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RNA sequencing technologies have enabled the interrogation 
of the human transcriptome at nucleotide resolution, expos-
ing distinct RNA biotypes beyond protein-coding genes 

(PCGs). A plethora of regulatory ncRNAs—including microRNAs 
(miRNAs), long intergenic non-coding RNAs (lincRNAs), antisense 
RNAs (asRNAs) and circular RNAs (circRNAs)—have been identi-
fied and are being explored as potential players in human devel-
opment and disease, including cancer1–3. Several consortium-based 
efforts have contributed to the discovery and quantification of these 
RNA biotypes in heterogeneous sample collections4–13. The result-
ing transcriptome landscape is a community resource to study RNA 
biology and to characterize regulatory mechanisms and gene func-
tions, as well as to identify predictive biomarkers for human dis-
eases14–17. However, these studies have relied mostly on analyses of 
small and polyadenylated RNA transcriptomes. Consequently, we 

still lack a systematic survey of non-polyadenylated and circularized 
transcripts and their relationship to other RNA biotypes. To capture 
a more complete diversity of the human transcriptome, we profiled 
a heterogeneous collection of 300 human samples—including 45 
tissues, 162 cell types and 93 cell lines (Fig. 1a and Supplementary 
Table 1)—using three complementary RNA sequencing technolo-
gies. From these samples, we generated strand-specific small RNA 
(298 samples), polyA (295 samples) and total RNA (296 samples) 
libraries that were sequenced at median depths of 13 million, 60 mil-
lion and 125 million paired-end reads, respectively, for a total of 125 
billion reads (Supplementary Fig. 1). The resulting datasets include 
profiles of PCGs, lincRNAs, asRNAs, circRNAs and miRNAs, and 
their analysis produced a carefully constructed transcriptome and 
a matching expression atlas. Moreover, the broad intron coverage 
from total RNA sequencing enabled data-driven predictions of 
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Existing compendia of non-coding RNA (ncRNA) are incomplete, in part because they are derived almost exclusively from small 
and polyadenylated RNAs. Here we present a more comprehensive atlas of the human transcriptome, which includes small and 
polyA RNA as well as total RNA from 300 human tissues and cell lines. We report thousands of previously uncharacterized 
RNAs, increasing the number of documented ncRNAs by approximately 8%. To infer functional regulation by known and newly 
characterized ncRNAs, we exploited pre-mRNA abundance estimates from total RNA sequencing, revealing 316 microRNAs 
and 3,310 long non-coding RNAs with multiple lines of evidence for roles in regulating protein-coding genes and pathways. 
Our study both refines and expands the current catalog of human ncRNAs and their regulatory interactions. All data, analyses 
and results are available for download and interrogation in the R2 web portal, serving as a basis for future exploration of RNA 
biology and function.
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transcriptional and post-transcriptional modulation of gene expres-
sion by ncRNAs. Our results are available for download and analysis 
through the R2 web portal (http://r2platform.com/rna_atlas).

Results
Assembling a comprehensive human transcriptome reveals 
many single-exon lincRNAs. The assembly of the RNA Atlas 
transcriptome was guided by Ensembl annotation (v86)18 (Fig. 1b,  
Supplementary Fig. 2 and Supplementary Tables 2 and 3; see 
Methods for details) and included known and newly assembled 
PCGs, lincRNAs and asRNAs. To gather independent evidence 
supporting the transcriptional activity of these genes, we inte-
grated public cap analysis of gene expression (CAGE) sequenc-
ing data generated by the FANTOM consoritum6 and various 
chromatin state profiles that are associated with transcription or 

enhancer activity from comprehensive cell and tissue collections 
(Epigenomics Roadmap19). Most Ensembl and newly assembled 
genes—88% and 62%, respectively—were closely associated with 
either CAGE peaks or relevant chromatin states within 500 base 
pairs of transcription start sites (TSSs) (Fig. 1c and Supplementary 
Fig. 3). ncRNAs were primarily supported by chromatin marks, 
including enhancer marks that were previously shown to have a 
significant predictive value for lncRNA function20. PCGs, on the 
other hand, were more strongly associated with CAGE and active 
transcription chromatin states. Genes supported by CAGE peaks 
or chromatin states were retained in what we refer to as the RNA 
Atlas transcriptome, which is composed of RNA Atlas genes  
(Fig. 1d). An additional 642 genes without CAGE peak or chro-
matin state support, but with supramedian expression levels, were 
also included (Methods).
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Fig. 1 | RNA Atlas transcriptome generation and annotation. a, We profiled RNA in a heterogeneous collection of tissues, cell types and cell lines using 
complementary strand-specific technologies. b, Number and fraction of known genes in ensembl version 86 and newly assembled PCG, lincRNA and 
asRNA genes in the complete RNA Atlas transcriptome. c, Fraction of known and newly assembled genes with independent evidence for transcriptional 
activity according to chromatin state (DNA), CAGe peak (RNA), both or neither. d, The number and fraction of Annotated, PreRep and RNA Atlas-only 
PCG, lincRNA and asRNA genes in the RNA Atlas transcriptome. e, The frequencies of PCG, lincRNA and asRNA host types for RNA Atlas circRNAs.  
f, The distribution of circRNA counts per host. g, Annotation of RNA Atlas miRNA precursors relative to their nearest genes. h, The fractions of miRBase- 
and miRDeep2-predicted pre-miRNA candidates with expressed mature miRNAs from both pre-miRNA arms or one pre-miRNA arm.
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This transcriptome consisted of 18,962 PCGs, 18,364 lincRNAs 
and 7,374 asRNAs. After transcriptome assembly, we annotated the 
RNA Atlas transcriptome against GENCODE version 33 (ref. 21), the 
curated set of RefSeq22 version 200 (the combination of which is 
further referred to as Annotated RNAs) and genes reported by four 
large-scale RNA annotation efforts, including the FANTOM5 (ref. 7) 
stringent set, CHESS9, MiTranscriptome10 and BIGTranscriptome13, 
and with the model RefSeq version 200 set (the combination of 
which is further referred to as Previously Reported (‘PreRep’ for 
short) RNAs); see details in Methods and Supplementary Fig. 4c. 
Based on these comparisons, we classified our set of RNA Atlas genes 
as Annotated, PreRep or RNA Atlas-only (see Fig. 1d, and note that 
these gene sets are mutually exclusive). Annotated genes included 
most PCGs (99%) and asRNAs (69%). However, 65% of RNA Atlas 
lincRNAs were RNA Atlas-only (27%) or PreRep (38%). Overall, 
RNA Atlas genes included 5,471 RNA Atlas-only lncRNAs, 11,453 
Annotated lncRNAs and 8,814 PreRep lncRNAs (Supplementary 
Fig. 4a). We note that 990 of the RNA Atlas-only genes were also 
identified in the less stringent collection of FANTOM5 robust genes. 

Pairwise comparisons of RNA Atlas lncRNAs and lncRNAs found 
in other catalogs consistently showed higher association of RNA 
Atlas lncRNAs to DNase and enhancer chromatin states compared 
to lncRNAs not present in RNA Atlas (Supplementary Fig. 4d).  
The analysis of ENCODE transcription factor (TF) occupancy in 
lncRNA promoters suggested that the promoters of RNA Atlas 
lncRNAs were more likely to be occupied by TFs than previously 
predicted or annotated lncRNAs that are not in RNA Atlas. In total, 
69%, 71% and 77% of RNA Atlas-only, Annotated and PreRep 
lncRNA proximal promoters, respectively, were identified with at 
least two ENCODE TF binding sites, compared to 46% and 49% 
of previously predicted and annotated lncRNA promoters, respec-
tively, that were not included in RNA Atlas.

The analysis of total RNA sequencing assays identified 38,023 
candidate circRNAs with more than four back-splice reads 
(Supplementary Table 4). Of these, 37,128 were derived from RNA 
Atlas genes and were retained in the RNA Atlas transcriptome. We 
identified 13 pre-existing circRNA databases23, and most (99%) of 
the RNA Atlas circRNAs were annotated in at least one circRNA 
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database (only 446 circRNAs were exclusively found in RNA Atlas), 
with 70% present in at least five of the 13 databases (Methods and 
Supplementary Fig. 5c,d). Almost all circRNAs (98%) were pro-
cessed from PCG hosts, with a median of three circRNAs per host 
(Fig. 1e,f). Most circRNAs spanned at least four exons, and the cir-
cRNAs were flanked by introns that were significantly longer than the 
introns not flanking circRNAs (P < 1 × 10−10 by Wilcoxon rank-sum 
test; Supplementary Fig. 5a,b). These circRNA characteristics are in 
line with previous reports24,25. Finally, we identified 5,213 candidate 
mature miRNAs that passed a minimal abundance criterion of ten 
reads in our small RNA sequencing assays. These included 1,646 
miRBase26 (v22) miRNAs and 3,567 (68%) miRDeep2-predicted27 
miRNAs, of which 2,600 (73%) showed no overlap to genomic coor-
dinates of miRNAs included in any of three other miRNA resources 
(FANTOM5 (ref. 8), miRCarta28 and MirGeneDB29; Supplementary 
Table 5 and Supplementary Fig. 4b). Predicted precursor transcripts 
for these candidate miRNAs were predominantly located in intronic 
and intergenic regions, and the fraction of precursors giving rise to 
both a 3p and a 5p mature form was lower for miRDeep2-predicted 
miRNAs (29%) than for miRBase (42%) miRNAs (Supplementary 
Table 6 and Fig. 1g,h). Precursor miRNAs are processed from larger 
primary miRNA transcripts whose TSSs are not easily characterized, 
with 1,130 precursors located in intergenic regions. Consequently, 
we did not attempt to integrate CAGE sequencing or chromatin 
state data to filter miRNA candidates. Instead, we used ncRNA 
target inference algorithms to identify miRNAs with evidence for 
post-transcriptional target regulation, selecting 316 miRNAs and 
their targets—details to follow.

Most PreRep and RNA Atlas-only lncRNAs were lincRNAs, and 
most of these (68%) were single-exon genes (Fig. 2a). Notably, 4,877 
of the 5,471 (89%) RNA Atlas-only lncRNAs were single-exon gene 
models. Single-exon lincRNAs are often removed from transcrip-
tome assemblies to guard against contaminating DNA. However, 
our stranded RNA sequencing workflow allowed for testing DNA 
fragments based on strand identity, with random DNA fragments 
expected to map to both strands in a nearly equal ratio. In contrast, 
the mean exonic strandedness for the single-exon lincRNAs was 
96%, which was similar to that of multi-exon lincRNAs (94%) and 
PCGs (95%) (Supplementary Fig. 6). This test suggested that the 
single-exon lincRNAs do not originate from contaminating DNA 
fragments. Our conclusion was further validated experimentally by 
qPCR in RNA samples that were not reverse transcribed into cDNA 
for 110 single-exon genes, including 42 RNA Atlas-only, 27 PreRep 
and 41 Annotated genes. For those single-exon genes that were suc-
cessfully amplified (Cq < 35, n = 105), we observed a significant 
fold increase of qPCR signal in the RT versus no-RT samples by 
Wilcoxon signed-rank test (P < 1 × 10−10; Fig. 2b, Supplementary 
Fig. 7 and Supplementary Table 7). Moreover, all single-exon 

RNA Atlas lincRNAs had CAGE peaks (13%) or chromatin states 
that indicated active transcription (98%) near their predicted TSSs. 
Unlike multi-exon PCGs or lincRNAs, and similarly to single-exon 
PCGs, single-exon lincRNAs were not flanked by canonical splice 
sites (Fig. 2c and Supplementary Fig. 8a). Moreover, the distances 
between single-exon lincRNAs and their nearest genes were signifi-
cantly larger (median, 2.3 kb) than distances between consecutive 
exons in multi-exon PCGs (median, 0.511 kb; P < 1 × 10−10) or lin-
cRNAs (median, 1.17 kb; P < 1 × 10−10); P values were computed by 
Wilcoxon rank-sum tests (Supplementary Fig. 8b). Together, these 
observations suggest that RNA Atlas single-exon lincRNAs are not 
fragments of multi-exon genes that lacked junction reads in our 
assembly. The fact that single-exon and multi-exon RNA Atlas-only 
genes show almost identical expression distributions (Supplementary 
Fig. 9) further strengthens that notion. Finally, an analysis of pub-
licly available single-molecule RNA sequencing datasets (Oxford 
Nanopore Technologies (ONT)) identified non-spliced and uniquely 
mapping ONT reads overlapping 372 (7.6%) of the RNA Atlas-only 
single-exon genes (Supplementary Tables 8–12 and Supplementary 
Fig. 10). Of note, we could not find any spliced ONT reads over-
lapping RNA Atlas-only single-exon genes across the four analyzed 
datasets, further supporting the single-exon status of these genes.

Although most RNA Atlas-only genes were ncRNAs, our work-
flow also revealed a handful of new candidate PCGs. Based on in 
silico predictions and cross-species protein conservation, we iden-
tified 104 candidate PCGs that were not previously annotated as 
such but were likely protein coding based on evaluations by CPAT30, 
PhyloCSF31 and BLASTp32; note that PCG identification required 
significant positive assessment by all three methods. The BLASTp  
E value of all 104 selected candidates was below 1 × 10−3, and 
90 of these had an E value less than 1 × 10−5 (see Methods and 
Supplementary Table 13 for details). These 104 genes included nine 
RNA Atlas-only genes, 80 genes that matched non-coding genes 
in either the Annotated or PreRep sets and 15 PreRep PCGs. The 
coding potential of these genes was further substantiated through 
a re-analysis of mass spectrometry data from the Human Proteome 
Map33, revealing peptides matching 20 (19%) of these candidate 
PCGs (false discovery rate (FDR) < 0.01). In addition, we found that, 
whereas the median percentage of conserved amino acids in chim-
panzee was lower for RNA Atlas candidates (96%) than Annotated 
PCGs (99%), 84% of our predicted open reading frames (ORFs) 
were still more conserved than 10% of Annotated PCGs, indicating 
that most candidate PCGs fall within an acceptable range of con-
servation observed in Annotated PCGs (Supplementary Fig. 11).  
In addition, our 104 candidate PCGs were more tissue specific 
and had fewer exons and shorter ORF lengths than known PCGs 
(Supplementary Fig. 11). Finally, we identified peptides whose 
expression profiles across tissues correlated with that of their 

Fig. 3 | Analyses of RNA polyadenylation status. a, Read coverage profiles from polyA sequencing and total RNA sequencing libraries for a known 
polyadenylated gene (upper panel) and a known non-polyadenylated gene (lower panel). b, Distributions of the normalized log2 ratio of counts 
from polyA sequencing versus total RNA sequencing in an individual sample (human umbilical vein endothelial cell) for known polyadenylated and 
non-polyadenylated genes. c, The number of polyadenylated and non-polyadenylated genes for each RNA biotype based on majority votes across 
samples; RNA Atlas genes with ten or more counts in at least one sample and with an uneven majority vote across samples are shown. d, The relative 
frequencies of polyadenylated and non-polyadenylated lincRNAs. e, Validation of non-polyadenylated genes through polyA-minus sequencing in two RNA 
Atlas cell lines; box plots show the log2 counts ratio between polyA-minus and polyA sequencing for genes classified as non-polyadenylated (blue) and 
polyadenylated (orange). Boxes extend from the 25th to the 75th percentiles, with the center lines at the median values; whiskers extend to the largest 
and smallest values no further than 1.5 times the interquartile range from the upper and lower box hinges, respectively. ‘Outlier’ genes beyond the limits of 
whiskers are plotted as individual points. P values were estimated by two-sided Wilcoxon rank-sum tests. f, Heat maps showing polyadenylation status of 
genes across samples. We plotted the mean normalized log2 ratio of the expression of binned genes with 100 or more counts in at least 20 samples; genes 
were sorted into 20 non-empty bins based on normalized expression. g, Selection of genes with varying polyadenylation across samples. The number of 
samples in each category is shown with values in log10 scale. Genes are sorted by evenness (that is, difference in number of samples in each category) 
and by number of polyadenylated samples. h, An example of a gene (HIST1H2BD) whose varying polyadenylation across samples can be explained by 
differential expression of alternatively polyadenylated isoforms. Coverage profiles from total RNA sequencing and polyA sequencing are shown for a 
non-polyadenylated sample (ALL-SIL cell line, left panel) and a polyadenylated sample (prostate tissue, right panel).
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template mRNAs, underscoring the validity of the results. These 
included a heart-specific peptide whose template mRNA was spe-
cifically expressed in heart tissues (Fig. 2d–f) and a peptide with 

high abundance in T cells and B cells whose template mRNA showed 
the highest expression in spleen and lymph node (Supplementary  
Fig. 12). Protein domain analysis of the corresponding heart-specific 
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sequence of this peptide revealed a TLV_coat domain, which is also 
present in human syncytin genes. Homology to syncytin was fur-
ther validated through BLAST analysis. Syncytin proteins mediate 
cell fusion during placental development, a process also occurring 
in muscle and cardiac tissues34.

Integrating polyA and total RNA sequencing data reveals thou-
sands of non-polyadenylated genes. We used our matching polyA 
and total RNA sequencing data to test the polyadenylation status of 
RNA Atlas genes. We reasoned that normalized expression of poly-
adenylated genes should be nearly equal in polyA and total RNA 
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Fig. 4 | The association between sample ontology and expression distance. a, t-SNe plot of the RNA Atlas cell types based on PCG expression. Samples 
were colored according to four biological cell subtypes of interest (epithelial, mesenchymal, fibroblast and endothelial). b, For each biological cell subtype, 
we showed the median PCG expression-based distances between pairs of samples from the same subtype (intra-distances) and across subtypes 
(inter-distances). c, The distribution of fold changes between median inter- and intra-distances of RNA biotypes in each of the four cell subtypes. d, Median 
intra- and inter-distances based on expression of miRDeep2-predicted miRNAs. e, Median intra- and inter-distances based on expression of single-exon 
lincRNAs. f, expression heat map for miRDeep2-predicted candidate miRNAs significantly upregulated in cell subtypes. g, expression heat map for 
single-exon lincRNAs significantly upregulated in cell subtypes. h, i, examples of an endothelial-specific miRDeep2-predicted candidate miRNA (h) and an 
epithelial-specific single-exon lincRNA (i). expression distributions are shown as box plots of normalized counts as computed by the DeSeq function for each 
sample group: endothelial (n = 24), epithelial (n = 20), fibroblast (n = 32), mesenchymal (n = 8) and other (n = 209). Boxes extend from the 25th to the 75th 
percentiles, with the center lines at the median values; whiskers extend to the largest and smallest values no further than 1.5 times the interquartile range 
from the upper and lower box hinges, respectively. ‘Outlier’ samples beyond the limits of whiskers are plotted as individual points.
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libraries from each sample, whereas, for non-polyadenylated genes, 
normalized expression profiles should be markedly lower in polyA 
libraries (Fig. 3a). Indeed, the distribution of normalized log2 count 
ratios (polyA/total RNA) for known polyadenylated genes was cen-
tered around zero and was significantly higher than that of known 
non-polyadenylated genes (Fig. 3b, Supplementary Fig. 13 and 
Supplementary Table 14). For each of 291 samples for which match-
ing polyA and total RNA data were available, we calculated the log2 
ratio cutoff that most accurately classified known polyadenylated 
(n = 5,987) and non-polyadenylated (n = 117) genes35 and subse-
quently applied it to establish the polyadenylation status of RNA 
Atlas genes (see Methods and Supplementary Table 3 for details). 
Only genes with at least ten counts were included in the analysis. 
As expected, most PCGs (93%) were classified as polyadenylated 
based on majority votes across all samples (Fig. 3c). For lincRNAs 
and asRNAs, the fraction of polyadenylated genes was 48% and 
63%, respectively. Notably, more than 75% of the RNA Atlas-only 
and 60% of the PreRep single-exon lincRNAs were classified as 
non-polyadenylated (Fig. 3d), demonstrating the added value of total 
RNA sequencing to detect this specific RNA biotype. Polyadenylated 
and non-polyadenylated lncRNAs showed similar cross-species 
conservation and promoter TF occupancy (Supplementary Fig. 14). 
To empirically validate our polyA status assessment methodology, 
we established a polyA-minus RNA sequencing protocol by deplet-
ing polyadenylated transcripts from total RNA libraries and applied 
it to two RNA Atlas cell lines. Non-polyadenylated genes showed 
significantly higher polyA-minus/polyA count ratios than polyad-
enylated genes (P < 1 × 10−10 by Wilcoxon rank-sum test; Fig. 3e).

To study potential changes in gene polyadenylation status across 
samples, we limited our analysis to genes with at least 100 counts in  
20 or more samples. log2 count ratio distributions across samples 
suggested shifts from polyadenylated to non-polyadenylated states 
for a subset of genes in each biotype category (Fig. 3f). A fraction 
of these genes, including 41% of the lincRNAs, 43% of the asRNAs 
and 30% of the PCGs, were classified as both polyadenylated and 
non-polyadenylated—each in at least five samples per classification. 
To evaluate the cause of these shifts, we selected the most extreme 
cases based on log2 count ratios in each class, identifying 160 genes, 
including 83 PCGs, 36 lincRNAs and 41 asRNAs (Fig. 3g and 
Supplementary Table 15). We found that variable polyadenylation 
status might be driven by differential expression of alternatively 
polyadenylated isoforms in 57 (36%) of these genes. One example is 
the histone gene HIST1H2BD that is transcribed into a single-exon 
non-polyadenylated PCG in the ALL-SIL cell line and a two-exon 
polyadenylated PCG in prostate tissues (Fig. 3h). The remaining 103 
genes did not show changes in isoform usage, suggesting that other 
mechanisms might alter polyadenylation (Supplementary Fig. 15).

RNA biotype expression reflects sample ontology. We verified 
that the RNA Atlas expression data reflect several well-established 

features of the transcriptome, such as non-coding RNA expression 
specificity36, imprinting37 and cancer fusion gene expression38. As 
expected, we observed a strong enrichment of mRNA fusion genes 
in cancer cell lines compared to non-malignant cell types and tis-
sues, and we detected 20 known imprinted genes that featured con-
sistent mono-allelic expression over the large majority of tissues 
and cell types (Supplementary Figs. 16 and 17 and Supplementary  
Tables 16 and 17). We confirmed that ncRNAs were expressed in 
a more tissue-specific manner than PCGs even after normaliza-
tion for RNA biotype abundance (Supplementary Fig. 18). For cir-
cRNAs, tissue specificity resembled that of PCGs (Supplementary 
Fig. 18). In total, 96% of 1,320 previously catalogued tissue-specific 
RNA Atlas RNAs39 were confirmed as tissue specific in our dataset 
(Supplementary Fig. 19). In conclusion, the analysis of RNA Atlas data 
confirmed these previously proposed transcriptome characteristics.

We used two-dimensional unsupervised clustering to evaluate 
the relationship among gene expression profiles, RNA biotypes and 
cellular subtypes. Clustering based on PCG expression profiles sug-
gested that closely associated cell types had similar transcriptomes 
(Fig. 4a). Most strikingly, epithelial cells (n = 20), endothelial cells 
(n = 24), fibroblasts (n = 32) and mesenchymal cells (n = 8) clustered 
together and were distinct from transcriptional profiles of the other 
cell types in the RNA Atlas dataset. Namely, PCG expression-based 
distances between samples within a subtype (intra-distance) were 
consistently smaller than expression-based distances between 
these samples and all other samples in the dataset (inter-distance)  
(P < 1 × 10−5, Wilcoxon rank-sum test; Fig. 4b). This was observed 
for all four subtypes and was most pronounced for endothelial cells 
for which the median inter-distance was 2.8-fold higher than the 
median intra-distance.

When calculating intra- and inter-distances for RNA biotypes, all 
biotypes—including miRDeep2-predicted miRNAs and single-exon 
lincRNAs—showed inter-distances that were significantly higher 
than intra-distances (Fig. 4c–e), suggesting that these biotypes are 
expressed in a coordinated manner. This is supported by the fact that a 
subset of mirDeep2-predicted miRNAs (n = 42) and single-exon lin-
cRNAs (n = 141) were significantly upregulated (log2 fold change > 3 
and a Benjamini–Hochberg FDR < 0.01) in individual cell subtypes 
and demonstrated subtype-specific expression profiles (Fig. 4f–i). 
To further validate these findings, we repeated our analysis, focus-
ing on cancer cell lines within each cancer type. Inter-cancer-type 
distances were significantly higher than intra-cancer-type dis-
tances for all biotypes (Supplementary Fig. 20a–c). Significant dif-
ferences were also observed for the miRDeep2-predicted miRNAs 
and single-exon lincRNAs (Supplementary Fig. 20d,e), confirming 
our observations about biological subtypes. Moreover, we identified 
several miRDeep2-predicted miRNAs (n = 119) and single-exon lin-
cRNAs (n = 567) that were significantly overexpressed in individual 
cancer types (Supplementary Fig. 20f–i). These results indicated 
that RNA Atlas genes, including miRDeep2-predicted candidate  

Fig. 5 | Total RNA transcriptomes facilitated the use of intron expression profiles to study regulatory modalities. a, Distribution of protein-coding 
transcripts whose exonic (mRNA, left) and intronic (pre-mRNA, right) expression estimates were supported by at least 24 unique reads in 0%, >0%, 
>25%, >50%, >75% or 100% of RNA Atlas-profiled samples. b, Distribution of Spearman’s correlations between pre-mRNA and mRNA expression 
profiles; n = 7,287 expression values were log2 transformed. c, Cumulative distributions of dCor between TF or miRNA expression profiles and their verified 
target’s pre-mRNA and mRNA expression profiles and the ratios between these profiles (m/p ratio). P values were computed as the geometric means 
of the one-sided P values, estimated by the paired Student’s t-test, for delta correlations between regulators and their target’s expression profiles, where 
delta correlations compared correlations of regulators and their target’s pre-mRNA or mRNA versus their m/p ratio profiles. d, On average, correlations 
between the profiles of regulators and their verified target’s mRNA and pre-mRNA showed no significant difference; however, correlations between 
regulator and target m/p ratio profiles were significantly lower and higher for TFs and miRNAs, respectively. The averaged dCor is given as a dashed 
line on the plot along with a number next to it. One-sided P values were estimated by the paired Student’s t-test. e, LongHorn-inferred direct targets of 
miRBase and RNA Atlas-only miRNAs had improved regulator-target m/p ratio correlations, but this difference was not significant for Other_DB miRNAs, 
which were identified in previous studies. Both RNA Atlas-only and Other_DB miRNAs were predicted by miRDeep2 using RNA Atlas-profiled samples; 
similar to c, P values were computed as the geometric means of the one-sided P values estimated by the paired Student’s t-test. The number of tested 
regulators and interactions is in parentheses.
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miRNAs and single-exon lincRNAs, showed expression patterns 
that closely reflect sample ontology relationships. Furthermore, 
these non-random expression patterns support our assertion that 
RNA Atlas single-exon lincRNAs do not derive from DNA frag-
ments contaminating the RNA sequencing libraries.

We note that, in our analysis, circRNA expression profiles were 
the least correlated with cell types (Fig. 4c and Supplementary  
Fig. 20c). Because of technical limitations—circRNAs can only 

be quantified using reads spanning the back-splice junction—the 
number of available reads that quantify circRNA expression was 
typically lower and less quantifiable. When limiting the analysis to 
more abundant circRNAs, we observed an increase in the difference 
between inter- and intra-cell-type cluster distances(Supplementary 
Fig. 21). That increase was proportional to the abundance of 
selected circRNAs, and only the 1% most abundant circRNAs pro-
duced results that were similar to those observed for other RNAs. 
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Overall, 44 and 77 circRNAs were significantly upregulated with 
log2 fold changes >3 and a Benjamini–Hochberg-based FDR < 0.01 
in at least one of the four major cell types or ten cancer types 
(Supplementary Fig. 21).

Total RNA transcriptomes facilitate the use of intron expres-
sion profiles to study regulatory modalities. Both intronic and 
exonic expression profiles could be accurately estimated for thou-
sands of RNA Atlas transcripts in each of our total RNA profiles 
(Fig. 5a). Consequently, we were able to use these estimates as 
surrogates for pre-mRNA and mRNA expression profiles, respec-
tively (Supplementary Tables 18–20). Analysis of pre-mRNA and 
mRNA expression profile estimates suggested a universally sig-
nificant, but less than perfect, concordance for most transcripts  
(Fig. 5b). Notably, pre-mRNA and mRNA expression deviated  
significantly more for genes with longer 3′ untranslated regions 
(UTRs) (P < 8 × 10−37), which might be due to tighter 3′ UTR- 
mediated post-transcriptional regulation40. Namely, transcriptional 
regulation is expected to affect both pre-mRNA and mRNA expres-
sion profiles, whereas post-transcriptional regulation is expected 
to cause deviations between these profiles. Thus, the ratio between 
a gene’s estimated mRNA and pre-mRNA expression profiles 
(m/p ratio) is expected to be correlated with changes in the gene’s 
post-transcriptional but not its transcriptional regulation.

To further study the effects of transcriptional and 
post-transcriptional regulation in RNA Atlas, we collected veri-
fied TF and miRNA targets for 210 TFs and 224 miRBase miRNAs 
(Supplementary Table 21). TF expression profiles had significantly 
higher correlations with both the TF’s target pre-mRNA and mRNA 
expression profiles than with the target’s mRNA/pre-mRNA ratio 
(m/p ratio). In contrast, and as expected, miRNA expression pro-
files had significantly higher correlations with the target m/p ratio 
than with pre-mRNA and mRNA expression profiles of the target  
(Fig. 5c,d). These observations are in concordance with the hypoth-
esis that mRNA and pre-mRNA estimates can indicate regulation 
modalities. Moreover, they provided a means to functionally evalu-
ate miRNAs that were identified in this study with respect to the 
post-transcriptional regulation of their predicted targets. However, 
extending this observation to predicted TF and miRNA targets 
required accurate and dataset-specific regulator-target predictions 
(Supplementary Table 22), and sequence-based target predictions 
alone showed little evidence of differences between pre-mRNA and 
m/p ratio correlations (Supplementary Fig. 22c). In contrast, analyses 
focusing on miRNAs with predicted targets by Cupid41 and LongHorn42 
suggested that correlations between miRBase miRNAs and their tar-
get m/p ratio profiles were significantly higher than with their target 
pre-mRNA profiles. Note that LongHorn uses mRNA expression esti-
mates to predict interactions, and, consequently, LongHorn-inferred 

regulator and target mRNA profiles—but not m/p ratios—are 
expected to be correlated. We also classified miRDeep2-predicted 
miRNAs into two sets: one containing miRNAs previously identi-
fied in other DBs (Other_DB miRNAs) and the other with miRNAs 
exclusively found in RNA Atlas (RNA Atlas-only miRNAs). As in 
the case of miRBase miRNAs, RNA Atlas-only miRNAs had signifi-
cantly higher correlations with their target m/p ratio than pre-mRNA 
profiles according to the paired Student’s t-test (P < 3 × 10−56;  
Fig. 5e), but this trend was not observed for Other_DB miRNAs.

We set restrictive criteria when searching for miRNAs whose 
expression profiles had significantly higher correlations with target 
m/p ratio than mRNA and pre-mRNA profiles. Namely, only miRNAs 
with at least one predicted target with adequate pre-mRNA expres-
sion profiles in all RNA Atlas samples were included in the analy-
sis. In total, 757 miRBase miRNAs and 543 miRDeep2-predicted 
candidate miRNAs satisfied this requirement. Of these, 709 miR-
Base miRNAs (94%) and 469 miRDeep2-predicted miRNAs (86%) 
had at least one target for which we observed a higher correlation 
between the miRNA expression profiles and its target’s m/p ratio 
profiles compared to the target’s mRNA and pre-mRNA profiles. 
However, to test that the expression profiles of miRNAs are signifi-
cantly more likely to have a stronger correlation with their target’s 
m/p ratios, we required that a significantly greater number of pre-
dicted targets have higher miRNA to m/p ratio correlations (P < 0.05 
by paired Student’s t-test). In total, of the 735 miRBase miRNAs and 
525 miRDeep2-predicted miRNAs that had multiple interactions 
with target pre-mRNA expression available, 211 miRBase miRNAs 
(29%) and 105 miRDeep2-predicted miRNAs (20%) satisfied this 
requirement (Supplementary Table 5). Our analysis suggests that 
these 211 miRBase miRNAs and 105 miRDeep2-predicted miRNAs  
are functionally regulating multiple post-transcriptional targets 
across multiple samples in the RNA Atlas dataset. We note that 
18/105 miRDeep2-predicted and 207/211 miRBase miRNAs with 
functional evidence were also annotated in FANTOM5, miRCarta 
or MirGeneDB (Supplementary Table 23).

Evidence for transcriptional and post-transcriptional regula-
tion by lncRNAs. Our ability to distinguish transcriptional from 
post-transcriptional regulation could also provide insight into 
lncRNA function. We first applied LongHorn42 to infer regula-
tory networks downstream of RNA Atlas lncRNAs, including 
single-exon and multi-exon lincRNAs, asRNAs and circRNAs. 
LongHorn (Fig. 6a) predicted lncRNA targets by evaluating them 
as modulators of transcriptional regulation—where lncRNAs are 
modeled to alter TF regulation as co-factors, guides, or decoys—and 
of post-transcriptional regulation as miRNA- and RNA-binding 
protein (RBP) decoys43–46. We evaluated whether LongHorn predic-
tions were supported by the expected correlations between regulator  

Fig. 6 | Evidence for regulation by lncRNAs. a, LongHorn inferred interactions by evaluating four distinct models for lncRNA regulation, including 
transcriptional regulation (TR) by lncRNAs as co-factors, guides or TF decoys and post-transcriptional regulation (PTR) as decoys for miRNAs and RBPs. 
b, Predicted TF-target interactions with no supporting evidence from expression did not show correlation differences between TF-target pre-mRNA and 
m/p ratio (Supplementary Fig. 22c). However, evidence for lncRNA regulation, including regulation by single-exon and multi-exon lncRNAs, antisense, 
intergenic and circular lncRNAs, resulted in TF-target pre-mRNA profiles that were significantly better correlated than TF-target m/p ratio profiles; the 
number of tested TFs and interactions for each lncRNA biotype is given in parentheses. Note that P < 3 × 10−308 are P values beyond machine precision. 
Similarly, (c) miRNA-target interactions modulated by single-exon and multi-exon lncRNAs and antisense, intergenic and circular lncRNAs showed 
higher miRNA-target m/p ratio correlations. P values represented in b and c were computed as the geometric means of the one-sided P values from the 
paired Student’s t-test for delta correlations between regulators and their target’s expression profiles, where delta correlations compared correlations of 
regulators and their target’s pre-mRNA or mRNA versus their m/p ratio profiles. d, LongHorn predicted 498,384 lncRNA-target interactions, and, among 
these, 42% had sufficient intronic and exonic read counts to evaluate m/p ratio in all profiled samples. Note that lncRNA-target pairs that were predicted 
to interact according to multiple models were counted multiple times. e, Proportion of interactions for which regulator-target m/p ratio correlations 
were significantly different from regulator-target pre-mRNA correlations. Results are shown by the biotype of modulating lncRNAs (left) and the type 
of regulation for these interactions (right); one-sided P values were estimated by permutation testing after adjusted for multiple comparisons using the 
Benjamini–Hochberg procedure, and the number of lncRNAs is given in parentheses (Methods). The regulators were either TFs or miRNAs mediating the 
lncRNA-target interactions.
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expression (that is, TF or miRNA) and target mRNA, pre-mRNA 
and m/p ratio estimates. For each LongHorn prediction, we selected 
TF-target interactions based on ENCODE ChIP-seq47 and TF bind-
ing motifs and miRNA-target interactions based on sequence analy-
sis42. Analogously to verified TF-target interactions (Fig. 5c), and for 

all types of lncRNA modulators considered, pre-mRNA and mRNA 
correlations were consistently higher than m/p ratio correlations 
for predicted TF-target interactions (Fig. 6b and Supplementary  
Fig. 22a). Note that predicted TF-target interactions with no evi-
dence of lncRNA modulation did not have substantial differences 

a

(c) TR:Decoy

(b) TR:Guide

(a) TR:Co-factor

5’
3’

3’
5’

Protein-coding gene

TSS

asRNA or 
lincRNA

5’
3’

3’
5’

Protein-coding gene

TSS

TF

asRNA or 
lincRNA

5’
3’

3’
5’

Protein-coding gene

TSSTF

asRNA or lincRNA

(d) PTR:Decoy

Protein-coding transcript

asRNA
or lincRNA

circRNA

miRNA

RBP

0
10
20
30
40
50
60
70
80
90

100

0 0.1 0.2 0.3 0.4 0.5 0.6

asRNA
(1,122 miRNAs, 25,767 targets)

Distance correlation (dCor)

c

T
ar

ge
ts

 (
%

)
T

ar
ge

ts
 (

%
)

0
10
20
30
40
50
60
70
80
90

100

0 0.1 0.2 0.3 0.4 0.5 0.6

circRNA
(158 miRNAs, 725 targets)

0
10
20
30
40
50
60
70
80
90

100

0 0.1 0.2 0.3 0.4 0.5 0.6

lincRNA
(1,209 miRNAs, 33,062 targets)

0
10
20
30
40
50
60
70
80
90

100

0 0.1 0.2 0.3 0.4 0.5 0.6

Single-exon
(168 miRNAs, 725 targets)

P = 3 × 10
–15

P = 3 × 10
–308 P = 3 × 10

–308
P = 3 × 10

–308 P = 2 × 10
–3

P = 3 × 10
–308

P = 3 × 10
–308

P = 3 × 10
–308

P = 3 × 10
–308 P = 2 × 10

–5

mRNA
pre-mRNA
m/p ratio

0
10
20
30
40
50
60
70
80
90

100

0 0.1 0.2 0.3 0.4 0.5 0.6

Multi-exon
(1,290 miRNAs, 47,238 targets)

Modulated miRNA-targets by lncRNAs (inferred)

b

Distance correlation (dCor)

Modulated TF-targets by lncRNAs (inferred)

0
10
20
30
40
50
60
70
80
90

100

0

circRNA
(55 TFs, 442 targets)

0
10
20
30
40
50
60
70
80
90

100

0

lincRNA
(267 TFs, 100,660 targets)

0
10
20
30
40
50
60
70
80
90

100

0

asRNA
(265 TFs, 84,565 targets)

0
10
20
30
40
50
60
70
80
90

100

0

Multi-exon
(268 TFs, 101,350 targets)

Exonic
Intronic
Ratio

0
10
20
30
40
50
60
70
80
90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6

Single-exon
(258 TFs, 66,385 targets)

mRNA
pre-mRNA
m/p ratio

ln
cR

N
A

-t
ar

ge
t p

ai
r 

(%
)

47
%

45
%

27
%

0%

25%

50%

75%

100%

as
R

N
A

(4
6,

60
7)

lin
cR

N
A

(1
61

,7
48

)

ci
rc

R
N

A
(1

49
)

Significant (Padj = 0.05) Non-significant

47
%

43
%

45
%

25
%

0%

25%

50%

75%

100%

T
R

:C
o-

fa
ct

or
(1

20
,3

67
)

T
R

:G
ui

de
(2

9,
16

1)

T
R

:D
ec

oy
(5

4,
51

7)

P
T

R
:D

ec
oy

(4
,4

59
)

d e

Available
(42%)

498,384 total

AAA 3’

5’

NATURE BioTECHNoLoGY | VOL 39 | NOVeMBeR 2021 | 1453–1465 | www.nature.com/naturebiotechnology1462

http://www.nature.com/naturebiotechnology


ResouRceNATuRE BiOTEcHNOlOgy

between pre-mRNA and m/p ratio correlations (Supplementary 
Fig. 22c). Similarly, all types of lncRNA-mediated miRNA-target 
interactions showed significantly higher m/p ratio correlations 

than mRNA or pre-mRNA correlations (Fig. 6c and Supplementary 
Fig. 22b). As additional controls, we verified that randomized 
regulator-target pair sets that were generated by permutation testing 
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did not show differences in correlations even for 100,000 simulated 
interactions (Supplementary Figs. 22d,e and 25). Lastly, we note 
that target, miRNA and TF expression variabilities, and the num-
ber of samples in which they were expressed, did not qualitatively 
influence our observations and conclusions that TFs and miRNAs, 
whose regulation was evidenced by LongHorn-inferred lncRNA 
modulators, are significantly less and more correlated with their 
target’s m/p expression ratios, respectively (Supplementary Figs. 23 
and 24). Collectively, this result suggests that differences observed 
for predicted interactions were not expected by random chance, 
independently of the number of regulator-target pairs considered or 
expression features of targets and regulators (Fig. 6, Supplementary 
Figs. 22–25 and Supplementary Tables 24 and 25).

These observations suggested that all lncRNA biotypes, includ-
ing single-exon lncRNAs and non-polyadenylated lncRNAs, are 
effectively altering TF and miRNA regulation. In addition, for many 
lncRNA species, the analysis pointed to lncRNA specialization as 
either transcriptional or post-transcriptional regulators. In total, we 
predicted that 498,384 lncRNA-mediated interactions and targets 
included in 208,543 of these (Fig. 6d) had pre-mRNA, mRNA and 
m/p ratio expression estimates in all samples. Differences between 
the correlations of regulator expression and the pre-mRNA and m/p 
ratio expression profiles of their targets, for each regulatory modal-
ity, were significant for most of LongHorn’s predicted interactions 
at Benjamini–Hochberg-adjusted P < 0.05 by permutation testing 
(Fig. 6e, Methods and Supplementary Table 25). However, rela-
tively fewer predicted circRNA-mediated and post-transcriptional 
decoy-mediated interactions had significant correlation differences. 
An analysis of lncRNA regulatory models inferred by LongHorn 
suggested that circRNAs are predominantly post-transcriptional 
decoys, whereas other lncRNAs predominantly modulate tran-
scription (Fig. 7a). Although these observations are based on just 
21 circRNAs and might, therefore, not generalize to all circRNAs 
or all decoys, they are in line with earlier observations demonstrat-
ing the enrichment of circRNAs in the cytoplasm and lncRNAs in 
the nucleus24,48,49. In total, of the 1,221 single-exon lncRNAs inves-
tigated, 960 (79%) were predicted to modulate at least one interac-
tion that had significant differences between the correlations of a 
regulator and the target’s pre-mRNA and m/p ratio. Similarly, 4,092 
(88%) of our multi-exon lncRNAs showed this relationship. To 
validate these predicted interactions, we analyzed RNA sequencing 
data from lncRNA perturbation experiments (publicly available and 
newly generated). Our result suggested that, for 20/24 (83%) and 
15/24 (63%) of the tested lncRNAs, LongHorn-inferred lncRNA 
targets were more likely to be dysregulated (odds ratio > 1) and 
significantly dysregulated (P < 0.05, by Fisher’s exact test) after the 
downregulation of the corresponding lncRNA, respectively. Details 
of this analysis are described in Methods (Supplementary Figs. 26 
and 27 and Supplementary Tables 26 and 27).

In total, 3,310 lncRNAs, including 2,012 Annotated, 1,174 
PreRep and 124 RNA Atlas-only, were associated with ten or more 
LongHorn-inferred targets. Our analysis suggested that many of 
these lncRNAs preferentially target key pathways in disease and 
development (FDR-adjusted Fisher’s exact test < 0.01). To study 
this further, we catalogued lncRNAs according to their predicted 

targets’ enrichment in hallmark pathways50 and their specializa-
tion as transcriptional or post-transcriptional modulators. In total, 
17 pathways were enriched in targets from at least five lncRNAs  
(Fig. 7b). Our analysis suggested that, overall, lncRNAs preferen-
tially target proliferation and signaling pathways. The full analysis is 
given in Supplementary Table 28, and pathway enrichments for 15 
lncRNAs from each class (Annotated, PreRep and RNA Atlas-only) 
are depicted in Supplementary Fig. 28. The full lncRNA-target pre-
diction data are available for download and analysis on the R2 plat-
form (http://r2platform.com/rna_atlas). R2 allows for comparing 
profiles across technologies, visualizing lncRNA expression across 
samples and studying regulatory network modules predicted by 
LongHorn, including analyzing correlations among lncRNAs, TFs, 
miRNAs and predicted targets. Figure 7c depicts an example of the 
R2 analysis module using the lncRNA SAMMSON16.

Discussion
By applying three complementary RNA sequencing technologies 
on a heterogeneous collection of tissues, cell types and cell lines, 
we assembled a comprehensive human transcriptome cover-
ing all major RNA biotypes. Our effort both complements other 
consortium-based efforts aimed at generating human expression 
atlases4–13 and extends the scopes of RNA catalogs by integrating 
multiple RNA sequencing technologies, which allowed for a variety 
of follow-up analyses. Namely, the total RNA sequencing compo-
nent of the RNA Atlas dataset revealed novel non-polyadenylated 
lincRNAs, enabled us to determine transcript polyadenylation sta-
tus and allowed pre-mRNA expression estimates by quantifying 
intronic RNA abundance. The latter was crucial to distinguishing 
transcriptional from post-transcriptional regulation, which helped 
define a set of regulatory RNAs with evidence of post-transcriptional 
regulation in multiple tissues. We note that, although we imposed 
minimal abundance criteria for the candidate miRNAs, we did not 
implement other criteria defined in the miRBase high-confidence 
checklist26 and previously used by the FANTOM consortium8. 
Notably, several miRBase miRNAs have validated target genes but 
do not adhere to the high-confidence criteria, which are mainly 
related to sequence characteristics. We, therefore, reasoned that 
miRNA-like behavior and evidence for regulatory function out-
weigh sequence characteristics when cataloguing miRNAs.

The integration of miRNA and whole-transcriptome profiling 
across a variety of tissues enabled analyses that allowed us to evalu-
ate RNA Atlas-predicted ncRNA species for functional evidence. 
Consequently, in addition to supporting the inclusion of previously 
predicted miRNAs and lncRNAs and identifying new species, we 
were also able to collect multiple lines of evidence for their func-
tional relevance in human cells and to interpret their function 
through both transcriptional and post-transcriptional regulatory 
interactions. The resulting RNA Atlas dataset and analysis products 
serve as a resource to mine the expression and regulatory land-
scapes of multiple RNA biotypes and contain a unique collection 
of ncRNAs together with their functional interpretation. Dedicated 
experimental validation studies based on genetic perturbations cou-
pled to phenotypic or molecular readouts should follow to evaluate 
ncRNA function51 in each studied context. Moreover, we envision 

Fig. 7 | interpretation of lncRNA function. a, LongHorn identified lncRNAs that are enriched for predicted transcriptional or post-transcriptional 
interactions, or for both, relative to other lncRNA species. asRNAs and lincRNAs were more likely to be identified as transcriptional regulators, whereas 
circRNAs were more likely to be identified as post-transcriptional regulators; each of these lncRNAs was required to have at least ten LongHorn-inferred 
targets; the number of lncRNAs included in each category is given in parentheses. b, Seventeen MSigDB’s hallmark gene sets were predicted to be 
significantly regulated by at least five lncRNAs at P < 0.01. P values were one sided and estimated by FDR-adjusted Fisher’s exact test. lncRNAs were 
predicted to preferentially target proliferation and signaling pathways; the total number of regulating lncRNAs in each pathway is provided in parentheses. 
c, The full lncRNA-target prediction data are available for download and analysis on the R2 platform. R2 also allows the analysis and visualization of 
lncRNA abundance and regulatory network modules predicted by LongHorn. We show an example of an R2 analysis for the lncRNA SAMMSON.
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that the ncRNA regulatory interactions that are presented will serve 
as a starting point for follow-up studies to gain insights into the 
mode of action of hundreds of ncRNAs.
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Methods
Sample cohort. A total of 300 human samples were used in this study, including 
45 tissues, 162 cell types and 93 cell lines, of which 89 are cancer cell lines derived 
from 13 different types of cancer (Supplementary Table 1). RNA of individual 
cell types was obtained from ScienCell Research Laboratories or isolated from 
cell types collected at Ghent University Hospital. RNA from collected cell types 
and (cancer) cell lines was isolated using the miRNeasy kit (Qiagen) according to 
the manufacturer’s instructions. RNA samples from normal human tissues were 
obtained from Ambion and BioChain.

Library prep and sequencing. For each RNA sample, three different 
strand-specific RNA libraries were prepared. Small RNA libraries were generated 
using the TruSeq Small RNA Library Prep Kit (Illumina) according to the 
manufacturer’s instructions, using 750-ng input RNA. Library size selection was 
performed using a Pippin Prep device (Sage Science). Total RNA libraries were 
generated using the TruSeq Stranded Total RNA Library Prep Kit with Ribo-Zero 
Gold (Illumina) according to the manufacturer’s instructions using 1 µg of input 
RNA. PolyA RNA libraries were generated using the TruSeq Stranded mRNA 
Library Prep Kit (Illumina) according to the manufacturer’s instructions using 
1 µg of input RNA. Small RNA libraries were pooled (volume-based pooling, 48 
libraries per pool), and pools were quantified using the High Sensitivity dsDNA 
assay on a Bioanalyzer device (Agilent). PolyA and total RNA library pools were 
quantified using the Standard Sensitivity NGS Fragment Kit (cat. no. DNF-473) 
on a Fragment Analyzer (Advanced Analytical). Small RNA library pools were 
sequenced on a NextSeq 500 instrument (Illumina) using a high-output flow cell, 
76 cycles. Pooled polyA and total RNA libraries were sequenced on a HiSeq 4000 
instrument (Illumina) with paired-end 76 cycle reads.

Transcriptome assembly from polyA and total RNA sequencing libraries. 
PolyA and total RNA reads were mapped to the hg38 reference genome (primary 
assembly, canonical chromosomes, repeats from RepeatMasker and Tandem 
Repeats Finder soft masked, http://hgdownload.soe.ucsc.edu/goldenPath/
hg38/bigZips/) with TopHat52 version 2.1.0 (Bowtie2 (ref. 53) v2.2.6) using the 
--no-coverage-search option and --library-type=fr-firststrand. The Ensembl18 
transcriptome (v86, which was the latest available at the start of the project—
download link: ftp://ftp.ensembl.org/pub/release-86/gtf/homo_sapiens) was 
provided to guide the mapping of reads to known transcripts first. All other 
parameters were set to default values. Transcriptomes were assembled in each 
sample and each library type separately using StringTie (ref. 54) (v1.3.3). Default 
parameters were used, and the Ensembl18 reference annotation (v86) was supplied 
to guide each assembly (Supplementary Table 2 and Supplementary Fig. 2b).

All individual transcriptomes were then merged together with the reference 
Ensembl transcriptome (v86) using StringTie merge applying a cutoff of 1 
transcript per million (TPM) (Supplementary Fig. 1c–e) and minimum transcript 
length of 200 nucleotides, with all other parameters set to default values.

CuffCompare55 (v2.2.1) was used to compare the newly assembled transcripts 
with the reference annotation. Non-annotated transcripts with classification codes 
other than ‘x’, ‘u’, ‘j’ or ‘=’ were removed (this included 20,539 transcripts with 
codes ‘c’, ‘e’, ‘I’, ‘o’, ‘p’ or ‘s’) as well as transcripts spanning two or more known, 
non-overlapping, adjacent loci.

We then calculated the overlap of all known and non-annotated exons with 
repetitive elements in the genome using BEDTools56 (intersect). The repeats 
regions were retrieved from the UCSC Table Browser57 (Group: Repeats; Track: 
RepeatMasker). The fraction of exonic sequence overlapping repeats was computed 
for each gene. Non-annotated, non-coding, single-exon genes with fewer than 
200 consecutive non-repeat nucleotides were filtered out. Regions overlapping 
repeats within the remaining non-coding, single-exon genes were hard-masked 
(bases were converted to Ns) using BEDTools56 (v2.27.1, maskfasta). After these 
filtering steps, the polyA/total RNA sequencing-derived transcriptome contained 
422,083 transcripts, including all transcripts in Ensembl version 86 annotation. This 
transcriptome was quantified using Kallisto quant58 (flag --rf-stranded and all other 
parameters set to default values) across all polyA and total RNA sequencing libraries.

After quantification, newly assembled and Ensembl genes belonging to the 
biotypes ‘protein_coding’, ‘antisense’ and ‘lincRNA’ were retained. Because of 
previous filtering steps at transcript level, non-annotated genes are either intergenic 
(lincRNA) or antisense (asRNA) to reference genes. Ensembl and newly assembled 
genes with expression levels below 0.1 TPM in all samples were removed.

Selection of the RNA Atlas transcriptome. Independent evidence for transcription 
of RNA Atlas PCG, lincRNA and asRNA genes was obtained by integrating results 
from CAGE sequencing from the FANTOM consortium6 and various chromatin 
states from the Roadmap Epigenomics Project19. The following chromatin states, 
indicative for active transcription, were considered: active transcription start site 
(1_TssA), transcription (5_Tx5, 6_Tx and 7_Tx3), transcribed and regulatory  
(9_TxReg), transcribed and enhancer (10_TxEnh5 and 11_TxEnh3), active_
enhancer (13_EnhA1 and 14_EnhA2) and bivalent_promoter (23_PromBiv)19. 
For each TSS of genes with expression values greater than or equal to 0.1 TPM 
in at least one tissue from the RNA Atlas and not being part of chromosome 
Y (chromatin states did not include information for that chromosome), we 

used the Zipper plot approach59 to retrieve the closest CAGE sequencing6 and 
chromatin state19 peak across all samples from FANTOM5 and the Roadmap 
Epigenomics Project, respectively. We refined our gene set based on presence of the 
aforementioned peaks within 500 nucleotides upstream or downstream the TSS and 
further classified the genes across the different RNA biotypes into four categories: 
(1) evidence at both DNA (chromatin state) and RNA (CAGE sequencing) 
levels; (2) evidence at RNA level only; (3) evidence at DNA level only; and (4) no 
evidence. Genes belonging to one of the first three categories were retained in the 
RNA Atlas transcriptome. We also included 642 genes that do not present close 
association to any CAGE peak or chromatin state peaks but whose expression levels 
were higher than the median expression levels for genes that present both levels 
of evidence. Specifically, we retained genes with no independent evidence if their 
expression in at least four samples from either polyA or total RNA libraries was 
higher than the median value of the mean expression across samples for genes with 
both levels of evidence (4.67 TPM and 2.20 TPM for polyA and total RNA data, 
respectively). This set included 473 PCGs, 21 asRNAs and 148 lincRNAs.

Comparison with reference databases and gene sets from other large-scale 
efforts. Ensembl (v86) was used to guide the assembly of the primary 
transcriptome and for biotype definition at project inception. We later annotated 
our RNA Atlas set using GENCODE (v33) and RefSeq (v200) annotations  
(as of 1 May 2020), in addition to other recent transcriptome resources derived 
from large-scale studies, including FANTOM5 (ref. 7), BigTranscriptome13, 
MiTranscriptome10 and CHESS9. We note that the Ensembl/Havana merged gene 
set is equivalent to the GENCODE gene set21. To perform these comparisons, we 
first combined the set of genes in GENCODE and ‘curated’ RefSeq records (that 
is, including only ‘NM_’ and ‘NR_’ identifiers—see https://www.ncbi.nlm.nih.
gov/refseq/about) into a joint transcriptome that we named Annotated RNAs. 
In the same way, we combined all RNAs predicted by FANTOM5 stringent set, 
BigTranscriptome, MiTranscriptome, CHESS and the ‘model’ set of RefSeq (that 
is, including only ‘XM_’ and ‘XR_’ identifiers—see https://www.ncbi.nlm.nih.
gov/refseq/about/) into a joint transcriptome that we named Previously Reported 
(PreRep) RNAs. See ‘Generation of combined transcriptomes’ below for details on 
how all combinations were performed.

We then computed the overlap of the set of RNA Atlas RNAs with each of these 
combined transcriptomes separately, using the CuffCompare55 tool. In each case, 
each RNA Atlas gene was considered to overlap the reference transcriptome if at 
least one of its transcripts was assigned one of the class codes ‘=’, ‘j’, ‘c’, ‘o’ or ‘e’. We 
used this information to classify the set of RNA Atlas genes into three categories: 
those that overlap genes in the Annotated set, named ‘Annotated’ RNAs; those 
that overlap genes in the PreRep set but not in the Annotated set, named ‘PreRep’ 
RNAs; and those that do not overlap genes in either transcriptome, named ‘RNA 
Atlas-only’ RNAs.

Note that the PreRep transcriptome includes the set of FANTOM5 stringent 
genes. We next checked the overlap between RNA Atlas genes and FANTOM5 
robust genes with the CuffCompare55 tool. Using the criteria described in the 
previous paragraph, 990 (18%) RNA Atlas-only genes were found to overlap 
FANTOM5 robust genes. We added the overlap with this dataset as an additional 
column in Supplementary Table 3. Additionally, we performed the same 
comparison using the GffCompare60 tool, an updated version of CuffCompare, to 
evaluate possible differences between both tools. In this case, we also considered 
the class codes ‘k’, ‘m’ and ‘n’, not present in CuffCompare, as indicative of overlap. 
The differences in the results obtained by both tools are marginal (with six extra 
genes reported as matches by CuffCompare but not by GffCompare) and related to 
differences in the assigned class codes for a small fraction of transcripts. Overall, 
this suggests that using GffCompare instead of CuffCompare would not affect the 
conclusions put forward in this study.

Construction of Venn diagram for lncRNAs. The sections that compose the 
Venn diagram in Supplementary Fig. 4a were calculated as follows. For RNA Atlas 
lncRNAs (sections in white numbers), the classification approach described above, 
based on the overlap with transcripts contained in each of the other two datasets, 
was used. To retrieve information for those lncRNAs not included in RNA Atlas 
(sections in black numbers), we first generated a joint transcriptome by combining 
the RNA Atlas, Annotated and PreRep sets (see ‘Generation of combined 
transcriptomes’). From this combined annotation, we first filtered out all genes that 
contained RNA Atlas transcripts. From the remaining non-RNA Atlas combined 
loci, we selected those classified as lncRNAs based on a consensus call across 
transcripts (see ‘Transcript and gene biotype definition for combined annotations’) 
and then classified them as PreRep only (if the lncRNA contained only transcripts 
coming from PreRep set), Annotated only (if the lncRNA contained only 
transcripts coming from the Annotated set) or common to PreRep and Annotated 
(those lncRNAs that had transcripts from both datasets). We finally summarized 
this information into the Venn diagram shown in the figure.

Generation of combined transcriptomes. Combined transcriptomes were 
obtained with the CuffCompare55 tool (output files with ‘.combined.gtf ’ suffix). 
This tool performs a joint union at transcript level by keeping all individual 
transcripts from all databases including tracking information of where they come 
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from, and it only collapses transcripts across references into unique entries if they 
have exactly matching intron chain (that is, only admits differences in the start 
and end exons). As for locus level, it merges and assigns unique locus identifiers 
to all transcripts that overlap in a certain genomic region. Note that this is a rather 
conservative approach because it retains small differences between annotations 
and often results in relatively large transcript sets. Also note that the resulting gene 
definition in certain loci might differ from the individual gene definitions across 
databases being combined, and, therefore, it is not always possible to define a 
one-to-one relationship between a gene in an individual database and a gene in the 
resulting combined annotation.

Transcript and gene biotype definition for combined annotations. Different 
biotype definitions across datasets were grouped in five main categories: 
‘protein-coding genes’, ‘lncRNAs’ (this includes antisense, lincRNAs and divergent 
and sense-overlapping ncRNAs), ‘pseudogenes’, ‘other genes’ (this category includes 
rRNA, tRNA, scaRNA, snoRNA, sRNA, miRNA and other small RNAs) and 
‘uncertain’ (the biotype is not defined, ambiguous or uncertain).

For transcripts in the PreRep dataset that matched transcripts in the 
Annotated dataset (class codes ‘=’, ‘j’, ‘c’ or ‘e’ from CuffCompare), the biotype 
from Annotated was taken (and, within this, GENCODE over RefSeq annotation 
was taken if they differed). For transcripts in the PreRep dataset that did not have 
a match in the Annotated dataset, a majority vote across the individual databases 
was taken among the non-uncertain annotations; in case of ties, ‘protein-coding’ 
biotype was prioritized first, then ‘pseudogene’, then ‘lncRNA’ and, finally, 
‘other’. Genes in the combined annotations were annotated using these rules: if 
any transcript in the locus is ‘protein-coding’, the entire locus is annotated as 
protein-coding; otherwise, a majority vote among the non-uncertain biotypes is 
taken where ties are solved by taking the priority order of ‘pseudogene’ first, then 
‘lncRNA’, then ‘other’.

TF binding analyses. We sought to identify an independent objective method 
to evaluate prediction accuracy for the different sets of lncRNAs. We argued that 
accurate lncRNA gene models are more likely to harbor regulatory elements in 
their predicted promoters, which would support their status as independently 
regulated transcriptional units. To assess this, we collected all TSSs for Annotated, 
PreRep and RNA Atlas-only lncRNAs and compared TF occupancy (number of 
TFs with significant -qval <0.05- ENCODE ChIP-seq peaks) at 2-kb promoters 
centered at lncRNA TSSs. Our evaluation, of nearly 140,000 lncRNA TSSs, was 
based on ENCODE-identified binding sites for 161 TFs in 90 cell types and tissue 
samples. Note that only 36 (40%) of these sample types were profiled by RNA Atlas, 
whereas all of these sample types were included in analyses of lncRNAs from other 
curation efforts. When computing overlaps, we matched cell lines and tissue types, 
and, in total, 11 cell lines and 25 tissue types (from non-matching donors) were 
profiled by both RNA Atlas and ENCODE.

Evaluation of coding potential. To assess the protein-coding potential of the 
newly assembled transcripts, two algorithms were used: the Coding-Potential 
Assessment Tool30 (CPAT, v2.0.0) and PhyloCSF31 (obtained from https://github.
com/mlin/PhyloCSF, 18 January 2015). The CPAT code was slightly modified so 
that the predicted ORF sequence is returned in the output. CPAT was run using the 
provided hexamer table and logit model. The recommended probability cutoff of 
0.364 was used to identify putative coding ORFs.

Because the PhyloCSF pipeline is based on the GRCh37/hg19 reference 
genome, all genomic coordinates were first converted using the liftOver tool on the 
UCSC Genome Browser website57. To run PhyloCSF, whole-genome alignments of 
46 species are obtained from the UCSC Genome Browser website57 and processed 
using the Phylogenetic Analysis with Space/Time Models package61 (PHAST, v1.4) 
into the required input format. PhyloCSF was run in three reading frames using 
the ATGStop setting; all ORFs of at least ten codons were considered. A cutoff 
score of 60.7876, based on benchmarking with Ensembl (v90)62 transcripts, was 
used to identify putative coding ORFs. In total, 188 newly assembled genes had at 
least one isoform scored as protein-coding by both tools.

Alignment of the protein sequence to other animal proteins via BLASTp. 
The existence of similar proteins across different species (cross-species protein 
conservation) was evaluated through alignment of our predicted ORFs to UniProt 
protein reference clusters (UniRef90) using BLASTp (BLAST+32 package v2.9.0). 
Off 188 evaluated genes, 109 had at least one hit with an E value < 0.001. When 
compared to up-to-date annotations (see sections above), we found that 21 of 
these candidates were annotated as non-coding genes in the Annotated dataset; 
59 and 15 were annotated as non-coding and protein-coding, respectively, in the 
PreRep dataset; and nine were unique for RNA Atlas (that is, RNA Atlas-only 
class). Finally, five of these genes were annotated as protein-coding genes in the 
Annotated dataset and were excluded from our list of new candidate PCGs. Note 
that our final list of 104 new candidate protein-coding genes includes only genes 
in the RNA Atlas transcriptome that were predicted to have high coding potential 
by both evaluated algorithms (CPAT and PhyloCSF—see above) and that have at 
least one BLASTp hit with an E value ≤ 0.001. Detailed information for these 104 
candidate protein-coding genes is provided in Supplementary Table 7.

Conservation with chimpanzee. Whole-genome alignments of 99 species 
against human (multiz100way, hg38) were obtained from the UCSC website57 and 
processed using the PHAST61 package (v1.3). From these whole-genome alignment 
files, local alignments of the human (hg38) and chimpanzee (panTro4) genomes 
were extracted for the predicted ORFs. From these, the fraction of conserved 
bases and amino acids (through in silico translation) was calculated for each 
predicted ORF. The approach was repeated for Ensembl protein-coding ORFs for 
comparison.

Mass spectrometry validation. Mass spectrometry validation of the predicted 
proteins was conducted on the draft map of the human proteome dataset33. Briefly, 
this dataset consists of deep proteomic profiling of 17 adult tissues, seven fetal 
tissues and six purified primary hematopoietic cells. Raw files were obtained 
from the PRoteomics IDEntifications (PRIDE) database63 (project PXD000561) 
and converted to Mascot generic format (MGF) using the msconvert tool in the 
ProteoWizard package64.

Analysis of the tandem mass spectrometry data was performed using Ionbot 
(unpublished, based on the work of Silva et al.65, https://ionbot.cloud), a sequence 
database search tool based on machine learning capable of performing rapid open 
modification and open mutation searches. Ionbot was used under a beta-tester 
version supplied by Sven Degroeve and Lennart Martens (Ghent University, 
VIB). Briefly, peptide databases were created as a full in silico trypsin digestion 
(allowing up to one missed cleavage) of the protein sequence dataset consisting of 
all human proteins in the UniProt in the UniProtKB database66 (Swiss-Prot subset, 
21,008 proteins) and the CPAT- and PhyloCSF-predicted proteins. Decoy peptides 
were obtained by applying the same digestion on the reversed target proteins. 
Ionbot was run in the open modification and open mutation mode. In addition, 
carbamidomethylation of cysteine was set as fixed and oxidation of methionine 
as variable modification. The FDR was estimated with the target decoy approach. 
Only peptide spectrum matches with an estimated FDR below 1% were retained.

Identification and quantification of circRNAs. circRNAs were identified from 
total RNA sequencing data using two independent workflows—find_circ2 (ref. 25) 
(n = 85,470) and CIRCexplorer2 (ref. 67) (n = 204,857)—using genome build hg19. 
For downstream analysis, the mean circRNA count across methods was used. Only 
circRNAs identified by both tools (n = 62,832) and with mean counts between tools 
higher than 4 in at least one sample were retained (n = 38,030). Genomic positions 
of 38,023 circRNAs were successfully converted to hg38 coordinates using the 
liftOver tool (UCSC)57. The back-splice acceptor and donor sites from each 
circRNA were annotated relative to other linear splice sites and gene coordinates 
from PCGs, asRNAs and lincRNAs. circRNAs with a back-splice acceptor and 
donor site overlapping genes in the RNA Atlas transcriptome were retained as RNA 
Atlas circRNAs (n = 37,128).

Flanking intron length analysis. We compared the length of the introns (both 
upstream and downstream) that flanked the circRNAs to introns from genes 
that do not produce a circRNA isoform. The flanking introns were found to 
be unusually long when compared to the non-circRNA introns, as shown in 
Supplementary Fig. 5. The median length for the flanking introns was 6,304 bp 
compared to the median value for non-circRNA introns, which was observed to be 
1,041 bp. Statistical significance of the difference was assessed with the Wilcoxon 
rank-sum test. Box plots were drawn in R to display the results.

Overlap of RNA Atlas circRNAs with multiple circRNA databases. We then 
compared the 37,128 circRNAs derived from loci in the RNA Atlas set to 13 public 
circRNA resources, including circBase (n = 91,793), CircAtlas (n = 609,839), 
circbank (n = 140,135), circRNADb (n = 32,863), CSCD (n = 1,220,058), 
CIRCpediav2 (n = 177,43), MiOncoCirc (n = 227,055), TSCD (n = 284,293), circad 
(n = 592), CircR2disease (n = 450), Circ2Disease (n = 225), exoRBase (n = 57,412) 
and CircRiC (n = 92,564). This dataset, previously described by Vromman et al.23, 
was collected by downloading all available circRNA database exports, processing 
the circRNA entries using RStudio (v1.2.1335) and converting all back-splice 
junction positions to the hg38 genome build. As some databases do not provide 
strand information, when circRNA entries were found with non-assigned strands, 
this information was borrowed, if available, from other circRNAs (including 
RNA Atlas circRNAs) with exact matching chr, start and end positions. After this 
strand information imputation, we computed the number and fractions of exact 
matches between RNA Atlas circRNAs and circRNAs in each individual database 
(Supplementary Fig. 5c,d).

Candidate miRNA identification and quantification. Reads from small RNA 
sequencing libraries were processed with the FASTX-Toolkit68 (v0.0.14) to remove 
adapters, filter reads by quality (a quality score of at least 20 in 80% of the sequence 
was required) and collapse non-unique reads. Processed reads were then mapped 
against the hg38 genome with Bowtie69 (v1.1.2) allowing no mismatches in the 
first 25 bases of the read (-n = 0 and l = 25) and using the ‘--best’ option to force 
reporting of up to ten (k = 10) best alignments (all other parameters were set 
to default values). Candidate miRNAs were predicted with miRDeep2 (ref. 27) 
(v2.0.0.8), using mapped reads per sample and all human miRNAs in miRBase26 
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version 22 as input. Novel miRNA predictions with non-zero estimated probability 
were aggregated across samples, retaining only the prediction with maximum 
counts from both mature forms in a given sample in cases of predictions with 
partially overlapping coordinates. Reads mapped to the aggregated newly predicted 
miRNAs and human miRNAs from miRbase version 22 were then quantified 
across all samples. For each miRNA, counts from the canonical mature form and 
non-canonical mature forms (isoMiRs) were aggregated. Only candidate miRNAs 
with ten or more counts in at least one sample were retained.

Overlap of RNA Atlas candidate miRNAs with other miRNA databases. We 
compared our miRNA candidates against mature miRNAs annotated in other 
well-known miRNA resources, including the set of candidate miRNAs identified 
by FANTOM5 (ref. 8) (n = 564) and miRNAs annotated in miRCarta28 (n = 24,742) 
and MirGeneDB29 (n = 1,017) databases. Similarly to what we did for lncRNAs, we 
performed a three-set comparison among RNA Atlas candidates (these included 
1,646 miRBase (v22) miRNAs that are expressed in RNA Atlas samples and 3,567 
miRDeep2-predicted miRNAs from our RNA sequencing data), all mature miRNAs 
annotated in miRBase (n = 2,712) and the combination of FANTOM5 candidate 
miRNAs, miRCarta and MirGeneDB (n = 25,420). Any overlap between genomic 
coordinates of mature miRNAs in the same strand was considered as a match. This 
information was summarized in a Venn diagram (Supplementary Fig. 4b).

Genomic analyses of single-exon lincRNAs. The distance from each unique 
RNA Atlas exon to its closest upstream or downstream exon was retrieved with 
BEDTools56 (v2.27.1, bedtools closest -io -D a -s). A two-sample Wilcoxon 
rank-sum test was used to compare the distances between single-exon lincRNAs 
and multi-exon lincRNA exons. Sequence motifs at the exon–intron boundary 
of multi-exon genes and exon–intergenic boundary of novel single-exon genes 
were determined by calculating the frequency of each nucleotide at each position 
of the region starting 3 bases upstream and ending 3 bases downstream of the 
boundary. This was done for multi-exon PCG exons, multi-exon lincRNA exons 
and single-exon lincRNA exons. The information content was computed for 
each position, and the relative frequencies of each base in each position were 
represented as a sequence logo with the R package ggseqlogo70. For strandedness 
analyses, we selected unique exons with no overlap with any feature on the 
opposite strand. Only exons with ten or more counts on the correct strand in at 
least one sample were considered. The strandedness for each selected exon was 
defined using the sample with maximum normalized expression on the correct 
strand, as the percentage of reads mapping to the exon on the correct strand 
relative to all reads mapping to the exon regardless of the strand.

RT–qPCR validation of single-exon genes. We performed qPCR validation of 
single-exon genes using RNA from two RNA Atlas cell lines: SK-N-BE(2)-C and 
IMR-32. We designed specific forward and reverse primers for the amplification 
of a total of 110 single-exon genes, including 42 RNA Atlas-only genes, of which 
24 were ubiquitously expressed, 11 were specifically expressed in SK-N-BE(2)-C 
and seven were specifically expressed in IMR-32; 27 PreRep genes, of which 19 
were ubiquitously expressed, two were specifically expressed in SK-N-BE(2)-C 
and six were specifically expressed in IMR-32; and 41 Annotated genes, of which 
35 were ubiquitously expressed, four were specifically expressed in SK-N-BE(2)-C 
and two were specifically expressed in IMR-32. Primers were designed using 
primerXL71 (Supplementary Table 2). For each gene in each sample, two qPCR 
reactions were performed, one on cDNA and one on RNA (to assess amplification 
of contaminating DNA). cDNA was produced using the iScript Advanced Kit 
(Bio-Rad) with a mix of random primers and oligo-dT primers on 2 µg of input 
RNA and a reaction volume of 20 µl. All qPCR reactions were performed in a 
total volume of 5 µl containing 2.5 µl of SsoAdvanced mastermix (Bio-Rad), 2 µl 
of forward and reverse primers (5 µM) and 0.5 µl of cDNA (10 ng µl−1) or the 
equivalent mass of RNA. Reactions were run on a LightCycler 480 (Roche) in 
384-well plates using the following thermal cycling protocol: 2 min of enzyme 
activation at 95.0 °C (temperature ramp rate of 4.8 °C s−1), followed by 45 cycles 
of 5 s at 95 °C (temperature ramp rate of 4.8 °C s−1) and 30 s at 60 °C (temperature 
ramp rate of 2.5 °C s−1). For melting curve analysis, denature was performed at 
95 °C for 5 s (temperature ramp rate of 4.8 °C s−1), followed by cooling to 60 °C for 
1 min (temperature ramp rate of 2.5 °C s−1) and then heating to 95 °C at a ramp rate 
of 0.11 °C s−1 with 5 acquisitions per °C. Final cooling was performed during 3 min 
at 37.0 °C (temperature ramp rate of 2.5 °C s−1).

Analysis of overlap between ONT reads in public datasets and RNA Atlas-only 
single-exon genes. RNA sequencing libraries. Three direct RNA sequencing 
libraries and one R2C2 sequencing library were used in this study. Workman 
et al.72, Gleeson et al.73 and Leger et al.74 sequenced the transcriptome of human 
GM12878 cells, human SH-SY5Y neuroblastoma cells and MOLM13 cells, 
respectively. After basecalling, Workman et al. generated approximately 14.9 
million direct RNA reads, whereas Gleeson et al. and Leger et al. generated 
approximately 2.7 million and 2.3 million direct reads, respectively. Furthermore, 
Cole et al.75 sequenced the transcriptome of whole blood samples from humans. 
After basecalling and processing of the raw R2C2 reads with their C3POa pipeline, 
Cole et al. generated approximately 5.1 million R2C2 consensus reads.

Direct RNA sequencing libraries from Workman et al. were obtained via the 
GitHub repository https://github.com/nanopore-wgs-consortium/NA12878, and 
direct RNA sequencing libraries from Gleeson et al. and Leger et al. were obtained 
from the European Nucleotide Archive with dataset identifiers PRJEB39347 
and PRJEB35148, respectively. The R2C2 consensus reads from Cole et al. were 
obtained via https://users.soe.ucsc.edu/~vollmers/PBMC_data/R2C2_reads.fa.

Data processing. To ensure that the direct reads from Workman et al., Gleeson 
et al. and Leger et al. were high quality, FASTQ files containing direct reads were 
analysed with FastQC (v0.11.8). After the assessment of read quality, the start of 
each direct read was trimmed by 10 bp using NanoFilt (v2.6.0)76. NanoFilt (v2.6.0) 
was also used to remove reads that were assigned a score of less than 7, because 
these reads are considered low quality according to the ONT guidelines, and to 
remove reads less than 60 bases in length, because almost all lncRNAs annotated 
in Ensembl are more than 60 bases. By contrast, for R2C2 consensus reads, no 
additional filtering was required because raw R2C2 reads were processed, and 
low-quality reads were removed, with the C3P0a pipeline. Direct RNA reads 
and R2C2 consensus reads were then mapped to the reference human genome 
from Ensembl (release 100, GRCh38) using minimap2 (v2.16)77 according to the 
software guidelines (-ax splice -uf). Reads that could not be mapped, and reads 
that mapped to more than one location in the human genome, were removed 
using SAMtools78.

ONT validation of RNA Atlas-only single-exon genes. Custom scripts were used to 
map the reads in each dataset onto the RNA Atlas-only single-exon genes. Reads in 
each dataset that mapped to more than one unique single-exon gene were removed. 
Moreover, we required that the strand of the read and of the single-exon RNA 
Atlas-only gene to be consistent. To ensure high-confidence validation of these 
RNA Atlas-only genes, we also mapped the reads in each dataset onto transcripts 
in Ensembl (release 100, GRCh38), and reads that mapped to both RNA Atlas-only 
and Ensembl transcripts were removed. Custom scripts were then used to compare 
the number of RNA Atlas-only single-exon genes that were validated by the reads 
in each dataset.

Analysis of polyadenylation status. For these analyses, we used read count 
expression data obtained with htseq-count79 (v0.11.0) from TopHat BAM files. We 
used 291 samples for which we have expression data from both polyA and total 
RNA sequencing libraries. Samples ‘RNA_AT294’ and ‘RNA_AT296’ were not 
included in these analyses because they had a very high fraction of mitochondrial 
reads in polyA RNA sequencing libraries. First, we generated a list of known 
polyadenylated and non-polyadenylated genes based on Yang et al.35 by selecting 
those genes that were annotated as either polyadenylated or non-polyadenylated 
in both cell lines used in that study. To normalize counts between matching polyA 
and total RNA sequencing libraries for differences in library size and library 
complexity, we calculated the mean count of the 900 most abundant known 
polyadenylated PCGs in both libraries and used the mean count ratio between 
libraries (polyA/total RNA) as a scaling factor. For most samples, this ratio was 
below 1 and was, thus, used to scale counts in the total RNA library. In cases where 
this ratio was higher than 1, we used the inverse of this ratio to scale the polyA 
library. Scaling was done by subsampling counts from the relevant library to obtain 
similar counts for polyadenylated genes in both libraries.

Polyadenylation status was determined as follows: only genes with at least ten 
counts in total RNA libraries were classified; otherwise, their polyadenylation 
status was considered as ‘undetermined’ (n = 3,065). Genes with zero counts in 
polyA and at least ten counts in total RNA were classified as non-polyadenylated. 
For genes with non-zero counts in polyA and at least ten counts in total RNA 
libraries, a classification approach was taken, based on the log2 ratio of counts 
between polyA and total RNA libraries. First, a sample-specific log2 ratio cutoff 
was determined based on the distributions of known polyadenylated and known 
non-polyadenylated genes35. From these, only polyadenylated genes with at least 
ten counts in the polyA library and only non-polyadenylated genes with at least ten 
counts in the total RNA library were retained.

A sample-specific log2 ratio cutoff was determined by taking the value that 
maximizes the accuracy (number of true polyadenylated genes + number of true 
non-polyadenylated genes)/(total number of genes) of the classification of known 
genes into non-polyadenylated (log2 ratio below the cutoff) and polyadenylated 
(log2 ratio above the cutoff). Because the set of known polyadenylated genes is 
much larger than the set of known non-polyadenylated genes, we subsampled 
the polyadenylated genes to match the number of non-polyadenylated genes to 
obtain a balanced dataset. We repeated this approach 100 times and took the 
mean selected cutoff across iterations. We then derived a general classification 
for each RNA Atlas gene by taking the majority vote across samples and defining 
the following categories: (1) polyadenylated (number of polyadenylated samples 
> number of non-polyadenylated samples); (2) non-polyadenylated (number 
of non-polyadenylated samples > number of polyadenylated samples); and (3) 
bimorphic (number of polyadenylated samples = number of non-polyadenylated 
samples). Heat maps of gene polyadenylation across samples were plotted per 
biotype (PCG, lincRNA and antisense). For this, the samples were first sorted 
based on a normalized log2 ratio obtained by subtracting the sample specific cutoff 
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from the log2 ratios (to make them comparable across samples). Sorted samples 
were then binned in a total of 20 bins, and the mean corrected ratio for each bin 
was calculated and plotted in the heat map.

To select genes with changing polyadenylation status across samples, we 
considered genes that are expressed in at least two samples with a corrected 
log2 ratio below −4 and a read count of at least 100 in total RNA and expressed 
in at least two samples with a corrected log2 ratio above zero and read counts 
of at least 100 in both total RNA and polyA. This resulted in 160 genes. To get 
insights into the factors driving the observed changes in polyadenylation status 
at gene level, we analyzed changes in expression levels of individual transcripts 
from these genes. Specifically, we retrieved the dominant transcripts in each 
library from the most extreme polyadenylated sample (that is, with highest log2 
normalized ratio) and the most extreme non-polyadenylated sample (that is, with 
lowest log2 normalized ratio). We computed the fraction of total gene expression 
represented by the dominant transcripts and evaluated differences in dominance 
and fraction of expression between the polyadenylated and non-polyadenylated 
samples (Supplementary Table 9). By analyzing these parameters, we defined two 
cases in which the variability in gene-level polyadenylation across samples can 
be explained by differential expression of alternatively polyadenylated isoforms: 
(1) those genes that present a different dominant transcript in total RNA datasets 
from the polyadenylated and the non-polyadenylated samples while presenting 
the same dominant transcript in the polyA and the total RNA datasets from 
the polyadenylated sample (n = 48); or (2) those genes that present the same 
dominant transcript in total RNA datasets from the polyadenylated and the 
non-polyadenylated samples but whose fraction of total gene expression is lower in 
the polyadenylated sample compared to the non-polyadenylated sample. Besides, 
the dominant transcript for the polyadenylated sample in its polyA dataset is not 
the same as the dominant transcript in its total RNA dataset (n = 9).

PolyA-minus sequencing. PolyA-minus libraries were generated for two RNA 
Atlas cell lines, SK-N-BE(2)-C and IMR-32, in duplicates. In brief, 500 ng of 
RNA was first depleted for rRNA using the Ribo-Zero Gold approach (Illumina) 
followed by the polyA selection procedure as implemented in the TruSeq mRNA 
Library Prep protocol (Illumina). Rather than discarding the polyA-minus 
fraction, two additional rounds of polyA selection were performed on that 
fraction, each time maintaining the polyA-minus fraction as input for the polyA 
selection step. The final polyA-minus fraction was concentrated using RNA 
Clean XP beads (Agencourt) before proceeding with library prep (according to 
the TruSeq mRNA Library Prep manual). In parallel, the polyA-plus fraction, 
obtained after the first polyA selection step, was also processed for library prep 
and sequencing. Libraries were quantified using qPCR (Kapa) and equimolarly 
pooled for sequencing on a NextSeq 500, high-output flow cell, paired-end 
sequencing, 75 cycles per read (Illumina). Sequencing reads were mapped to the 
hg38 reference genome (primary assembly, canonical chromosomes, repeats from 
RepeatMasker and Tandem Repeats Finder soft masked—http://hgdownload.
soe.ucsc.edu/goldenPath/hg38/bigZips/) with TopHat52 v2.1.0 (Bowtie2 (ref. 53) 
v2.2.6) using the --no-coverage-search option and --library-type=fr-firststrand. 
The Ensembl transcriptome (v86)18 was provided to guide the mapping of reads to 
known transcripts first. All other parameters were set to default values. Read count 
expression data were then derived from the mapped reads using htseq-count79 
(v0.11.0). Genes with at least ten mean counts between replicates in either 
polyA-minus or polyA-plus libraries were selected, and the ratio of polyA-minus 
versus polyA-plus counts scaled by library size was calculated. This ratio was then 
compared between genes that were previously classified as polyadenylated or 
non-polyadenylated in the corresponding sample based on the ratio of counts from 
polyA and total RNA libraries.

Expression specificity. Expression specificity was computed for each RNA biotype 
and each sample type (cell types, cell lines and tissues) separately, using a specificity 
score based on the Jensen–Shannon divergence metric36. For PCGs, asRNAs and 
lincRNAs, specificity was calculated using TPM values; for miRNAs and circRNAs, 
we used reads per million (RPM) values. These expression metrics are not directly 
comparable, because they come from library preparations that capture different 
sets of RNAs or, in the case of circRNAs, from reads mapping to one particular 
location in the transcript (that is, the back-splice junction) rather than the entire 
transcript (as is the case for PCGs, lincRNAs and asRNAs). To directly compare 
expression levels between these biotypes, we quantified PCG, lincRNA and asRNA 
expression based on junction reads. We compared the specificity score distributions 
of back-splice junctions (circRNAs) and linear junctions (PCGs, lincRNAs and 
asRNAs) before and after correcting for differences in expression abundance 
between these biotypes. For this, we subsampled subsets of splice junctions from 
each biotype so that the subsampled distributions of maximum expression values 
matched a common normal-like distribution with mean equal to the median of the 
mean values for the different biotype distributions and standard deviation equal to 
the mean minus one-third of the smallest absolute extreme value (that is, minimum 
and maximum values of the distributions) among all biotype distributions.

Validation of tissue-specific RNAs from external datasets. Expression data from 
23 tissues with matched RNA Atlas tissues were retrieved from the Tissue Atlas of 

the Human Protein Atlas (HPA)39. We selected 1,320 tissue-specific genes within 
the HPA dataset with an expression value of at least 5 TPM and a fold change of 
at least 10 between the first and the second tissue with highest expression values. 
The selected HPA markers were considered as cross-validated in RNA Atlas if they 
presented the highest expression in the same tissue. For all selected biomarkers, 
the log2 fold change between the expression in the matching tissue and the highest 
expression among the remaining 22 tissues was calculated.

Fusion genes. Fusion genes were identified with FusionCatcher80 across all polyA 
sequencing samples. In each sample, fusions labeled as probable false positives 
and fusions known to occur in healthy samples (Supplementary Table 21, codes 
0 and 1) were filtered out. Also, the fusion transcripts were required to have zero 
‘counts of common mapping reads’—that is, reads that map on both partners—and 
a minimum of four unique reads mapping on the fusion junction. Finally, within 
each sample, transcript fusions were collapsed at gene level—that is, if multiple 
junctions occurred at different joint points or reciprocally between the same pair of 
genes, they were counted only once—and the distribution of number of junctions 
per sample was compared among cell lines, cell types and tissues using two-sample 
Wilcoxon rank-sum tests.

Imprinting. To detect imprinting, data were first further processed according to 
Goovaerts et al.81, which relies on SAMtools (v0.1.19) for initial variant calling 
and genotyping (and sequencing error estimation) by SeqEM (v1.0). Only 
variants present in dbSNP (v150) were retained, and insertions, deletions and loci 
corresponding with mutations from the Human Gene Mutation Database were 
removed. Detection of imprinting and other statistical analyses were performed in 
R (v3.3.2). Used filters were: coverage > 4, number of samples ≥ 75, minor allele 
frequency > 0.15 and estimated sequencing error rate ≤ 0.035. As outlined earlier81, 
for the detection of imprinting across tissues per single-nucleotide polymorphism 
(SNP), a mixture model of homozygous and heterozygous samples was fit to the 
RNA sequencing data, with weights derived from Hardy–Weinberg equilibrium. 
The mixture model takes into account sequencing errors and partial imprinting. 
Unpublished before, also the degree of inbreeding in the underlying population is 
taken into account when estimating the fractions of heterozygous and homozygous 
loci—that is, the weights of the mixture model. The degree of inbreeding is 
estimated as a hyperparameter—that is, the median degree of inbreeding over all 
SNPs passing the quality filters (further described in Goovaerts et al.81), leading 
to an estimate of 0.102. A likelihood ratio test is used to assess whether the model 
supports the absence of apparently heterozygous loci (which feature, on average, a 
1:1 ratio of both alleles).

This methodology was applied on the total RNA sequencing samples from 
203 tissue and cell type samples, excluding cancer/cell line samples given their 
frequent loss of imprinting81. Next to using total RNA sequencing, also the 
polyA RNA sequencing dataset was queried (177 samples), whereas the coverage 
of the small RNA sequencing was too low to apply the methodology (data 
not shown). Other used filters were: goodness of fit > 1.2, symmetry > 0.05, 
median imprinting ≥ 0.8 and estimated î ≥ 0.6; for more details, see Goovaerts 
et al.81. Additionally, as we aimed to identify consistently imprinted loci, we 
focused on SNPs featuring a minimal difference between expected and observed 
heterozygous samples (based on SeqEM RNA sequencing genotyping) of 30. 
An FDR of 0.05 was used to call imprinting significant. We relied on RNA Atlas 
annotation, complemented by Ensembl annotation where relevant. In case of 
overlapping genes, the gene in which the SNP was located in an exonic region 
or UTR was selected. For additional validation, genotyping data from Illumina 
Human1M-Duo BeadChip for ten cell lines (HEK293T, SK-N-SH, A549, HL-60, 
K562, MCF-7, OVCAR-3, T-47D, JURKAT and H1 hESC) were downloaded from 
ENCODE for validation of imprinting in these cell lines. Note that these data had 
not been used during the screening phase. For virtually all sufficiently covered 
sample/gene combinations featuring heterozygous SNPs, at least one sample–SNP 
combination showed allelic expression patterns compatible with imprinting/
mono-allelic expression.

Expression-based distances and differential expression analysis. t-distributed 
stochastic neighbor embedding (t-SNE)82 was applied on the PCG expression data 
for all cell types or cancer cell lines, and the two first dimensions were used to plot 
a visual representation of the clustering. Weighted expression correlations (w_cor) 
for all pairs of samples were calculated for all RNA biotypes (using the cov.wt 
function in R83), using counts normalized by variance stabilizing transformation 
(VST, DESeq2)84 as input and the average of sigmoid transformations of VST 
normalized counts for both samples as weights. Expression distances (expr_dist) 
were derived from these values as: expr_dist = 1 − (w_cor + 1) / 2.

Expression distances were compared among cell types from four biological 
subtypes (epithelial cells (n = 20), endothelial cells (n = 24), fibroblasts (n = 32) 
and mesenchymal cells (n = 8)) or cancer cell lines from 12 cancer types (B-ALL 
(n = 8), breast cancer (n = 6), central nervous system cancer (n = 6), colon cancer 
(n = 7), leukemia (n = 6), melanoma (n = 9), neuroblastoma (n = 11), non-small 
cell lung cancer (n = 9), ovarian cancer (n = 7), prostate cancer (n = 2), renal cancer 
(n = 8) and T-ALL (n = 8)) to measure inter- and intra-group distances. Wilcoxon 
rank-sum tests were performed between intra and inter distances for each group.
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miRNA binding sites, respectively. In total, we considered sequences of 5,213 
mature miRNAs, 54,502 lncRNA transcripts (or 25,468 genes) and 33,554 
circRNAs. We note that, in subsequent analyses, only RNA species that were 
expressed in at least 50% of samples were considered. Their sequences, including 
asRNAs, lincRNAs and circRNAs, were extracted from the human genome 
assembly GRCh38 stored at the UCSC Genome Browser using twoBitToFa57.

Prediction of TF targets. We predicted targets for 636 human TFs based on both 
sequence and expression evidence. First, each predicted TF target was required 
to have significant binding evidence from either 751 ENCODE ChIP-seq47,95 
profiles or 1,618 human TF position weight matrices (PWMs) for 108 and 636 
TFs, respectively. Second, we required each TF-target pair to exhibit significant 
co-expression pattern across RNA Atlas-profiled samples.

ENCODE ChIP-seq datasets were profiled in 37 immortal cell lines, and more 
than 60% of them are in K562 (n = 121 for 61 TFs), GM12878 (n = 113 for 64 TFs), 
HepG2 (n = 97 for 51 TFs), A549 (n = 67 for 27 TFs) and H1-hESC (n = 62 for 36 
TFs). More than one-third of TFs had at least two replicates in the same cell line. 
Human TF PWMs were collected from five sources, including motifs annotated 
in Factorbook96 (see Supplementary Table 2 in their paper; n = 86 for 76 TFs), 
motifs of quality A-D in HOCOMOCO version 9 (ref. 97) (n = 427 for 395 TFs), 
high-confidence motifs in human TF98 (see Supplementary Table 3 in their paper; 
n = 651 for 357 TFs), JASPAR99 v5_alpha (n = 103 for 99 TFs) and SwissRegulon100 
downloaded on 18 March 2014 (n = 351 for 331 TFs). To avoid matrix entries of 
value 0, a pseudo-count of 1 was added to each entry before calculating the relative 
occurrence frequencies of nucleotides at each position.

We interrogated each of 21,550 proximal promoters to see if there was a 
significant ChIP-seq peak (q < 1 × 10−10) or PWM-based binding site (P < 1 × 10−5).  
The significance of motif scores on either the forward or reverse strand of the 
proximal promoters were compared to 5′ flanking regions of length 2 kbps of 
their cognate proximal promoters using the CREAD101,102 package. Binding 
site evidence across multiple promoters associated with the same gene were 
aggregated to produce gene-level binding evidence. For any PCG that satisfied this 
sequence-based constraint, we further required significant distance correlation 
(dCor)103 at P < 1 × 10−9, as calculated using expression profiles of their regulating 
TFs and cognate protein-coding targets profiled in RNA Atlas. Note that only 
TFs and target genes of non-zero median absolute deviation (MAD) score were 
included for analysis. We applied permutation testing to estimate the significance 
of dCor by shuffling TFs’ expression 100,000 times and then calculated the 
randomized dCor values. These values were used to fit parameters for a generalized 
extreme value (GEV) distribution using the MATLAB gevfit routine to obtain a 
non-parametric P value lower than 1 × 10−5 from the cumulative density of the 
resulting GEV distribution. For TF targets passed, both sequence and expression 
constraints were investigated for transcriptional lncRNA modulation. We predicted 
105,029 interactions between TFs and their protein-coding targets significantly 
modulated by lncRNAs. Moreover, 102,338 TF-target interactions had target 
transcripts of adequate exonic and intronic coverage to compute m/p ratio profiles.

Prediction of miRNA and RBP targets. We predicted targets of both types of 
post-transcriptional regulators through a two-step approach by requiring both 
sequence- and expression-based evidence. Specifically, 3′ UTRs of protein-coding 
transcripts and whole lncRNA transcripts were scanned for miRNA binding sites 
conserved across species (context score < −0.2) by TargetScan94 version 6.0 and 
significant RBP binding peaks at P < 1 × 10−10. ENCODE eCLIP104 datasets for 115 
RBPs profiled in two human cancer cell lines—that is, K562 and HepG2—were 
downloaded from the UCSC Genome Browser. Among them, 66 and 49 RBPs were 
available in either one or two cell lines, respectively. Each RBP-cell line pair was 
performed in duplicate. Binding site evidence across multiple 3′ UTRs associated 
with the same gene were aggregated to produce gene-level binding evidence. We 
then asked if any pair of genes, either coding or non-coding, shared a significantly 
large common regulator program at adjusted PFET < 0.01. For each qualified gene 
pair and their common regulators, we measured if correlation changes between 
a common miRNA/RBP and any of these two genes had evidence for being 
modulated by lncRNA expressions using delta dCor; see the ‘lncRNA target 
predictions using LongHorn’ section below. A pair of regulator-target significantly 
modulated by at least one lncRNA at P < 0.05 was finally selected. miRNA/RBP 
targets that passed both sequence and expression constraints were investigated for 
post-transcriptional lncRNA modulation. In total, 66,623 predicted interactions 
between miRNAs and their protein-coding targets were significantly modulated 
by lncRNAs, and, among them, 46,126 miRNA-target transcripts had adequate 
exonic, intronic and m/p ratio reads and could be included in further analyses to 
compare correlations of regulator and target mRNA and pre-mRNA expression 
profiles. Note that, similarly to experimentally verified miRNA targets, each 
miRNA, including both miRBase-annotated and miRDeep2-predicted miRNAs, 
was required to be expressed in at least 20 RNA Atlas-profiled samples. RBPs were 
required to have a non-zero MAD score.

dCor. For each experimentally verified and LongHorn-inferred TF and miRNA 
target, we applied dCor103 to measure co-expression patterns between a regulator—
namely, a TF, RBP or miRNA—and its target using the target’s mRNA (exonic), 

Differential gene expression analyses (DESeq2)84 were performed to identify 
candidate miRNAs, single-exon lincRNAs and circRNAs with a significant 
differential expression between cell subtypes or cancer types (prostate cancer and 
leukemia were excluded from this analysis, for having only two cell lines belonging 
to the cancer type and for including a rather heterogeneous collection of cell lines, 
respectively). Those genes with a log2 fold change of at least 3 and a Benjamini–
Hochberg-based FDR lower than 0.01 were selected, and expression data were 
visualized in heat maps. For circRNAs, we repeated the previous analyses on cell 
types and cancer cell lines by using sequential subsets of top expressed circRNAs. 
For this, we sorted the circRNAs based on their mean back-splice counts across 
samples within the sample sets used in each case and took the top 20%, 10%, 
5%, 3%, 2% or 1% expressed circRNAs to calculate sample–sample distances and 
compared the results between subsets.

Expression estimation of exons (mRNA), introns (pre-mRNA) and their ratios 
from total RNA sequencing data. We sought to estimate the exonic (mRNA 
surrogate) and intronic (pre-mRNA surrogate) expressions of protein-coding 
transcripts. For each total RNA sequencing BAM file profiled in RNA Atlas, the 
featureCounts v1.6.0 program85 was applied to enumerate read counts in each exon 
and intron regions.

Exon annotations were downloaded from the UCSC Genome Browser57 
in December 2017 (track: NCBI RefSeq; table: refGene; assembly: GRCh38). 
We further extended exon boundaries by 10 base pairs to prevent exonic read 
boundaries near the exon junctions from being considered as intronic reads40. After 
extension, regions that were within two consecutive exons of a protein-coding 
transcript but did not overlap with any exons of other coding and non-coding 
transcripts were defined as intronic. We recorded exon and intron boundaries of 
each protein-coding transcript.

featureCounts was run on exons and introns separately, with reads summarized 
at feature level—that is, single-exon or intron (argument: -f)—and only primary 
alignments were counted (argument: --primary). Duplicate reads were excluded 
from the counting process (argument: --ignoreDup). Reads mapped to multiple 
genes (discordant reads) or locations (multi-mapping reads) were discarded.

Counts of reads matching entire exons and introns of the same transcript 
were used to represent its exonic (mRNA) and intronic (pre-mRNA) abundance, 
respectively. We required transcripts whose log2-transformed exonic and intronic 
expressions, after adding a pseudo-count of 8 to their raw read counts, are at 
least 5—that is, 24 counts—in every RNA Atlas sample40. In total, 7,287 RefSeq 
transcripts—corresponding to 3,555 genes—were kept for analysis. To calculate 
exon/intron ratios (mRNA/pre-mRNA ratios, or m/p ratios for short), we used the 
following formula for each protein-coding transcript:

Exon/intron ratio (orm/p ratio) = log2 (exonic read counts + 8)

−log2 (intronic read counts + 8)

Each type of expression matrix—namely, mRNA, pre-mRNA and m/p ratio—was 
then separately normalized using quantile normalization over multiple RNA Atlas 
samples using the quantilenorm routine in MATLAB; note that we used the median 
of the ranked values rather than the mean to perform normalization.

Experimentally verified TF and miRNA targets. We compiled 6,476 experimentally 
verified TF-target pairs from three sources, including HTRIdb86 (version: 03/20/2014),  
TRANSFAC Professional87 (version: February 2013) and Supplementary Table 
3 from Whitfield et al.88 For pairs deposited at HTRIdb, we included only those 
verified by small- and mid-scale techniques. To err on the conservative side and 
reduce false-positive predictions, we removed protein–DNA candidate interactions 
whose proteins are co-factors rather than TFs in the TRANSFAC database. The list 
of 4,616 verified miRNA targets with strong experimental evidence, such as western 
blot or reporter assay, were selected from miRecords89 (4/27/2013), TarBase90 version 
7, TRANSFAC Professional87 (version: February 2013), miRTarBase91 version 4.5 and 
Grosswendt et al. (Supplementary Table 2 (ref. 92)). We can keep only a proportion 
of these interactions whose targets had sufficient exonic and intronic expression 
across all profiled RNA Atlas samples. In total, 2,349 and 3,304 TF and miRNA target 
transcripts were included for analysis. Note that each miRNA was required to express 
in at least 20 RNA Atlas-profiled samples.

Regulatory regions and regulator sequences. We predicted TF and lncRNA 
binding sites on 21,550 proximal promoters of 17,044 protein-coding genes. Each 
2-kbps promoter is ranging from −1 kb to +1 kbp relative to the TSS. About 
one-fifth of protein-coding genes had multiple proximal promoters. The 3′ UTRs 
were used to predict miRNA and RBP binding sites. In total, we compiled 37,515 3′ 
UTRs corresponding to 17,044 protein-coding genes. The median length of all 3′ 
UTRs is 1,016 bps. More than half of protein-coding genes had multiple 3′ UTRs.

While identifying lncRNAs that act as miRNA, RBP and TF decoys, we 
searched for binding sites of these regulators throughout the whole lncRNA 
transcript sequence. Similarly, we identified lncRNA binding sites in promoters 
that match any potential binding domains of lncRNAs without consideration to 
their potential structures. We applied triplexator93 version 1.3.2 and TargetScan94 
version 6.0 to predict sequence-based triple-helix (or triplex) structures and 
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Complete accounting is provided in Supplementary Table 26. An example gene 
set enrichment analysis (GSEA) plot for the enrichment of LongHorn-inferred 
EMX2OS targets is given in Supplementary Fig. 26.

To further test LongHorn-predicted RNA Atlas targets using unpublished data, 
we chose to target the lncRNA MALAT1 by CRISPR interference (CRISPRi) (see 
experimental details below) and profiled gene expression by RNA sequencing in 
HEK293 cells. MALAT1 is a highly expressed lncRNA that had been successfully 
targeted by CRISPRi in past works and was predicted to target 723 genes in RNA 
Atlas cells and tissues. We compared the effects of MALAT1-targeting single  
guide RNAs (sgRNAs) to two controls (NC1 and NC2) in Supplementary Fig. 27.  
In total, >2,000 out of >17,200 profiled genes in these assays were identified 
as differentially expressed at P < 0.05 relative to each control independently. Of 
the 723 LongHorn-predicted MALAT1 targets, 140 and 190 were significantly 
dysregulated at P < 0.05 relative to NC1 and NC2, respectively, corresponding 
to P < 5 × 10−10 and P < 4 × 10−16 by Fisher’s exact test, respectively. Significantly 
upregulated or downregulated genes were selected by comparing their 
expressions, measured in counts per million (CPM), in samples transfected with 
MALAT1-targeting sgRNAs (eight replicates) over each non-targeting control 
(NC1 or NC2 with 12 replicates each) independently based on two-tailed Student’s 
t-tests. Normalized profiles are given in Supplementary Table 27.

Of course, dysregulated genes after lncRNA targeting might not be direct 
targets of lncRNAs, and true lncRNA targets might not have been identified as 
dysregulated because of biological or technical reasons. However, when a sufficient 
number of true targets is tested, we expect to observe enrichments in their 
dysregulation. Here, the analysis of FANTOM6 data suggested that predicted target 
sets of most tested lncRNAs were significantly enriched in dysregulated genes, and 
the analysis of our assays targeting MALAT1 confirmed this observation.

CRISPRi-mediated transcriptional silencing of lncRNA MALAT1. MALAT1 
was silenced in HEK293T cells using the CRISPRi method. First, nuclease-deficient 
dCas9-KRAB-MeCP21 (Addgene plasmid no. 110821) was stably introduced 
in HEK293T cells using the piggy-transposase system (System Biosciences, 
cat. no. PB210PA-1) according to the manufacturer’s recommendations. 
dCas9-KRAB-MeCP2-positive HEK293T cells were selected using 10 µg ml–1 of 
blasticidin. Next, sgRNAs targeting a window of 300 bp upstream and downstream 
of the MALAT1 TSS were designed using the DeskGen tool107. Two control sgRNAs 
(GAACGACTAGTTAGGCGTGTA and GTGCGATGGGGGGGTGGGTAGC) 
were selected from Horlbeck et al.108 and Gilbert et al.109 sgRNA sequences were 
then amended with 5′ and 3′ appendixes as specified by the Guide-it sgRNA In 
Vitro Transcription Kit (Takara Bio, cat. nos. 632638, 632639, 632635, 632636 
and 632637), and single-stranded DNA oligos were purchased from IDT. dsDNA 
in vitro transcription template was generated with the Guide-it kit according to the 
manufacturer’s instructions. In vitro transcription was performed at 37 °C for 4 h. 
Finally, 12,000 cells per well were seeded in 96-well plates (Corning, cat. no. 3596) 
in 180 µl of RPMI cell culture medium. Twenty-four hours after seeding, sgRNAs 
were transfected with lipofectamine reagent CRISPRMAX (Invitrogen, cat. no. 
CMAX00003) to a final concentration of 0.5 ng µl–1 in 200 µl. Seventy-two hours 
after the transfection, cells were lysed with SingleShot lysis buffer (Bio-Rad, cat. 
no. 172-5081). Quantseq RNAseq library preparation (Lexogen) was performed 
according to the manufacturer’s protocol using 5 µl of cell lysate as input. Libraries 
were quantified by qPCR, pooled and sequenced on a NextSeq 500 (Illumina). 
FASTQ files were processed using an in-house RNA sequencing pipeline. First, 
FastQC (v0.11.8) was used for data quality control, after which adapter sequences, 
polyA readthrough and low-quality reads were removed via bbduk110 (BBMap 
v38.26). Next, reads were mapped with STAR111 (v2.6.0c) against the hg38 reference 
genome, and gene counts were determined via HTSeq79 (v.0.11.0).

The RNA Atlas lncRNA-target set. We defined the RNA Atlas lncRNA-target set 
by evaluating the deviations of the dCor between each mediating regulator and 
the target pre-mRNA or m/p ratio expression profiles. Specifically, LongHorn 
predicted lncRNA-target pairs by providing (1) target identities, (2) regulation 
model including transcriptional or post-transcriptional interactions and (3) the list 
of regulators that are predicted to mediate the interactions. Each lncRNA-target 
interaction was associated with two distributions of the dCor: one was using 
pre-mRNA, and the other was using m/p ratio expression profiles of the target. 
We anticipated that post-transcriptional targets of lncRNAs will have higher dCor 
values with their mediating regulators while using m/p ratio than pre-mRNA 
expression profiles of targets. However, for transcriptional targets of lncRNAs, 
the relationships were expected to be in the opposite direction—with m/p ratio 
less correlated than the pre-mRNA expression profiles. We evaluated differences 
between these two distributions by either the paired Student’s t-test (parametric 
and one tailed) or permutation testing (non-parametric) and required RNA Atlas 
lncRNA-target interactions to be significant at P < 0.05 in non-parametric tests 
after adjusted for multiple comparisons using the Benjamini–Hochberg procedure.

To estimate the non-parametric significance of lncRNA-target interactions, 
we first partitioned the data into four quantiles with low to high regulator 
expression variability based on MAD. We randomly selected 10,000 out of all 
possible regulator-target pairs in each quantile to form a randomized set of 
40,000 pairs. All transcript combinations per pair were compiled. Then, for 

pre-mRNA (intronic) or m/p ratio profiles. dCor is able to capture non-linear 
relationships between two variables, which is a common scenario in the biological 
world. The dCor value is always non-negative, and dCor = 0 means that two 
variables are completely independent103.

lncRNA target predictions using LongHorn. LongHorn42 predicts lncRNA 
interactions through respectively integrating statistical evidence from modulation 
of transcriptional and post-transcriptional regulation by TFs, miRNAs and RBPs. 
Transcriptional lncRNAs can physically interact with either proximal promoters 
(TR:Guide and TR:Co-factor) or TFs (TR:Guide and TR:Decoy) to alter their 
target pre-mRNA abundance. Guide and Co-factor lncRNAs form RNA–DNA 
triple-helix structures (triplex, for short) with proximal promoters93. The former 
recruit TFs to bind their transcript’s promoter regions and synergistically 
enhance the transcription rates of their targets. The latter can either activate 
or inhibit the regulatory activities of TFs, which have their own binding sites 
on the same promoter. Decoy lncRNA, in turn, influences target pre-mRNA 
transcription and expression by altering the amount of TF and miRNA/RBP 
molecules available to target proximal promoters and 3′ UTRs. In our model, 
lncRNAs can regulate target pre-mRNA (TR:Decoy) and mRNA (PTR:Decoy) 
abundances in nucleus and cytoplasm. Note that, while predicting lncRNAs 
acting as guides or decoys of TFs, we used PWMs to scan TF binding sites from 
on lncRNA transcript sequences.

LongHorn reverse engineers transcriptional and post-transcriptional 
interactions on a genome-wide basis at first; see the sections ‘Prediction of  
TF targets’ and ‘Prediction of miRNA and RBP targets’ above. To estimate  
the significance of modulation, we calculated delta dCor for each triplet, 
consisting of a lncRNA, a regulator (TF/miRNA/RBP) and a protein-coding 
target. According to the lncRNA expression in each triplet, we partitioned  
RNA Atlas samples into four quartiles, from the lowest to the highest, and 
required this lncRNA to satisfy two constraints, including (1) it was not 
correlated with the regulator (P > 0.1) (independence constraint) and (2) its 
expression fold change was more than 2× between the fourth and the first 
quartiles of the samples (range constraint). Then, comparing the first and the 
fourth sample quartile, we required a non-parametric P < 0.05 for the delta 
dCor between the regulator and the target against a bootstrapping-based 
null hypothesis. For significant triplets that are associated with the same 
lncRNA-target pair, we integrated their P values across their common regulators 
using either the Fisher method105 (transcriptional) or the weighted Brown 
method106 (post-transcriptional). While combining significance from multiple 
tests, the Brown method takes into account miRNAs and RBPs in the same 
genomic cluster, which are often co-expressed, to avoid inflating the integrated  
P values. TargetScan context scores were used to sort predicted miRNA  
binding sites from lowest to highest; we then used their percentile ranks as 
weights for integrating P values of significant triplets. After integration,  
we set a cutoff of adjusted P < 0.01 for significant lncRNA-target pairs.  
Note that both lncRNAs and their protein-coding targets were required to have 
a non-zero MAD score across profiled RNA Atlas samples. We also note that 
correlations between pre-mRNA and mRNA expression estimates (Fig. 5b) were 
maintained for both lncRNA targets and the randomized interactions used in 
permutation testing.

Validation of LongHorn-inferred target prediction. To test the accuracy of 
LongHorn target inference on a macro scale, we evaluated LongHorn predictions 
using data generated by the FANTOM6 consortium (Ramilowski et al.)51. 
FANTOM6 used antisense oligonucleotides (ASOs) to knock down 285 lncRNAs 
in HDF—a human primary dermal fibroblast cell line—and selected 154 of 
these lncRNAs for gene expression profiling by RNA sequencing based on their 
high knockdown efficiencies. We systematically tested if downregulation of 
these lncRNAs by ASOs lead to the dysregulation of their LongHorn-inferred 
RNA Atlas targets, albeit in HDF cells only. We chose to focus our analysis 
on 24 of the tested lncRNAs that had at least 20 LongHorn-inferred targets in 
RNA Atlas cells and tissues. Each of these 24 lncRNAs was associated with a 
list of dysregulated genes that were expressed in RNA sequencing (TPM > 0) 
and significantly upregulated or downregulated after transfection with ASOs 
at P < 0.05, as estimated by Ramilowski et al.51. For each of these 24 lncRNAs, 
we collected genes that were expressed (TPM > 0) and significantly upregulated 
or downregulated after lncRNA targeting at P < 0.05 in the FANTOM6 data as 
estimated by Ramilowski et al.51. We then tested the significance of the overlap—
namely, genes that were predicted to be lncRNA targets in RNA Atlas and were 
also dysregulated after ASO-targeting lncRNA in FANTOM6—between our 
predictions and this set using Fisher’s exact test. The results suggested that, for 
20/24 (83%) and 15/24 (63%) of the lncRNAs, LongHorn-inferred RNA Atlas 
targets were more likely to be dysregulated (odds ratio > 1) and significantly 
dysregulated at P < 0.05 by Fisher’s exact test after the downregulation of the 
corresponding lncRNA, respectively. Odds ratios were computed using the 
following formula:

odds ratio =
no. of predicted targets that were dysregulated/no. of predicted targets

no. of profiled genes that were dysregulated/no. of profiled genes
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each predicted lncRNA-target interaction that was mediated by N regulators, we 
selected N regulator-transcript pairs at random to match quantiles and calculated 
a randomized Student’s t-score from the paired Student’s t-test by comparing the 
two distributions of the dCor values between regulators and target pre-mRNA or 
m/p ratio expression profiles. This selection criteria ensured that the only variable 
perturbed is the lncRNA-target association: regulators have similar expression and 
are predicted to regulate the target. The process was repeated 100 times to compute 
the null distribution of Student’s t-scores with a minimum attainable P value of 
0.01. To adjust for multiple comparisons, we applied the Benjamini–Hochberg 
procedure to control the FDR. Each pair in the RNA Atlas lncRNA-target set 
was a predicted interaction that had a computed Student’s t-score at Benjamini–
Hochberg-adjusted P < 0.05 after comparing with the null distribution. Note 
that the regulators were assigned based on the regulation model—that is, TFs 
and miRNAs were for transcriptional and post-transcriptional lncRNA-target 
interactions, respectively.

Transcriptional and post-transcriptional specialists. To identify lncRNA 
specialists with unusual number of transcriptional or post-transcriptional 
interactions, we first normalize the size of LongHorn-inferred transcriptional 
and post-transcriptional interactomes to obtain a scaling ratio (σ). In RNA Atlas, 
LongHorn predicted 480,333 and 18,051 targets whose regulators’ activities were 
transcriptionally and post-transcriptionally modulated by lncRNA, respectively. 
Namely, the scaling ratio is 26.610 for transcriptional interactions. For each RNA 
Atlas-profiled lncRNA, including asRNAs, lincRNAs and circRNAs, with at least 
ten predicted targets, we calculated the adjusted fold change (adjFC) using the 
following formula to determine if it is a specialist:

adjFC =
no. of transcriptional interactions/σ

no. of post-transcriptional interactions

The lncRNA is a transcriptional or post-transcriptional specialist if the adjFC 
is larger than 2 or smaller than 0.5, respectively. By calculating this statistic, 
we revealed lncRNAs extensively involved in pathways of transcriptional or 
post-transcriptional gene regulation.

Hallmark GSEA. We sought to study if lncRNAs regulate key biological pathways 
through searching for significant overlaps between their LongHorn-inferred 
targets and 50 MSigDB hallmark gene sets50, which can be broken into eight 
basic categories, including Cellular Component, Development, DNA Damage, 
Immune, Metabolic, Proliferation and Signaling Pathways. We calculated P values 
for the significance of overlap using Fisher’s exact test and adjusted for multiple 
comparisons based on Bonferroni correction. For each lncRNA-gene set pair, an 
adjusted P value lower than 0.01 was considered to be a significant association.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All types of RNA entities can be readily explored via the online R2: Genomics 
Analysis and Visualization Platform (http://r2.amc.nl) and via a dedicated 
accessible portal (http://r2platform.com/rna_atlas). This portal includes genome 
browser profiles for the total RNA as well as polyA tracks for all samples. All 
samples can also be used for correlations, differential signals and many more 
analyses. In addition, the LongHorn results, described in this manuscript, can be 
explored.
The raw data (FASTQ files) and processed expression measurement tables from 
all RNA biotypes across samples have been deposited in the National Center for 
Biotechnology Information’s Gene Expression Omnibus (GEO) and are accessible 
through GEO series accession number GSE138734.

Code availability
Computer code used to generate the results presented in this manuscript is 
available at https://github.com/llorenzi90/RNA_Atlas.
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