.
Although these methods were able to predict heatmaps or
density maps that indeed capture visible crowd regions,
the region boundaries are not strictly delineated on the
2D video frame. Therefore, an extra post-processing step
needs to be applied on the output heatmaps or density
maps to obtain the final crowd and non-crowd regions. This
extra post-processing step, which usually consists of simple
image processing methods (e.g., thresholding/binarization,
Gaussian blur, etc.), is not at all robust to distribution
shifts between the training and the test set, while it adds
undesirable computational complexity. The latter point is
especially problematic in embedded systems with limited
computational capabilities, as is typically the case with
drones. In autonomous UAV flight, sluggish prediction of
visible 2D crowd regions raises safety issues: when slow
inference is combined with increased vehicle flight speed,
crowd regions that need to be avoided may easily be missed.

To overcome the above issues, we propose transforming
the crowd detection problem into a binary semantic image
segmentation one, where each pixel of the input video frame
is classified as belonging to either the crowd or the non-
crowd class. Thus, more accurate (pixel-level) crowd region
boundaries can be obtained, while a post-processing step is
no longer necessary. Following this direction, the proposed
method introduces a novel CNN architecture for rapid crowd
segmentation in single RGB images. It utilizes a real-time
semantic image segmentation CNN as the main neural branch
and an Image-to-Image Translation (I2I) [22] network as the
auxiliary branch to aid the main branch in the crowd segmen-
tation task. This is accomplished through skip synapses that
are added between them, in order to allow information flow



              

   

Fig. 1. Overall network architecture of the proposed crowd detection method during training. The semantic image segmentation branch consists of the
Spatial Path and the Context Path, while the I2I branch consists of the generator G, which is followed by the discriminator D. The backbone CNN
(ResNet-18) is shared between the two branches. The proposed additions to the baseline semantic segmentation network lie in the shaded area.

from the I2I branch to the segmentation branch, thus provid-
ing extra context for crowd detection. The overall network
is trained using a novel multi-task objective function that
involves both semantic segmentation and I2I. Finally, we also
introduce two human crowd segmentation image datasets,
DroneCrowd and AirSimCrowd, which consist of real and
synthetic UAV crowd images, respectively, along with their
annotated segmentation maps. The proposed method was
evaluated on both datasets, outperforming previous visual
crowd detection methods while being significantly faster.
Note that the proposed method is a generic, visual-based one
requiring only an RGB camera, thus, it is directly applicable
to any camera-equipped UAV.

In summary, the contributions of this paper are threefold:

• A novel composite CNN architecture for human crowd
detection is introduced, combining in parallel two neural
building blocks (a semantic segmentation and a I2I
branch) that utilize a common feature extraction back-
bone and additional skip synapses between them.

• A novel multi-task loss function is employed for train-
ing the proposed architecture.

• Two new human crowd segmentation image datasets are
introduced for evaluating the proposed method.

II. CROWD SEGMENTATION

In this work, crowd detection is approached as a semantic
image segmentation problem, where each pixel of the input
UAV video frame is assigned a per-class probability for each
of the two object classes (crowd/non-crowd). Thus, for an
input resolution of M×N pixels, the output is a M×N×2
crowd segmentation map. With this goal in mind, a novel
deep CNN architecture for crowd segmentation is proposed,
which combines a semantic image segmentation network
with an I2I network to accurately predict crowd segmentation
maps. he I2I neural branch is used to provide extra semantic
information to the segmentation neural branch through skip
synapses that connect the two branches, further assisting the
crowd segmentation task. The two networks share a single

backbone/feature extraction CNN and are jointly trained
using a multi-task objective function.

A. Semantic Image Segmentation Branch

Given an input image/video frame x, semantic image
segmentation assigns object class probabilities to each input
pixel. Since human crowd positions in the 3D world might
change dynamically during UAV flight, regular and frequent
semantic video feed analysis is a necessity. Thus, BiSeNet
[21] was employed as the baseline semantic segmentation
neural branch, due to its real-time processing capabilities,
and thus is briefly described below. Note, however, that any
fast CNN for semantic image segmentation could be utilized
in its place.

BiSeNet adopts a two-column network architecture con-
sisting of two neural streams, namely, the Spatial Path
and the Context Path. The Spatial Path is composed of a
shallow CNN in order to learn high-resolution features that
encode spatial information. In contrast, pre-trained state-
of-the-art CNN architectures are utilized in the Context
Path to encode high level semantic context information.
Moreover, the features of each stage of the Context Path
are refined using an Attention Refinement Module (ARM)
to guide the learning process. As features from the Spatial
and the Context Path encode different information, a Feature
Fusion Module (FFM) was also utilized to effectively fuse
the learned features. The final segmentation map is, then,
obtained by upsampling the combined feature map to the
output resolution. The loss function employed for training is
the following one:

Lsegm = Lp + α

3∑
i=2

Lai , (1)

where Lp is the principal loss used to supervise the whole
network and Lai

is an auxiliary loss for stage i of the Context
Path. α is used to weight the contribution of the auxiliary
losses in the total loss. Both Lp and Lai are standard Softmax
loss functions. Finally, note that for an input video frame
resolution of M × N pixels, the output of the semantic



segmentation branch, as well as the corresponding ground-
truth during training, is a M ×N × 2 tensor.

B. Image-to-Image Translation Branch

Given paired training samples {xi,yi}, i = 1 . . . N , where
xi ∈ X are images belonging to a source domain X
and yi ∈ Y images belonging to a target domain Y , I2I
methods [22] aim to learn a mapping, G : X 7→ Y . G is
typically represented by an encoder-decoder CNN architec-
ture, trained under the conditional Generative Adversarial
Network (GAN) [27], [38] framework. Conditional GANs
consist of two competing networks, the generator and the
discriminator. Given samples originating from the source
domain, the generator aims to produce outputs that are
similar to target domain samples and cannot be distinguished
by the discriminator, which is adversarially trained to detect
the generator’s “fake” outputs.

In the proposed method, I2I is employed as an auxiliary
task to aid semantic segmentation; the underlying intuition is
that adversarial learning can complement typical supervised
learning. Thus, during training, RGB images of resolution
M×N containing crowds serve as source domain data, while
their corresponding ground-truth RGB segmentation images
(tensors of size M ×N × 3, derived by trivially processing
the corresponding segmentation maps) are utilized as target
domain data. RGB segmentation images constitute simply an
alternative representation of the segmentation map ground-
truth, one necessary for training the I2I neural branch of
the proposed architecture. This branch corresponds to G,
serving as the generator network whose objective is to learn
the underlying mapping from real crowd images (source
domain) to RGB segmentation images (target domain), while
the objective of the employed discriminator D is to dis-
tinguish samples produced by G from ground-truth RGB
segmentation images. As in typical conditional GANs, both
G and D are trained in a supervised manner via the mini-
max game, minGmaxDLcGAN (G,D), where the objective
function LcGAN (G,D) is given by [22]:

LcGAN (G,D) = E(x,y)[logD(x,y)]+

Ex[log(1−D(x, G(x)))]. (2)

In alignment with previous methods [22], [32], we also train
G to not only fool D, but also to generate RGB segmentation
images that are “close” to the corresponding ground-truth
target domain images. As in [22], we utilize the L1 distance
in the employed similarity loss function:

Ls(G) = E(x,y)[‖y −G(x)‖1]. (3)

Apart from LcGAN (G,D) and Ls(G), which are typically
used for training I2I networks [22], we also train the gener-
ator G to predict regular crowd segmentation maps, in order
to prevent the backbone network from losing focus from
our main task (crowd semantic segmentation). Therefore, the
final objective function used to train the I2I neural branch of
the proposed network is defined as follows:

Li2i = min
G

max
D
LcGAN (G,D) + Ls(G) + La(G), (4)

where La(G) is an auxiliary semantic segmentation loss
function for the penultimate convolutional layer of the de-
coder part of G, which is similar to the ones (Lp, Lai

) used
in Eq. (1).

C. Combining Semantic Segmentation with Image-to-Image
Translation

The proposed method combines the semantic image seg-
mentation branch and the I2I branch in a novel, unified
network architecture for crowd segmentation, which is illus-
trated in Fig. 1. The employed semantic image segmentation
neural branch consists of the Context Path and the Spatial
Path, while the I2I neural branch consists of the generator
G followed by the discriminator D. The backbone network
(ResNet-18 [26]) of the Context Path is shared between the
two branches, serving also as the encoder of the generator
G. The decoding network of G is a CNN that uses both
convolutional and deconvolutional layers and D is a standard
PatchGAN [22] classifier, similar to the one used in [22].
Moreover, in order to allow information flow from the I2I
branch to the semantic segmentation branch to enrich the
extracted semantic features, skip synapses between neurons
of the two intermediate stages of G decoder (I2I branch)
and the segmenter’s Context Path were added, conjoining the
two branches. Importantly, as the final crowd segmentation
maps are obtained from the main segmentation branch, the
discriminator D and the two last convolutional layers of the
generator G are necessary only during training, thus, they are
discarded in deployment-time to avoid extra computational
cost during inference.

The overall network is trained using the proposed multi-
task loss function that combines semantic image segmenta-
tion with image-to-image translation:

L = λLsegm + (1− λ)Li2i, (5)

where λ is a hyper-parameter used to adjust focus between
the two tasks.

The advantages of the proposed method are threefold.
First, the proposed multi-task loss function assists the main
crowd segmentation task, by effectively complementing typ-
ical supervised learning with adversarial learning. Since it
is well-known that GANs are inherently resistant to overfit-
ting [38], enhancing supervised training with an adversarial
objective seems to have a regularizing effect. Second, the
backbone CNN (ResNet-18) serves both as the encoder of
the I2I branch and as the feature extractor of the crowd
segmentation branch, thus saving significant computational
cost and introducing additional regularization. Finally, the
proposed parallel network architecture facilitates multi-task
learning and allows the auxiliary I2I neural branch to further
assist the main crowd segmentor through skip synapses.

III. EMPIRICAL EVALUATION

This Section provides a detailed description of the two
human crowd image datasets we are introducing, along with
the metrics used to evaluate the proposed crowd detection
method. In addition, quantitative and qualitative performance
evaluations of the proposed method are presented.



Fig. 2. Example samples of the manually annotated DroneCrowd (rows
1 and 2) and the synthetic AirSimCrowd (rows 3 and 4) datasets. Left
column: RGB image, middle column: RGB segmentation image, right
column: visualization of annotation.

A. Datasets and Metrics

Although there are existing aerial-footage datasets for
crowd counting (e.g., VisDrone [37]), they cannot be used for
dense crowd detection since people appear scattered across
the image, thus not forming crowd. Therefore, two suitable
datasets were created and annotated to evaluate the proposed
method: DroneCrowd and AirSimCrowd1.

The DroneCrowd dataset consists of RGB images de-
picting human crowds in a wide range of scenes (urban,
countryside, day, night), captured at varying altitudes (from
low to very high altitudes) and with varying crowd density
(from tens to thousands people). In order to induce this
diversity in the dataset, we included images from the Crowd-
Drone dataset [13], the dataset used in [29], as well as
newly-captured relevant aerial images2. For the latter, in
total five separate UAV flight missions were performed
over two different terrains using a custom drone equipped
with an RGB camera mounted on a gimbal. In total 1700
images were manually annotated with their ground-truth
segmentation maps using annotation software [36], resulting
in a very diverse and challenging human crowd detection
dataset. The image resolution varies from 480 × 360 to 1920
× 1080 pixels, rendering the dataset even more challenging.
From these images, 1199 are used for training and 591
for testing. The train set consists of the train images from
the Crowd-Drone dataset, Sequence3, Sequence8, Sequence9,
Sequence10, Sequence11, Sequence16 from [29] and images
captured during the three of the five performed missions,
including both terrains. In a complementary manner, the
test set includes images from the the Crowd-Drone test set
and images captured during the remaining two UAV flight
missions, ensuring that the train and test sets are mutually
exclusive. Example samples from the DroneCrowd dataset
can be seen in rows 1 and 2 of Fig. 2.

1DroneCrowd and AirSimCrowd datasets are available at https://
aiia.csd.auth.gr/open-multidrone-datasets.

2The MULTIDRONE project experimental media productions are the
corresponding source.

The AirSimCrowd dataset is a synthetic crowd detection
dataset obtained from the UAV simulation software AirSim
[30]. AirSim is a photorealistic UAV simulation environment,
built on top of the advanced Unreal 4 (UE4) real-time 3D
graphics/physics engine, which allows programmatic inter-
action with the simulated UAVs via Remote Procedural Call
(RPC)-based communication and offers tools for RGB image
and ground truth annotation data extraction. In order to create
the AirSimCrowd dataset, we simulated two scenarios. First,
a cycling scenario on a mountainous environment, where
a cyclist is set to traverse a pre-defined route with crowd
gathered at random locations along the route. During the
simulation, a UAV was set to follow the cyclist at a relatively
constant speed while recording video with a RGB camera
pointing at the cyclist. The second scenario involved a UAV
following a predefined, random trajectory near crowds placed
at random locations in the scene. The scene used in this
second scenario is different from the one used in the cycling
scenario, in order to induce diversity in the AirSimCrowd
dataset samples. Overall, 602 RGB images at a resolution
of 640 × 360 pixels along with their corresponding ground-
truth segmentation maps were obtained from both simulated
scenarios. Example video frames of the footage captured by
the simulated UAV in both scenarios are depicted in rows
3 and 4 in Fig. 2. Note that all images in the AirsimCrowd
dataset are used only for testing purposes and not for training.

The crowd detection performance of all methods was
evaluated using the commonly adopted Intersection-over-
Union (IoU) metric:

IoU =
TP

TP + FP + FN
, (6)

where TP , FP and FN are the number of true positives,
false positives and false negatives at pixel level, respectively.
In addition, inference speed is measured both in ms and FPS.

B. Evaluation procedure

In all experimental sessions, all neural models were trained
using the DroneCrowd train set. The proposed crowd de-
tection method is compared to the baseline methods of
[13], [15], [21]. The model of [13] consists of a simple
FCN, which was trained by first extracting 128 × 128
pixel image patches depicting both crowd and non-crowd
and subsequently training the FCN as a binary classifier,
similarly to [13]. During inference, the trained model is able
to predict crowd heatmaps by assigning crowd probabilities
to each 128 × 128 pixel patch of the test image. Two variants
of the method are used: a) the vanilla version from [13],
denoted by FCNt, where the 2D crowd regions are obtained
by thresholding the predicted crowd heatmap, resulting in a
binary crowd map, and b) a variant slightly improved by us
and denoted by FCNp, containing a final post-processing
step to further refine the detected crowd regions. The post-
processing step consists in convolving the obtained binary
crowd map with a Gaussian kernel, in order to fill potential
gaps in the binary maps. Moreover, a state-of-the-art crowd
analysis network using a simple encoder-decoder architecture

https://aiia.csd.auth.gr/open-multidrone-datasets
https://aiia.csd.auth.gr/open-multidrone-datasets


TABLE I
SPEED COMPARISON OF THE PROPOSED METHOD AGAINST FCN [13], FCNt [13], FCNp [13], CSRNet [15] AND

BiSeNet [21] AT VARIOUS INPUT IMAGE RESOLUTIONS (M×N).

GTX 1080 Ti Jetson Xavier
640×360 1280×720 1920×1080 640×360 1280×720 1920×1080

ms FPS ms FPS ms FPS ms FPS ms FPS ms FPS
FCN [13] 7.3 140 20.84 48 47.11 21.2 77.12 13 181.21 5.5 234.57 4.3

FCNt
? [13] 10.13 98.7 32.7 30.6 77.68 12.9 98.32 10.2 228.35 4.4 297.88 3.4

FCNp
† [13] 12.9 77.5 47.65 21 118.39 8.4 126.9 7.9 315.3 3.2 516.78 1.9

CSRNet ? [15] 28.33 35.3 90.38 11.1 207.2 4.8 173 5.8 682.87 1.5 1523.8 0.65
BiSeNet [21] 5.29 189 13.83 72.3 29.96 33.4 30.8 32.5 35.77 28 45.39 22

Proposed 8 124.9 17.54 57 36.58 27.3 40.12 24.9 46.23 21.6 59.57 16.8
? Simple thresholding was applied to the network output.
† Thresholding and Gaussian blur was applied to the network output.

TABLE II
CROWD DETECTION PERFORMANCE OF BOTH crowd AND non-crowd

CLASSES ON THE MANUALLY ANNOTATED DRONECROWD DATASET.

IoU (%)
640 × 360 1280 × 720

crowd non-crowd crowd non-crowd
FCNt

? [13] 49.46 92.21 61.81 95.02
FCNp

† [13] 50.62 92.56 64.94 95.34
CSRNet ? [15] 78.62 97.91 79.42 97.92
BiSeNet [21] 80.57 97.96 83.51 98.13

Proposed 85.63 98.51 85.90 98.75
? Simple thresholding was applied to the network output.
† Thresholding and Gaussian blur was applied to the network output.

TABLE III
CROWD DETECTION PERFORMANCE OF BOTH crowd AND non-crowd

CLASSES ON THE SYNTHETIC AIRSIMCROWD DATASET.

IoU (%)
640 × 360 1280 × 720

crowd non-crowd crowd non-crowd
FCNt

? [13] 36.4 88.21 44.76 93.22
FCNp

† [13] 37.72 88.29 53.39 93.76
CSRNet ? [15] 63.65 96.2 68.29 96.53
BiSeNet [21] 62.38 95.59 63.07 95.76

Proposed 70.61 96.7 75.84 97.15
? Simple thresholding was applied to the network output.
† Thresholding and Gaussian blur was applied to the network output.

with dilated convolutions [33], i.e., CSRNet [15], was also
adapted to our case and trained to predict grayscale segmen-
tation images instead of crowd density maps (since we only
care for detecting crowds and not counting them). During
testing, similarly to FCNt, the final 2D crowd regions
are obtained by simply thresholding the predicted output
maps. Finally, the proposed method is compared against
the semantic segmentation network BiSeNet [21] with a
ResNet-18 as backbone, which was trained to directly predict
crowd segmentation maps. Note that in all experiments, the
best performing post-processing hyperparameters (threshold
value and Gaussian kernel size) were selected for FCNt,
CSRNet and FCNp.

The proposed network was simultaneously trained for both
crowd segmentation and image-to-image translation tasks
using Eq. (5), up to 200 epochs. The Adam [34] optimizer
was used with batch size 16 and initial learning rate 0.001,
which is reduced in each epoch using the “poly” learning
rate strategy [21]. Similar to BiSeNet and CSRNet, our

backbone network (ResNet-18) is pretrained on ImageNet
[35], while λ in (5) was empirically set to 0.7, a value most
beneficial for crowd detection. Moreover, the train set images
were augmented online during training using random scale,
cropping and horizontal flipping.

Experiments were performed for several input resolutions
to demonstrate the performance-speed ratio offered by all
competing methods. Typically, higher input resolutions fa-
cilitate crowd detection as people are more distinguishable
in the image. However, in these cases, inference speed can be
considerably decreased, especially when embedded hardware
is used.

Detailed inference speed comparisons were made across
all competing models (Proposed, FCNt, FCNp, CSRNet
and BiSeNet), due to the crucial importance of fast (ideally
real-time) execution in robotics applications. Notably, if
human crowd areas are identified at a slow rate when the
UAV is flying at a high speed, regions that need to be
avoided may easily be missed, thus raising important safety
concerns. Results in terms of inference speed (in msec) and
FPS are presented in Table I. We also report the crowd
heatmap prediction speed of [13] (without either thresholding
or Gaussian blur) (FCN ) to evaluate purely the network’s
forward pass speed. However, in this case, accurately de-
lineated 2D crowd regions can not be obtained. Moreover,
experiments using both a Nvidia GTX 1080 Ti GPU and a
Nvidia Jetson Xavier embedded AI computing board were
conducted, in case the crowd detection algorithm/model
is running on a ground computer or on-board the UAV
hardware, respectively. Different input image sizes of 640
× 360, 1280 × 720 and 1920 × 1080 pixels (M ×N ) were
used to test inference speed at low, medium and high input
resolution, respectively. The results indicate that the proposed
method runs significantly faster than FCN , FCNt, FCNp

and CSRNet, even achieving double the speed, or faster,
for the highest resolution. When compared to the BiSeNet
baseline, the proposed network architecture is slower only
by 7.5 FPS in the worst-case embedded-execution scenario
(640 × 360 input resolution on a Nvidia Jetson Xavier). This
is not critical, as running speed remains real-time3.

In order to evaluate the crowd detection performance of
the proposed and all competing methods in real-world aerial

3We assume 25 FPS to be the real-time execution barrier, since this is a
typical camera filming rate.



              

Fig. 3. Crowd detection results of the proposed method for real test crowd
images from DroneCrowd dataset (rows 1 and 2) and unseen synthetic
crowd images from AirSimCrowd dataset (rows 3 and 4). Each row depicts
a triplet of corresponding input, ground-truth segmentation and predicted
segmentation images.

images, the DroneCrowd test set was used. The IoU for both
crowd and non-crowd classes of all models are reported in
Table II. Results are reported at 640 × 360 and 1280 × 720
input resolution (by training and testing all models accord-
ingly), where the running speed of the proposed method is
over 20 FPS on a Nvidia Jetson Xavier, simulating a real-
world autonomous UAV flight scenario. As shown in Table II,
the proposed method significantly outperforms FCNt and
FCNp, improving crowd class IoU up to 36% and 24%
at low and medium input resolution, respectively. Moreover,
the proposed method increased crowd detection performance,
when compared to CSRNet and BiSeNet baselines, by
a margin of up to 7% and 5%, respectively. Apart from
increased detection performance of the crowd class, the
proposed method was able to detect non-crowd regions more
efficiently too. This is also important for autonomous UAV
flight, as unnecessary actions or dangerous maneuvers can
be avoided.

In real-world applications, however, the UAVs might oper-
ate in scenes that highly differ from the ones depicted in the
train dataset, rendering generalization a necessary crowd de-
tection model feature. In order to evaluate the generalization
ability of all competing methods, the corresponding models
that were trained on the DroneCrowd train set were tested on
the AirSimCrowd set images. The IoU results of all models
for both classes (crowd, non-crowd) at low and medium input
resolution are presented in Table III. The proposed method
demonstrates the highest generalization ability, increasing the
crowd detection performance up to 34%, 12% and 7%, when
compared to the models of [13] (FCNt, FCNp), BiSeNet
and CSRNet, respectively.

As shown in Tables I - III, the proposed method manages
to outperform all competing methods both in crowd detection
accuracy and in generalization, without sacrificing execution
speed. This is due to its parallel network architecture, which

Fig. 4. Example video frame of a video demonstrating the proposed crowd
detection method results on a previously unseen UAV-captured video. URL:
http://bit.ly/crowd_det_results.

simultaneously saves computational cost and allows multi-
task training and information exchange between the two
neural branches, resulting in richer feature maps for crowd
detection when compared to typical network architectures
(FCN , CSRNet, BiSeNet).

Apart from the crowd detection performance reported
in Tables I - III, a qualitative evaluation of the proposed
model was also performed. The crowd detection results of
the proposed method can be seen in Fig. 3, where random
DroneCrowd and AirSimCrowd test images are depicted
along with their corresponding ground-truth and predicted
2D crowd regions. The proposed method accurately predicts
human crowds in 2D pixel space, with negligible false
negatives and false positives, both for real and synthetic
test images. In addition, the crowd detection results of the
proposed method on a previously unseen, real UAV-captured
video can be found in the following URL: http://bit.
ly/crowd_det_results. An example video frame is
depicted in Fig. 4. The proposed crowd detection method
successfully detects crowd regions, even though its input is
a completely unknown scene.

IV. CONCLUSION

In this paper, a deep neural network-based human crowd
detection method from UAV video feed was presented. It
is based on transforming the crowd detection problem into
a semantic segmentation one. To this end, a novel neural
architecture is proposed that combines a CNN-based real-
time semantic image segmentation network branch with an
image-to-image translation neural branch. The two neural
pathways share the same feature extraction CNN and are
jointly trained using a novel multi-task loss function that
considers both tasks. Additionally, skip synapses were added
between neurons of the two branches, allowing semantic
information to flow from the I2I branch to the segmenta-
tion branch during inference. The proposed crowd detection
method was evaluated using two newly introduced aerial
crowd detection image datasets, DroneCrowd and AirSim-
Crowd. The proposed method significantly outperformed all
competing methods, while running at real-time and near-real-
time speeds on a ground computer and on an embedded AI
system, respectively.

http://bit.ly/crowd_det_results
http://bit.ly/crowd_det_results
http://bit.ly/crowd_det_results
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