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Abstract
Purpose – The maximum entropy snapshot sampling (MESS) method aims to reduce the
computational cost required for obtaining the reduced basis for the purpose of model
reduction. Hence, it can significantly reduce the original system dimension whilst maintaining
an adequate level of accuracy. The purpose of this paper is to show how these beneficial
results are obtained.
Design/methodology/approach – The so-called MESS method is used for reducing two
nonlinear circuit models. The MESS directly reduces the number of snapshots by recursively
identifying and selecting the snapshots that strictly increase an estimate of the correlation entropy
of the considered systems. Reduced bases are then obtained with the orthogonal-triangular
decomposition.
Findings – Two case studies have been used for validating the reduction performance of the MESS. These
numerical experiments verify the performance of the advocated approach, in terms of computational costs
and accuracy, relative to gappy proper orthogonal decomposition.
Originality/value – The novel MESS has been successfully used for reducing two nonlinear circuits: in
particular, a diode chain model and a thermal-electric coupled system. In both cases, the MESS removed
unnecessary data, and hence, it reduced the snapshot matrix, before calling the QR basis generation routine.
As a result, the QR-decomposition has been called on a reduced snapshot matrix, and the offline stage has
been significantly scaled down, in terms of central processing unit time.
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1. Introduction
In manufacturing integrated circuits, a range of design explorations that ensure sound
functionality of these components need to be performed. To this end, mathematical models of
such circuits are simulated numerically. In a discrete setting, the required simulation times may
become prohibitively large, in particular, for large-scale problems. Model reduction strategies
arose as a remedy to recover computational feasibility for such problems, in particular, when
repetitive computations are required. Here, we apply the maximum entropy snapshot sampling
(MESS) method (Kasolis and Clemens, 2020) to nonlinear circuit problems, as means to reduced
basis model reduction. In this paper, two case studies are presented. In the first case study, the
commonly used proper orthogonal decomposition (POD) basis is substituted for a MESS
obtained basis in a standard Galerkin projection setting for differential algebraic systems. The
comparison against the POD demonstrates the overall performance of the advocated MESS
framework. In the second case study, the MESS model order reduction framework is
incorporated into a reduced order multirate (ROMR) scheme (Bannenberg et al., 2021), which is
applied to a coupled nonlinear thermal-electric circuit. Furthermore, in the second test case, the
MESS method is combined with a maximum likelihood estimation of the parameter that
controls the degree of reduction.

2. Method description
2.1 Maximum entropy snapshot sampling
LetX= (x1,x2,. . .,xn) be a finite sequence of numerically obtained states xj [R

m at time instances
tj [R, with j[ {1,2,. . .,n}, of a diode chain model. Provided the probability distribution p of these
states, the second-order Rényi entropy of the sampleX is as follows:

H 2ð Þ
p Xð Þ ¼ �log

Xn
j¼1

p2j ¼ �logEp pð Þ; (1)

where pj : p(xj) andEp pð Þ is the expected value of the probability distribution p with respect
to p itself (Kasolis and Clemens, 2020). According to the law of large numbers, in the limit n!
1, the average of p1, p2, . . ., pn almost surely converges to their expected value, that is:

1
n

Xn
j¼1

pj ! Ep pð Þ as n ! 1; (2)

while each pj can be approximated by the sample’s relative frequency of occurrence. By
considering a norm k * k on Rm, the notion of occurrence can be translated into a proximity
condition. In particular, for each xj [ R

m define the open ball that is centred at xj and whose
radius is e > 0:

Be xjð Þ ¼ fy 2 Rmjjjxj � yjj < eg; (3)

and introduce the characteristic function with values:

x i xjð Þ ¼
1; if xj 2 Be xið Þ;
0; if xj 62 Be xið Þ:

(
(4)

Under the aforementioned considerations, the entropy ofX can be estimated by:
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Ĥ
2ð Þ
p Xð Þ ¼ �log

1
n2

Xn
i¼1

Xn
j¼1

x i xjð Þ: (5)

Provided that the limit of the evolution of Ĥ
2ð Þ
p exists and measures the sensitivity of the

evolution of the system itself (Broer and Takens, 2011, §6.6), a reduced sequence
Xr ¼ xj1 ; xj2 ; . . . ; xjrð Þ, with r# n, is sampled from X, by requiring that the entropy ofXr is a
strictly increasing function of the index k [ {1,2,. . .,r} (Kasolis et al., 2019). A reduced basis
is then generated from Xr with any orthonormalization process. It has been shown (Kasolis
and Clemens, 2020) that, depending on the recurrence properties of a system, any such basis
guarantees that the Euclidean reconstruction error of each snapshot is bounded from above
by e , while a similar bound holds true for future snapshots, up to a specific time-horizon. See
Algorithm 1 for the pseudo-code of the proposed method.

To estimate the parameter e , which determines the degree of reduction within the MESS
framework, the following optimisation approach is used (Takens, 1985). The quantity within
the logarithm in the entropy estimate (5) is often referred to as the sample’s correlation sum
and can be written as follows:

Ce ¼ 1
n2

jjRe jj2F; (6)

with Re 2 f0; 1gn�n being the matrix whose entries are unity, when jjxi � xjjj < e , and jj � jj2F
being the Frobenius norm. In terms of probability theory, Ce is a cumulative distribution
function, and hence, its derivative dCe=de is the associated probability density function. A
commonly justified hypothesis is that the correlation sum scales as eD (Howell and Tong, 1993,
Chapter 1), where D � 0 is the so-called correlation dimension of the manifold that is formed in
Rm by the terms of X. Under this power law assumption, the maximum likelihood estimate (van
der Waerden, 1969, Chapter 8) of the correlation dimension is estimated as follows. We find a
sample {e i}, with e i [ [0,1] for all i [ {1,2,. . .,q}, of a random variable E that is distributed
according toCe . Then, the probability of finding a sample in e i; e i þ de ið Þ in a trial is as follows:

Yq
i¼1

DeD�1de i: (7)

To calculate the e value for which this expression is maximized, we take the logarithm:

q � lnDþ D� 1ð ÞXq
i¼1

lne i; (8)

and note that the maximum is attained when:

q
D
þ
Xq
i¼1

lne i ¼ 0: (9)

This results in the most likely value D* =�1/hln Ei, and e can be estimated by:

e * ¼ argmin jD* � lnCe=lne jð Þ: (10)

Hence, MESS becomes a parameter-free method.
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Algorithm 1: Maximum entropy snapshot sampling
input: Snapshot matrix X [R m�n, tolerance e.
output: Reduced basis V [R m�r.
1Pi,j/kxi� xj k, Vi, j [{1, . . .,n};
2P/ P/max(P);
3R/ P< e;
4 idx/ [1,0,. . .,0] [ {0,1}1�n, k/ 1, c/ 1;
5 for j� = 1,2,. . .,n� 1 do

6 dj ¼ 2
Xj

k¼1

R jþ 1; kð Þ þ 1;

7 if d� (2kþ 1)c< 0 then
8 idxjþ1/ 1;
9 c/(k2 cþd)/((kþ 1)2);

10 k/ kþ 1;
11 end
12 end
13 [V,�]/ qr(X(:,idx));

2.2 Reduced order multirate
The mathematical models that arise in the field integrated circuit simulation often
encapsulate a plethora of hierarchical subsystems. These coupled subsystems often operate
on different intrinsic time scales, which enables multirate time integration to have an
advantageous effect (Günther et al., 2001; Hachtel et al., 2021). Multirate integration is
especially effective if the slower subsystem is substantially larger, or more computationally
expensive, than the faster subsystem. As the slow subsystems could still become
prohibitively large, the multirate approach can be complemented with MOR techniques
resulting in ROMR schemes.

When using a ROMR scheme (Bannenberg et al., 2021), a semi-explicit differential-
algebraic equation (DAE) is decomposed into fast and slow components, with subscripts F
and S, respectively, for instance:

x_F ¼ fF xF; zF; xSð Þ; xF 0ð Þ ¼ xF;0; (11)

x_S ¼ fS xF; zF; xSð Þ; xS 0ð Þ ¼ xS;0; (12)

0 ¼ gF xF; zF; xSð Þ; zF 0ð Þ ¼ zF;0; (13)

with fF, fS and gF being known functions, and zero indexed quantities indicating known
Cauchy data. Here, the fast and slow varying differential variables are xF 2 RnF and
xS 2 RnS , while the algebraic variable zF 2 RnA is assumed to be fast, because the dynamics
of the DAE is considered to be fast in the time interval of interest. The described type of
coupling enables the consideration of electrical circuits with a differential index up to unity,
coupled to slower ODE systems.

To reduce the computational effort, a reduced basis that is to be used in a Galerkin
projection framework is constructed. This reduction approach is then complemented with
the gappy POD method (Willcox, 2006). By using a direct projection, the reduced system is
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guaranteed to be again of unity index. To perform the reduction, let V 2 RnS�r be a non-
square matrix whose columns constitute a reduced basis for the range of the slow varying
states, with nS � r. The full state xS of the slow subsystem is then approximated by
xS ffi VxS;r using the reduced basis. Then, the reduced model becomes:

_xF ¼ fF xF; zF;VxS;r
� �

; xF 0ð Þ ¼ xF;0; (14)

x_S;r ¼ fS;r xF; zF; xS;rð Þ; xS;r 0ð Þ ¼ xS;r;0; (15)

0 ¼ gF xF; zF;VxS;r
� �

; zF 0ð Þ ¼ zF;0; (16)

with fS;r xF; zF; xS;rð Þ ¼ V>fS xF; zF;VxS;r
� �

, while the full state is needed for the coupling,
and hence, again the gappy approach combined with aMESS basis is used.

The overall index one system (14)–(16) can be integrated with the L-stable implicit Euler
scheme, which automatically assures that the algebraic constraints are not violated for all
t > 0. To exploit the fast/slow decomposition, a multirate integration scheme has been
proposed (Bannenberg et al., 2021), which is a reduced order extension of a standard
multirate scheme for DAEs (Hachtel et al., 2021). The integration of the coupled system (14)–
(16) for one macro-step tk 7!tkþ1 ¼ tk þ H can be written as follows:

xF;kþ ‘þ1ð Þ=m ¼ xF;kþ‘=m þ hfF xF;kþ ‘þ1ð Þ=m; zF;kþ ‘þ1ð Þ=m; xS;r;kþ ‘þ1ð Þ=m
� �

; (17)

xS;r;kþ1 ¼ xS;r;k þ HfS;r xF;kþ1; zF;kþ1; xS;r;kþ1ð Þ; (18)

0 ¼ gF xF;kþ ‘þ1ð Þ=m; zF;kþ ‘þ1ð Þ=m; xS;r;kþ ‘þ1ð Þ=m
� �

; (19)

where ‘ 2 f0; 1; . . . ;m� 1g; h ¼ H=m is the micro-step size, and the coupling variables
are denoted by xF; zF and xS. Here, the coupling strategy is chosen to be the coupled-
slowest-first, as this consistent for DAEs of unity order (Bannenberg et al., 2021). First the
system:

x*F;kþ1 ¼ xF;k þ HfF x*F;kþ1; z
*
F;kþ1; xS;kþ1

� �
; (20)

xS;r;kþ1 ¼ xS;r;k þ HfS;r x*F;kþ1; z
*
F;kþ1; xS;kþ1

� �
; (21)

0 ¼ gF x*F;kþ1; z
*
F;kþ1; xS;r;kþ1

� �
(22)

is solved for the macro-step. The step size H is chosen so that the solution to the slow
subsystem remains sufficiently accurate. Then, the fast solutions x*F;kþ1 and z*F;kþ1 are not
accurate enough and can be discarded, as they will be computed in the last micro-step. In the
second stage, the fast solutions are computed for the micro-steps ‘ 2 f0; 1; . . . ;m� 1g,
using linear interpolation for the values xS;kþ ‘þ1ð Þ=m, based on the available information xS,k
and xS,kþ1.
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3. Numerical experiments
3.1 Diode chain model
First, we will perform a case study regarding the sole application of theMESS reduction method
to a diode chain. As an instance of an integrated circuit, consider the diode chain model that is
depicted in Figure 1 and described by the differential-algebraic system (Verhoeven et al., 2007):

U1 � Uin tð Þ ¼ 0;

I Ui�1;Uið Þ � I Ui;Uiþ1ð Þ � Ui

R
� C

dUi

dt
¼ 0;

I Um�2;Um�1ð Þ � Um�1

R
� C

dUm�1

dt
¼ 0;

iE � I U1;U2ð Þ ¼ 0;

(23)

where i [ {2,3,. . .m � 2} with integer m > 3, Ui is the voltage at the ith node of the circuit
and is measured in V, while the time is measured in ns. The current–voltage diode
characteristic function I:R�R!R is defined by:

I x; yð Þ ¼ Is ea� x�yð Þ � 1½ 	; (24)

where IS = 10�14 A is the saturation current and a is the inverse of the thermal voltageUT =
0.0256V. Additional model parameters are mentioned in Figure 1. Further, the excitation
voltage is as follows:

Uin ¼
20; if t# 10;

170� 15t; if 10 < t# 11; in Vð Þ
5; if t > 11:

8><
>: (25)

To simulate a transient analysis of the diode chain model depicted in Figure 1, system (23) is
integrated numerically. For large m such simulations become prohibitively expensive in
terms of computational time. Here, to recover computational feasibility, reduced basis model
reduction techniques are exploited. The MESS method is applied to the nonlinear diode
chain model, with m = 40,002. The transient analysis is performed in the interval [0, 70] ns,
using an implicit Euler scheme with time step Dt = 0.1 ns. Consistent initial conditions are
obtained through a direct current simulation using very small time steps and using a linear
increasing input voltage from U in = 0 to U in = 20. The reduced bases are generated from

Figure 1.
Diode chain with
R= 104X and
C= 10�12 F
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the high-fidelity matrix X [R m�n, with n = 701 (Figure 2). To benchmark the presented
MESS based reduction, a comparison with the POD method is made. The number of POD
modes is taken to be equal to the number of MESS-obtained basis vectors. In the Newton
iterations, least squares approximations by use of gappy POD, of the Jacobianmatrix are used.

Here, the estimated e * value is equal to 0.00525. However, in an attempt to maximally
reduce the studied system, e is manually selected close to a value that turns out to yield a
numerically unstable reduced model. In Figure 3, the case of the MESS reduced system for
e = 0.0325 is depicted. There, it is shown that the solution to the MESS reduced system
converges to the reference solution. To illustrate that some caution is needed if e is selected

Figure 2.
Output of the

transient analysis for
all nodes

Figure 3.
DifferenceE (t) = k
UHF�U k/kUHF k
for the parameter

value e = 0.0325. The
subscript HF stands
for “high-fidelity”
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manually, in Figure 4, a slightly higher e value is chosen, when the resulting reduced model
becomes unstable. In Table 1, the computational times that are required for generating the
bases suggest that the MESS has an advantage in the offline stage. Further, for large-scale
problems, the singular value decomposition becomes infeasible because of memory
constraints, whereas this is not the case for MESS, because it relies on recursive evaluations.

3.2 Thermal-electric circuit
As the ROMR case study circuit needs to contain both coupling and different intrinsic time
scales, a thermal-electric test circuit is used (Bartel et al., 2003). This circuit consists of an
operational amplifier, two resistors, a diode and a capacitor. The thermal resistor R(T) is
modelled by a structure of length d = 0.03 m and variable diameter a(x) = a0/[1þ b(d� x)x],
with x [ [0,d], while the material parameters are those of a copper wire. The local resistance:

r Tð Þ ¼ r0 1þ a T � Tmeasð Þ þ b T � Tmeasð Þ2
� �

(26)

exhibits quadratic dependence on the temperature. The local resistance per unit cross section is
thus expressed inXm.Using this expression, the total resistance of the wire is as follows:

R Tð Þ ¼
ðd
0
r

j ;T t; jð Þ
a jð Þdj :

�
(27)

Electrical parameters of one-dimensional resistor
Material Cu (copper)
Specific resistance r0 = 1.7 mXm
Reference temperature Tmeas = 291K
Length d = 0.03 m
Cross section a0 = 540m
Profile b = (2/d)2 m2

1st thermal coefficient a = 1/(273K)
2nd thermal coefficient b = 1/(273K)2

Thermal parameters of the one-dimensional resistor
Density dw = 8.98103 kg/m3

Heat conductivity l w = 390W/(mK)
Specific heat cw = 385 J/(kg K)
Transition coefficient g = 1.0W/(m2 K)
Thermal mass M

0
w;i ¼ a xið Þdwcw J=K

Cooling surface S
0
w;i xð Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pa xð Þp
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The amplifier is a heat source and the diode has a temperature-dependent characteristic idi
(udi,Tdi) curve:

idi udi;Tdið Þ ¼ Î S Tdið Þ e
udi
vT � 1

h i
; (28)

Î S Tdið Þ ¼ 10�12 Tdi

300K

� �3

e
�qEg 300Kð Þ

kBTdi
1� Tdi

300K

� �
: (29)

Electrical parameters of the zero-dimensional elements
Specific resistance q = 1.602� 10�19 C
Energy gap Eg(300 K) = 1.11 V
Boltzmann constant kB = 1.38110�23 J/K
Thermal voltage vT = kB Tdi/q V
Operational power vop = 15V
Amplification A = 20,000
Load resistance RL = 0.3 kX
Capacitance C = 500 nF

Figure 4.
DifferenceE (t) = k
UHF�U k/kUHF k
for the parameter
value e = 0.0425

Table 1.
Timing MESS vs

POD (time in
seconds)

e = 0.0325 e = 0.0425
Basis generation m Basis generation m

High-fidelity 40,002 40,002
POD 1.5400 s 31 1.3397 s 25
MESS 0.1733 s 31 01577 s 25
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The electric behaviour of the circuit is modelled by modified nodal analysis based on
Kirchhoff’s laws. The thermal model is nonlinear because of the coupling terms, where the
local self-heating term, Pw, introduces the nonlinear terms. After discretizing in space, the
following thermal-electric system is obtained.

Electric network
0 ¼ Av tð Þ � u3ð Þ=R Tð Þ þ idi u3 � u4;Tdið Þ;
C _u4 ¼ idi u3 � u4;Tdið Þ � u4=RL;

Coupling interfaces
Pop ¼ j vop � jv tð Þj� � � Av tð Þ � u3ð Þ=Rj; Pw ¼ Av tð Þ � u3ð Þ2=R;

R Tð Þ ¼ 1
2

r 0;T0ð Þ þ
XN�1

i¼1

r Xi;Tið Þ þ 1
2
r l;TNð Þ

0
@

1
A � h;

0
@

Heat equation

M
0
w;ih

_Ti;¼ K
Tiþ1 � 2Ti þ Ti�1

h
þ Pw

~r Xi;Tið Þ
R

h� gS
0
w;ih Ti � Tenvð Þ; i ¼ 1; . . . ;N � 1ð Þ;

M
0
w;0 �

h
2
þMop

� �
_T 0 ¼ K

T1 � T0

h
þ Pw

~r 0;T0ð Þ
R

h
2
� g S

0
w;0

h
2
þ Sop

� �
� T0 � Tenvð Þ þ Pop;

M
0
w;N � h

2
þMdi

� �
_TN ¼ K

TN�1 � TN

h
þ Pw

~r XN ;TNð Þ
R

h
2
� g S

0
w;N

h
2
þ Sdi

� �
� TN � Tenvð Þ

Extension parameters of the zero-dimensional elements
Amplifier cubic
Material Al (aluminium)
Size eop = 0.5mm
Heat capacity cAl = 449 J/(kg K)
Density dal = 2.7103 kg/m3

Cooling surface Sop ¼ 6 � e2op mm2

Diode cubic
Material Si (silicon)
Size edi = 0.167mm
Heat capacity cAl = 700 J/(kg K)
Density dsi = 2.33103 kg/m3

Cooling surface Sdi ¼ 6 � e2di mm2
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The computational cost of coupled network simulations is reduced by applying the ROMR
scheme. Here, multirate integration and the MESS are used for solving the equations that
govern the thermal-electric circuit that is depicted in Figure 5. After partitioning the slow
and fast varying timescales, problem (14)–(16) becomes:

_xF ¼ fF xF; zF;VxS;r
� �

; xF 0ð Þ ¼ xF;0;

x_S;r ¼ fS;r xF; zF; xS;rð Þ; xS;r 0ð Þ ¼ xS;r;0;

0 ¼ gF xF; zF;VxS;r
� �

; zF 0ð Þ ¼ zF;0:

(30)

Here, xF = u4, zF = u3 and xS;r ¼ V>xS, with xS [R
m being the discretized temperature in the

thermal resistor (Figure 6).
Problem (30) is integrated with a ROMR method, and the parameter e is computed by (10)

(Figure 7). To verify the performance of (ROMR, MESS, e *), a transient analysis for the output
u4 is performed. A reference solution is obtained with a standard multirate scheme of five fine-
grid steps for a problem with (m, n) = (104,500). Then, the ROMR scheme is used, once with
(MESS, e *) and once with the POD. In Figure 7, both the correlation sum (left) and an accuracy
plot (right) for (MESS, 0.0816) are depicted. The accuracy result for the POD is indistinguishable
from the one depicted in Figure 7 (right), and hence, it is omitted. The degrees of freedom are
reduced from 104 to 13, while the optimal e * is estimated in 2.9 s and the MESS base is
constructed in 0.16 s, in contrast to a total of 6.33 s that is required by the POD.

4. Conclusions
The MESS has been successfully used for reducing two nonlinear circuits: in particular, a
diode chain model and a thermal-electric coupled system. In both cases, the MESS removed

Figure 6.
Cumulative

distribution (cdf) of R
and Ce

Figure 5.
Circuit used for the

numerical
experiments
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unnecessary data, and hence, it reduced the snapshot matrix, before calling the QR basis
generation routine. As a result, the triangular-orthogonal decomposition has been called on a
reduced snapshot matrix, and the offline stage has been significantly scaled down, in terms
of central processing unit (CPU) time. Because the MESS relies on pairwise distance
computations, its performance can be further improved through CPU/graphics processing
unit parallelization, while it enables an accept/reject routine that can be incorporated into the
high-fidelity solver, to immediately decide whether or not a new snapshot needs to be stored.
This last feature reduces storage requirements, while, to our knowledge, the MESS is the
only black-boxed method for performing non-homogeneous snapshot sampling, without
relying on prior knowledge regarding the application at hand. Through the optimality
requirement for selecting the parameter e , the MESS does not require any user input, and
hence, it can be seen as a parameter-free method, while a single parameter is required in
general. Further research needs to be conducted for selecting an e value that guarantees
stability and maximally reduced models. The obtained bases have been used in a gappy
framework for reduced nonlinear function evaluation, while the corresponding reduced
models perform as accurate as the standard reduction framework that relies on the singular
value decomposition.
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