THE UNIVERSITY **OF BRITISH COLUMBIA**

Jniversity of London

The Impact of Hypercholesterolemia on **Tendon Injury Repair** Queen Mary

otal Cholesterol (mg/ml) 5.0 1 2. 2 2. 2 2.0 2

SD

Waugh, CM., Mousavizadeh, R., Screen., HRC., Scott, A.

Funding from EU Horizon 2020 MSCA IF project #704333

Background: Hypercholesterolemia (high blood cholesterol) is linked to tendon xanthomas (cholesterol deposits found on superficial tendons). Lipid accumulation in the tendon's extracellular spaces¹ may disrupt the tendon's substructures and affect its mechanosensing and mechanical properties, which may lead to injury.

We hypothesised that tendon strength and metabolism would be inferior in a high cholesterol environment and attenuate the tendon's injury repair processes

Methods: 50 Sprague-Dawley (SD) and 50 apolipoprotein E knockout rats (ApoE -/-; Envigo, IL, USA) were given a unilateral patellar tendon (PT) injury via 0.75mm biopsy punch at 12 wks. old (Fig. 1); the uniniured limb was used as the control.

Animals were euthanized at 3-, 14- or 42-days post-injury (Table 1) and assigned to (SD/ApoE per timepoint):

- Gene expression (n=4/4)
- Tissue histology (n=6/6)
- Mechanical testing (n=10/10; 14 + 42 days only)

Table 1	SD M/F	ApoE M/F
3 days	4/6	8/5
14 days	9/11	5/10
42 days	10/10	10/11

Email: cmwaugh@ubc.ca Poster ID: R2060

Fig. 1. Red dot represents (to scale) biopsy punch hole

¹Grewal et al. (2014). PLoS One 9(12): e114214 ²Rune et al., (2018). *Sci Rep* 8(1): 5416

Results: ApoE total cholesterol was over double that of SD rats (Fig. 3, mean 2.12 vs 0.99 mg/ml, p<0.0001).

Histology: No evidence of PT lipid content (oil red-O staining) Biomechanics: No differences in PT mechanical properties (stiffness, hysteresis, strain, stress, modulus, strength). **<u>qPCR</u>**: Group differences in gene expression (Fig. 4) suggest

differences in injury repair at the cellular level.

Fig. 2. H&E staining of injury; enlarged square shows hypercellular area.

Discussion: We found the levels of expression and time-course of several genes to differ between SD and ApoE rats with injury repair. Of particular interest were a greater COX2 and collagen type III (COL3A1) and lesser collagen type I (COL1A1) response in ApoE compared to SD rats.

Despite a lack of lipid accumulation in the PT and recent evidence to suggest that the rat PT may be a poor model for examining our hypothesis², our results indicate that high cholesterol modulates tendon inflammation and healing even with a mild phenotype, as indicated by altered mRNA levels. These differences may contribute to the known consequences of tendon cholesterol on tendons in humans.