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Objectives

Aerodynamic
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vs
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Challenges
Separated flows

Thick boundary layer
Leading/Trailing edges separation
Vortex shedding/interactions

Anisotropic turbulence
High-fidelity methods (LES/DNS)

High Re flow
Grid Resolution h/L ∝ Re−3/4

FLOPS scales as Re3

Efficient numerical method
Highly scalable

LES simulation of NACA 0012 at
Re = 1.56× 105 α = 16◦

Q-criterion iso-contour colored by velocity
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Overview of the two solvers

Nektar++/SHARPy
High-fidelity (LES/DNS) method
Quasi-3D approach: Thick-strips
High-order spectral/hp method
Beam model for structure
Open-Source

OpenFoam/CalculiX
Medium-fidelity (URANS) method
Full 3D approach
Second-order Finite-volume
FEM modelling for structure
Open-Source
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Numerical Method
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Thick Strip LES method
3D domain models as separate smaller domains: Thick Strips

Spanwise thickness Lz

Capturing local 3D turbulence
Reduces computational expense
Implicitly connected by structural
dynamics
High order hp elements in xy
Fourier expansion in spanwise (z)
direction
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Spectral/hp element
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Nektar++/SHARPy FSI Solver
Flow Solver
Transformed Navier-Stokes equations

Coordinate transformation to avoid
remeshing

Inertial Coord. Body-fitted Coord.

X̄(x̄ , ȳ , z̄)→ X(x(t), y(t), z(t))

High-order Spectral/hp element method

P-order polynomial expansion in xy

Fourier expansion in z

High-order stiffy-stable velocity splitting
velocity correction scheme

Nektar++ www.nektar.info

Structural Solver
Flexible multi-body solver

Geometrically-Exact Composite Beam
model

Non-linear high deformation

Static and Dynamic formulation

Quadratic Finite Element method

Newmark-β time integration

SHARPy
www.imperial.ac.uk/aeroelastics/sharpy/
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OpenFoam/CalculiX FSI Solver
Flow Solver – OpenFoam
Finite volume method

OpenFoam solver: pimpleFoam (operating
in PISO mode)

URANS (k-w SST)

Backward time scheme (Second Order)

Simulation dt: 5× 10−5 s

OpenFoam
www.openfoam.com

Structural Solver - CalculiX
FEM with solid elements

CalculiX solver: Nonlinear Dynamic Direct
solver using Spooles

Solid Section structure

Orthotropic Elastic Material

Simulation dt: 5× 10−5 s

CalculiX
calculix.de

Coupling through preCICE (precice.org)
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Flow over NACA0012 section
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Vorticity contours Re = 1.56× 105
Large Eddy Simulation URANS

ω*
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NACA0012 Aerodynamics coefficients
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FSI of Cantilever blade
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Cantilever Blade: Equilibrium before stall

Re = 1.56× 105

Angle of attack α0 = 4◦

g = 9.754 m/s2

Del Care: beam + UVLM

Number of Strips Ns = 4, 8, 12
tested, Ns = 8 selected
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Cantilever Blade at stall

Re = 1.56× 105

α0 = 16◦

g = 9.754 m/s2

8 Strips

Iso-contour Q = 10
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VIV of NREL5MW blade in parked condition
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NREL5MW Blade VIV
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Conclusion

Two FSI solvers are developed for for highly-deformable slender structure
Each targeted specific range of application
Both needs high performance computations
Comparison on the aerodynamic coefficients are presented
Deformation of cantilevered beam and VIV of NREL Blade is presented for
Nektar++/SHARPy Solver
It is proven based on our experiment that coupling between OpenFoam and
CalculiX using Precise is not straight forward
CalculiX poses a HPC bottle neck in computations
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