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Global Optimization of a
Transonic Fan Blade Through
AI-Enabled Active Subspaces
The increased need to design higher performing aerodynamic shapes has led to design opti-
mization cycles requiring high-fidelity CFD models and high-dimensional parametrization
schemes. The computational cost of employing global search algorithms on such scenarios
has typically been prohibitive for most academic and industrial environments. In this paper,
a novel strategy is presented that leverages the capabilities of artificial neural networks for
regressing complex unstructured data, while coupling them with dimensionality reduction
algorithms. This approach enables employing global-based optimization methods on
high-dimensional applications through a reduced computational cost. This methodology
is demonstrated on the efficiency optimization of a modern jet engine fan blade with con-
strained pressure ratio. The outcome is compared against a state-of-the-art adjoint-based
approach. Results indicate that the strategy proposed achieves comparable improvements
to its adjoint counterpart with a reduced computational cost and can scale better to
multi-objective optimization applications. [DOI: 10.1115/1.4052136]

Keywords: computational fluid dynamics (CFD), fan, compressor, and turbine
aerodynamic design

1 Introduction
Modern day aircraft engines are required to meet increasingly

tighter regulations in terms of their performance and by-product
emissions, which increases the need for every component in the
system to be carefully designed so as to achieve its operational
requirements while employing the least amount of resources.
Design optimization based on computational fluid dynamics

(CFD) is one of the primary tools engineers have used to improve
their aerodynamic designs [1]. In recent years, the need for higher
performing shapes has led to an increased need for higher fidelity
CFD models, which are able to represent more faithfully the
complex physical characteristics of the flow. In addition, capitaliz-
ing on the increased fidelity requires a finer control over the geom-
etry, enabling more degrees-of-freedom to respond to even the
smallest flow features, thus making the optimization process more
likely to lead to novel, high-performing designs.
Gradient-based optimization methods have lately been the

subject of many studies, due to the increased availability of
adjoint flow solvers. The adjoint method [2,3] allows computation
of the gradient of an objective function with respect to design
parameters while maintaining the cost of the operation almost inde-
pendent of the number of parameters employed. This approach has
been successfully applied to optimize turbomachinery components
with high-dimensional parametrization schemes [4–9]. However, as
described in Ref. [3], the residual of the Navier–Stokes equations is
assumed to be zero when computing the adjoint, which requires the
primal CFD to achieve exceptional convergence and a near-zero
residual. This implies longer solve times than would be employed
for traditional CFD analysis and a corresponding increase in the
computational expense of the flow solver. Moreover, as docu-
mented in Ref. [5], typical running times for discrete adjoint
solvers are about three times higher than their primal counterpart,
making the adjoint calculation a costly endeavor. In optimization

scenarios involving several cost function (CF) or constraints that
depend on the flow behavior, the adjoint calculation must be
repeated for each objective and constraint, reducing the scalability
of this approach. In addition, much of the outcome of gradient-
based approaches is dictated by the initial design and, if starting
from already high-performing shapes close to a local optimum,
the optimization process might not yield significantly improving
designs, regardless of the parametrization scheme.
Global search algorithms, on the other hand, only require zeroth

order information, which can usually be obtained with one CFD
computation for any number of objectives. Moreover, these algo-
rithms are stochastic in nature and this, in principle, makes them
capable of identifying the global optimum of the CF. The applica-
tion of such algorithms to turbomachinery design optimization
has been an active area of research, with approaches falling into
one of two categories: direct application to the CFD solution [10–
12] and surrogate-based optimization, where a number of compu-
tations are first employed to regress the behavior of the CF in the
design space and the search algorithm is subsequently applied on
this analytical model [13,14]. Global search algorithms typically
require function evaluations on the order of hundreds to thousands,
depending on the dimensionality of the problem, which causes
direct approaches on high-fidelity CFD to be prohibitive for most
academic and industrial environments.
Indeed, with the advent of machine learning and data-driven

methods, novel surrogate models are being researched which
enable highly accurate predictions over complex high-dimensional
datasets, making them ideal for global optimizations. In particular,
artificial intelligence (AI), or artificial neural networks (ANNs)
have become a primary area of study due to their capability to inter-
polate unstructured data. Unlike other machine learning methods,
ANNs do not assume a predefined shape for the CF, thus providing
a higher level of flexibility and predictive accuracy in cases where
the system cannot be well expressed through explicit functions. In
the field of turbomachinery, they have been applied to develop
physics-based models for unsteady compressor behavior [15] and
on global, surrogate-based optimization environments [16–18].
However, the fact that they are unstructured also implies that the
number of data points required to adequately fit them to high-
dimensional, multi-modal systems—such as the parametrized flow
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behavior of transonic blades—is typically higher than other
methods. Thus, the cost-effectiveness of ANNs can be enhanced
by coupling them with dimensionality reduction (DR) algorithms.
Several of such DR algorithms exist and have been extensively

documented, such as principal component analysis (PCA) [19] or
Sobol’ sensitivity indices [20]. In recent years, a novel set of
ideas that facilitate subspace-based dimension reduction has
emerged, called active design subspaces (ADS) [21]. Instead of
determining a subset of input parameters which are most important,
ADS identifies dominant linear combinations of all the parameters
that best describe the variability in the output. While PCA is also
able to identify such subspaces from the parameter space, with
that approach the data must be correlated or conditioned by some
process, like the pareto-optimal design points from a multi-
disciplinary optimization cycle [11]. ADS, on the other hand, can
learn the dominant subspaces from a non-conditioned data-
set, which enables its application to uniformly spread sampled
points, such as those coming from a design of experiment approach,
which are typically used in regression processes. In the field of tur-
bomachinery, active subspaces have been linked with fundamental
aerodynamic principles to infer pedigree design rules to improve a
compressor’s performance [22], to visualize the robustness of a
design point with respect to uncertain parameters [8], and to identify
dominant subspaces for stagnation temperature probes [23]. The
ADS process requires estimating the gradient of the CF at various
random points in the design space, for which Giugno et al. [8]
employed adjoint computations and Seshadri et al. [22] regressed
a second-order polynomial to CFD data and evaluated the gradients
from that model. Both these approaches suffer from previously
described issues: the former does not scale well for multi-objective
scenarios and the latter infers that the function behavior can be well
described by a second-order polynomial.
In this paper, a novel global optimization strategy is proposed

exploiting the unstructured nature of ANNs and coupling them
with ADS to reduce the dimensionality of the input space, thus pro-
viding an ameliorated performance with minimal samples. The
remainder of this paper is structured as follows: after a description
of the ANN fitting procedure in Sec. 2.1, Sec. 2.2 details the cou-
pling between the neural networks and ADS. This link is exploited
in Sec. 2.3, where the optimization problem is reformulated to effi-
ciently explore the active subspaces. Next, Sec. 4 undertakes the
optimization of a modern jet engine fan blade with constrained pres-
sure ratio (PR). After a brief introduction to the computational tools
employed in Sec. 4.1, Sec. 4.3 applies the novel strategy proposed
to find a globally optimum design. These results are compared
against the optimum design coming from a state-of-the-art adjoint-
based approach, which is described in Sec. 4.4.

2 Global Optimization Strategy
A general optimization problem can be expressed as in Eq. (1) for

one objective function and nc constraints. This problem is typically
solved employing numerical search algorithms that require repeated
evaluations of the objective and constraint functions and, in some
cases, higher order information like the function’s gradient or
Hessian matrix. The number of iterations of the optimization
process is usually dictated by the dimensionality and range of the
design vector, x, and whether a local or global optimum is desired.

minimize
x

f (x)

subject to gi(x) ≤ hi, i = 1, . . . , nc
x ∈ χ ⊂ Rm

(1)

The strategy developed in this study is tailored for cases where a
global optimum is sought, function evaluations are performed
through costly high-fidelity CFD simulations, and the inputs’
dimension, m, is arbitrarily large. Moreover, no inferences are
made on the complexity of the objective or constraint functions.

2.1 Fitting Artificial Neural Networks. Artificial neural net-
works are mathematical constructions where information from a
set of inputs, v, is linked, in a non-linear manner, to a set of
outputs f̂ (v) by having the information flow across a structure of
neurons, whose behavior can be trained to achieve a desired
outcome. The parameters influencing the neuron’s behavior are
the weights, T, the biases, b, and the activation function a,
defined through an optimization process where the CF is typically
designed to maximize the network’s prediction accuracy over a
training dataset, for which the true values of the function are
known. An in-depth description of neural networks is beyond the
scope of this paper; the reader is referred to Ref. [24] for an intro-
duction to the topic.
For this application, ANNs are selected to regress the behavior of

the CF and constraints because, as detailed in Refs. [25,24], pro-
vided there are sufficient neurons in the network, ANNs are able
to fit any function of arbitrary shape, which makes them ideal for
interpolating complex multi-modal systems, typically encountered
in turbomachinery design optimization problems. A traditional per-
ceptron feed-forward network structure is proposed with a backpro-
pagation algorithm for gradient estimation, as shown schematically
in Fig. 1. This work employs the tensorflow framework to construct
and train the networks, through its python wrapper Keras [26]. The
hyper-parameters defining the network architecture, such as the
number of hidden layers (HLs) or number of neurons in each HL,
is defined through a hyper-parameter tuning process. Since this
work deals mainly with small datasets, in the order of hundreds
of CFD samples, the training of the networks is not a costly proce-
dure. Therefore, the hyper-parameter tuning can be achieved
through a grid search, evaluating a large number of different param-
eter combinations. Due to the potentially very large number of
neurons being employed, overfitting the neural networks is a possi-
ble but unwelcome outcome of the training process. To prevent this
scenario, a Tikhonov regularization term [27] is included, as well as
neuron drop-out. For the activation function, only two options were
allowed, detailed in Table 1, along with the other hyper-parameters
and their corresponding ranges. The objective function for the
tuning process is to maximize the R2 between the predictions of
the network and the values from a testing set composed of CFD
simulations. Some network parameters are general for this applica-
tion and thus are fixed for all network configurations evaluated in
the grid search:

• Number of neurons in the input layer: set to match the dimen-
sionality of the design vector.

• Output layer definition: a single neuron without any activation
function.

Fig. 1 Schematic of the feed-forward neural network employed
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The CF for optimizing the weights and biases (training the
network) is the mean squared error (MSE) between the network’s
predictions and real data for the whole of a training set composed
of CFD samples. The optimization algorithm selected is
RMSProp with a learning rate of 0.001. The number of training
epochs is defined via an early stopping callback, monitoring the
convergence of the MSE evaluated on a validation set comprising
20% of the samples, which are spared and not used for training.
A maximum of 500 epochs without change in the MSE of the vali-
dation set is specified to prevent overfitting.
Thus, the network fitting process proposed requires two datasets:

one for training the weights and biases and a second for tuning the
network architecture. The former is additionally split to allow for a
validation set and prevent overfitting. The proportions of the total
number of samples being placed in each dataset is as follows:
64% for the weights and biases training, 20% for hyper-parameter
tuning, and 16% for early stopping. The splitting of the dataset is
performed using seeded random number generators, such that
each network evaluated in the grid search is trained and tested
using the same samples. It is worthy to note that the samples
employed in this study correspond to a same model. While
current AI research indicates NN capabilities that could enable
the generalization of these networks to other models, these features
have not been considered in this work.
The performance of the network, as determined by the MSE and

R2, was discovered to increase significantly when trained and tested
on inputs and outputs that were normalized to have zero mean and a
standard deviation of one, obtained through the transformation
defined in Eq. (2) for a given vector v.

vn =
v − E[v]
σ(v)

(2)

2.2 Coupling Active Design Subspaces. Adequately fitting a
neural network to high-dimensional input data might require a large
number of samples, which can make the method infeasible in cases
where function evaluations are obtained through a costly procedure.
To enable the application of neural networks to high-fidelity CFD
data, this work proposes coupling them with ADS.
The ADS approach identifies the linear combination of the input

parameters that best describes the variability in an objective func-
tion, through the eigenvalue decomposition of the function’s gradi-
ent covariance matrix, C, defined in Eq. (3), from Ref. [28].

C = E[∇xf ∇xf
T ] (3)

The eigenvalue decomposition of C, computed as C=WΛWT,
yields the dominant directions in the columns of W. Based on the
decay of the eigenvalues, W and Λ can be partitioned as per
Eq. (4), such that the active subspace is captured in the matrix
W1, which maps the m-dimensional inputs, x, to a k-dimensional
active vector, y, through the transformation expressed in Eq. (5).

Λ =
Λ1

Λ2

[ ]
, W = [W1 W2], W1 ∈ Rm×k (4)

In practice, the matrix C is approximated through a Monte Carlo
method, by drawing M independent samples {xi} according to the
sampling density ρ = ρ(x) in χ and computing the gradient for
each sample, as defined in Eq. (6). Constantine [21] suggests

adopting M= αk log(m), where α is an oversampling factor and k
is the maximum number of dimensions in the ADS that can be accu-
rately resolved.

y =WT
1 x (5)

C ≈
1
M

∑M
i=1

∇xfi ∇xf
T
i (6)

The application of ADS to the optimization problem stated in
Eq. (1) requires building such a covariance matrix for the objective
function and the nc constraints. If nc is sufficiently low and an
adjoint code is available, then computing the gradients with
adjoint can be a viable alternative, requiringM primal CFD compu-
tations and M× (nc+ 1) adjoint computations. However, for a
general scenario, nc might be overly large or adjoint codes might
not be available. In such scenarios, an analytical model can be
trained on sampled data and the gradients estimated from said
model. The computational expense of building C in this case is
dependent on the model employed. This work employs ANNs for
this purpose.
Therefore, an ADS is sought to reduce the number of samples

needed to adequately fit a neural network to high-dimensional
input data, and a neural network is required to learn this ADS.
This impasse is solved through the iterative process, shown schema-
tically in Fig. 2. This process is defined based on the knowledge
that, regardless of the number of input parameters, as an ANN is
trained with increasing number of samples, provided there is no
overfitting (for which the fitting procedure in Sec. 2.1 accounts),
the prediction of said network will converge to the true function
from which the samples were taken. Thereby, the estimation of C
via gradients evaluated with the ANN also approximates the true
matrix and its eigenvector decomposition converges to the same

Table 1 Hyper-parameters tuned in grid search

Parameter Lower limit Upper limit

No. of HL 1 4
No. of neurons in each HL 5 500
Regularization coefficient 0.0 0.02
Drop-out factor 0.0 0.5
Activation function Sigmoid Relu

Fig. 2 Iterative process proposed to learn the ADS and fit an
ANN to CFD samples
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set of dominant directions. This work proposes iterating on the
number of samples employed to fit the ANN while monitoring
the convergence of the first k eigenvectors of C, through Eq. (7),
which measures the angular variation, θ, between the estimated
dominant directions from successive iterations.

θ(j)i = cos−1 e(j)i · e(j−1)i

( )
; i = 1, . . . , k (7)

where e(j)i is the ith eigenvector of C, estimated at the jth iteration.
Once θ is small enough, the ANN prediction approximates the

function behavior in the dominant directions sufficiently well to
reveal the ADS. This can therefore be exploited to reduce the
dimensionality of the inputs. Mapping the samples to the active
directions and fitting a final ANN to this low-dimensional dataset
generally increases the accuracy of the network predictions since
the data are now structured and there are more data points per
dimension. The initial number of samples, n, and the increment,
p, in the iterative process can be selected to exploit parallel comput-
ing capabilities, if available, to reduce the time requirements of the
loop.

2.3 Rewriting the Optimization Problem. The transforma-
tion defined in Eq. (5) is called a forward map and, as described,
transforms the input vector x ∈ Rm to an active vector, y ∈ Rk .
There is no reason why the active vectors of different functions
should be the same; hence, after the fitting procedure, nc+ 1
ANNs are obtained, all responding to different active vectors in dif-
ferent subspaces. This section details a reformulation to the optimi-
zation problem described in Eq. (1) that allows to navigate through
the active subspaces to find an optimum in them-dimensional space,
while exploiting the low-dimensional structure discovered through
the ADS.
The forward map provides a unique vector y for each vector x.

However, the converse is not true. There are infinitely many x
that satisfy the inverse map for a given y. Let f̂ be the neural
network prediction of the CF for its active vector:

f (x) ≈ f̂ (WT
10x) (8)

where W10 contains the first k eigenvectors of the CF’s C-matrix.
Additionally, let the constraints be approximated by a neural
network built on their active vector:

gi(x) ≈ ĝi(W
T
1ix); i = 1, . . . , nc (9)

A new function F is defined as

F(y0) = f̂ (WT
10x

∗) (10)

where

x∗ = argmin
x

1
2

WT
10x − y0

∥∥∥ ∥∥∥2
2

subject to ĝi(W
T
1ix) ≤ hi,i = 1, . . . , nc

x ∈ χ ⊂ Rm

(11)

Each evaluation of F(y0) requires solving a constrained
least-squares minimization problem designed to select from the infi-
nitely many x that solve the inverse map, one that is feasible in
terms of the nc constraints. In case there are no feasible points
that satisfy this, then the feasible x that maps to the closest active
vector to y0 is selected. This is a convex minimization problem
that can be easily solved by a gradient-based search algorithm,
employing finite differences for the gradients of the constraints,
∇ĝi, and Eq. (12) for the CF gradient. It is worthy to note that
there might still be infinitely many x that solve Eq. (11). In such
cases, all design points are considered equal since they map to
the same active vector and only differ in their inactive directions.
Hence, the CF should experience little variation between these

points. The introduction of a regularization term (e.g., Tikhonov)
to the CF in Eq. (11) is possible without loss of generality, in the
case where there is preference for particular types of x.

∇CF =W10 (W
T
10x − y0) (12)

The constrained optimization problem defined in Eq. (1) can thus
be rewritten as an unconstrained optimization through function F, as
per Eq. (13).

min
y0

F(y0) (13)

This formulation enables employing the ANN built on the CF’s
ADS for global optimization. Exploiting the dominant directions
usually accelerates the convergence of the optimization procedure
since the function is very respondent to changes in its active vari-
able. Moreover, selecting the feasible point through Eq. (11)
allows employing the ANNs built for the constraints, which can
be obtained cheaply, through the algorithm described in Fig. 2.

3 Comparison to an Adjoint Gradient-Based Approach
To compare the performance of the global strategy proposed, the

optimization problem in Eq. (1) is also solved employing an adjoint-
based technique. The search algorithm chosen is the sequential
least-squares programing (SLSQP) from scipy [29]. The method
wraps the SLSQP routine developed by Kaft [30]. It employs a
Han–Powell quasi-Newton method with a Broyden–Fletcher–Gold-
farb–Shanno (BFGS) update of the B-matrix for defining the search
direction. This update requires gradient information of the CF and
the constraints, hereby referred to as the objectives, which in this
section is obtained through the adjoint approach. Next, SLSQP
selects the optimum step size via a line search optimization,
which only requires solving a primal to obtain the objectives’
value at each iteration.
As discussed in Sec. 1, the adjoint computation requires a near-

zero residual from the primal solver which increases the computa-
tional expense of that stage. Additionally, typical adjoint running
times are about three times longer than the flow solver, making
the B-matrix update a costly endeavor. This work aims to lessen
the overall time expense by employing parallel computing capabil-
ity and solving the adjoint computation for the objectives
simultaneously.
For the step-length algorithm, there is no need for the primal to

achieve such exemplary convergence and adequate results can be
obtained much earlier. Figure 3 shows a typical CFD primal conver-
gence history for an axial fan. By iteration 400, the objective con-
vergence curves have stabilized and only minor variations in their
value are noticed thereafter. From this point, in traditional
CFD-based SLSQP implementations, the primal solver would be
continued for an additional 1200 iterations to comply with the
adjoint convergence requirements. This implies a fourfold increase

Fig. 3 Primal convergence history for mean-flow residual and
non-dimensionalized CF and constraint values

011013-4 / Vol. 144, JANUARY 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/turbom

achinery/article-pdf/144/1/011013/6760024/turbo_144_1_011013.pdf by U
niversita D

i C
agliari user on 08 O

ctober 2021



in the computational expense for each line search iteration while
there is no such requirement. Hence, this work proposes employing
partially converged values to accelerate the step-size optimization
of the algorithm.

4 Application to a Jet Engine Fan Blade
In this section, the optimization of a modern, low speed, high

bypass ratio research fan blade is approached with the global strat-
egy described in Sec. 2 and the adjoint-based strategy from Sec. 3.
The test case under study is called Vital, hereby referred to as the
research blade, shown in Fig. 4. As documented in Ref. [31], for
high bypass ratio fans, a 1.4% increase in efficiency yields a
1.0% reduction in the engine’s specific fuel consumption, making
this component an ideal test case to study the benefits of global opti-
mization on high-dimensional parametrization schemes. The span
of the research blade is about two-thirds smaller than that of a con-
ventional fan blade making it suitable for rig tests. The rotational
speed has been adjusted to emulate the flow physics at the cruise
condition and the thickness has been increased to achieve the
mechanical integrity required of a large aero-engine composite
fan blade.

4.1 Computational Tools. The Rolls-Royce proprietary
CFD code Hydra [32] was used throughout this study to simulate
the flow about the research blade. Hydra is an unstructured solver
employing an edge-based data structure and convergence accelera-
tion through an element collapsing multi-grid algorithm. A five-
stage Runge–Kutta scheme with a block Jacobi preconditioner is
employed for pseudo time-stepping when solving the steady-state
Reynolds-averaged Navier–Stokes equations. The turbulence
closure model employed in this work is Spalart–Almaras. Hydra’s
discrete adjoint capability was employed in this work to estimate
the gradients of CF and constraints with respect to the design
parameters.
The computational domain used in this study is shown in Fig. 4.

It is a single-passage, single-blade row model with the downstream
splitter. The whole domain is modeled on a rotating frame, with the
casing, splitter, inlet and exit surfaces set as stationary. The rotor,
hub, and splitter surfaces are set as viscous walls. At the inlet, a one-
dimensional boundary condition (BC) is enforced, specifying a
radial distribution of total pressure, total temperature, whirl and
pitch angles, and turbulence intensity, where the values for these
quantities are obtained from experimental analyses. For the
bypass and core exit surfaces, a non-reflecting capacity exit BC is
enforced.
The domain is discretized using the Rolls-Royce proprietary

geometry and meshing software, PADRAM [33]. The blocking strat-
egy employed by PADRAM consists of an H-O-H topology, with H
blocks for the upstream and downstream regions, as well as the
upper and lower periodic boundaries. The blade is enveloped in

an O-mesh while a C-mesh is employed for the splitter. A mesh con-
vergence study was previously undertaken to identify the optimal
distribution of nodes [8], leading to a total of 5.4 × 106 cells,
placing 30 mesh nodes in the tip gap. The y+ of the mesh is
below 1 on all viscous surfaces. CFD-experimental validation of
this setup have previously been reported achieving a good match
for a number of different operating conditions [8,9].

4.2 Optimization Problem. The definition of the geometry
parametrization is a critical factor dictating much of the success
that can be obtained through optimization, since the search will
only comprise geometries that are attainable with it. Many parame-
trization schemes have been introduced in the literature, such as
free-form deformation or B-splining. However, most of these are
abstract in the sense that the user has little knowledge on how a par-
ticular parameter affects the geometry, and indeed much less on
how the interaction between various parameters affects the final
shape. In this work, the geometry parametrization is defined
through PADRAM’s engineering design parameters (EDP), which
comprise a set of intuitive geometry manipulation handles based
on first principles. Each EDP, illustrated in Fig. 5 for an aerofoil
section, controls a particular degree-of-freedom (DOF) for the
geometry. The DOFs applied are sweep (axial movement of the
section), lean (circumferential movement of the section), skew
(rotation about the section’s centroid), and leading edge (LE) and
trailing edge (TE) recambering. Two additional DOFs controlling
the locality of the LE and TE recambering are also introduced,
such that low values of these parameters cause very localized
camber line alterations, and vice-versa. Sufficiently large values
can propagate the perturbations through the aerofoil, thus providing
complete control over the camberline. The EDP are applied on five
aerofoil control sections uniformly distributed through the blade
span—at 0%, 25%, 50%, 75%, 100%—providing a total of 35
DOFs, arranged in the design vector, x. The value of the deforma-
tion applied as a function of the blade span is achieved through
smooth cubic B-spline interpolation, with multiple control points
via the control sections.

Fig. 4 Research blade CFD domain
Fig. 5 Geometry parametrization through EDP. The magnitude
of the perturbations has been enlarged for clarity.
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The upper and lower optimization ranges for each DOF
employed in this study, denoted by the vectors xU and xL respec-
tively, were defined based on previous experience with the param-
etrization scheme. Let χ be the space of possible designs attainable
with the 35 DOFs described; the design space is thus defined as
follows:

{x ∈ χ ∣ xL ≤ x ≤ xU} (14)

The CF for the optimizations carried out in this work is the fan
bypass isentropic efficiency, defined in Eq. (15), where the total
pressure and total temperature quantities employed are extracted
from the CFD solution by performing double averaging over the

surface of interest: mix-out circumferentially and mass-mean
radially.

CF = η(x) =

p0exit
p0inlet

( )(γ−1)
γ − 1

T0exit
T0inlet

− 1
(15)

0.99 PRdatum ≤ PR(x) ≤ 1.05 PRdatum (16)

Through the optimization, upper and lower constraints are
enforced for the fan PR according to Eq. (16). The lower bound
is specified to prevent new geometries from maximizing efficiency
by greatly reducing the PR, which would cause the low pressure
(LP) shaft to operate at a higher speed to meet the engine’s thrust
requirement. Similarly, the upper bound is enforced to avoid
designs with overly large PR that operate at significantly lower
shaft speeds and can lead to overloading of the LP turbine blade.
It is worthy to note that the EDP employed do not alter the thickness
of the blade, thus preventing the search for an aerodynamically
optimum design to lead to overly thin blades which would signifi-
cantly affect the mechanical integrity of the blade.

4.3 Global Optimization Approach. In this section, the
research blade is optimized employing the global strategy detailed
in Sec. 2. The iterative process from Fig. 2 is solved for efficiency
and PR, employing n= 105 initial function evaluations with an
increment of p= 17. The sampling was done following a design
of experiment approach employing Sobol’ sequence. The conver-
gence of the algorithm for the first two dominant directions is
shown in Fig. 6. The trend demonstrates a decreasing magnitude
of the angular variation between successive iterations, suggesting
the C-matrix estimation via the neural network predictions is

Fig. 6 Eigenvector convergence

Fig. 7 Eigenvalue decay and cumulative energy plots for efficiency and PR gradient covariancematrices: (a) efficiency eigen-
values, (b) PR eigenvalues, (c) efficiency cumulative energy, and (d) PR cumulative energy
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converging to its true form. By the eighth cycle, corresponding to
250 total samples, a sufficiently low angular variation has been
achieved. Certainly, the process could be continued with increasing
number of samples leading to an ameliorated resolution in the active
directions; however, the trend shown in the figure suggests that only
minor variations in the directions can be expected thereafter. Hence,
the process is deemed converged at the eighth iteration.
Figures 7(a) and 7(b) plot the eigenvalue decay of the final effi-

ciency and PR gradient covariance matrices. The rapid decrease
noticeable in the eigenvalues is positive because it denotes that
most of the system’s variance is captured by just a few dominant
directions. In fact, through the cumulative energy plots shown in
Figs. 7(c) and 7(d ), it is noticeable that almost 100% of the total
system’s energy can be represented by the first four eigenvalues.
Thereby, for the optimization task at hand, the ADS was con-
structed employing the first four dominant directions.
Through Eq. (5), 250 samples were mapped to the PR and effi-

ciency active subspaces, and a final neural network was trained

and tuned for both functions. Table 2 gathers the prediction accu-
racy obtained with these networks and compares it against the
ones trained on the high-dimensional space. A noticeable increase
in prediction accuracy is achieved for both functions when training
the networks with the low-dimensional space, due to the fact that
the data are structured and the ratio of samples to dimensions is
greatly increased. The ameliorated network performance provides
an additional level of confidence in the subsequent surrogate-based
optimization process, since the performance benefit of any opti-
mized designs estimated from the networks should be close to
what CFD would predict.
For visualization purposes, the data can be condensed even

further. The cumulative energy plots show that over 98% of the
energy is captured by just the first two eigenvalues and this
allows building two-dimensional active subspace performance
maps, following Ref. [22], without much loss of information.
These maps, shown in Fig. 8, enable visualizing the behavior of
the objective functions in their active subspaces. The active
vector coordinates (0, 0) in these plots correspond to the datum
design. The efficiency map shows that this design lies in a corridor
of high-performance, but could still be improved quite significantly
by moving in the second active variable’s positive direction.
However, such design changes could affect the PR beyond the spe-
cified tolerances. The active subspace on which the PR map is con-
structed is different than that for efficiency, preventing a direct
combination of both plots. Through the reformulation of the optimi-
zation problem, discussed in Sec. 2.2, the search algorithm will be

Fig. 8 2D active subspace maps for the optimization functions: (a) efficiency subspace and (b) PR subspace

Table 2 Network prediction accuracy trained with
high-dimensional inputs and active vectors

Function R2 f̂ (x)
[ ]

R2 f̂ (y)
[ ]

Efficiency 0.892 0.937
PR 0.987 0.990

Fig. 9 Radial efficiency profile for datum and optimized designs in (a) and lift plot at 90% span in (b)
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able to navigate through these subspaces searching for the best
trade-off design.
In this work, a genetic algorithm was employed to perform the

search for a globally optimum design using Eq. (13). Upon conver-
gence, the optimal design point was simulated with CFD leading to
a significant 0.47% improvement in efficiency, while the PR con-
straint was achieved.
Figure 9(a) plots the radial profile of circumferentially mixed-out

values of efficiency (as per Eq. (15)) for the datum and optimized
designs. This graph reveals that the performance increase for the
optimum design arises largely from the upper 20% of the blade’s
span, while a slight reduction in efficiency is noticeable for the
mid span region, due to the radial adjustment of the flow. The isen-
tropic Mach number distribution for the 90% span section, plotted
in Fig. 9(b), suggests that the primary mechanism for this perfor-
mance benefit is an improved shock behavior via the reduction of
the pre-shock Mach number. Additionally, the pressure side spike
has been mitigated, leading to a more uniform loading at the LE.
The suction side LE loading, however, has slightly been worsened
for the optimum, noticeable by a minor peak followed by a sudden
decay.
Geometrically, the ameliorated flow behavior is achieved through

a slightly more convex camber line in the 20% to mid-chord region,
as shown in Fig. 10(a). This causes a stronger pressure gradient that
increases the supersonic diffusion of the flow, as shown in the
contour plots of Fig. 11, reducing the pressure difference across
the shock and thereby the entropy creation. In addition, the shock
is spilled out of the passage, increasing the bow shock stand-off dis-
tance. This enables a pressure recovery in the region after the shock
downstream to the LE. The effect is achieved in spite of the LE
being sharper for the optimized design, as can be noted from the

increased curvature shown in Fig. 10(b), which produces a
smoother expansion, mitigating the Mach number spike at the pres-
sure side.

4.4 Adjoint-Based Approach. The efficiency improvement at
each iteration of the optimization is shown in Fig. 12. It can be
appreciated that within the first three iterations, the optimizer iden-
tified an optimal step size, which was employed throughout the
optimization. This suggests that the function’s Hessian matrix—
estimated with each gradient evaluation—does not significantly
change for the design points assessed during the process.

Fig. 11 Static pressure contours at 90% span. (a) Datum blade and (b) optimized design.

Fig. 10 Aerofoil geometry at 90% span. (a) Camberline distribution and (b) curvature versus arc length. The datum curve has
been shifted for clarity.

Fig. 12 Adjoint-based optimization history. The optimum found
is highlighted by the square marker.
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Thus, the SLSQP routine employed in this section is able to identify
the dominant direction for each iteration.
Additional understanding of the process can be gained by analyz-

ing the evolution of the gradients through the optimization. Each
gradient evaluation provides information regarding the sensitivity
of the CF with respect to each of the parameters at a particular iter-
ation. A gradient component with a large magnitude reveals a
parameter that is more influential than the others and dictates the
primary geometrical modification of that iteration. This information

is shown in Fig. 13, where each column encodes the efficiency gra-
dient at a particular iteration. Throughout the process, LE and TE
recambering were the most influential parameters, with negative
gradient values near the root of the blade, and positive towards
the tip.
Geometrically, this implies that the camberline curvature was

reduced for the tip section, resulting in an s-shape which is more
convex towards the pressure side, as shown in Fig. 14(a), with a
similar outcome to the global optimum design from Sec. 4.3. This
mitigates the expansion along the suction surface that delays and
weakens the shock, as shown in the lift plot in Fig. 14(b). For the
midspan regions, the aerodynamic outcome was similar, but the
geometrical mechanism was different. As shown in Fig. 15(a),
the blade inlet angle was increased, which causes a reduction in
the effective flow incidence, thus reducing the loading at the LE.
Additionally, the camberline concave curvature was also increased,
as shown in Fig. 14(c), causing a smoother expansion which
delayed the shock further downstream, reducing the shock-induced
separated region. This ameliorated shock behavior enabled increas-
ing the flow turning through a reduction in the exit angle (towards
more negative angles), shown in Fig. 15(b), thus increasing the per-
formance of the fan blade at these sections.
The gradient evolution in Fig. 13 reveals another interesting

behavior of the optimization process. Primarily, that sweep, lean,
and skew had little effect on the objectives. Since the research
blade is already high-performing, it is likely that the geometrical
features controlled by these parameters were already at an
optimum setting. Additionally, it can be noted that, after the
initial design cycles where predominantly the recambering parame-
ters were modified, the search direction became affected by the
parameters controlling the locality of the recambering. This sug-
gests that the optimizer was trying to fine-tune the camberline

Fig. 14 Camberline distribution and lift plots of datum and optimum designs at (a) and (b) 90% span and (c) and (d) 50% span

Fig. 13 Evolution of efficiency gradient through optimization.
The gradient has been normalized by l2 norm.
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distribution, resulting in the final shape previously described, which
was found to be tailored at mitigating the shock.
This work was centered on the blade design point. However, off-

design performance is an important consideration when assessing
fan blade designs. This information is presented in Fig. 16 for the
optimized and datum blades. The characteristic curves show that
stall margin is maintained for both GA and SQP optimums, while
the choke margin has been slightly reduced. Additional objective
or constraint functions could be introduced in the optimization
problem to maintain the datum off-design performance. Addition-
ally, bulk-skewing the optimized blades could be considered to
recover the choke margin [8].

4.5 Remarks on Computational Efficiency. Table 3 sum-
marizes the computational expense and improvement achieved by
each optimization method assessed in this study. The global optimi-
zation of the research fan blade, through the novel strategy pro-
posed, required 250 CFD samples. The incremental number of
samples employed for the iterative loop from Fig. 2 was adopted
to exploit parallel computing capabilities such that each iteration
ran all samples in batch and had the run time requirement of a

single CFD computation. For generating the initial dataset, six of
such batches were required. Thus, the time requirement for generat-
ing the complete dataset was approximately 14 times the running
time of a single CFD. The time requirement of fitting and optimiz-
ing the neural networks is not considered since it is significantly
lower than that of CFD runs.
In contrast, the adjoint-based optimization required 19 iterations,

of which 16 were B-matrix updates and the remaining 3 were for
line search. As discussed, the update of the B-matrix requires a
primal CFD with 4 times the cost of a normal run, and two
adjoint calculations with 3 times the cost of the primal, hence, 12
times the cost of a normal run. This optimization amounts to a
total computational expense of approximately 387 CFD runs. In
terms of the time requirement, only the adjoint calculation for the
CF and constraint can be parallelized, since the optimizer is sequen-
tial and decisions are made based on the previous solution. This
leads to a total time requirement of approximately 256 CFD runs.
The behavior of the cost and constraint functions in the design

space was such that both algorithms were able to converge to
similar regions and produce optimized designs with comparable
performance. The slightly lower benefit achieved with the global
approach arises from the fact that, although highly accurate, the
meta model built on the active subspace is a simplification of the
true function shape. To overcome this, additional samples can be
taken in the vicinity of the optimized design to refine the neural
network in said region and improve the optimization accuracy.
The global optimization strategy achieved, with a reduced com-

putational cost, an efficiency improvement comparable to a
state-of-the-art adjoint-based approach. Additionally, the inherent
implementation enables exploitation of parallel computing capabil-
ities, which can significantly reduce the time requirement of the
process. Moreover, the CF and constraint values can all be obtained
with a single CFD run, thus providing better scalability of the global
approach to multi-objective or multi-constrained optimization
frameworks. This could enable the introduction of additional con-
straints designed to maintain the off-design performance, or the spe-
cification of an exit total pressure radial profile via multiple
constraints.

Fig. 15 Blade metal angle distribution: (a) inlet angle and (b) exit angle

Fig. 16 Fan characteristic curves for optimized designs

Table 3 Summary of computational efficiency for the
optimization approaches

Global strategy Adjoint-based

Total cost (CFD) 250 387
Total run time (CFD) 14 256
CF improvement 0.47% 0.5%
Constraint achieved Yes Yes
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5 Conclusion
A novel global optimization strategy has been developed that

leverages the capabilities of ANNs for regressing complex functions
while coupling them with ADS to reduce the number of samples
required. This strategy was applied on the efficiency optimization
of a modern jet engine fan blade with constrained PR and compared,
both in terms of overall improvement and computational expense, to
an adjoint-based approach employing the same parametrization. The
global strategy achieved an efficiency increase comparable to the
adjoint approach, with a reduced computational cost. In addition, it
was demonstrated that adequate scalability to multi-objective or
multi-constrained optimization applications is achieved.
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Nomenclature
k = dimensionality of active vector
m = dimensionality of design vector
x = vector of design parameters
y = vector of design parameters in the active directions
C = gradient covariance matrix
W = eigenvectors of the covariance matrix
f̂ = neural network approximation of function f
nc = number of constraints in optimization problem

E[·] = expected value of the argument in [·]
Λ = eigenvalues of the covariance matrix

σ(·) = standard deviation of the argument in (·)
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