
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

HW-SW Co-verification of Concurrent Programs

Scientific Students’ Association Report

Author:

Levente Bajczi

Advisors:

András Vörös
Vince Molnár

2018

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 3
2.1 Formal Verification . 3

2.1.1 Formal Models . 3
2.2 Computer Architectures . 4
2.3 Multithreading on Multi-core Systems . 6

2.3.1 Synchronization Possibilities . 7
2.3.2 Atomic Operations . 9

2.4 Memory Consistency Models . 12
2.4.1 MCM Validation . 13

3 Co-verification Workflow 15

4 Formal Description of Hardware and Software 19
4.1 Source Code to Formal Model . 19

4.1.1 Optimization Possibilities . 21

5 Verification and Mitigation 24
5.1 Interpreting Litmus Tests . 24

5.1.1 A More Convenient Representation of Litmus Tests 27
5.2 Query Generation and Verification . 28
5.3 Mitigation Possibilities . 32

5.3.1 Changing the Microarchitecture . 33
5.3.2 Changing the Compiler Mappings 34
5.3.3 Changing the Source Code . 34

1

6 Implementation 36
6.1 Implementation Details . 36
6.2 Hardware-Level Memory Validation . 37
6.3 The Formal Model Generator . 39
6.4 The Litmus Test Parser . 42
6.5 The Query Generator . 42
6.6 The Verification Tool Output Parser . 43
6.7 The Mitigation Generator . 44

7 Evaluation 46
7.0.1 General Tool Environment . 46
7.0.2 The Benchmarks . 47

8 Related Work 49
8.1 Software Verification . 49
8.2 Full Stack Memory Consistency Model Verification 49
8.3 Program Source to Formal Model Transformation 50
8.4 HW-SW Co-Simulation . 50
8.5 System on a Chip Verification . 50
8.6 Multi-Core System Verification . 51

9 Conclusion 52

List of Figures 54

Bibliography 54

Appendix 58
A.1 Benchmarks . 58

2

Kivonat

A folyamatosan fejlődő technika világában egyre több olyan szituáció fordul elő, ahol
sok ember élete múlik számítógépek helyes működésén - legyen szó akár egy önvezető
autóról, repülőről vagy atomreaktorok biztonsági rendszeréről. A legfontosabb elvárás az
ilyen rendszerekkel szemben az, hogy lehetőleg elkerüljék a kritikus hibákat. Tekintve,
hogy számos alkalommal történt már emberéleteket követelő katasztrófa rosszul működő
programok vagy számítógépek miatt, elfogadhatjuk, hogy az ilyen rendszerek működésének
alapos ellenőrzése különösen indokolt éles használat előtt - az ellenőrzés egy precíz módja
az, hogy matematikailag bizonyítjuk, hogy a rendszer előre látható működése során nem
történhet hiba.

Szoftverek ellenőrzésére számos sikeres eszköz létezik, amelyek a programokat formá-
lis modellként ábrázolva képesek bizonyos követelmények teljesülését vizsgálni. Azonban a
teljes rendszer verifikációjával kevesen próbálkoztak, pedig hiába tökéletes a szoftver, ha
egy hardveres hiba képes akár az egész rendszert térdre kényszeríteni. A hardver és szoftver
együttes verifikációja még nehezebb több processzormagos környezetekre. Ennek a kuta-
tásnak a fő célja a többmagos eszközök és a rajtuk futó konkurens programok együttes
ellenőrzése. Egy olyan megközelítést fejlesztettem ki, ami nem csak a konkurens progra-
mok verifikációjával foglalkozik, de a többmagos rendszereken futó magasszintű nyelvek
memóriamodelljének (MCM) megsértését is vizsgálja. A témám alapja egy korábbi ku-
tatás, ahol a szerzők megmutatták, hogy sok, potenciálisan hibát okozó inkonzisztencia
fordul elő a modern architektúrákon.

Ezen projekt keretein belül egy olyan megközelítést mutatok be, ami az ilyen bizton-
ságkritikus rendszereket fejlesztő programozókat segíthet a formális verifikáció és MCM
validáció eszközeinek segítségével, ezzel biztonságosabb, megbízhatóbb kódot eredményez-
ve. Továbbá bemutatok egy prototípus implementációt ami ezen munkafolyamat több
lépését automatizálja, ezzel a következő funckionalitást biztosítva:

• Egy {mikroarchitektúra, MCM, magasszintű nyelv} kombináció automatikus verifi-
kációja a TriCheck segítségével, felderítve az MCM-et sértő szituációkat.

• C11 kód formális modellbe való átalakítása, ezzel lehetővé téve a formális verifikációs
eszközök használatát.

• Automatikus lekérdezés generálás a fent említett verifikációs eszközök használatához.

• Visszajelzés a potenciálisan hibát okozó kódsorokról.

• Mitigáció automatikus ajánlása mutex zárak és feltételes szinkronizáció használatá-
val.

i

Abstract

In the ever-developing world of technology, more and more situations arise where the life of
many people lay in the hands of computers - be it the processor of a self-driving car or an
airplane, or the command center of a nuclear reactor. The most important expectation of
critical software is that they should never fail in a way that could have been prevented. As
there have already been many accounts of catastrophes that were caused by malfunctioning
computers or programs, we need to verify these systems before deployment - which could
mean, among others, to prove mathematically that no unintended outcome can ever occur
in the foreseeable operational circumstances.
On the software side, there have been many successful attempts at creating a verification
framework that takes a formal model and verifies whether it conforms to specified criteria.
However, there is a lack of approaches targeting system level correctness - even if the
software is perfect, a hardware bug can still occur that could render the whole system
unsafe. The co-verification of HW-SW systems is even more challenging for multi-core
systems. The main goal of this research is the co-verification of multi-core hardware
and concurrent software running on top of them. I have developed an approach that
not only takes multithreading capabilities into account but does so while checking for
memory consistency problems. My research is based on a previous research where authors
showed that there are many situations violating the Memory Consistency Model (MCM)
of programming languages running on modern architectures.
In the scope of this project, I propose an approach that can help programmers developing
software for such mission-critical systems leverage the tools of formal verification and
MCM validation resulting in safer, more reliable code. Furthermore, I provide a proof-of-
concept implementation of a tool that enables the automation of the introduced verification
workflow, providing the following features:

• Automated MCM verification of a specified {Microarchitecture, MCM, High-level
language} combination resulting in a list of possible MCM violations using TriCheck.

• Parsing and transformation of C11 code into a formal modelling language, enabling
the use of traditional model verification frameworks.

• Automated query generation for use in above-mentioned model checking frameworks.

• Feedback of error-prone lines of code in the editor itself.

• Suggested corrections using conditionals and mutex locks for safer code.

ii

Chapter 1

Introduction

Since the second half of the last century, there have been more and more occasions where
the lives of many people depended on the correct operation of computers or programs
running on them. This kind of dependence got built into our everyday life and now we
cannot go anywhere without relying on the safe and correct operation of embedded devices.
Everyone is used to the ”technical gremlins” of personal computers, for example the well-
known Blue Screen of Death, but no-one would like to see that on the on-board computer
in an Airbus A380-800, where 853 passengers could die if such an error happened.
In order to avoid such an accident, software engineers have two possibilities while devel-
oping mission-critical software: One is to test the system they created so rigorously that
they can be sure they have not made a mistake in development, which is not only tiresome
and time-consuming, but also unreliable as it introduces yet another human element. The
other option is much more reliable, takes less time, but is also the more complex one:
using mathematically justifiable rules one needs to prove that no unintended outcome can
ever occur in the foreseeable operational circumstances. This, while being the superior
option, is not always that easy to achieve as such a method is only applicable to specific
types of problems. There is no general method for the formal verification of software that
does not take any assumptions about the subject itself.
Even though there is no such thing as a generally applicable formal verification tool,
the number of situations where we can apply them is growing day to day. In this paper I
propose an approach that can broaden this variety by introducing the formal verification of
multi-threaded applications by validating the Memory Consistency Models (MCM) of high-
level languages running on modern architectures, then applying the found inconsistencies
to actual source code to mitigate violations.
MCM violations are actually very common in modern microarchitectures - at least more
common than it would be desirable. The infamous load-load hazard [2] in ARM processors
is a good example of a bug that was present in an architecture so long that it actually
got to the end user before a mitigation technique was released (in this case the compiler
mappings were redefined in a stricter way).
The main idea behind being able to mitigate MCM violations as opposed to changing
the architecture itself is that there are many situations where neither the hardware nor
the underlying OS can be changed, but developers still need to create new programs for
it - the simplest being an update service of an embedded IoT device that cannot get
replaced every time a new hardware bug is found, but also cannot be left vulnerable. If
we can solve the problem by adding a bit of an overhead, but without changing the core
components of the system itself, then we potentially saved a fortune for our business while

1

being able to concentrate on supporting older products as well as developing new ones.
As an interesting comparison, developers of most modern kernels used such mitigation
techniques when dealing with the Spectre/Meltdown vulnerabilities of microprocessors -
taking a small performance hit [19] is worth it if we can avoid investing in new hardware
for all our systems.
The report is structured as follows: Chapter 2 introduces the concepts later chapters
build on, such as Memory Consistency Models. Chapter 3 provides a short overview on
the proposed verification approach, which is then expanded in the next chapter, Chapter 4,
going into detail about the theoretical part of the verification methodology. Chapter 6
explains the details of the implementation itself through the tool MCMEC, which is used to
prove the applicability of the approach. This tool was used in a series of tests in Chapter 7
to provide benchmarking results showing that the approach is in fact applicable to actual
problems. In Chapter 8 I introduce some approaches that are related to mine as I partly
utilize them in my work, then finally in Chapter 9 I summarize the findings of this work.

2

Chapter 2

Background

In this chapter I introduce the core concepts of microarchitectures, multithreaded applica-
tions and formal model checking in order to establish the definitions that I will be referring
to later on.

2.1 Formal Verification
2.1.1. Definition (Formal verification). In the context of hardware and software
systems, formal verification is the act of proving or disproving the correctness of
intended algorithms underlying a system with respect to a certain formal specification
or property, using formal methods of mathematics [7]. �

The definition of formal verification includes all the necessary information about the sub-
ject:

• It operates on an ”intended algorithm”, which needs to be represented by a formal
model (see Section 2.1.1)

• It takes a property (or rather the formal specification of said property) and either
proves or disproves it

• It uses the (formal) methods of mathematics, leaving no place for ambiguity on the
correctness of the proof

The goal of such verification methods is to eliminate the uncertainty of the human element,
meaning that it provides a way of checking if the developer of a system or algorithm made
any mistakes by comparing the resulting model to the specification of the expected product.
In the context of this work this means that the verification tool takes the formal model
generated from the source code of a program and the specification which states which
operations cannot ever be executed at the same time (generated from the formal specifi-
cation of the microarchitecture, ISA, MCM and compiler mappings) and checks if these
properties are observable in the model. If any such property holds, one of the inputs must
be refined to avoid such a situation.

2.1.1 Formal Models

3

2.1.2. Definition (Formal model). A formal model is a description method of ab-
stract systems and algorithms that uses a well-defined, unambiguous and mathemat-
ically precise structure. �

In other words, everything can be called a formal model if the content thereof is specified
in a way that can be interpreted in only one way.
These formal models are always an abstraction of the subject they are depicting, as we omit
the irrelevant details while transforming them into such representations (see modelling in
general). For example when transforming source code to a formal model one might lose
the exact structuring of the source file or even operations that are unrelated to the goal
of the verification process.
In this research two different formal models will be used to represent the C11 source we are
aiming at verifying: UPPAAL Timed Automaton (XTA) [8] and Control Flow Automaton
(CFA) [21]. The former is used to represent timed automata (meaning they have a clock
variables that advance the execution), and therefore it is more suitable for more abstract
systems, while the latter is better for generic program representations. Furthermore, XTAs
provide a way of synchronization between its processes, therefore this functionality does
not need to be implemented using some other way (such as message passing). As both
have their own advantages and disadvantages it is up to the implementation to decide,
for which I have made the decision to use XTA while looking for ways to expand the
functionality to support CFAs as well. Both implementations come from the tool theta
[24], which is being developed at the BME-MIT Fault Tolerant Systems Research Group
(FTSRG).
What both formal model types have in common is that they operate on locations and
transitions between them. Transitions can have guard expressions that regulate if a tran-
sition should be taken at all by evaluating them and only allowing a transition if the value
is true. Furthermore, they can use variable arithmetic by assigning to and reading back
from variables.

2.2 Computer Architectures

As the proposed model checking workflow spans down to the core of a system and therefore
logically includes the computer architecture thereof, some definitions about this abstract
concept must be set first. Other, somewhat different definitions might exist for them,
hence the need for clarification.

2.2.1. Definition (ISA). The Instruction Set Architecture (ISA) is the formal
model describing the inner operations of a given microprocessor, providing axioms
and deduced rules for instructions and their behaviour, such as memory ordering
[18, 26]. �

2.2.2. Definition (Microarchitecture). Microarchitecture, commonly abbrevi-
ated as µArch or uarch is one physical realisation of a particular Instruction Set
Architecture (ISA) in a microprocessor. Mathematically, the relation a _ A can be
introduced as a way to express The microarchitectural implementation a is a correct
implementation of the ISA A [6]. �

4

ISA

 A1

<<implements>>

a1

<<implements>>

a2

ISA

 B1

<<implements>>

b1

<<implements>>

b2

<<implements>>

b3

μArch μArchμArchμArchμArch

Figure 2.1: Two ISA definitions and uarch packages implementing
them.

2.2.3. Definition (Computer architecture). One element of the Descartes-
product of a given ISA A and given microarchitectural realisations {ai}.
Computer Architectures = {ai ×A | ai _ A} [10]. �

In other words, what the ISA is for software, is the microarchitecture for hardware and
these two concepts together are what we call a computer architecture.
As it can be seen in the three definitions above, the ISA and the microarchitecture itself are
two separate and easily distinguishable description methods of a particular microprocessor.
Even though the microarchitecture itself might differ from the ISA due to a mistake, this
is negligible as in most cases the translation from ISA to µArch is done by automated
generators (compilers, so to say), which (once formally verified, of course) do not output
an erroneous representation - and even if this realisation is done manually, it is very easy
to audit the result if it conforms to the ISA. Furthermore, as it can be seen in Figure 2.1,
an ISA can have more than one correct microarchitectural implementation but generally
not vice versa1, and a single computer architecture Π defined as the product of an ISA A
and a µArch a is only correct, when a _ A. As programs interface with the processor
via the ISA, it can generally be stated that any two Computer Architectures are binary
compatible2 when sharing the same ISA and therefore almost entirely transparent from the
standpoint of software. An everyday example of this phenomenon is that even though big
silicon companies (such as Intel or AMD) improve, modify and release new processors circa
every quarter with a modified µArch, there is no need for recompiling all used software
after a CPU upgrade as they all share a common ISA [13].
Logically follows that if we want to verify a specific computer architecture for memory
ordering violations, we can do so either by using the ISA directly, or indirectly by creating
artificial microarchitectures that conform to that ISA. In this work, we will use the latter
approach and create such implementations of the ISA in question that allows for the
loosest memory constraints and therefore if found correct, the ISA in question is
also correct.

1Of course if one constructs an abstraction B of a specific ISA A, then all ai implementations of A will
also be correct implementations of A, but in the fewest of cases does this situation prevail.

2Once a program is compiled for a system, it can be run on any binary compatible different systems.

5

2.3 Multithreading on Multi-core Systems

There is no need for multiple threads for memory ordering violations, a bug in the pipelin-
ing system is enough, this situation has been verified countless of times (such as in [17])
and almost no further work is required until a brand new concept of pipelining processors
are made up. Multithreaded applications, however, lack this saturation of verification
tools and therefore much work can be done to further advance this field.
Most modern languages implement some kind of multithreading-capable standard library
or class (In the C11 standard even C received official multithreading support [12]) without
seriously constraining how many threads a given program can handle, with next to no
respect for the computing cores that the system has control over. This is the reason why
we need to differentiate between real concurrency and apparent concurrency.

Process/Thread 1

Process/Tread 2

Figure 2.2: Representation of a multi-process/multi-thread pro-
gram.

2.3.1. Definition (Real concurrency). A program starts on a single core as a sin-
gle thread, then it might wake up other cores and specify the memory address where
the program or part of a program resides that will be executed by the processing core
(fork). Any thread can join another thread, which means the calling thread suspends
execution until the other thread ends. Logically follows that the number of threads
must not exceed the number of processing (logical) cores themselves. �

Different processing cores do not share registers, share some type of cache (not always),
but each core has access to the same memory regions3 (See Figure 2.3), therefore each
architecture that allows multiple threads must have memory ordering rules in place to
avoid memory collisions (See Definition 2.4.1).

2.3.2. Definition (Apparent concurrency). A program starts as a process on top
of a lower-level software (generally referred to as an operating system) and can spawn
other processes that behave in the same way. The maximal number of processes is
only constrained by the operating system, and the number of physical cores does not
influence program logic. �

Processes may or may not be running on different cores, this is up to the scheduler built into
the operating system. If two processes share a processing core, then a technique called
time-slice multithreading will be employed, which means the processor rapidly changes
which process it is currently executing.

3In this work I do not take NUMA (Non-Uniform Memory Access) into account. It is not yet present
in architectures where formal verification could occur as the obscurity of the standard does not allow for
such an option.

6

Figure 2.3: Output of the lstopo utility on a 4-core Intel Celeron
N3450 processor with 6GB of system memory.

As a data race (See Definition 2.4.2) or memory collision (See Definition 2.4.1) can only
occur when two threads access the same memory region at the exact same atomic time,
a program sheerly employing apparent concurrency will never experience these among
its processes4. However, if multiple cores are present, any two processes can collide and
therefore the need for the formal verification of such situations arises. On multi-core
systems these processes behave in a way that their sequence of execution between a
fork and join is undefined. In the example Figure 2.2, Thread 1 and Thread 2 will
both be executed, but we cannot say anything about the order they are being executed
in.

2.3.1 Synchronization Possibilities

Even though different cores have access to different registers and top-level cache and they
operate mostly independently, an upper level regulating entity might be required if their
operation needs to be organized. The approach most (operating) system designers use is
that rather than appointing this responsibility to a specific core, they all need to obey a
ruleset which regulates when and how they should operate. The simplest example of such
a rule is in the form a mutex variable, which provides two functions: lock and unlock
The rule here is that no two different threads can assume ownership of the mutex lock at
any given time, which means successfully executing a lock operation, but not yet having
executed an unlock operation.
The unlock part is mostly straightforward, it lets other threads lock the same variable.
The lock part is somewhat more complicated, even so because it needs support from the
underlying architecture.
The locking mechanism looks something like this:

4As in this case only one core is actually executing instructions and therefore all accesses are strictly
ordered by design.

7

https://linux.die.net/man/1/lstopo

1 void mutex_lock(int* mutex)
2 {
3 while(*mutex);
4 *mutex = 1;
5 }

Listing 2.1: Locking the mutex variable pointed to by *mutex. A value of 0 means the
mutex is free to lock.

This solution is lacking in two different aspects: on one hand it is using CPU-heavy active
wait (in line 3) until the mutex becomes available and on the other hand it uses two
distinct operations for the testing and setting of the mutex variable. When two different
threads try to place a lock on the same variable, such a situation can happen very easily
where both exit the while loop because the mutex variable got set in 0, and both do so
at the exact same time. Then they can both assume that they are the sole owners of
said lock, and keep executing tasks that should only be executed distinctly. This second
problem can only be solved by a CPU instruction that tests and sets the value of a lock
at the same time - such an instruction is available in most modern architectures, such
as AMD64 (the BTS reg/mem{16,32,64}, {reg{16,32,64},imm8} instruction), or RISC-V
(the amoswap.w.aq operation, see Listing 2.2 for the recommended mutex lock/unlock on
RISC-V systems.). [11] [26]

1 li t0, 1 # Initialize swap value.
2 again:
3 amoswap.w.aq t0, t0, (a0) # Attempt to acquire lock by swapping t0 and (a0).
4 # If it is currently unlocked, a0 will point to a variable with value 0.
5 bnez t0, again # Retry if held (t0 is still 1).
6 # Critical section
7 amoswap.w.rl x0, x0, (a0) # Release lock by storing 0

Listing 2.2: Recommended code for mutual exclusion. a0 contains the address of the
lock. [26], Page 44.

This, however, does not solve the other problem of ”actively idling”, meaning instructions
are executed continuously until acquiring the lock. This is due to the level of abstraction
the core is operating on, which is very low in the context of multi-threaded applications -
we need to move a few levels up to be able to control inactive idling until said lock becomes
available. This is solved at the level of the operating system with the help of system calls
(the API to reach kernelspace services), such as the futex syscall in the Linux kernel5. If
said mutex is available, the acquire operation will be executed in userspace, while trying
to lock an already locked mutex results in the task being delegated to the kernel, which
handles such cases safely and efficiently, but in a much costlier manner.
Another method of synchronization is called a condition variable. It provides three (or
four, implementation dependent) functions:

• wait - waits until signalled, releases a mutex lock when called and re-acquires it when
returning

• signal - gives off a signal to exactly 1 thread, if any is currently waiting

• broadcast - gives off a signal to all threads currently waiting

• timed_wait - waits until signalled or until it is past its expiration time, releases a
mutex lock when called and re-acquires it when returning

5http://man7.org/linux/man-pages/man2/futex.2.html

8

These can be used to wait for something and be notified when ready. Listing 2.3 shows an
example implementation of such a construct: The code will launch two threads, both only
operate inside a mutex environment and one waits until a specified flag (ready) is 0, giving
up the mutex environment in the cnd_wait line. The other sets the flag to 1 meaning an
operation is ready, then signals the other thread which returns, exits the while loop and
continues operation normally.
#include<threads.h>

mtx_t mutex;
cnd_t cond;

int ready = 0;

int thread_one(void *data){
mtx_lock(&mutex);
while(!ready)

cnd_wait(&cond, &mutex);

mtx_unlock(&mutex);
}
int thread_two(void *data){

mtx_lock(&mutex);
ready = 1;
cnd_signal(&cond);
mtx_unlock(&mutex);

}
int main(){

thrd_t first, second;
mtx_init(&mutex, mtx_plain);
cnd_init(&cond);
thrd_create(&first, thread_one, NULL);
thrd_create(&second, thread_two, NULL);
thrd_join(first, NULL);
thrd_join(second, NULL);

}

Listing 2.3: Condition variables in C11

There are many other synchronization options on the level of the operating system - just a
glance at the ./kernel/futex.c6 reveals the countless opportunities that cater to everyone’s
needs. In this work, however, we only care about the two options described above - the
mutex lock and condition variable. These are officially supported by the C11 standard
[12] and therefore they should work the same way on any architecture or OS that employs
this standard.
It is also advantageous to mention that all synchronization methods are subject to the
same verification procedures as the programs using them, because otherwise issues in
their implementation might be undiscovered during development. For the purpose of this
work it is always to be assumed that all such tools work as described and were already
successfully verified and proven to be correct.

2.3.2 Atomic Operations

Most problems about multi-threaded applications are caused by message passing between
two or more threads. This is done by using a common memory region that one thread
writes, and the other reads, which might be implemented the following way:

6https://github.com/torvalds/linux/blob/master/kernel/futex.c

9

void write(void* message, size_t length, void* envelope)
{

memcpy(envelope, message, length);
}
void* read(size_t length, void* envelope)
{

void* message = malloc(length);
memcpy(result, envelope, length);
return message;

}

Listing 2.4: Sending and receiving a message. envelope is the common memory region,
length is the size of the message (known by both parties) and message is
the message being passed (e.g. a struct).

As the operation memcpy cannot be implemented immediately for lengths bigger than the
word size of the architecture (no such single register exists), therefore it is entirely possible
that while one thread writes the data, another thread reads it back, but they collide and
the reader gets the first half of the old value and the second half of the new value, which
can trivially cause very serious problems.
In the previous section we have seen that two threads might synchronize their operations
using a mutex lock. This is a very resource-expensive way of creating environments where
threads can operate without worrying about reading memory values that were only written
in part, and with the help of such locks the example above might be re-implemented the
following way:

mtx_t mutex;
void write(void* message, size_t length, void* envelope)
{

mtx_lock(&mutex);
memcpy(envelope, message, length);
mtx_unlock(&mutex);

}
void* read(size_t length, void* envelope)
{

mtx_lock(&mutex);
void* message = malloc(length);
memcpy(result, envelope, length);
mtx_unlock(&mutex);
return message;

}

Listing 2.5: Sending and receiving a message with a memory region pointed to by
envelope that can only be accessed from one thread at a time.

This issue of overwriting data while being read is not exclusively the trait of writing/read-
ing arrays. For example, on the X86 architecture a 32-bit MOV operation is only written
in one part if the address is naturally aligned7, otherwise it is written in two parts, there-
fore allowing for (a very subtle) problem. The solution to this issue is using locks, which
are, however, very expensive instruction-wise.

Lock-free programming The other, better solution for such a problem is using some
kind of a data structure that can guarantee that within a very small given timeframe all
data is either written to memory (committed), or the entire operation fails (aborted). This
timeframe is called atomic time, and these data movement operations are called atomic
operations.

732 | addr

10

2.3.3. Definition (Atomic operation). A given operation is atomic, if its results
turn visible in one instance rather than in separate, smaller ”packages”. Atomic
memory operations are such memory operations that change/read data in/from the
memory in exactly one block. �

It is easy to conclude that without such operations lock-free programming could not be
possible.

Memory ordering rules When it comes to atomic memory operations (atomic op-
erations in short), the order in which non-atomic memory operations happen is a very
important factor as they might try and change the value, which will then be read incor-
rectly by an atomic memory read (or vice versa). To counter this possibility, we introduce
a new type called memory ordering type.

2.3.4. Definition (Memory ordering types). The rules about when (after/be-
fore which operations) the atomic operation gets executed. �

Table 2.1 summarizes the atomic operations’ ordering types.

memory_order load? store? Description

_relaxed x x

Loosest memory order, provides no guar-
antees for the ordering of other threads’
memory accesses with respect to the
atomic operation.

_consume x

The atomic operation will happen once
all prior memory accesses of the releasing
thread that have a dependency on the
releasing operation have happened.

_acquire x
The atomic operation will happen once
all prior memory accesses of the releasing
thread have happened.

_release x

The atomic operation will happen be-
fore a consume or acquire load operation
allowing for synchronization among the
threads.

_acq_rel x x
Depending on the type of atomic oper-
ation this ordering will either mean ac-
quire load or release store.

_seq_cst x x
Strictest memory order, only happens af-
ter all visible operations of other threads
have already happened.

Table 2.1: Memory ordering types [12]

The main reason why such ordering types need to actually be enforced is because even
though multiple cores operate independently from each other (without synchronization
constraints when employing methods of lock-free programming), they all share the system
memory, more specifically the bus thereof. This bus is only a word-size number of wires
spanning from the processor complex to the memory slots on the motherboard and there-

11

fore it can only carry a word-sized piece of data at a given time8. This means that even
though processors operate in a really concurrent environment, their memory accesses by
definition need to be only apparently concurrent. To achieve this, a very strict ordering
ruleset needs to be in place in the architecture itself. See Figure 2.4 for an example.

Memory
Controller

Memory Array

DIMM 1

DIMM 2

DIMM 0
|

....
atomic load(&x, ORD.);
....

CPU 0

...
y = 12;
...

CPU 1

...
z = y + 1;
...

CPU 2

...
z++;
...

CPU 3

st z

ld y

a_ld x st y

ld z

st z

??? ??? ???

Figure 2.4: The memory controller puts the concurrently incom-
ing requests into a linear order depending on the mem-
ory ordering rules.

Depending on the memory ordering ORD., there is either no restriction and the memory
accesses can go through in any sequence (relaxed ordering), or the a_ld x will be the last
to execute (seq_cst ordering). consume and acquire do not have any influence on the
situation as there are no previous memory accesses from CPU0 waiting for execution.
Back in Listing 2.2 we saw the recommended algorithm for acquiring and releasing mutex
locks. Line 3 uses an acquire ordering, which means that it can only happen after all
currently visible memory operations have already been dealt with, as acquiring a lock
needs the pre-requirement of not being locked (not having 1 as the value of the variable).
The same thoughts go into line 7, where we release our mutex lock and we do so by
employing the release ordering type, which means that it happens as soon as it can, most
likely before any other memory operation of other threads.

2.4 Memory Consistency Models

Memory consistency models (MCMs), which regulate memory operations in a shared mem-
ory system, are an absolute necessity of system design. They make the guarantees the
developers can build on about the memory ordering ruleset (see previous section) and they
provide a thorough specification on how shared memory systems should behave in specific
situations. Much like mathematics, it builds on axioms and derived rules, which can easily
be checked for inconsistencies, contradictions and incompleteness.
The main problem about shared memory systems is described above (See Section 2.3.2):
multiple threads might try and operate on the same memory region at the exact same
time. This situation is either called a memory collision or a data race.

8This time is the atomic time referred to above

12

2.4.1. Definition (Memory Collision). One or more threads try to read a mem-
ory region while it is being written by another thread. �

2.4.2. Definition (Data Race). Two or more distinct threads try to write memory
at the exact same time. �

MCMs include specific rules for both (and more) situations, describing how it should be
dealt with - but in most cases a sensible solution can only be found if all colliding threads
are using atomic operations, because regular memory I/O will still cause the discrepancies
discussed in previous sections. For atomic operations, however, the MCM provides the
mathematical background for the ordering types in Table 2.1 - these are the guarantees
that the MCM provides9.

2.4.1 MCM Validation

MCMs are defined on the level of the programming language itself. The specification
of said programming language must include the worded rules and guarantees of memory
operations, which then must be implemented in the compilers used. This is first barrier the
formal verification must overcome: Are the worded rules really implemented correctly in
code? This is one aspect of the CompCert [5] project, which aims at the formal verification
of compilers.
Down to the physical realization of the architecture every step along the way poses a new
obstacle for the verification method to tackle. Most verification techniques care about a
2-element subset of these realizations and verify whether the memory orderings assumed
in the source hold in the binary produced by the compiler, and whether the binary really
executes correctly on the specific computer architecture.
In order to provide the full-stack verification of the MCM, a new methodology has been
developed by researchers at Princeton University [25], which operates at the ”trisection
of the MCM, the compiler and the hardware”, verifying the consistency among all three
levels at the same time. It uses a description of situations called litmus tests that can be
virtually executed on the goal target platform and the behaviour checked against memory
ordering criteria. In its original meaning, litmus tests are used by chemists to determine
a solution’s approximate pH value, but this concept later transferred to many other fields
of science. In this work, when I refer to these tests, it will always mean the definition seen
in Definition 2.4.3 and look like as seen in Listing 2.6

2.4.3. Definition (Litmus test). Formal description of simple multi-threaded pro-
grams that realize situations where memory ordering rules are in action. All threads
are started at the same time and no synchronization can be observed among them.
Given some variables’ initial state, the forbidden outcome(s) of the situation is de-
scribed after the test as a mathematical formula, which whentrue, the MCM is
breached. �

9It must also be mentioned that MCM not only provides these guarantees, but also rules along the
pipeline for successive same-address memory operations.

13

C iriw_R_acquire_acquire_relaxed_relaxed_W_release_relaxed
{
[x] = 0;
[y] = 0;
}
P0 (atomic_int* x) {

atomic_store_explicit(x, 1, memory_order_release);
}
P1 (atomic_int* y) {

atomic_store_explicit(y, 1, memory_order_relaxed);
}
P2 (atomic_int* x, atomic_int* y) {

int r1 = atomic_load_explicit(x, memory_order_acquire);
int r2 = atomic_load_explicit(y, memory_order_acquire);

}
P3 (atomic_int* x, atomic_int* y) {

int r3 = atomic_load_explicit(y, memory_order_relaxed);
int r4 = atomic_load_explicit(x, memory_order_relaxed);

}
exists
(2:r1 = 1 /\ 2:r2 = 0 /\ 3:r3 = 1 /\ 3:r4 = 0)

Listing 2.6: iriw_R_acquire_acquire_relaxed_relaxed_W_release_relaxed
litmus test

14

Chapter 3

Co-verification Workflow

The violation of memory ordering constraints might mean the difference between a func-
tional piece of software that we can reasonably trust no to fail, and a dangerous, completely
disfunctional product. The best solution is to avoid using flawed architectures, but that
options is not likely to be available in all situations, such as an update service for an
autonomous car’s software, where the hardware should not be changed if any other solu-
tion is available. If we know what these flaws are, however, we can modify our current
programs to mitigate these risks.
Consider the following program in Listing 3.1. It shows a program that will only return
with 0 if the atomic operations function as expected, which means the releasing store will
happen prior to the acquiring load. If, however, this is not the case, the program will
return with 1 which is an unintended behaviour. However, if we know that the acquire and
release orderings produce this unintended outcome in a given situation, we can forego this
problem by replacing them with an other (maybe more costly), correct solution.

#include <stdatomic.h>
#include <threads.h>

_Atomic int x;

int run(){
return atomic_load_explicit(&x, memory_order_acquire);

//the acquire load will happen after the releasing thread's store
}

int main(){
thrd_t thread;
x = 1;
int y = -1;
thrd_create(&thread, run, NULL);
atomic_store_explicit(&x, 0, memory_order_release);

//the release store will happen before an acquire load
thrd_join(thread, &y);
return y;

//It will return with 0 if the store was before the load
}

Listing 3.1: Simple concurrent program written in C11 compliant C code

To summarize the main goal of this work, it is to help developers uncover all possible MCM
(Memory Consistency Model) violations in a source file prior to deployment. Figure 3.1
includes all the main steps for that:

15

Formal
description of

uArch, HLL and
MCM

Discovering
possible MCM

violations

Virtual execution
of litmus tests

Formal
verification of the

model

Output
interpretation

Litmus test
generation

Formal model
generation from

the source

Query
generation

Issues

Litmus test
redefiniton

Source
modification

Microarchitectural
modification

TriCheck TriCheck TriCheck

MCMEC

MCMECMCMECVerifier

MCMEC

Figure 3.1: Overview of the approach

Formal description of µArch, HLL and MCM As we are aiming at verifying soft-
ware through the layers of abstractions down to the hardware itself, we need a way to
describe each of these layers. As a bottom-up approach, first we need to describe the
microarchitecture itself. Aiding this there is a domain-specific language called µSpec [14]
that hardware designers can use to specify the constraints and axioms of the architecture
they are working on.
The specification of the MCM is done with a tool called Herd [3]. Herd defines more
abstract models that do not depend on the microarchitecture itself.
Finally, the compiler mappings specific to the high-level language are to be specified. These
include (as opposed to a single MOV-like operation) prefixes and suffixes that can include
fences or other safeguards. In many cases this is the part that is over- or underdefined,
resulting in observable erroneous outcomes. An example for compiler mappings can be
seen in Table 3.1.

C11 instruction Power
prefix instruction suffix

load relaxed - ld -
load acquire - ld ctrlisync
load seq_cst hwsync ld ctrlisync
store relaxed - st -
store release lwsync st -
store seq_cst hwsync st -

Table 3.1: Compiler mappings of C11 atomic operations on Power [15].

Litmus test generation (by TriCheck [25]) After defining the rules in which we
operate, litmus test templates are to be written next. These are blueprints of situations
that we are interested in, leaving out places for e.g. memory orderings - this way it is easy
to generate many different litmus tests with search-and-replace methods instead of having
to write thousands of them by hand.

16

By specifying places in the templates where different strings can be inserted to create
different possibilities, one can generate all the combinations of a specific type of litmus
tests. These litmus tests include variable declarations, process definitions and specific
criteria which signals if a litmus test passes or not - see Section 2.4.1.

Virtual execution of litmus tests (by TriCheck [25]) After the generation of litmus
tests the next logical step is to check which of them pass and which do not. First, they
are translated into their assembly equivalents, then these modified litmus test are run on
the Herd µSpec model to determine if an outcome is observable, after which it checks if
it was permitted or forbidden. Forbidden, but observable outcomes are the ones we are
looking for, therefore it is possible to create a visual representation of these litmus tests
to see where the program might fail.
At this step, the generic part of the MCM validation is over. These steps were only to be
run once (per architecture change), as the results can be saved and re-used in the following
steps.

Formal model generation from the source In order to verify the program under
development we need to parse the source code into a formal model. As this transformation
is challenging to do in one step, it is broken up into two distinct phases: firstly an abstract
syntax tree (AST) will be generated, as it can be done by reading the source file line-
by-line, then this AST will be transformed into the type of formal model our verification
tool accepts. For the sake of simplicity, it is to be assumed that this is a Control Flow
Automaton (CFA), as it is very easy to represent entire programs in this format. Further-
more, there has been extensive research about the optimal transformation of programs
into CFAs [21].

Discovering possible MCM violations In this step we remove all the elements from
the model that are not interesting with respect to our goal. These include locations
and transitions which have nothing to do with synchronization, multithreading or atomic
operations, as these only litter our state space as they are irrelevant for our purposes.
After that, locations with the above-mentioned types of instructions will be labeled with
their type of operation and the number of the line of code that generated them. Then we
find all locations alike to the generic litmus tests, which we found violating, resulting in
sets of problematic lines present in the source file.

Query generation Using the sets from the previous step a formal criterion-set can
easily be assembled that can serve as the second input of the formal verification of our
choice. These are all labeled with the name of the corresponding litmus test as to provide
a way for the developer to sanity-check if the results this tool provides are correct or not.

Formal verification of the model As long as a compatible model and query was gen-
erated, it does not matter which verification tool is being used - as a minimal requirement
it needs to be able to handle multiple processes in the same system and provide feedback
whether a situation can happen or not.

Output interpretation As output we are going to get the numbers of lines in the
query which are observable in the model together at the same time. As these include

17

the label of states affected, it is easy to trace back which lines are violating the MCM,
and therefore they can be dealt with accordingly - either just by displaying those lines, or
providing possible mitigation techniques, which (depending on the implementation) can
even automate the correction of such programs.

Mitigation possibilities After interpreting the output, developers have three possibil-
ities:

• Modify the microarchitecture when working on new, still-in-development microar-
chitectures

• Redefine litmus tests if suspecting missing problems

• Modify the source to mitigate the problems (with the use of mutex locks, conditional
synchronization or a similar solution)

Out of these three the third option is generally the most applicable, as changing software
is almost always the easiest to do (in the context of hardware vs. software), and therefore
an automatically generated solution might be applicable.

18

Chapter 4

Formal Description of Hardware
and Software

4.1 Source Code to Formal Model

Transforming a source file into a formal model is not as straightforward as it might sound.
The state space can get crowded very easily therefore hindering the performance of veri-
fication tools and the correctness of the transforming tool itself cannot be easily verified.
The former problem can be somewhat dealt with by using tools and techniques such as in
[21], but as this approach requires specific lines of code to remain locations (atomic oper-
ations would otherwise be kept as labels on transitions, as they are memory operations,
but we would like to observe these locations explicitly), most of the optimization work
cannot be applied. The latter problem is even more troublesome, as failing to prove the
correctness of the tool, manual examination needs to take place.
Furthermore, these problems are the easier to overcome in contrast with the strict con-
ditions one needs to set if aiming at the generation of a formal model from a source file.
The most important challenges are the following:

Undefined number of threads Consider the following functions (written in C11 com-
pliant C code):
#include <stdatomic.h>
#include <threads.h>
#include <stdio.h>
#include <stdlib.h>

/*
Generates a random integer 'max' and starts that many threads, each performing a relaxed store to 'x

'.
*/

int _thread()
{

_Atomic int x;
atomic_store_explicit(&x, 0, memory_order_relaxed);
return 0;

}

int main()
{

int max;
srand(time(0));
max = rand();

19

thrd_t* threads = (thrd_t*)malloc(sizeof(thrd_t)*max);
for(int i = 0; i<max; i++)

thrd_create(&threads[i], _thread, NULL);
for(int i = 0; i<max; i++)

thrd_join(threads[i], NULL);
return 0;

}

A number of threads will spawn (ranging from 0 to MAX_RAND), which means there is
no way of knowing if there will be any stores to the address of x, and if yes, then how
many. This is the disadvantage of many modelling languages (such as CFAs or XTAs), as
they cannot handle a previously unknown number of threads/components.

Dynamic memory allocation Consider the following functions (written in C11 com-
pliant C code):
void foo(unsigned int c)
{

int* arr = (int*)malloc(sizeof(int)*c);
for(int i = 0; i<=c;i++)

arr[i] = i; //out of range index when i == c
}

We will try to store the value c at the address (arr + c) in memory, even though we only
have access to the addresses [arr, arr+c). At best, this will throw a runtime error (which,
in C, means segmentation fault, then quitting) and at worst this will overwrite something
critical that was stored next to it. Even though the former will outright end the execution
of the program (which in itself is unacceptable for fault-tolerant systems), the latter is
much more dangerous: assume there was a variable used in a control expression or an
atomic variable that carried mission-critical importance. As per these concerns dynamic
memory allocation and usage is not allowed in the subject of verification.

Unknown depth of recursion Consider the following functions (written in C11 com-
pliant C code):
#include <stdatomic.h>

/*
When called with a non-null parameter this function will call itself that many times recursively,

each time writing the current depth of recursion into a variable.
Atomics and void* parameters are only used because the next example will utilize a similar situation

, and that will need these elements.
*/

_Atomic int x;

int foo(void * depth)
{

atomic_store_explicit(&x, *(unsigned int*)depth, memory_order_relaxed);

if(*(unsigned int*)depth == 0) return 0;

unsigned int next_depth = *(unsigned int*)depth - 1;

return foo((void*)&next_depth);
}

Here an arbitrary depth (provided in value depth as an unsigned int value) can be achieved
and therefore it is very easy to accidentally overfill the stack and therefore end the exe-
cution. A similar, but even more dangerous approach is the following (C11 compliant C
code):

20

#include <stdatomic.h>
#include <threads.h>
#include <stdio.h>
#include <stdlib.h>

/*
When called with a non-null parameter this function will start a new thread of itself that many

times, each time writing the current depth of recursion into a variable.
*/

_Atomic int x;

int foo(void * depth)
{

atomic_store_explicit(&x, *(unsigned int*)depth, memory_order_relaxed);

if(*(unsigned int*)depth == 0) return 0;

thrd_t thread_id;
unsigned int i = *(unsigned int*)depth - 1;

thrd_create(&thread_id, foo, (void*)&i);
thrd_join(thread_id, NULL);

return 0;
}

Even though technically this is not recursive, one can see why it shares some similarity
with the former approach. Yet again, this is the problem of not knowing how many threads
there are until the code is actually executed, and even then it might not be deterministic
(consider the rand() function or a read from a floating GPIO).

The boundedness of the chosen model type Even without implementing any unsafe
operation from the list of situations above there might be some boundaries that are set
by the type of formal model the source needs to be transformed into. For example, in the
case of the UPPAAL Timed Automata (XTA) [8], there is no way of spawning/detaching
processes and therefore all threads need to be started at the beginning of the model (those
that should not start immediately need to employ some kind of block, such as conditional
synchronization), after which they can be unblocked by the otherwise spawning process.
This, and similar workarounds lead to the non-invertibility of the transformation process,
which means any modification must be done in the source code rather than on the model
itself.
To summarize this section, there are many obstacles to overcome when dealing with source
code to formal model transformers. Even though only a few were discussed here, there
are many other corner cases that most generators do not handle. My implementation (see
Chapter 6) for example does not allow threads to take up more than one function, as that
would make transformation too difficult for a simple proof-of-concept implementation.

4.1.1 Optimization Possibilities

As most formal model types provide their modelling capabilities for general problems
rather than highly specified ones, a number of optimization steps can take place by creating
an abstraction of the original model in a way that no important information is lost. These
are, among others, the following:

Loop elimination Consider the following code (written in C11 compliant C code):

21

void unoptimized() {
int _control = 5;
for(;_control!=0;_control--)

atomic_store_explicit
(&x, 0, memory_order_relaxed);

}

In this function the body of the for-loop
will be repeated exactly 5 times. This code
might produce the following XTA model (vi-
sualized in Figure 4.1):

int _control;

process unoptimized() {
clock x;
state

_init,
_merge,
relaxed_store,
_decision,
_final;

init _init;
trans

_init -> _merge { assign _control = 5;},
_merge -> relaxed_store { },
relaxed_store -> _decision { },
_decision -> _final {guard _control == 0;},
_decision -> _merge {guard _control != 0;
assign _control = _control - 1;};

}
system unoptimized;

assign _counter = 5

_init

relaxed_store

[_counter == 0]

_final

[_counter != 0]
assign _counter =

_counter - 1

Figure 4.1: Unoptimized model.

And after optimization:
process optimized() {
clock x;
state

_init,
relaxed_store,
_final;

init _init;
trans

_init -> relaxed_store { },
relaxed_store -> _final { },

}
system optimized;

_init

relaxed_store

final

Figure 4.2: Optimized model.

22

As the only type of criteria we set for the code is in the form of an N-Tuple1 that will be
interpreted as the question Can it ever occur that all of the members of the tuple happen
at the exact same atomic time?, it does not matter if a member happens once, twice or
five times in a block, all that matters is if it happens at all. With this information we
can construct a new model (again in the form of an XTA, but it is relevant to all similar
modelling languages) and representation in Figure 4.2.

Function call elimination If a function contains no atomic, synchronization or control
flow content it can be easily ignored. This dramatically reduces the state space as in a
real-world program these types of function calls will be a negligible amount and therefore
even huge, multi-thousand lines of code can be verified as if it only consisted of the few
relevant lines.

1Such as (relaxed load, release store). This means that if an atomic relaxed load on one thread happens
while another atomically stores (with memory ordering type release) a value at the same address, the
behaviour might be unexpected with respect to memory ordering rules. More information in Section 5.1.

23

Chapter 5

Verification and Mitigation

In this chapter I will go through the steps from the interpretation of litmus tests through
the verification process to the mitigation generation. These sections will provide the
answer to the theoretical How does this approach actually work? question, leaving out
implementation-specific information (which are discussed in Chapter 6).

5.1 Interpreting Litmus Tests

Litmus tests are the key to the theoretical verification of a given microarchitecture. These
are source-code-like descriptions of situations we want to observe. Of course manually
writing each litmus test is not only time-consuming but also error-prone and therefore
discouraged - hence the need for litmus test generation as seen in Figure 5.1.

Litmus test template

Litmus test template

Litmus test template

Litmus tests

Litmus tests

Litmus tests

Figure 5.1: Litmus test generation mock-up.

The litmus test templates are similar to the litmus tests themselves but they include
placeholders used to mark places where specific types (such as memory ordering) might
be placed. An example of such a template can be seen in Listing 5.1.
C <TEST>
{
[x] = 0;
[y] = 0;
}
P0 (atomic_int* y, atomic_int* x) {

atomic_store_explicit(x,1,memory_order_<ORDER_STORE>); // ordering placeholder
int r0 = atomic_load_explicit(y,memory_order_<ORDER_LOAD>); // ordering placeholder

}
P1 (atomic_int* y, atomic_int* x) {

atomic_store_explicit(y,1,memory_order_<ORDER_STORE>); // ordering placeholder

24

int r1 = atomic_load_explicit(x,memory_order_<ORDER_LOAD>); // ordering placeholder
}

exists (0:r0=0 /\ 1:r1=0) // forbidden outcome

Listing 5.1: The sb (store-buffering) litmus test template.

In the example above it can be seen that the placeholder strings <ORDER_STORE>
and <ORDER_LOAD> signal the place where the enumeration constants of the type
memory_order should be placed. The other noteworthy thing about the template is the
last line, in which the forbidden outcome is described in a mathematical form. Figure 5.2
summarizes the template above.

atomic_int x := 1

atomic_int y := 1

int r1 := y

int r2 := x

Figure 5.2: Visualization of the sb litmus test template. Forbid-
den outcomes are: r1 = 0 and r2 = 0 (at the same
time), as each thread loads the variable after it has al-
ready stored it atomically, meaning at least one needs
to be 1.

After writing the litmus test template a utility will take it as input and by replacing the
placeholders create the actual litmus tests. The memory_order enum’s constants are sum-
marized in Table 5.1 and are a subset of Table 2.1 by leaving out memory_order_acq_rel
as it is just a shorthand for acquire if loading, release if storing. In our use-case this
provides no actual benefit and therefore it can be left out.

ORDER_LOAD
_RELAXED _ACQUIRE _SEQ_CST

ORDER_STORE
_RELAXED _RELEASE _SEQ_CST

Table 5.1: Memory ordering primitives used in place of placeholders.

It is easy to determine that from the sb litmus test template (which has two loads and two
stores) a number of 34 = 81 litmus tests will be generated, and in the situation of the
litmus test template iriw (Independent Reads of Independent Writes) (see Figure 5.3),
this number is even higher at 36 = 729.
In this work I use 5 different litmus test templates. These cover basic use-cases of atomic
operations [22] and are therefore suitable for verification. In addition to the two above,
the three litmus tests on Figures 5.4, 5.5 and 5.6 were employed.

25

int r1 := x int r2 := y

atomic_int x := 1

int r3: y int r4: x

atomic_int y := 1

Figure 5.3: Visualization of the iriw litmus test template. Forbid-
den outcomes are: r1 = 1 and r2 = 0 and r3 = 1 and
r4 = 0 (at the same time).

atomic_int x := 1

int r1 := x

atomic_int x := 2

int r2 := x

Figure 5.4: Visualization of the corr (coherent read-after-read)
litmus test template. Forbidden outcomes are: r1 =
2 and r2 = 1 (at the same time).

int r1 := y int r2 := x

int r3: x atomic_int y := 1

atomic_int x := 1

Figure 5.5: Visualization of the wrc (write-to-read casualty) lit-
mus test template. Forbidden outcomes are: r1 = 1
and r2 = 0 and r3 = 1 (at the same time).

26

atomic_int x := 1

int r0 := y

atomic_int y := 1

int r1 := x

Figure 5.6: Visualization of the mp (message passing) litmus test
template. Forbidden outcomes are: r0 = 1 and r1 =
0 (at the same time).

All together 34 + 36 + 34 + 35 + 34 = 1215 litmus tests will be generated.

5.1.1 A More Convenient Representation of Litmus Tests

Even though litmus tests are in a perfect form for testing and running them (as they are
written mostly in C), they are not as convenient when it comes to interpreting them.
After finding out which litmus tests are problematic by running them through TriCheck,
they can be collected in a separate place and used for the verification of a source file itself.
For this, we need to create a new representation of said litmus tests. At this step we do
not care what their forbidden outcome is as whether or not they pass has already been
decided, so we can leave that information out of the new representation.
As the only relevant part of the tests are the threads and the order of the operations, we
only need to store these. A proposed structure can be seen in Listing 5.2, where each
litmus test has its own line, in which there is the list of operations (semicolon separated)
of each thread, which are in a colon-separated list. A big advantage is that they are in one
file, which minimizes the number of I/O operations and therefore speeds up later steps.
issue tricheck_0 { seq_cst store : seq_cst load : seq_cst load }

issue tricheck_1 { acquire load : release store }

issue tricheck_2 { seq_cst store : relaxed load : relaxed load }

issue tricheck_3 { seq_cst store ; seq_cst store : relaxed load ; relaxed load }

Listing 5.2: Proposed representation of problematic litmus tests in one file

This is the set of the previously mentioned N-Tuples that describe potentially dangerous
situations.

27

5.2 Query Generation and Verification

fork Spawns a new thread
join Synchronizes with the end of the other thread’s life
cnd_wait Synchronizes with another thread calling cnd_signal or

cnd_broadcast and unlocks a mutex lock (locking it again
after synchronization)

cnd_timedwait Synchronizes with another thread calling cnd_signal or
cnd_broadcast and unlocks a mutex lock (locking it again
after synchronization). If no threads call cnd_wait before
a given time, the calling thread tries to lock the mutex and
then returns.

cnd_signal /
cnd_broadcast

Synchronizes with one / all of the threads that called
cnd_wait previously (if no-one called it so far, continues
execution normally)

mtx_lock Either continues execution normally (when first caller), or
synchronizes with another thread’s mtx_unlock

mtx_unlock Synchronizes with one of the threads that are trying to
mtx_lock (if no-one is waiting on it, continues execution
normally)

Table 5.2: The subset of C11 functions about threads and their synchronization capa-
bilities.

In Section 5.1, the formal model representing the program under observation and the list
of potential issues have already been constructed. The next logical step is to combine these
two and find out which lines of code might be problematic together. For this, first we need
to find out which lines of code can be executed at the same time at all. The elements
influencing this are summarized in Table 5.2, and these are the previously mentioned
synchronization instructions. An example can be seen in Figure 5.7.

_Atomic int x;
int firstThread(void *data){ //performs two stores to the variable x.

atomic_store_explicit(&x, 0, memory_order_relaxed);
atomic_store_explicit(&x, 1, memory_order_relaxed);
return 0;

}
int secondThread(void *data){ //performs two loads from the variable x.

int r1 = atomic_load_explicit(&x, memory_order_relaxed);
int r2 = atomic_load_explicit(&x, memory_order_relaxed);
return r1+r2;

}

Listing 5.3: Allowing the same-time execution of atomic operations.

_Atomic int x;
mtx_t mutex; //Needs to be initialized
int firstThread(void *data){ //performs two stores to the variable x.

mtx_lock(&mutex); //creates a thread-safe execution environment.
atomic_store_explicit(&x, 0, memory_order_relaxed);
atomic_store_explicit(&x, 1, memory_order_relaxed);
mtx_unlock(&mutex); //lets others lock the environment.
return 0;

}
int secondThread(void *data){ //performs two loads from the variable x.

28

mtx_lock(&mutex); //creates a thread-safe execution environment.
int r1 = atomic_load_explicit(&x, memory_order_relaxed);
int r2 = atomic_load_explicit(&x, memory_order_relaxed);
mtx_unlock(&mutex); //lets others lock the environment.
return r1+r2;

}

Listing 5.4: Avoiding same-time execution of atomic operations using a mutex lock.

_Atomic int x;
mtx_t mutex; //Needs to be initialized
cnd_t cond; //Needs to be initialized
int firstThread(void *data){ //performs two stores to the variable x.

mtx_lock(&mutex); //creates a thread-safe execution environment.
atomic_store_explicit(&x, 0, memory_order_relaxed);
cnd_signal(&cond); //unblocks the other thread if it is blocked.
cnd_wait(&cond, &mutex); //suspends execution until signalled
atomic_store_explicit(&x, 1, memory_order_relaxed);
cnd_signal(&cond); //unblocks the other thread if it is blocked.
mtx_unlock(&mutex); //lets others lock the environment.
return 0;

}
int secondThread(void *data){ //performs two loads from the variable x.

mtx_lock(&mutex); //creates a thread-safe execution environment.
int r1 = atomic_load_explicit(&x, memory_order_relaxed);
cnd_signal(&cond); //unblocks the other thread if it is blocked.
cnd_wait(&cond, &mutex); //suspends execution until signalled
int r2 = atomic_load_explicit(&x, memory_order_relaxed);
cnd_signal(&cond); //unblocks the other thread if it is blocked.
mtx_unlock(&mutex); //lets others lock the environment.
return r1+r2;

}

Listing 5.5: Avoiding same-time execution of atomic operations using a mutex lock and a
condition variable. This solution provides fine-grade control of the execution
order.

As it can be seen on the examples above, there are operations that allow
same-time execution of following operations and there are operations that for-
bid such execution paths. The former group can be defined as A =
{fork, cnd_signal, cnd_broadcast, mtx_unlock} from Table 5.2, while the latter can
be B = {cnd_wait, cnd_timedwait, mtx_lock, return}. Any a ∈ A will influence
another thread (denoted by other_thread).
With the definitions above, we can create an algorithm that will always tell us which lines
of code are allowed to be executed at the same time. For this, we can create a Graph
G⃗(V, E⃗) in the way seen in Listing 5.6 (Originally n := null, |V | = 0, |E⃗| = 0 and op
is the first operation of the main() function). If the algorithm ends before all operations
have been processed, meaning all threads are in a state of synchronization, restart the
algorithm with op := any remaining thread’s next operation and n := null.
ADD(NODE n, OPERATION op):

IF (op ∈ A): ADD(n, other_thread.next_operation).
ELSE IF (op ∈ B): RETURN.
ELSE: Create a new node n' connected to n with label 'thread_name'

ADD(n', this_thread.next_operation)

Listing 5.6: Graph constructing algorithm in pseudo-code

After constructing the Graph G⃗(V, E⃗) with the algorithm above, all such node-pairs (a,
b) need to be extracted for which (1) no common ancestor node ni will be either a or b
(so they are not immediate descendants of each other), and (2) they have different labels

29

rel. store

rel. store

rel. load

rel. load

mtx_lock

rel. store

rel. store

mtx_unlock

mtx_lock

rel. load

rel. load

mtx_unlock

mtx_lock

rel. store

cnd_signal
cnd_wait

rel. store

cnd_signal
mtx_unlock

mtx_lock

rel. load

cnd_signal
cnd_wait

rel. load

cnd_signal
mtx_unlock

Figure 5.7: Visualization of Listings 5.3, 5.4 and 5.5. The lines
show an example execution order: red, when two
atomic operations can execute at the same time and
green otherwise. The extra lines from mtx_unlock lo-
cations show that parallel execution is allowed again.

(because if they do, then they are in the same thread and therefore cannot be executed at
the same time). These pairs will have the opportunity to be executed at the exact same
time, while if two nodes are immediate descendants of each other then there is no chance
they would ever be executed in the exact same moment. See Listing 5.7 and Figure 5.8
for an example on this algorithm.

1 #include <threads.h>
2 #include <stdatomic.h>
3
4 _Atomic int x;
5 mtx_t mutex;
6
7 int firstThread(void *data){
8 mtx_lock(&mutex);
9 atomic_store_explicit(&x, 0, memory_order_relaxed);

10 mtx_unlock(&mutex);
11 atomic_store_explicit(&x, 1, memory_order_relaxed);
12 return 0;
13 }
14 int secondThread(void *data){
15 mtx_lock(&mutex);
16 int r1 = atomic_load_explicit(&x, memory_order_relaxed);
17 mtx_unlock(&mutex);
18 return r1;
19 }
20 int main(){
21 thrd_t first_id, second_id;

30

22 int val1, val2;
23 mtx_init(&mutex, mtx_plain);
24 thrd_create(&first_id, firstThread, NULL);
25 thrd_create(&second_id, secondThread, NULL);
26 thrd_join(first_id, &val1);
27 thrd_join(second_id, &val2);
28 return 0;
29 }

Listing 5.7: On thread stores data in variable x while the other reads from it.

21 22 23

14

7 9

16

11

main main main

first
first first

secondsecond

Figure 5.8: The graph after running the algorithm in Listing 5.6
on the C11-program found in Listing 5.7.

As it can be deduced from the graph in Figure 5.8, the lines (7, 14), (11,16), (14,9), (7,16),
(14,11) might execute at the exact same time, but no other lines (that are in neither A
nor B).
Even though we could start by generating all pairs of nodes and then test if the two criteria
hold, it is at least an O(n2) algorithm (n ≈ lines of code) as we need to test criteria on
all 2-element subsets of V , which will include |V |∗(|V | − 1)

2 different sets, where V = {all
lines of code outside those in A or B}. Of course reducing the number of nodes help a lot
(by substituting all such paths with edges that only include nodes with valency ≤ 2 and
do not include atomic operations, see program slicing [27]), but it is not the most optimal
way.
A more elegant way is to take the list of issues from the previous section, and use that
to collect all relevant lines of code. Let’s define I set as the set of issues and the relevant
problematic tuples of line numbers in the following way: I={issues}, issue={tuples}, tu-
ple={line numbers}. An example of such a set (each new level in the tree means a new
level of sets inside the parent set):

31

I
|-- issue 1
| |-- tuple 1
| | |-- line 9
| | `-- line 16
| `-- tuple 2
| |-- line 11
| `-- line 16
|-- issue 2
| `-- tuple 2
| |-- line 9
| `-- line 11
`-- issue 3

This means there are 3 issues ((relaxed load : relaxed store), (relaxed store : relaxed store),
(relaxed load : relaxed load)), for which there are 3 possibly problematic lines: (9, 16) and
(11, 16) for the first, while (9, 11) for the second. Such a small set can be easily checked
against the criteria defined above, and we can see that the only actually problematic tuple
is (11, 16), because 9 is immediate ancestor of 16, furthermore 9 and 11 are in the same
thread.
Even though the proposed algorithm might differ from the implementation of well-known
verification tools, the idea behind generating queries for them stays the same. They accept
the formal model generated at the beginning of this chapter as input, and evaluate math-
ematical statements about given locations/states (here, lines of code) - the example above
could be formulated for example using the UPPAAL Model Checker’s query language the
following way:

E<>(line_9 & line_16)
E<>(line_11 & line_16)
E<>(line_9 & line_11)

If any of the lines come back as ”allowed”, the issue persists and should be dealt with
accordingly. Section 5.3 will discuss mitigation possibilities.

5.3 Mitigation Possibilities

After discovering the problematic lines the developer needs to come up with a solution for
avoiding them. Such a solution might exist on three levels:

• Change the microarchitecture (least likely to be applicable to a mere software de-
veloper)

• Change compiler mappings to use with litmus tests (might be applicable if using an
open source compiler such as a member of the GNU Compiler Collection)

• Change the source to employ some kind of synchronization among the violating
threads (almost always applicable, but will introduce an overhead)

32

5.3.1 Changing the Microarchitecture

Even though this option is very seldom available to software developers, there might be
some exceptions. An example can be seen in Listings 5.8 and 5.9, which (using µSpec
as a description language) takes an existing microarchitectural specification called TSO
and relaxes the LD->LD ordering, creating the new architecture TSO-RR. Note that this
specific change in the microarchitecture did not solve all our problems, therefore further
work is required.

...
Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ EdgeExists ((i1, Fetch), (i2,

Fetch), "") =>
AddEdge ((i1, Execute), (i2, Execute), "PPO", "

darkgreen").
...
Axiom "Fence_Ordering":
forall microops "f",
IsAnyFence f =>
AddEdges [((f, Fetch), (f, Execute), "

path");
((f, Execute), (f, Writeback), "

path")]
/\
(

forall microops "w",
(IsAnyWrite w /\ ProgramOrder w f) =>
AddEdge ((w, (0, MemoryHierarchy)), (f,

Execute), "fence", "orange")
).

Listing 5.8: TSO.uarch

...
Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ~(IsAnyRead i1 /\ IsAnyRead i2)

/\
EdgeExists ((i1, Fetch), (i2, Fetch), "") =>
AddEdge ((i1, Execute), (i2, Execute), "PPO", "

darkgreen").
...
Axiom "Fence_Ordering":
forall microops "f",
IsAnyFence f /\ AccessType MMFENCE f =>
AddEdges [((f, Fetch), (f, Execute), "

path");
((f, Execute), (f, Writeback), "

path")]
/\
(

forall microops "w",
(IsAnyWrite w /\ ProgramOrder w f) =>
AddEdge ((w, (0, MemoryHierarchy)), (f,

Execute), "fence", "orange")
).
Axiom "Addr_Read_Read_Dependencies":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ IsAnyRead i1 /\ IsAnyRead i2 /\

HasDependency addr i1 i2 =>
AddEdge ((i1, Execute), (i2, Execute), "

addr_rr_dependency").

Axiom "CtrlIsb_Read_Read_Dependencies":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ IsAnyRead i1 /\ IsAnyRead i2 /\

HasDependency ctrlisb i1 i2 =>
AddEdge ((i1, Execute), (i2, Execute), "ctrlisb")

.

Listing 5.9: TSO-RR.uarch

This solution, even though elegant and carries the least performance impact, will not be
available for the use-case of this project, which is using a given microarchitecture eliminate
all problematic line combinations, therefore it should not be taken into account. If someone
develops programs for a newfound architecture that still has not left the FPGA testing
environment, then contacting the developers about a needed change might not be out of
question, but this is far from a general use-case.

33

5.3.2 Changing the Compiler Mappings

The compiler mappings are used to transform the litmus tests into machine-parsable code
that can be interpreted by the tools in our workflow. With the help of these one can define
prefixes and suffixes for the atomic operation, such as MMFENCE (memory->memory
fence) that will cause the program to take a performance hit, but will always avoid a
memory collision. For example, the change of the suffix for Read acquire in the following
example will help avoid collisions in 101 different litmus tests when using the TSO-RR
uarch and the 5 litmus test templates introduced above.
C11/C++11 op | prefix;prefix | suffix;suffix
Read relaxed | NA | MMFENCE
Write relaxed | NA | NA
Read acquire | NA | NA
Write release | NA | NA
Read seq_cst | NA | MMFENCE
Write seq_cst | NA | MMFENCE

Listing 5.10: Original compiler mappings.

C11/C++11 op | prefix;prefix | suffix;suffix
Read relaxed | NA | MMFENCE
Write relaxed | NA | NA
Read acquire | NA | MMFENCE
Write release | NA | NA
Read seq_cst | NA | MMFENCE
Write seq_cst | NA | MMFENCE

Listing 5.11: Modified compiler mappings.

This solution might be available, but should be discouraged in any situation where the
used compiler should ever change (with a version update, for example) that would reset
the modification. Such tools can even be developed that would insert the required fence
operation in the binary itself, but tampering with a compiled program should not be
considered safe or fault-tolerant to any degree.

5.3.3 Changing the Source Code

This is the most likely available option for most software developers. No need to change
the microarchitecture or the compiler being used, the problematic lines can simply be
placed inside safe execution environments using mutex locks or condition variables to
synchronize the calling threads. These will introduce a serious overhead, because now
instead of a single atomic memory operation a mutex needs to be locked and unlocked,
but will guarantee that the violation will not occur in the program when deployed. For
example, using the flowchart in Figure 5.9 the code from Listing 5.7 might be fixed in the
following way (lines 10 and 11 have changed position):

1 #include <threads.h
2 #include <stdatomic.h>
3
4 _Atomic int x;
5 mtx_t mutex;
6
7 int firstThread(void *data){
8 mtx_lock(&mutex);
9 atomic_store_explicit(&x, 0, memory_order_relaxed);

10 atomic_store_explicit(&x, 1, memory_order_relaxed);
11 mtx_unlock(&mutex);
12 return 0;
13 }

34

Both are in
mutex environments,

 but not the same

Neither line is inside
a mutex environment

One of the lines
is alredy inside a

mutex environment

Place _lock and
_unlock

around the other

Place a nested
_lock/_unlock
around one

Surround both
with _lock and

_unlock

Figure 5.9: Automatic correction generation using mutex environ-
ments.

14 int secondThread(void *data){
15 mtx_lock(&mutex);
16 int r1 = atomic_load_explicit(&x, memory_order_relaxed);
17 mtx_unlock(&mutex);
18 return r1;
19 }
20 int main(){
21 thrd_t first_id, second_id;
22 int val1, val2;
23 mtx_init(&mutex, mtx_plain);
24 thrd_create(&first_id, firstThread, NULL);
25 thrd_create(&second_id, secondThread, NULL);
26 thrd_join(first_id, &val1);
27 thrd_join(second_id, &val2);
28 return 0;
29 }

The solution for the (artificial) example was to place the 11th line inside the mutually
exclusive execution environment that was right above it. Figure 5.9 shows an example
of an algorithm that solves such problems - but the usage of such a tool should always
be checked by a developer to see if the performance impact can be reduced. Of course,
more sophisticated solutions might exist for this problem that take this into account and
optimize the solution in such a way that the developer cannot come up with a better
alternative, but this is outside the scope of this project.

35

Chapter 6

Implementation

In this chapter I introduce a proof-of-concept implementation of the software suite de-
scribed in previous chapters called MCMEC, which is an abbreviation of Memory Consis-
tency Model Error Checker.

6.1 Implementation Details

MCMEC

XTA model

Formal Model
Generator

issues

Litmus Test
Parser

query

Query Generator

Problematic lines

Verification Tool
Wrapper

MCM violations

TriCheck

results

UPPAAL

Source code
uSpec
MCM

Compiler mappings

Mitigation
Generator

Solution

Figure 6.1: The architecture of the MCMEC tool with data flow
among its components, which are yellow for the mod-
ules developed in this project and green for third-party
software.

As it can be seen in Figure 6.1, the architecture of the MCMEC tool can be broken up
into modules, which are either modules developed in this project (in yellow), or third-party
software employed as modules. The figure describes the data flow among these compo-
nents, from the inputs (which are the source code and the inputs of TriCheck {µSpec,
MCM and compiler mappings}) to the output (which is a set of proposed solutions to the
discovered problems. Figure 3.1 still holds, and an assignment of processes to components
can be seen in Figure 6.2.

36

Mitigation Generator

Verification Tool Wrapper

UPPAAL Query Generator Litmus Test Parser

TriCheck

Formal
description of

uArch, HLL and
MCM

Discovering
possible MCM

violations

Virtual execution
of litmus tests

Formal
verification of the

model

Output
interpretation

Litmus test
generation

Formal model
generation from

the source

Query
generation

Issues

[Litmus test
redefiniton]

[Source modification][Microarchitectural
modification]

Formal Model
Generator

Figure 6.2: Figure 3.1 re-drawn with the corresponding modules
for each step, showing the optimal work- and toolflow
of MCMEC.

To aid the use of this tool, I have created an extension for the widely used Visual Studio
Code text editor/IDE1. This creates shortcuts so that the tool can be used much easier
and the output can be visualized in a more elegant fashion - See Figures 6.3 and 6.4.

Figure 6.3: The possible commands to be run with the MCMEC
VSCode extension.

6.2 Hardware-Level Memory Validation

This section is about the inner functionality of the tool TriCheck [25], which is an essential
part of the approach I propose.
Consistency from the compiler downwards is something we mostly take for granted. How-
ever, as it has been shown, there are some possible violations even in modern architectures
when it comes to corner cases - which is mostly anticipated as until recently there has
been no general-purpose verification tool that could test if the memory model of high-level
languages keeps intact down to the metal itself. This, however, changed with the release
of TriCheck [25] and its dependencies PipeCheck [14] and Herd [3] – these tools attempt

1https://code.visualstudio.com/

37

Figure 6.4: The feedback of erroneous lines with the MCMEC VS-
Code extension.

to formally verify the memory models of multithreading-capable programming languages
and the hardware they are running on.
As a top-down approach firstly the Memory Consistency Model (MCM) of the high-level
language needs to be formally described. As it can be seen in Listing 6.1, this formal
description builds on axioms and derived rules, allowing for a mathematically backed
certainty of the tool. This model is the basis of all our tests, as it will describe if a given
situation is allowed or forbidden. The model can be constructed by following the worded
memory model from [12].
"C++11" withinit

show po
let sb = po
let mo = co

let cacq = acq | (sc & (R | F)) | acq_rel
| (F & con)

let crel = rel | (sc & (W | F)) | acq_rel
let ccon = R & con
let fr = rf^-1 ; mo
let dd = (data | addr)+

let fsb = [F] ; sb
let sbf = sb ; [F]

let rs_prime = int(_ * _) | (_ * (R & W))
let rs = mo & rs_prime \ ((mo \ rs_prime) ; mo)

Listing 6.1: Specifying the MCM of C11 for Herd (excerpt)

38

As a next step we need to specify what tests to run against that ruleset. As we are
trying to test memory consistency, these tests will include a specific number of threads
and each of those threads are going to include some atomic operations (either loads or
stores). This process is automated to a degree - given a litmus test template, a generator
will produce all possible litmus tests by substituting placeholders with values from a list.
In this particular case this is done by leaving out places for the exact memory ordering of
each atomic operation. A list of memory ordering types can be found in Table 2.1.
Even though at this step we already have the entire set of litmus tests, they cannot
be processed as they are not in a runnable form. So, in order to change that we need
to compile them into their assembly variants using compiler mappings in the form of
Listing 6.2. These can be interpreted by the tool we are using to run the tests on the
microarchitecture of our choice - but it is important to state that this is not done in a
virtual machine of any sort, but rather interpreted by a program which then either proves
or disproves the expected outcome of the test.
C11/C++11 op | prefix;prefix | suffix;suffix
Read relaxed | NA | MMFENCE
Write relaxed | NA | NA
Read acquire | NA | NA
Write release | NA | NA
Read seq_cst | NA | MMFENCE
Write seq_cst | NA | MMFENCE

Listing 6.2: Example of pre- and suffixes of compiler mappings.

Finally, the microarchitecture needs to be described. This is done in a language called
µSpec as seen in Listing 6.3. This description includes the ordering axioms of the pipeline
stages of the microarchitecture under observation. These rules will dictate the way memory
values are passed between the different stages of the pipeline.
Axiom "Reads_Path":
forall microops "i",
IsAnyRead i =>
AddEdges [((i, Fetch), (i, Execute), "path");

((i, Execute), (i, Writeback), "path")].

Axiom "PO_Fetch":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>
AddEdge ((i1, Fetch), (i2, Fetch), "PO", "blue").

Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ EdgeExists ((i1, Fetch), (i2, Fetch), "") =>
AddEdge ((i1, Execute), (i2, Execute), "PPO", "darkgreen").

Listing 6.3: Specifying the µArch (excerpt)

6.3 The Formal Model Generator

The first step on the route to the formal verification of a source file is choosing the type
of formal model we want to transform our source into. Currently, the formal modelling
language called XTA (Uppaal Timed Automaton) is employed as the formal verification
of such models can easily be done through the software called Uppaal (See Section 6.6
for more information on this tool), but as it describes timed systems it does not suit our
use-case fully. In the immediate future I plan on re-writing this part of the project to use
a modelling language called CFA, which is much more suitable for this specific project.

39

C -> AST
using Antlr AST -> {threads} {threads}->

{{locations}, {transitions}}
{{locations}, {transitions}} ->

XTA

Figure 6.5: Flowchart of the C11 -> XTA transformation.

As this implementation is only to corroborate the theoretical work on a proof-of-concept
basis, very heavy requirements are set against the type of source code we can transform
into an XTA model. Among others, these are the most important ones2:

• There is a unique assignment of threads and functions, therefore every function
describes exactly one thread.

• All synchronization related variables (such as mtx_t and cnd_t types) and atomic
types should be defined globally.

• Every line has only one operation.

• No line can block indefinitely if it is not a synchronization operation.

The requirements set above are necessary as right now the transformation is only experi-
mental and follows a very simple workflow, see Figure 6.5. First, the C11 code is parsed
and an Abstract Syntax Tree (AST) is constructed from its contents. Then, this AST
is transformed into a set of threads and their variables, which will be broken up into
locations and transitions in the next step. The final step is to assemble all information
(variables, locations, transitions) and create an XTA model. The only really interesting
step is the third one: How is a set of threads (still in AST-like form) transformed into a
set of transitions and locations?
The answer to this question is given with a set of rules:

• If an operation is atomic, create a location that includes the memory order and the
line number of this operation, and also a transition from the last location to this one
without any label.

• If an operation synchronizes with another thread, create a location that includes the
type of synchronization and the line number, and also a transition with the correct
synchronization option.

• If an operation changes the program flow, create helper locations and transitions to
them to aid XTA generation.

• Create helper locations at the beginning and end of each thread to aid XTA genera-
tion (only one synchronization label can be placed on a transition, therefore otherwise
a new thread (which starts in a blocked state) could not start with a synchronization
operation such as mtx_lock).

As this is a proof-of-concept implementation, I did not include any serious optimization
techniques other than excluding non-atomic and non-synchronization operations (which
might influence the time of execution, but will never change whether two operations might
be executed at the same time or not). This will create a fairly large state space which

2Here only the practical requirements are stated. However, one should not forget that theoretical
requirements have also been set in Section 4.1.

40

could mean a worse verification time for big codebases heavy on atomic operations, but
this issues is outside the scope of this prototype.
As an example, the code from Figure 6.4 was transformed to an XTA model using the
MCMEC tool. This produced the following result:
int var_mutex;

chan mutex, condition, main_irstThread, main_econdThread, irstThread, econdThread, main_ain;

process firstThread() {
clock x;
state

firstThread_in,
firstThread_start,
mtx_lock_0,
relaxed_load_global_13,
relaxed_store_global_14,
mtx_unlock_1,
final;

init firstThread_in;
trans

firstThread_in -> firstThread_start{ sync irstThread?; },
firstThread_start -> mtx_lock_0{ guard var_mutex == 0; assign var_mutex = var_mutex + 1; },
mtx_lock_0 -> relaxed_load_global_13{ },
relaxed_load_global_13 -> relaxed_store_global_14{ },
relaxed_store_global_14 -> mtx_unlock_1{ assign var_mutex = var_mutex - 1; },
mtx_unlock_1 -> final{ sync main_irstThread!; };

}

process main() {
clock x;
state

main_in,
relaxed_store_global_36,
thrd_create_4,
thrd_create_5,
thrd_join_6,
thrd_join_7,
final;

init main_in;
trans

main_in -> relaxed_store_global_36{ assign var_mutex = 0; },
relaxed_store_global_36 -> thrd_create_4{ sync irstThread!; },
thrd_create_4 -> thrd_create_5{ sync econdThread!; },
thrd_create_5 -> thrd_join_6{ sync main_econdThread?; },
thrd_join_6 -> thrd_join_7{ sync main_irstThread?; },
thrd_join_7 -> final{ sync main_ain!; };

}

process secondThread() {
clock x;
state

secondThread_in,
secondThread_start,
mtx_lock_2,
relaxed_store_global_24,
relaxed_load_global_25,
mtx_unlock_3,
final;

init secondThread_in;
trans

secondThread_in -> secondThread_start{ sync econdThread?; },
secondThread_start -> mtx_lock_2{ guard var_mutex == 0; assign var_mutex = var_mutex + 1; },
mtx_lock_2 -> relaxed_store_global_24{ },
relaxed_store_global_24 -> relaxed_load_global_25{ },
relaxed_load_global_25 -> mtx_unlock_3{ assign var_mutex = var_mutex - 1; },
mtx_unlock_3 -> final{ sync main_econdThread!; };

}
system firstThread, main, secondThread;

41

Figure 6.6: Visualization of the XTA system above with the tool
UPPAAL.

6.4 The Litmus Test Parser

Not much can be said about litmus test parsing that was not already mentioned in Sec-
tion 5.1, so only some Given a set of litmus tests that were found violating the MCM of
the high-level language, we need to construct the following data structure:
issue <issue_name> {<atomic op. type of thread 1> ; <atomic op. type of thread 1> ; ... : <atomic op

. type of thread 2> ; ... : ...}

An example output for the inputs uArch=TSO-RR.uarch, HLL = C11 and compiler map-
pings as in Listing 5.10 is the following:
issue tricheck_0 { seq_cst store : seq_cst load : seq_cst load }
issue tricheck_1 { acquire load : release store }
issue tricheck_2 { seq_cst store : relaxed load : relaxed load }
issue tricheck_3 { acquire load : seq_cst store }
issue tricheck_4 { relaxed store : seq_cst load : acquire load }
issue tricheck_5 { acquire load : seq_cst store }
issue tricheck_6 { release store : relaxed load : relaxed load }
[...]
issue tricheck_171 { seq_cst store : relaxed load : acquire load }
issue tricheck_172 { acquire load : release store }
issue tricheck_173 { release store : relaxed load }
issue tricheck_174 { seq_cst store : acquire load }

This structure is simply constructed by traversing the AST of litmus tests and writing
found operations into the issues file as they came up, as the exact ordering of the threads
does not play any role in the outcome of the tests.

6.5 The Query Generator

Even though the algorithm I proposed in Section 5.2 functions as expected for programs
not utilizing any control flow modifiers (such as if-else, loops, etc), it can still serve as
a filter for verification queries, limiting the combinations of probelmatic lines to check.
For a general-purpose solver I am using the tool UPPAAL, which is a model checking
tool designed to compute and analyze the state space of systems. As it operates on the
specification language TCTL (Timed Computation Tree Logic), I need to generate the
corresponding query for the formula ∀ p ∈ P : σ(p) ∩ Ln

r = ∅ (where Ln
r : reachable state

space, P : all sets of problematic lines and σ(x) denotes all possible permutations of x)
with the following syntax:

42

E<>(p11 & p12 & ... & p1n)
E<>(p21 & p22 & ... & p2n)
...
E<>(pm1 & pm2 & ... & pmn)

Here, locations can be identified with line numbers (which are pij , where pij is the jth

element of pi ∈ P). In this query, E<> means we are proving if a state or set of states
are reachable - which is exactly what we are trying to find out, as the original question
can be formulated in the following way: Are the problematic lines reachable all at the same
time?
When using the outputs of the previous two chapters as input, the following query file
will be generated, which can be given to the formal verification tool UPPAAL that will
determine which lines are reachable3:

1 //tricheck_113
2 E<>(firstThread.relaxed_load_global_13 & firstThread.relaxed_store_global_14)
3 E<>(firstThread.relaxed_load_global_13 & main.relaxed_store_global_36)
4 E<>(firstThread.relaxed_load_global_13 & secondThread.relaxed_store_global_24)
5 E<>(firstThread.relaxed_store_global_14 & secondThread.relaxed_load_global_25)
6 E<>(main.relaxed_store_global_36 & secondThread.relaxed_load_global_25)
7 E<>(secondThread.relaxed_load_global_25 & secondThread.relaxed_store_global_24)
8 //tricheck_149
9 E<>(firstThread.relaxed_load_global_13 & firstThread.relaxed_store_global_14 & secondThread.

relaxed_load_global_27)
10 E<>(firstThread.relaxed_load_global_13 & main.relaxed_store_global_37 & secondThread.

relaxed_load_global_27)
11 E<>(firstThread.relaxed_load_global_13 & secondThread.relaxed_load_global_27 & secondThread.

relaxed_store_global_24)

Listing 6.4: The query file generated from the issue list in Section 6.4 and the source
code in Figure 6.4.

6.6 The Verification Tool Output Parser

The generated query from the previous section, when fed into the UPPAALModel Checker,
will return with a result for each line that can be handled as if they were answers to the
questions that each line represents. For the inputs {XTA model, Query file} from previous
sections the following output is produced:

Options for the verification:
Generating shortest trace
Search order is breadth first
Using conservative space optimisation
Seed is 1539680923
State space representation uses minimal constraint systems

^[[2K
Verifying formula 1 at line 30
^[[2K -- Formula is NOT satisfied.
^[[2K
Verifying formula 2 at line 31
^[[2K -- Formula is NOT satisfied.
^[[2K
Verifying formula 3 at line 32
^[[2K -- Formula is NOT satisfied.
^[[2K
Verifying formula 4 at line 33
^[[2K -- Formula is satisfied.
Showing example trace.
^[[2K

3Lines starting with // will be ignored by the parser and therefore they can include comments. These
comments are the names of litmus tests which provide better feedback for the developer when displayed

43

Verifying formula 5 at line 34
^[[2K -- Formula is NOT satisfied.
^[[2K
Verifying formula 6 at line 35
^[[2K -- Formula is NOT satisfied.
^[[2K
Verifying formula 7 at line 58
^[[2K -- Formula is NOT satisfied.
^[[2K
Verifying formula 8 at line 59
^[[2K -- Formula is NOT satisfied.
^[[2K
Verifying formula 9 at line 60
^[[2K -- Formula is NOT satisfied.

Even though this is hard to read (especially because of the escape sequences), it includes
all the required information: If the string ”Formula is satisfied” is found in a line, then
the line above it will have the number of the formula and which line it is in. These are the
occurrences we are looking for, as these tell us that the specific set of states described in
that line of the query file is observable at a given time, and therefore a solution must be
found to mitigate this threat - otherwise there is the possibility that once the two atomic
operations are going to get executed at the same time and then a memory value will
change in an undefined way. Here, the only such statement is that in line 33 (line 5 in the
previous section’s Listing), which has two locations: firstThread.relaxed_store_global_14
and secondThread.relaxed_load_global_25 which both include the line numbers from the
original source file - therefore it is easy to formulate the set I (given in JSON formatting):
{

"issues": [
{
"name": "tricheck_113",
"values": [

14,
27

]
}

]
}

This means that the broken rule is called tricheck_113 and the lines are {14, 27} in the
original source file.

6.7 The Mitigation Generator

A mitigation for the discovered problem can be found by following the algorithm depicted
by the flowchart in Figure 5.9. Here, one of the lines (Line 14) is already inside the
mutex environment of mtx_t mutex, therefore the other line should be put into such an
environment with the same mtx_t mutex variable. This can be done by substituting Line
27 with the following block:

mtx_lock(&mutex);
int r1 = atomic_load_explicit(&global, memory_order_relaxed);
mtx_unlock(&mutex);

If the verification tool is run again on this refined input, the output will be empty, there-
fore no MCM violations will be observable after this program is deployed in the target
environment.

44

Figure 6.7: The output of the tool when run on this refined input.

45

Chapter 7

Evaluation

In this chapter I show metrics and benchmarks about the proof-of-concept implementation
presented in Chapter 6. As this implementation did not aim to be the most optimized
tool for this job, these numbers should only be taken as a proof of the applicability of the
idea itself.
I will show the following metrics (in braces their abbreviation for later use):

• number of lines of code in the original source (LOC)

• number of locations in the generated XTA model (NOL)

• number of query lines (NOQ)

• number of issues found (NOI)

• overall time of execution (t)

• correctness of the mitigation (c)

7.0.1 General Tool Environment

In order to get reproducible results the precise circumstances must be set first. These are
the following:

• High-level language: C11 with headers <threads.h> and <stdatomic.h>

• µSpec: TSO-RR1

• Compiler mappings: See Listing 6.2

• MCM specification: C112

• UPPAAL version: UPPAAL 4.1.15

• TriCheck3

For the verification of source files the tool MCMEC will be used that I presented in detail
in Chapter 6. For the above-defined environment 101 litmus tests (out of the theoretical
1215) were found violating the MCM.

1https://github.com/ctrippel/TriCheck/blob/master/uarches/TSO-RR-solution.uarch
2https://github.com/ctrippel/TriCheck/tree/master/util/herd
3https://github.com/ctrippel/TriCheck

46

7.0.2 The Benchmarks

The benchmarks I will be using come from the Mintomic test suite4. As these use the
Mintomic atomic library (this was widely used before concurrency got introduced a stan-
dard feature in C11/C++11) and are written mostly in C++, they must be first re-written
to be used by pure C11 compliant tools (such as MCMEC itself). The benchmarks I will
be running are the following:

• add_triangle_64.c

• load_linkedlist_64.c

• generic_atomic_test.c (this one is not part of the Mintomic test suite but shows the
use of the tool very well)

• generic_atomic_test_fail.c (this one is not part of the Mintomic test suite but shows
the use of the tool very well)

The benchmarks’ modified source code can be found in the Appendix. The results can be
seen in Tables 7.1 and 7.25.

LOC NOL NOQ
add_triangle_64.c 24 14 0

load_linkedlist_64.c 39 18 2
generic_atomic_test.c 49 23 9

generic_atomic_test_fail.c 47 21 9

Table 7.1: Metrics about the verification subjects.

NOI t c
add_triangle_64.c 0 2.196s N/A

load_linkedlist_64.c 1 5.843s CORRECT
generic_atomic_test.c 0 2.334s N/A

generic_atomic_test_fail.c 1 6.412s CORRECT

Table 7.2: Results of the verification and the mitigation generation.

In the tables above there are several noteworthy phenomena to be discussed. In order to
analyze the he results, four metrics are summarized on the following plot:

4http://mintomic.github.io/tests/
5Using Intel(R) Celeron(R) CPU N3450 @ 1.10GHz with 6GB of system memory and eMMC as its

main storage device, running Linux kernel 4.18.12-arch1-1-ARCH.

47

0 10 20 30 40 50
0

5

10

15

20

25

Lines of Code

NOL
NOQ
t [s]

Among these four metrics a line of correlation can be found:

• As the number of lines grows bigger, the number of locations (NOL) grows in an
almost linear fashion (if the structure of the two programs resemble each other)

• As the number of locations grows, the number of query lines (NOQ) grows at almost
the same pace (if the frequency of atomic operations does not differ in the two
programs)

• As the number of query lines grows, the time of verification (t) does not grow at
the same pace. The reason for this phenomenon can be discovered in the following
plot by taking the number of issues (NOI) also into account:

0 10 20 30 40 50
0

5

10

Lines of Code

NOI
t [s]

As it can be seen, the verification time only stands out when an issue is found (even when
the two programs only differ in two lines and therefore two states).

48

Chapter 8

Related Work

In this chapter I introduce some of the concepts and findings in other works that are
related to this approach.

8.1 Software Verification

Software verification is an essential part of software engineering which aims at assuring if
a software satisfies its specification fully [9, 7]. Two main approaches exist in this field,
which are static verification and dynamic verification. The former provides a way to
prove criteria without needing to execute the software just by looking at its source code
(or rather a formal model thereof), while the latter executes the program and checks its
output after a given set of inputs.
Dynamic tests are employed in almost all software development practices for example
in the form of module tests. Static verification of programs is much more sophisticated
as they operate on the theoretical level allowing for a deeper, but more circumstantial
verification.

8.2 Full Stack Memory Consistency Model Verification

The full-stack verification of Memory Consistency Models (MCM for short) is a fairly
new concept introduced in [25]. In short, it categorizes the ruleset of the MCM (defined
by the language specification, e.g. [12]) in a specific situation into two groups: allowed
and forbidden. The former group includes all outcomes that are allowed by the specific
MCM, while the latter has all the forbidden ones. This is done on the abstraction level
of the programming language itself, therefore simulating a program that would be in
that specific situation. After that, it compiles these situations (called litmus tests, see
Definition 2.4.3) into their assembly equivalents using the specified compiler mappings.
This representation can be evaluated by the rules of the microarchitecture itself, yielding
two groups for each litmus test: observable and non-observable. If the observable outcomes
include any forbidden outcome then the MCM does not stay consistent, and if there are
non observable but allowed outcomes then the MCM is too strictly enforced. In this work
we only care about the first option as the second one does not cause any problems other
than performance-related ones, which is not in the scope of this project.

49

The tool for this job (called TriCheck) was used to successfully unearth very serious
memory ordering problems in the ISA of RISC-V, such as the lack of cumulative memory
fences or absence of roach-motel movement for SC atomics.
In order to put the difference between their approach and mine into perspective, they
supply the situations that theoretically violate the MCM, which I utilize to find actually
offending situations in a given program, putting more emphasis on the practical side of
the approach.

8.3 Program Source to Formal Model Transformation

The first barrier to overcome when verifying actual programs is the transformation of
the source code into a model which can be given to verification tools. However, during
this transformation many decisions have to be made - for example, if the target model is
state-based, choosing what states to create will influence many aspects of the verification
process, such as the time of verification. Often, this aspect is the most limiting factor
when verifying complex programs.
The reduction in statespace can be the key to allow the verification of previously unverifi-
able software. As discussed in [21], there are many options in the hands of the developers
creating source code to formal model generators, such as dead branch elimination, constant
folding, or program slicing (see [21] for details).
In this work, I use a limited version of program slicing which allows for a great reduction
in the state space of programs that include atomic or synchronization operations only in
a small part (which is true for most real-life programs).

8.4 HW-SW Co-Simulation

As presented in [23], there have been approaches to HW-SW co-verification through sim-
ulation. Even though this is an inferior approach in contrast with the methods of formal
verification with respect to completeness, but a violating situation might be found this
way as well. It is much easier to simulate the behaviour of HW-SW systems (as it is
enough to run a program on the target platform) and this method can be used to discover
trivial flaws in chip/software design, but if we do not find any erroneous situations we
cannot state with certainty that the components are correct, as opposed to formal verifi-
cation through mathematical means. This latter is much harder to execute, but it gives a
certainty to its outcome as we are using mathematically derived rules.

8.5 System on a Chip Verification

Many approaches have been published that verify the microcode running on SoCs of em-
bedded systems, such as [1] or [16]. These are not general verification tools or approaches,
but rather the description of the workflow one needs to employ in order to release a for-
mally verified microcode for that SoC. These mitigate the risk that comes with hidden
CPU cores (as the package does not allow for external debuggers to be attached due to
its SoC-ness).

50

8.6 Multi-Core System Verification

Multi-core system verification is gaining more and more standing ground in the field of
formal verification. Discovering dynamic deadlocks1 is already possible as discussed in
[4], and even the JML (Java Modelling Language2) was extended to include specification
capabilities of multi-threaded programs [20].

1The system is in a state from which it cannot proceed anywhere with its currently programmed
behaviour.

2https://www.openjml.org/

51

Chapter 9

Conclusion

Even though multi-core system verification is still in its early days, I believe it will eventu-
ally take over the scene as safety-critical systems get more and more complex - as multi-core
processors took over the consumer market due to their outstanding performance compared
to their single core counterparts, the same phenomenon will likely transfer itself to the
embedded systems controlling automated cars, airplanes or nuclear reactors. The main
reason this has not fully happened yet is the incompleteness of verifiability of such sys-
tems, as concurrency carries many potentially unforeseen properties with itself, such as
the violation of the Memory Consistency Models of common languages.
The work presented in this paper tries to narrow the number of unverifiable aspects of
multi-core systems. By using the formal description of the microarchitecture, the mem-
ory model of the programming language and its compiler mappings to generate a set of
possible scenarios which violate the MCM ruleset, the source code of a program can be
inspected if any of these scenarios might happen during its operation therefore automat-
ing the verification of software based on hardware and platform-specific factors. With
this information a possible mitigation technique can either be generated automatically,
or the developer of the program can modify it until none of the violating situations is
not observable any more. This approach complements the usual way of verifying software,
where the semantics of source code is assumed to be given and correct, by ruling out faults
related to previously unconsidered issues.
As I demonstrated through a proof-of-concept implementation, the above described ap-
proach is in fact solvable. Even though the implementation has some restrictions on the
type of software it can verify, the main idea is proven to be applicable to this situation as
simple C11 programs could successfully be verified.
The limitations of this implementation (and even the approach itself) can be narrowed
down greatly if the components (See Figure 6.1) themselves improve. For example, the
formal model generator that takes the source as an input poses as the biggest limiting
factor in the toolchain, and therefore a much greater set of programs might be verified if
a more apt generator would take its place. Furthermore, the mitigation generation step
might be improved in the future to fully automate this process of verification and correct
the program as well. This could save many hours of precious work that would otherwise
need to be done by an experienced developer.

52

List of Figures

2.1 Two ISA definitions and uarch packages implementing them. 5
2.2 Representation of a multi-process/multi-thread program. 6
2.3 Output of the lstopo utility on a 4-core Intel Celeron N3450 processor with

6GB of system memory. 7
2.4 The memory controller puts the concurrently incoming requests into a linear

order depending on the memory ordering rules. 12

3.1 Overview of the approach . 16

4.1 Unoptimized model. 22
4.2 Optimized model. 22

5.1 Litmus test generation mock-up. 24
5.2 Visualization of the sb litmus test template. Forbidden outcomes are: r1 =

0 and r2 = 0 (at the same time), as each thread loads the variable after it
has already stored it atomically, meaning at least one needs to be 1. 25

5.3 Visualization of the iriw litmus test template. Forbidden outcomes are: r1
= 1 and r2 = 0 and r3 = 1 and r4 = 0 (at the same time). 26

5.4 Visualization of the corr (coherent read-after-read) litmus test template.
Forbidden outcomes are: r1 = 2 and r2 = 1 (at the same time). 26

5.5 Visualization of the wrc (write-to-read casualty) litmus test template. For-
bidden outcomes are: r1 = 1 and r2 = 0 and r3 = 1 (at the same time). . . 26

5.6 Visualization of the mp (message passing) litmus test template. Forbidden
outcomes are: r0 = 1 and r1 = 0 (at the same time). 27

5.7 Visualization of Listings 5.3, 5.4 and 5.5. The lines show an example execu-
tion order: red, when two atomic operations can execute at the same time
and green otherwise. The extra lines from mtx_unlock locations show that
parallel execution is allowed again. 30

5.8 The graph after running the algorithm in Listing 5.6 on the C11-program
found in Listing 5.7. 31

5.9 Automatic correction generation using mutex environments. 35

6.1 The architecture of the MCMEC tool with data flow among its components,
which are yellow for the modules developed in this project and green for
third-party software. 36

53

6.2 Figure 3.1 re-drawn with the corresponding modules for each step, showing
the optimal work- and toolflow of MCMEC. 37

6.3 The possible commands to be run with the MCMEC VSCode extension. . . 37
6.4 The feedback of erroneous lines with the MCMEC VSCode extension. . . . 38
6.5 Flowchart of the C11 -> XTA transformation. 40
6.6 Visualization of the XTA system above with the tool UPPAAL. 42
6.7 The output of the tool when run on this refined input. 45

54

Bibliography

[1] Hardware/Software Co-verification, pages 235–315. Springer US, Boston, MA, 2002.
ISBN 978-0-306-46995-4. DOI: 10.1007/0-306-46995-2_6.

[2] Cortex-A9 MPCore, Programmer Advice Notice. 2011.

[3] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling,
simulation, testing, and data mining for weak memory. ACM Trans. Program. Lang.
Syst., 36(2):7:1–7:74, 2014. DOI: 10.1145/2627752.

[4] Saddek Bensalem and Klaus Havelund. Dynamic deadlock analysis of multi-threaded
programs. In Shmuel Ur, Eyal Bin, and Yaron Wolfsthal, editors, Hardware and
Software, Verification and Testing, pages 208–223, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg. ISBN 978-3-540-32605-2.

[5] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. A concrete memory model for
compcert. In Interactive Theorem Proving - 6th International Conference, ITP
2015, Nanjing, China, August 24-27, 2015, Proceedings, pages 67–83, 2015. DOI:
10.1007/978-3-319-22102-1_5.

[6] Abdallah Cheikh, Gianmarco Cerutti, Antonio Mastrandrea, Francesco Menichelli,
and Mauro Olivieri. The microarchitecture of a multi-threaded RISC-V compliant
processing core family for iot end-nodes. In Applications in Electronics Pervading In-
dustry, Environment and Society - APPLEPIES 2017, Rome, Italy, 21-22 September
2017, pages 89–97, 2017. DOI: 10.1007/978-3-319-93082-4_12.

[7] Edmund M. Clarke. Model checking. The MIT Press, 2018.

[8] Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors. Lectures on Con-
currency and Petri Nets, Advances in Petri Nets, volume 3098 of Lecture Notes in
Computer Science, 2004. Springer. ISBN 3-540-22261-8. DOI: 10.1007/b98282.

[9] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of software engi-
neering. Prentice Hall, 1991. ISBN 978-0-13-818204-5.

[10] John L. Hennessy, David A. Patterson, and Krste Asanovic. Computer architecture:
a quantitative approach. Morgan Kaufmann, 2019.

[11] Advanced Micro Devices Inc. AMD64 Architecture Programmer’s Manual Volume 2:
System Programming, volume 2.

[12] ISO 9899:201x. Information technology — programming languages — C. Standard,
International Organization for Standardization, April 2011.

[13] Jan Laukemann, Julian Hammer, Johannes Hofmann, Georg Hager, and Gerhard
Wellein. Automated instruction stream throughput prediction for intel and AMD
microarchitectures. CoRR, abs/1809.00912, 2018.

55

http://dx.doi.org/10.1007/0-306-46995-2_6
http://dx.doi.org/10.1145/2627752
http://dx.doi.org/10.1007/978-3-319-22102-1_5
http://dx.doi.org/10.1007/978-3-319-93082-4_12
http://dx.doi.org/10.1007/b98282

[14] Daniel Lustig, Michael Pellauer, and Margaret Martonosi. Pipecheck: Specifying
and verifying microarchitectural enforcement of memory consistency models. 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture, 2014. DOI:
10.1109/micro.2014.38.

[15] Paul E. McKenney and Raul Silvera. Example power implementation for c/c memory
model, Mar 2011.

[16] Ashok B. Mehta. Hardware/Software Co-verification, pages 243–253. Springer
International Publishing, Cham, 2018. ISBN 978-3-319-59418-7. DOI:
10.1007/978-3-319-59418-7_12.

[17] Hiroshi Nakamura, Takanori Arai, and Masahiro Fujita. Formal verification of a
pipelined processor with new memory. In 9th Pacific Rim International Symposium on
Dependable Computing (PRDC 2002), 16-18 December 2002, Tsukuba-City, Ibarski,
Japan, pages 321–324, 2002. DOI: 10.1109/PRDC.2002.1185653.

[18] David A. Patterson. 50 years of computer architecture: From the mainframe CPU
to the domain-specific tpu and the open RISC-V instruction set. In 2018 IEEE
International Solid-State Circuits Conference, ISSCC 2018, San Francisco, CA, USA,
February 11-15, 2018, pages 27–31, 2018. DOI: 10.1109/ISSCC.2018.8310168.

[19] Andrew Prout, William Arcand, David Bestor, Bill Bergeron, Chansup Byun, Vi-
jay Gadepally, Michael Houle, Matthew Hubbell, Michael Jones, Anna Klein, Peter
Michaleas, Lauren Milechin, Julie Mullen, Antonio Rosa, Siddharth Samsi, Charles
Yee, Albert Reuther, and Jeremy Kepner. Measuring the impact of spectre and
meltdown. CoRR, abs/1807.08703, 2018.

[20] Edwin Rodríguez, Matthew Dwyer, Cormac Flanagan, John Hatcliff, Gary T. Leav-
ens, and Robby. Extending jml for modular specification and verification of multi-
threaded programs. In Andrew P. Black, editor, ECOOP 2005 - Object-Oriented
Programming, pages 551–576, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.
ISBN 978-3-540-31725-8.

[21] Gyula Sallai. Compiler optimizations for software verification, 2016.

[22] Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc
Maranget, Jade Alglave, and Derek Williams. Synchronising C/C++ and POWER.
In ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’12, Beijing, China - June 11 - 16, 2012, pages 311–322, 2012. DOI:
10.1145/2254064.2254102.

[23] Luc Séméria and Abhijit Ghosh. Methodology for hardware/software co-verification
in C/C++ (short paper). In Proceedings of ASP-DAC 2000, Asia and South Pacific
Design Automation Conference 2000, Yokohama, Japan, pages 405–408, 2000. DOI:
10.1145/368434.368712.

[24] Tamás Tóth, Ákos Hajdu, András Vörös, Zoltán Micskei, and István Majzik. Theta:
a framework for abstraction refinement-based model checking. In Daryl Stewart and
Georg Weissenbacher, editors, Proceedings of the 17th Conference on Formal Meth-
ods in Computer-Aided Design, page 176–179, Vienna, Austria, 2017. FMCAD Inc.,
FMCAD Inc. ISBN 978-0-9835678-7-5.

56

http://dx.doi.org/10.1109/micro.2014.38
http://dx.doi.org/10.1007/978-3-319-59418-7_12
http://dx.doi.org/10.1109/PRDC.2002.1185653
http://dx.doi.org/10.1109/ISSCC.2018.8310168
http://dx.doi.org/10.1145/2254064.2254102
http://dx.doi.org/10.1145/368434.368712

[25] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Mar-
garet Martonosi. Tricheck: Memory model verification at the trisection of soft-
ware, hardware, and ISA. In Proceedings of the Twenty-Second International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS 2017, Xi’an, China, April 8-12, 2017, pages 119–133, 2017. DOI:
10.1145/3037697.3037719.

[26] Andrew Waterman and Krste Asanovic. The RISC-V instruction set manual. volume
1: User-level isa, version 2.2. https://www.riscv.org, May 2017.

[27] Mark Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357, 1984.
DOI: 10.1109/TSE.1984.5010248.

57

http://dx.doi.org/10.1145/3037697.3037719
http://dx.doi.org/10.1109/TSE.1984.5010248

Appendix

A.1 Benchmarks

1

1 #include<stdatomic.h>
2 #include<threads.h>
3
4 _Atomic int g_sharedInt;
5
6 int threadFunc()
7 {
8 for (int i = 0; i < 10000000; i++)
9 {

10 atomic_store_explicit(&g_sharedInt, i, memory_order_relaxed);
11 }
12 return 0;
13 }
14
15 int main()
16 {
17 g_sharedInt = 0;
18 thrd_t threadFunc1Id, threadFunc2Id;
19 thrd_create(&threadFunc1Id, threadFunc, NULL);
20 thrd_create(&threadFunc2Id, threadFunc, NULL);
21 thrd_join(threadFunc1Id, NULL);
22 thrd_join(threadFunc2Id, NULL);
23 return 0;
24 }

Listing A.1.1: test_add_triangle_64.c

1 #include<stdatomic.h>
2 #include<threads.h>
3
4
5 struct Node
6 {
7 Node* next;
8 };
9

10 _Atomic int g_head;
11
12 int threadFunc2(void*data)
13 {
14 for (; iterator < 1999;)
15 {
16 atomic_store_explicit(&g_head, pointers[iterator++], memory_order_relaxed);
17 struct Node* curr = (struct Node*) atomic_load_explicit(&g_head, memory_order_relaxed);
18 curr->next = (struct Node*)pointers[iterator++];
19 }
20 return 0;
21 }

1The original benchmarks can be found in the repository https://github.com/mintomic/mintomic

58

22
23 int main()
24 {
25 g_head = 0;
26 for(int i = 0; i<2000;i++){
27 struct Node node;
28 pointers[i]=(long)&node;
29 }
30 thrd_t threadFunc1Id, threadFunc2Id;
31 thrd_create(&threadFunc1Id, threadFunc1, NULL);
32 thrd_create(&threadFunc2Id, threadFunc2, NULL;
33 printf("done");
34 thrd_join(threadFunc1Id, NULL);
35 thrd_join(threadFunc2Id, NULL);
36 return 0;
37 }

Listing A.1.2: test_linkedlist_64.c

1 #include <stdio.h>
2 #include <threads.h>
3 #include <stdatomic.h>
4
5 cnd_t condition;
6 mtx_t mutex;
7 _Atomic int global;
8
9 int firstThread()

10 {
11 mtx_lock(&mutex);
12
13 int r1 = atomic_load_explicit(&global, memory_order_relaxed);
14 atomic_store_explicit(&global, r1*2, memory_order_relaxed);
15
16 mtx_unlock(&mutex);
17 return 0;
18 }
19
20 int secondThread()
21 {
22 mtx_lock(&mutex);
23
24 atomic_store_explicit(&global, 2, memory_order_relaxed);
25 mtx_unlock(&mutex);
26
27 mtx_lock(&mutex);
28 int r1 = atomic_load_explicit(&global, memory_order_relaxed);
29 mtx_unlock(&mutex);
30
31
32 return 0;
33 }
34
35 int main()
36 {
37 thrd_t firstThreadId, secondThreadId;
38
39 atomic_store_explicit(&global, 2, memory_order_relaxed);
40
41 thrd_create(&firstThreadId, firstThread, NULL);
42 thrd_create(&secondThreadId, secondThread, NULL);
43
44 thrd_join(secondThreadId, NULL);
45 thrd_join(firstThreadId, NULL);
46 printf("%d\n", global);
47
48 return 0;
49 }

Listing A.1.3: generic_atomic_test.c

59

1 #include <stdio.h>
2 #include <threads.h>
3 #include <stdatomic.h>
4
5 cnd_t condition;
6 mtx_t mutex;
7 _Atomic int global;
8
9 int firstThread()

10 {
11 mtx_lock(&mutex);
12
13 int r1 = atomic_load_explicit(&global, memory_order_relaxed);
14 atomic_store_explicit(&global, r1*2, memory_order_relaxed);
15
16 mtx_unlock(&mutex);
17 return 0;
18 }
19
20 int secondThread()
21 {
22 mtx_lock(&mutex);
23
24 atomic_store_explicit(&global, 2, memory_order_relaxed);
25 mtx_unlock(&mutex);
26
27
28 int r1 = atomic_load_explicit(&global, memory_order_relaxed);
29
30
31
32 return 0;
33 }
34
35 int main()
36 {
37 thrd_t firstThreadId, secondThreadId;
38
39 atomic_store_explicit(&global, 2, memory_order_relaxed);
40
41 thrd_create(&firstThreadId, firstThread, NULL);
42 thrd_create(&secondThreadId, secondThread, NULL);
43
44 thrd_join(secondThreadId, NULL);
45 thrd_join(firstThreadId, NULL);
46 printf("%d\n", global);
47
48 return 0;
49 }

Listing A.1.4: generic_atomic_test_fail.c

60

	Kivonat
	Abstract
	Introduction
	Background
	Formal Verification
	Formal Models

	Computer Architectures
	Multithreading on Multi-core Systems
	Synchronization Possibilities
	Atomic Operations

	Memory Consistency Models
	MCM Validation

	Co-verification Workflow
	Formal Description of Hardware and Software
	Source Code to Formal Model
	Optimization Possibilities

	Verification and Mitigation
	Interpreting Litmus Tests
	A More Convenient Representation of Litmus Tests

	Query Generation and Verification
	Mitigation Possibilities
	Changing the Microarchitecture
	Changing the Compiler Mappings
	Changing the Source Code

	Implementation
	Implementation Details
	Hardware-Level Memory Validation
	The Formal Model Generator
	The Litmus Test Parser
	The Query Generator
	The Verification Tool Output Parser
	The Mitigation Generator

	Evaluation
	General Tool Environment
	The Benchmarks

	Related Work
	Software Verification
	Full Stack Memory Consistency Model Verification
	Program Source to Formal Model Transformation
	HW-SW Co-Simulation
	System on a Chip Verification
	Multi-Core System Verification

	Conclusion
	List of Figures
	Bibliography
	Appendix
	Benchmarks

