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Abstract

The semantic enrichment of mobility data with several information sources has led to a

new type of movement data, the so-called multiple aspect trajectories. Comparing multiple

aspect trajectories is crucial for several analysis tasks like querying, clustering, similar-

ity, classification, etc. Multiple aspect trajectory similarity measuring is more complex

and computationally expensive, because of the large number and heterogeneous aspects of

space, time, and semantics that require a different treatment. Only a few works in the

literature focus on optimizing all these dimensions in a single solution, and, to the best

of our knowledge, none of them propose a fast point-to-point comparison. In this paper

we propose the Multiple Aspect Trajectory Index (MAT-Index), an index data structure

for optimizing the point-to-point comparison of multiple aspect trajectories, considering

its three basic dimensions of space, time, and semantics. Quantitative and qualitative

evaluations show a processing time reduction up to 98.1%.

Keywords: Spatio-temporal indexing. Similarity Measures. Multiple Aspect Trajectory

similarity indexing.

1 Introduction

The popularization of mobile devices, social networks, and the Internet of Things enables

a vast collection of mobility data represented by trajectories. Trajectories are sequences of

points located in space and time that can describe any movement behavior of people, animals,

vehicles, ships, hurricanes, etc. The trajectory definition has evolved from raw, before 2007,

to semantic in 2008 [28] and then to the very recent concept of multiple aspect trajectory in

2016 [23, 8].
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Figure 1 shows an example of multiple aspect trajectory where each trajectory point holds

several semantic attributes considering multiple points of view (personal, environmental, trans-

portation means, social media posts, etc.). The example shows the movement of an object who

wears a smartwatch and works at a smart office equipped with numerous sensors and micro-

phones.

Figure 1: Example of a Multiple Aspect Trajectory Melo et al. (2019) [23]

We can notice from the figure that the multiple aspect trajectory (MAT) is a very complex

data type. The richer a trajectory is in terms of semantic aspects, the more knowledge about

the moving object can be extracted, but also more costly it becomes to process the data.

Trajectory data are complex by nature, being composed of a sequence of spatio-temporal

points, each one having the dimensions of space, time, and a set of semantics. By semantic

aspect or dimension we mean any type of information that can be added to trajectories that

is neither spatial nor temporal.

In trajectory data analysis, comparing trajectories is crucial for several analysis tasks like

querying, clustering, similarity, and classification, all research topics that have received large

interest in recent years. Trajectory similarity measuring is the basics for querying and cluster-

ing moving objects with similar characteristics. There are several similarity/distance measures

in the literature as DTW (Dynamic Time Warping), MDTW (Modified Dynamic Time Warp-

ing), LCSS (Longest Common Subsequence), EDR (Edit Distance for Real Sequences), Fréchet

Distance, etc, but most of them were either developed for time series or do not support all

three dimensions of mobility data that are space, time, and semantics.

Similarity measures that were specifically developed for trajectories include UMS (Uncer-

tain Movement Similarity) [10], MSM (Multidimensional Similarity Measure) [12] and MUITAS

(MUltIple aspect TrAjectory Similarity) [26]. UMS is very robust for spatial similarity, but it

does not consider time and semantic dimensions, what is fundamental for mobility data. On the

other hand, MSM and MUITAS have outperformed the well known older measures DTW [1],

LCSS [29], and EDR [3]. EDR and LCSS force a matching in all dimensions of two points to

consider them as similar, while MSM and MUITAS do not. MSM and MUITAS are flexible

measures that consider similar two trajectories that do similar things but not necessarily in

the same order, thus not forcing a match in all dimensions. This flexibility is reasonable since

it is rare that two moving objects do precisely the same things, at the same place and time, in
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the same sequence. MUITAS is also flexible in considering the dimensions as independent or

dependent in the matching process, covering MSM and part of LCSS and EDR. Indeed, MSM

and MUITAS allow using a different distance function for measuring the similarity of each

dimension, apart from defining weights that give more or less importance to each dimension.

To better understand the similarity problem addressed in this work let us consider the

simple example of trajectories A and B in Figure 2. In the example, a trajectory A has three

points (a1, a2, a3) and trajectory B has five points (b1, b2, b3, b4, b5). Both trajectories visit the

same places (same semantics) but in a different order. A and B visit Hotel, Bank, and Mall but

not necessarily in this order. As MUITAS and MSM consider any type of trajectory dimension,

so far they are the most robust for measuring the trajectory similarity, independently of the

dimensions present in the dataset.

Figure 2: Two Semantic Trajectories Furtado et al. (2016) [12]

In the example of Figure 2, MSM and MUITAS need to compare each point of the trajectory

A to all points of the trajectory B, and for all dimensions, to discover that semantically the

trajectory A is totally contained in B, i.e, they share the semantic similarity of three points.

In other words, MSM compares each dimension of point of a1 to all points of B, in order to

discover that A and B visit Hotel, Bank and Mall and that they move at similar times. Because

of the point to point comparison, MSM and MUITAS have a high complexity, and require a

smart indexing data structure that supports all three dimensions for fast similarity search in

real datasets.

In 2018, Furtado proposed FTSM (Fast Trajectory Similarity Measuring), an index for fast

similarity measuring of UMS and MSM [11]. However, it indexes only the spatial dimension,

what is not sufficient to support large trajectory datasets that have many semantic aspects.

A survey about general indexing data structures is presented in [20], and shows that only a

limited number of works propose indexes considering all three dimensions (space, time, and

semantics). To the best of our knowledge, none of these indexes were developed for trajectory

similarity purposes. In general, they focus on indexing only space, or space and time for range

and top-K queries. Another common limitation of the index data structures is the considerable

storage cost due to the redundant data structures when indexing the three dimensions.

In this work we aim to answer the following question: Can we build an efficient index
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for point-to-point multiple aspect trajectory similarity measuring that takes into account all di-

mensions of space, time and semantics? In this paper we propose an index data structure for

historical data called MAT-INDEX, that significantly reduces the processing time for measur-

ing the multidimensional similarity of trajectories with MSM and MUITAS. The MAT-index

construction avoids the need for point-to-point comparison of MSM and MUITAS, and its main

advantage and difference from the state-of-the-art is that apart from being able to consider all

different dimensions in a single data structure, the final index contains the matching scores.

Our proposal is for an index support for similarity measures of multiple aspect trajectories, and

how the similarity algorithm measures the similarity among different aspects depends on the

definition of the measure itself. A qualitative evaluation shows how MAT-Index can drastically

reduce the number of comparisons, and a quantitative evaluation shows a gain for all tested

scenarios up to 98.1% processing time reduction and up to 87.2% in scalability evaluations.

The rest of the paper is structured as follows: Section 2 describes the concepts required

to understand this work; Section 3 discusses related works, highlighting their limitations;

Section 4 introduces the proposed index for multiple aspect trajectories; Section 5 discusses

the evaluation results that assess work efficiency; finally, Section 6 concludes the paper and

suggests directions of future works.

2 Basic Concepts

This section presents the main concepts to understand this work. Section 2.1 defines the

multiple aspect trajectories, Section 2.2 presents the basics about the similarity measures

developed for this type of data, focusing on the Multidimensional Similarity Measure (MSM)

[12] and the MUltIple aspect TrAjectory Similarity [26], and Section 2.3 presents the index

basic definitions.

2.1 Multiple Aspect Trajectories

Multiple aspect trajectory is a sequence of points where each point has the dimensions of space,

time, and several semantic aspects.

Multiple Aspect Trajectory A Multiple Aspect Trajectory is a sequence of points T =

⟨p1, p2, ..., pn⟩, such that pi = (x, y, t, A) is its i-th point composed of a location (x, y), also

called as spatial dimension, a timestamp t, also called temporal dimension, and a non-empty

set of aspects A = {a1, a2, ..., am}, representing the semantic dimension.

Aspect An Aspect a = (desc,ATV ) is a relevant real-world fact for mobility data analysis.

It is composed of a description (desc) and an instance of its corresponding aspect type (atype),

that is represented as a set of attribute-value pairs ATV = {att1 : v1, att2 : v2, ..., attz : vz}.
Aspect Type An aspect type atype = {att1, att2, ..., attz} is a categorization of a real-world

fact composed of a set of attributes (att). In other words, an aspect type and its attributes

act as a metadata definition for an aspect.
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For the sake of understanding, consider the following example adapted from [23] where

an aspect type hotel is defined by the following attributes: geographic coordinates, address,

and stars. A possible aspect related to this type could be Il Campanario Resort with the

following attribute-values: geographic coordinates: -27.439771, -48.500802; address: Buzios

Ave., Florianopolis; stars: 5.

2.2 Similarity Measures

Similarity measures express on a numerical scale how similar two points are. Several similarity

measures have been developed either for sequential data as LCSS [29], EDR [3], w-constrained

Discrete Frechet distance (wDF) [5], or for trajectories as CVTI [15], MSTP [33], MTM [31],

MSM [12], UMS [10], SMSM [16], and MUITAS [26]. To the best of our knowledge, only MSM,

SMSM, and MUITAS were specifically developed for semantic or multiple aspect trajectories,

supporting all their three dimensions: space, time, and semantics. Only MSM, and MUITAS

deal with independent attributes, and MUITAS is the only one that also considers semantically

related attributes. MSM and MUITAS compute the similarity of two trajectories considering

a point-to-point analysis, and are currently the most robust for similarity, therefore we will

focus on these measures on the indexing proposal.

2.2.1 Multidimensional Similarity Measure (MSM)

The Multidimensional Similarity Measure (MSM) [12] computes the similarity between two

trajectories P = (p1, ...pn) and Q = (q1, ..., qm) comparing each point p ∈ P to all points

q ∈ Q. The method computes the parity of two trajectories, (P,Q) and (Q,P ), using the

maximum matching score Equation 1.

parity(P,Q) =

|P |∑
i=1

max score(pi, Q)|qi ∈ Q} (1)

The score is computed according to Equation 2, and provides a matching score of two

points p and q for each dimension. It consists of pairwise comparing the attributes A of p with

q, considering the user defined thresholds (maxDistk), and scores the matches (Equation 3)

according to their respective weights (ω).

score(p, q) =

|A|∑
k=1

(matchk(p, q) ∗ ωk) (2)

matchk(p, q) =

{
1, if distk(p, q) ≤ maxDistk

0, otherwise
(3)

The total similarity of two trajectories is given in Equation 4, by summing both parities

and dividing the result by the sum of both trajectory lengths (P and Q).
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MSM(P,Q) =

{
0, if |P | = 0 or |Q| = 0
parity(P,Q)+parity(Q,P )

|P |+|Q| , otherwise
(4)

2.2.2 MUltIple aspect TrAjectory Similarity (MUITAS)

MUITAS [26] is the first similarity measure natively developed to work with multiple aspect

trajectories. MUITAS introduced an essential concept of relationship between attributes, being

the first to consider trajectory dimensions as totally independent, partially independent or

dependent. When a set of attributes is defined as dependent or partially independent, this set

is named feature. This property of feature makes MUITAS a flexible measure that supports

both MSM when attributes are independent and is similar to LCSS when the attributes are

defined as dependent, forcing a match of all attributes in the feature. It shares with MSM

and SMSM the support of different data types and the capability to assign different distance

functions to each attribute.

A feature f = {a1, a2, ..., az} is a nonempty set of attributes of a multiple aspect trajectory.

It is possible to aggregate attributes to work as independent and dependent by using this con-

cept. For instance, a feature fi = {place category, price tier, rating} represents information

about visited POIs. There are three associated attributes, this analysis unit is dependent.

However, the feature fj = {weather condition} represents an independent analysis unit.

Suppose P and Q as two trajectories and p and q trajectory points, such that p ∈ P and

q ∈ Q, the Equation 5 computes the matching score between p and q. For each attribute A of

a feature F , the points will match if the distance between them is lower than a given threshold

(δ).

matchfi(p, q) =

{
1, if ∀aj ∈ fi, distj(p, q) ≤ δj

0, otherwise
(5)

For each feature, Equation 6 computes the score as the weighted sum (ω) of matching

points.

score(p, q) =

|F|∑
i=1

(matchfi(p, q)) ∗ ωi (6)

After comparing all points, MUITAS calculates the parity(P,Q) as the sum of the best

scores of each attribute of each point p in P comparing toQ (Equation 7), and the parity(Q,P ).

parity(P,Q) =

|P |∑
k=1

max score(pk, Q)|∀q ∈ Q} (7)

The final similarity score between two trajectories is the sum of parities, divided by the

sum of the trajectory lengths (Equation 8).
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MUITAS(P,Q) =

{
0, if |P | = 0 or |Q| = 0
parity(P,Q)+parity(Q,P )

|P |+|Q| , otherwise
(8)

Note that the flexibility of both point-to-point approaches outperformed the other previ-

ously mentioned methods. However, it also made them very expensive concerning processing

time.

2.3 Indexes

There are several indexes developed specifically for spatial data. Examples are the Quad-

tree [9], Z-Ordering Tree [24], and OCTree [21]. In fact Trees are one of the most commonly

adopted data structures for indexing purposes, but the previously mentioned indexes do not

support multidimensional spatio-temporal similarity.

Concerning semantic contents, an inverted index (also known as an inverted list) is fre-

quently used. It saves the data into a smaller and more organized way, like an dictionary

composed of two main parts: the search structure (aka keyword or key), and a list of ref-

erences (aka value) [2]. Figure 3 illustrates an example of inverted index containing seven

documents that have keyword occurrences previously processed (on the left side table). The

corresponding inverted index (table on the right) stores the distinct keywords Hotel, Cinema,

Park, Home, and Work as keys containing its corresponding references to the table in the left.

Figure 3: Example of Inverted Index

A naive strategy to text retrieval compares a list of queried words with all keyword doc-

uments. The inverted list provides single access to get all references that contain the same

keyword, which limits the universe to be compared in a single access.

Despite of the several solutions for different data, indexing space, time, and semantic data

together is far more complex, especially concerning to point to point comparison purposes.

It is necessary to keep fast access to the entire dataset content for a problem that requires

quadratic computation and does not allow pruning strategies.
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3 Related Works

In the state-of-the-art there is an extensive list of access methods for trajectories organized

in [20] according to the temporal context of the data (past, present, and future) — we focus

on the past —, with different indexing arrangements. We observe that only a few of these

works index textual with space and/or temporal data. Regarding these works, some papers do

not deal with all three dimensions together, like in [35, 34, 14, 4] that only focuses on spatial

and semantic dimensions disregarding the temporal dimension, and [14] that is also limited to

a single semantic keyword. Still among these works, some approaches are limited to ranges

like in [27, 22, 14, 13] focusing on indexing semantic keywords according to both spatial and

temporal range/granularity, and [18, 19, 30] that index spatial and keywords limited only to a

time interval/range.

Concerning the applicability, most of these mentioned works focus on accelerating range

queries [30, 27, 19, 22, 14, 13, 18], while [30, 27, 35, 19, 34, 18] intends to efficiently answer TOP-

K searches. Both mentioned approaches are intrinsically pruning strategies, limiting access to

indexed data to a restricted portion of the universe analyzed, facilitating processing – the

same problem of works limited to exact matches [27, 13]. However, before making conclusions,

it is crucial to comprehend the whole picture by comparing trajectories, not only isolated

points. This way, we can more assertively extract information based on similar behaviors, not

in circumstantial cases. Thus these approaches are incompatible with our aim to compare all

dataset, since it is not feasible to prune neither of multiple aspect trajectories dimensions and

still to establish a precise comparison.

Besides, all the indexes mentioned above have different data structures connected, demand-

ing a high storage cost due to the redundant data kept to optimize the access. This situation

could force the Operating System to excessively transfer data between memory levels, delaying

access in a known problem named thrashing. Thus, some solutions design hybrid (i.e., part

memory, part disk) [35, 34, 13, 17] or disk [14] allocation strategies to avoid system collapse.

However, the disk and hybrid allocation solutions require transferring data, thus multiple ac-

cesses. The secondary memory is a very slow resource, therefore inefficient for processing large

and complex trajectories datasets. Still, some works deal with the performance by adopting

approximate solutions in [27, 34], which for similarity search purposes, would propagate a

possible error to all other related comparisons, affecting the reliability of the score.

To the best of our knowledge, there are no works in the literature that fully index the three

multiple aspect trajectory dimensions for similarity measuring. Indeed, existing indexing works

do neither provide a data structure to avoid the point to point matching nor the number of

matches between points for each dimension, including the partial matches. Therefore, a novel

data structure is needed to accurately process an entire trajectory dataset and return the top

matching scores preventing redundant comparisons.
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4 Multiple Aspect Trajectory Index

In this section we propose MAT-Index (Multiple Aspect Trajectory Index), a novel access

method designed to speed up the similarity analysis of multiple aspect trajectories. It focuses

on indexing all three dimensions of space, time, and semantics in a single data structure, in

order to facilitate the comparison between trajectories, eliminating redundant operations.

MAT-Index is divided in six steps, as presented in Figure 4. The Load step stores each

dimension in a separated data structure that is processed as follows: the Spatial Indexing and

the Temporal Indexing treat the spatial and temporal data, respectively; the Semantic Combine

and the Semantic Compress steps process the semantic content. The Index Integration step

integrates the three resulting data structures built in the previous steps. The following sections

detail each step of MAT-index.

Figure 4: MAT-Index Flow

4.1 Load

The Load stage saves the spatial, temporal, and semantic dimensions into separated data

structures to be merged in the last index step. Figure 5 shows the data structures saved in

the load step. Figure 5 (a) shows an example of the dataset, where each row contains the

information associated to a trajectory point. Each row contains the trajectory identifier (tid),

followed by the spatial coordinates (x,y), the time (time), and the semantic attributes price,

poi, and weather. The tid is repeated according to the number of points the trajectory has. In

the example, eleven points belong to three trajectories: trajectory 126 has 4 points, trajectory

127 has 4 points, and trajectory 128 has 3 points.

Figure 5 shows the spatial (b), temporal (c), and semantic (d and e) intermediate data struc-

tures as loaded. For the sake of understanding, in this example we consider that each feature

(as defined in Section 2.2.2) contains only one attribute, thus F = {{price}, {poi}, {weather}}.
This scenario is applicable to both MSM and MUITAS similarity measures, as discussed in

Section 2.2.

Algorithm 1 presents the Load pseudo-code. It consists of reading the dataset and saving

each trajectory dimension in each proper data structure. The first row (rId=0), that is the

9



Figure 5: Running example with the spatial (b), temporal (c), and semantic (d and e) data as
preliminarily indexed

header of the dataset, is processed by the method addAttributeToTwoLevelIndex (Line 1). It

saves the names of the semantic attributes contained in the header, as they come right after

the spatial coordinates and the temporal dimension. The aim is to group the trajectory points

with the same semantic attribute values and considering their contexts. In the example, the

attribute names price, poi, and weather are the first level keys of the TwoLevelIndex data

structure, as presented in Figure 5 (e) in the delimited dashed area on the left, named as 1st

level key.

From rId=1 to rId=11, i.e., for all trajectory points, the process is repeated, sequentially

reading the dataset. For each row, it stores the trajectory dimensions as follows: the method

addToSpatialIndex saves the SpatialIndex in the format shown in Figure 5 (b); the method

addToTemporalIndex saves the TemporalIndex in the format shown in Figure 5 (c) and the

methods addToSemDictionary and addValueToTwoLevelIndex save the semantic structures

SemDictionary in Figure 5 (d) and TwoLevelIndex in Figure 5 (e). Theses methods are ex-

plained in the sequence.

The addToSpatialIndex (line 3) saves the spatial content of each rId in the SpatialIndex
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Algorithm 1: Load

input : Dataset // Figure 5(a)

output: SpatialIndex, TemporalIndex, SemDictionary, TwoLevelIndex
1 addAttributeToTwoLevelIndex(header) // Saves header (rId=0) -- Fig 5(e) 1st

lvl

2 foreach point ∈ Dataset do // From rId=1 until the last dataset row

3 addToSpatialIndex(point.coordinates) // Figure 5(b)

4 addToTemporalIndex(point.time) // Figure 5(c)

5 addToSemDictionary(point.semCompositeKey) // Figure 5(d)

6 addValueToTwoLevelIndex(point.attributeValues) // Figure 5(e) 2nd level

7 end
8 return SpatialIndex, TemporalIndex, SemDictionary, TwoLevelIndex

shown in Figure 8 (b). To generate the SpatialIndex, MAT-index simulates a grid data structure

as shown in Figure 6 (left), without allocating a matrix that brings the sparsity issue, and the

difficulty to balance the size of the interval and the memory required to process it. The cell

size is calculated based on the threshold defined by the similarity measure, as MUITAS and

MSM define a threshold τ that specifies the maximum spatial distance between two points to

consider them as similar. Therefore, MAT-Index builds the SpatialIndex as squared cells such

that the maximum distance between two points in the same cell never exceeds this threshold.

Since the maximum distance in a square is its diagonal, we assume this diagonal as τ .

Thus, all the points in the same cell (as the example [1,2] in Figure 7 left) do automati-

cally match, since they are below the threshold, thus not requiring the spatial comparison in

these cases. The SpatialIndex is than created as an inverted list that allocates as keys the

position/address of the cell and as the values the list of rIds that represent the points inside

the cell.

Figure 6: Spatial Allocation Method

Regarding the temporal content, MAT-Index allocates only actual occurrences in an in-

verted list, similarly to the spatial indexing process. However, it is worth noticing that a day
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time unit can be expressed as 24 hours, 1,440 minutes, or still 86,400 seconds, even if this

last option is less likely to be used. It is a small number of possibilities if compared with the

considerable amount of data to be processed. Therefore, the time is a uni-dimensional value

that can be segmented based on the unit of the temporal threshold (τ) used by the similarity

measures and aggregated later into temporal intervals according to the threshold value. The

method addToTemporalIndex (line 4) saves the temporal dimension in the TemporalIndex

inverted list, as shown in Figure 5 (c). Each entry < key, value > in the TemporalIndex

holds a time and a list of rIds with the same temporal information. The running example of

Figure 5 (a) has a temporal threshold of five minutes, which means that the key time of the

TemporalIndex must be saved in minutes. For instance, the rId=4 in Figure 5 (a) has a time

in hours (2:35), which is then saved in minutes (2x60+35=155 minutes), as shown in the first

entry in Figure 5 (c).

Concerning the semantic dimension, MAT-Index preliminary saves the semantics into two

structures. The method addToSemDictionary (row 5) saves a semantic dictionary with the

distinct semantic composite keys in Figure 5 (d). The method addValueToTwoLevelIndex

(line 6) stores in the TwoLevelIndex the second level key ( dashed area named as 2nd level

key) in Figure 5 (e), associated to the trajectory point references with the same attribute name

and value in the corresponding List of rIds, as shown on the right of Figure 5 (e). It is worth

mentioning that the two level model preserves the context of the values, since each attribute

name will contain its particular distinct values as appeared in the dataset of Figure 5. For

instance, value 1 could represent a price, a rating, an age, or others. As previously mentioned,

line 1 of Algorithm 1 saves the first level of the two-level inverted index while line 6 populates

its second level. The combine step (Section 4.4) merges both data structures and the algorithm

finishes by returning all intermediate files.

4.2 Spatial Computation

For the spatial dimension, MAT-index uses a logical grid, storing only the cell addresses that

contain at least one trajectory point. The spatial dimension demand a pairwise comparison

of two trajectory points to check if the distance between them does not exceed the similarity

threshold (τ). Therefore, MAT-index uses the auxiliar data structure SpatialIndex generated in

the Load step to avoid the comparison among all trajectory points. The SpatialIndex presented

in Figure 5 (b) is an inverted list where each entry is a pair < key, value >, being each key

a cell address and the value a list of rIds (trajectory points) belonging to the same key (cell

address).

Algorithm 2 explains how the Spatial Computation step works. First, it sequentially reads

each entry of the SpatialIndex (line 1) composed of the pair < cellAddress, rIds >. For each

rId (trajectory point) in the list of rIds (line 2), the OR operator in line 3 updates the list of

spatial matches with the rIds in the same cell address. In line 4, the method getCandidateCells

returns a list of point candidates (pCandidate), testing if the distance between the points rId
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and pCandidate does not exceed the spatialThreshold. If not, the lists of spatialMatches of

both points are updated (lines 6 and 7). After the cell address processing, the entry is removed

from the SpatialIndex (line 11) to prevent the points from being double-checked, which is

unnecessary due to the symmetry of the spatial distance.

Algorithm 2: computeSpatialMatches

input : SpatialIndex // Figure 5(b)

output: spatialMatches updated
1 foreach < cellAddress, rIds > ∈ SpatialIndex do // Entry <Key, Value>

2 foreach rId in rIds do
3 Points.get(rId).spatialMatches = Points.get(rId).spatialMatches OR

SpatialIndex.get(cellAddress)
4 foreach (pCandidate ∈ getCandidateCells(cellAddress)) do
5 if ( distance(Points.get(rId), Points.get(pCandidate) ≤ spatialThreshold) )

then
6 Points.get(rId).spatialMatches.set(pCandidate)
7 Points.get(pCandidate).spatialMatches.set(rId)

8 end

9 end

10 end
11 SpatialIndex.remove(cellAddress)

12 end
13 return spatialMatches

Going back to the running example, for the sake of understanding, suppose the spatial

threshold is 1.42, resulting in a cell size equal to 1. We use the Euclidean Distance to compute

the spatial distance, but any other distance measure could be used. In Figure 5 (b), the rIds

{8,11} automatically match as well as {1,2} because they are in the same cell. The pairs of

rIds {4,10} and {7,9} are in adjacent cells. Thus, it is necessary to check in both cases if the

Euclidean Distance does not exceed the threshold, as presented below:

d(4, 10) =
√
(4.3− 4.3)2 + (17.9− 16.9)2 = 1 ≤ 1.42 ? TRUE

d(7, 9) =
√
(4.3− 5.2)2 + (1.9− 0)2 =

√
4.42 ≤ 1.42 ? FALSE

Therefore, concerning the spatial indexing, only the pairs {1,2}, {8,11}, and {4,10} match.

These pairs of matches will be used to update the final MAT-index score, in the final step, the

index integration step (Section 4.6).

4.3 Temporal Computation

For the time indexing, the strategy is to create, for each temporal index entry, as shown in

the example of Figure 5 (c), a list with all the matching rIds, that are the trajectory points

belonging to the cells in the interval admitted by the temporal threshold τ .
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Algorithm 3 shows the pseudo-code that receives as input the TemporalIndex generated

in the Load step and provides as output. It starts by sequentially reading the entries in the

TemporalIndex (line 1), and, for each entry composed of < time, rIds >, it aggregates to the

listOfMatches all the rIds belonging to the groups in the interval ± τ (line 2). For every rId

in the entry (line 3), i.e., rIds, the listOfMatches is associated to the temporalMatches of

the processed rId (line 4).

Algorithm 3: computeTemporalMatches

input : TemporalIndex // Figure 7(a)

output: temporalMatches updated
1 foreach ¡time,rIds¿ ∈ TemporalIndex do // Entry <key, value> to be analyzed

// Union of all rIds associated to entries in the interval admitted

2 listOfMatches =
time+τ⋃

i=time−τ
TemporalIndex.get(i).rIds // τ: temporal threshold

3 foreach rId ∈ rIds do // Row Ids from the entry analyzed

4 Points.get(rId).temporalMatches = listOfMatches
5 end

6 end
7 return temporalMatches // For all trajectory points they are updated

Figure 7 (a) shows the temporal data as stored in the Load phase, and (b) the corresponding

list of matches. All rIds in Figure 7 (a) shared the same list of matches. In the running example,

let us consider the absolute time difference as distance function to measure the similarity of

two timestamps and a distance threshold of 5 minutes. Figure 7 (b) shows the corresponding

Matching rIds where, for instance, the cells 1313 and 1315 are within the threshold, so the list

of rIds of both cells, i.e., rId [3] and rId [11] are added to both corresponding Matching rIds

entries in Figure 7 (b). Additionally, 1315 and 1319 are within the threshold of 5 minutes, thus

the process is repeated and the rIds [3] and [6] are added to 1315 and 1319 matching index

cells in Figure 7 (b). The result of a non-transitive property here is clear, since we can notice

that cell 1315 shares 1313 and 1319 as match (rIds 3,6, and 11), with both —1315-1313—

and —1315-1319— less or equal than the threshold of 5 minutes, while 1313 and 1319 do not

match at all.

The temporal approach brings two benefits: (i) the allocation by unit allows us to get

the matches by aggregating the rIds belonging to the groups in the same interval. This way,

we prevent comparing the temporal content among all trajectories; (ii) the number of index

entries is limited to the threshold unit, i.e., if expressed in minutes, 1,440 possibilities, thus it

tends to require less iterations to process the temporal dimension. It is worth noticing that

real datasets are bigger than our running example. Thus, the list of rIds tends to contain, in

average, more points, since we have a very limited number of possible cells allocated (1,440

in this case). It saves memory and mainly processing time because the idea is to process the

matches in groups (by cell), not by rId.
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Figure 7: Result after the Temporal Computation

4.4 Semantic Combine

The Combine step treats the semantic dimension. It creates the Composite Index by taking

the composite keys in the Semantic Dictionary from Figure 5 (d) and associating each one

to a match counter, that is created using the occurrences in the Two-Level Inverted Index

from Figure 5 (e). The match counter represents the number of matches by trajectory point

if compared to the composite key itself. It avoids the pairwise comparison of the attribute

values of each pair of points by exploring the transitive property (e.g., ∀P,Q,R, if P ∼ Q and

Q ∼ R, then P ∼ R) of this kind of data.

Algorithm 4 illustrates the combine pseudo-code, where each semantic composite key in

the dictionary (line 1) provides one valid combination of attribute values. The individual

attribute values of each combination is used to build its corresponding match counter (line

2, in Function getMatchCounter). The command SemCompositeIndex.put (line 2) saves the

semCompositeKey and its corresponding MatchCounter, returned by the getMatchCounter

function. After, the SemCompositeIndex is completed, then returned in line 4.

Function getMatchCounter (Algorithm 4) shows how the match counter is obtained. The

semCompositeKey provides the valid combination of attribute values to be processed. For each

attribute value in the combination, the method retrieves the List of rIds of the corresponding

attribute values, as the example shown in Figure 5 (e). The feature f in F matches (row 6)

if all its corresponding attribute values match at the same rId position. Thus, the method

executes an AND operator to get a unique list of rIds where all attributes match for f (row

7). Then, only the rIds in common are updated in the MatchCounter. After processing the

combination for all sets of features, the method returns the MatchCounter in line 11.

Figure 8 presents an example of how to obtain a match counter for the composite key

< $$, Home,Clear >, with F = {{price}, {poi}, {weather}} the features. The result is an

array that holds the number of matching features comparing the key content to each trajectory

point. For a composite key with N features, the maximum score obtained is N . Thus, note

that rids 1,4 and 9 are composed of the same set of attribute values, so for three attribute

values the maximum score is 3.
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Algorithm 4: Semantic Combine

input : SemDictionary // Figure 5 (d)

output: SemCompositeIndex // Figure 9

1 foreach semCompositeKey ∈ SemDictionary do
2 SemCompositeIndex.put(semCompositeKey, getMatchCounter(semCompositeKey))
3 end
4 return SemCompositeIndex
input : semCompositeKey, TwoLevelIndex // Figures 5 (d) and (e)

output: MatchCounter
5 Function getMatchCounter(semCompositeKey):
6 foreach f ∈ F do // Being each feature f a set of attributes

// rIds where all feature attributes values in f match (Eq.5)

7 foreach rId ∈
|f |⋂
i=1

TwoLevelIndex(attributeV alue)i.rIds do

8 ++MatchCounter[rId]
9 end

10 end
11 return MatchCounter

Figure 8: Example of Match Counter computation

Figure 9 shows the entire composite index after the Combine step execution, including the

previously mentioned in Figure 8. Here we can observe one of the main advantages of our

proposal: once the composite index is ready, a single direct access may retrieve the number

of semantic features that match between trajectory points, although the points were never

pairwise compared.

The match counter of a composite key shows the number of matches for all trajectory points.

For instance, every trajectory point that has the semantic combination < $$, Home,Clear >

(see the first row of the tables in Figure 9) entirely matches with the rIds {1,4,9}. It also

matches with the rId=3 in two of the three semantic attribute values, only once with the

rIds={5,6,7,8,10,11}, or yet do not match with rId=2. Thus, if we need to know how many

semantic attributes rId=1 has in common with rId=10, we just need to look at the corre-

sponding semantic combination of rId=1 in < $$, Home,Clear > at position rId=10.
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Figure 9: Semantic Index after Match Counter computation

4.5 Semantic Compress

The similarity algorithms for multiple aspect trajectories MSM [12] and MUITAS [26] retrieve

the best semantic match of a point when compared to a trajectory. In this case, we can further

compress the index by keeping the maximum score. Therefore, the Compress step stores only

the top scores by trajectory, saving memory and avoiding redundant comparisons that would

degrade the performance.

Algorithm 5 shows the pseudo-code of the Compress step. For each semCompositeKey

in SemCompositeIndex (Figure 9) (Algorithm 5, row 1), the combine gets the top number

of semantic matches by trajectory using the function compressMatchCounter in line 2. The

function return is associated to the semCompositeKey computed, saving the result as an entry

in CSemCompositeIndex (line 2, CSemCompositeIndex.put).

Algorithm 5: Semantic Compress

input : SemCompositeIndex // Figure 10(a)

output: CSemCompositeIndex // Figure 10(b)

1 foreach < semCompositeKey,matchCounter >∈ SemCompositeIndex > do
2 CSemCompositeIndex.put(semCompositeKey,compressMatchCounter(MatchCounter))
3 end
4 return CSemCompositeIndex
input : MatchCounter
output: CMatchCounter

5 Function compressMatchCounter(MatchCounter):
6 foreach p in Points do
7 CMatchCounter[p.cId] = max(CMatchCounter[p.cId], MatchCounter[p.rId])
8 end
9 return CMatchCounter

The Function compressMatchCounter in Algorithm 5 (line 5) presents how to compress

a match counter with the trajectory top scores. For each trajectory point p (line 6), the com-

pressed match counter CMatchCounter at p.cId position (i.e., the corresponding trajectory
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id position of p) is updated if the score of the trajectory point p is greater than the current

score of its trajectory p.cId (line 7).

Figure 10 presents the scores of the running example before and after the compression.

Figure 10 (a) presents the top scores by trajectory point, while Figure 10 (b) the top scores

by trajectory. We notice that the eleven trajectory points turned into only three points,

corresponding to the number of trajectories since we only keep the maximum score for each

trajectory and not all the points anymore. The first column of the MatchCounter in Fig-

ure 10 (a) corresponds to the header position in the dataset (see Figure 5 (a) at rId=0), i.e.,

where the name of attributes are placed. They do not contain trajectory content, being main-

tained at first to avoid computing the position during the load and combine process. Thus, it

is discarded.

Figure 10: Composite Index Highlighted By Trajectory: (a) before and (b) after the compress-
ing

4.6 Dimensions Integration

Indexing space, time, and several semantic dimensions in a single data structure avoids re-

dundant comparisons, speeding up the trajectory similarity analysis. Therefore, the Indexes

Integration phase consolidates the matching scores into a single data structure, finalizing the

MAT-index construction.

The pseudo-code for this step is depicted in Algorithm 6. For each point p (line 1), the

method uses the semantic composite key of p to retrieve and store in an auxiliary variable

its corresponding compressed match counter auxCMatchCounter (line 2). The compressed

match counter holds the top scores by trajectory for a valid combination of semantic attribute

values. In line 3, the method gets all the points that match both in space and time with

p, using an AND operator to obtain the list of rIds. Thus, using the auxiliary compressed

match counter (auxCMatchCounter) of p for each rId in bothMatch, the method updates its

auxCMatchCounter at the compressed id position. The compressed id (cId) is the corre-

sponding trajectory id to which the rId belongs. The CMatchCounter is then updated with

the maximum value between its current value at cId position, as shown in Figure 11 (a), and

the value of the MatchCounter at rId position increased by 2, as shown in Figure 11 (b). By

checking the maximum value, the method avoids repeating the compressing step for each tra-
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jectory point. After updating the cases that match in both space and time, the method treats

the cases that exclusively match either for space or time. The list is obtained by using an ex-

clusive OR operator (XOR) (line 7). Thus, for each rId in oneMatch (line 8) that exclusively

matches with point p either in space or time, the method saves the maximum score between the

corresponding compressed match counter CMatchCounter of p at the cId trajectory position

for the rId and the MatchCounter at rId position increased by 1. The advantage of separating

the process of updating in oneMatch and bothMatch is to avoid redundant processing for the

cases where space and time match simultaneously. In line 11, the point p with its corresponding

scores in auxCMatchCounter is added to the MAT-Index. After all points p are processed,

the Compresses Composite Index in Figure 11 (a) and the Composite Index in Figure 11 (b)

data structures are no longer required, so they are discarded (lines 13 and 14). The Mat-Index

(illustrated in Figure 11 (c)) is ready to be used.

Algorithm 6: Dimensions Integration

input : SemCompositeIndex, CSemCompositeIndex // Fig 10

output: MATIndex // Figure 11(c)

1 foreach p in Points do
2 auxCMatchCounter = CSemCompositeIndex.get(p.semCompositeKey)
3 bothMatch = p.spatialMatches AND p.temporalMatches
4 foreach rId in bothMatch do
5 auxCMatchCounter[Points.get(rId).cId]=

max(auxCMatchCounter[Points.get(rId).cId],
SemCompositeIndex.get(p.semCompositeKey)[rId]+2)

6 end
7 oneMatch = p.spatialMatches XOR p.temporalMatches
8 foreach rId in oneMatch do
9 auxCMatchCounter[Points.get(rId).cId]=

max(auxCMatchCounter[Points.get(rId).cId],
SemCompositeIndex.get(p.semCompositeKey)[rId]+1)

10 end
11 MATIndex.put(p.rId, auxCMatchCounter)

12 end
13 CSemCompositeIndex.clear();
14 SemCompositeIndex.clear();
15 return MATIndex

Going back again to our example in Figure 5, each trajectory point has now a final score for

all dimensions. The points themselves are updated by 2, since now both spatial and temporal

dimensions are taken into account, resulting in Figure 11 (c) the value 5. By updating the

spatial and temporal matches, the pairs of trajectory points {1,2}, {8,11}, and {4,10} do

spatially match. The pairs of trajectory points {9,10}, {3,11}, and {3,6} do temporally match.

All matches are updated in the final MAT-Index in Figure 11 (c).

Note that the final score in Figure 11 (c) is the maximum between the result incremented
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in Figure 11 (b) and the auxiliary top score preserved in Figure 11 (a), as explained in Al-

gorithm 6. For instance, updating the match between rIds 3 and 11, starting by rId=11

(¡$$, University, Clouds¿). The trajectory point rId=3 corresponds to the trajectory cId=0.

In Figure 11 (b), the composite key ¡$$, University, Clouds¿ at position rId=3 has score of

3. It is higher than the old top score 2 in Figure 11 (a). So, the method updates the score of

trajectory point rId=11 at cId=0 to 3 in the MAT-Index Figure 11 (c). The method repeats

this process for all matches. The updates are highlighted in Figure 11 (c).

Figure 11: MAT-Index (c) after Integration

The final MAT-Index data structure, depicted in Figure 11 (c), considers the spatial, tem-

poral, and semantic dimensions for each trajectory point. Therefore, it is sufficient to access

the trajectory point using the row id to directly access the score at the corresponding trajectory

position (the compressed row id – cId).

4.7 Complexity Analysis

The MAT-Index algorithm sequentially executes its six steps. All data is stored in hash maps

using O(1) get/put operations.

The first step (Load – Algorithm 1) performs a linear scan over the trajectory datasets

and populates the data structures. It has a complexity O(N), with N the total number of

trajectory points.

The second step (Spatial Computation – Algorithm 2) retrieves each rId distributed among

the cell addresses. The rIds belonging to the same cell automatically match; thus, only the

rIds placed in adjacent cells require further computation. Indeed, we have here again an O(N)

complexity.

The third step (Temporal Computation – Algorithm 3) reads all the hash map entries

sequentially. Let k be the number of distinct groups, and let us assume to have N/k points in

each group. Temporal Computation performs 2τN/k operations for each group, resulting in

2τN operations plus N operations to assign the result to each trajectory point. We have thus

an O(2τN) complexity.
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The fourth step (Semantic Combine – Algorithm 4) processes each semantic composite

key in the Semantic Dictionary. By taking advantage of the BitSet data structure used in the

TwoLevelIndex, we simply obtain the rIds that must be updated. We thus sum the occurrences

in the match counter data structure. After computing all match counters, we have added

precisely N times each attribute in A, i.e., A×N times. Considering that N tends to be much

bigger than A in order of magnitude, the method has a linear complexity of O(AN).

The fifth step (Semantic Compress – Algorithm 5) gets the maximum scores of each tra-

jectory by composite key. The best case is when all the composite keys are equal, resulting in

a linear cost O(N). In the worst case, all the composite keys are distinct, resulting in a com-

plexity of O(N2). Both extremes are unlikely. For instance, considering the assessed datasets,

the Foursquare has 7107 keys. The BerlinMOD has only 67 distinct semantic combinations,

a very tiny number compared to the number of trajectory points (227,403 and 346,657, re-

spectively). That is the reason why MAT-Index performance tended to a linear behavior, as

discussed along with Section 5.

Finally, the Dimensions Integration method depicted in Algorithm 6 updates only the cases

that match. Since it maintains BitSets for spatial and temporal matches, the logical operations

prevent double retrieving the same content, which is done in linear time.

After analyzing all MAT-Index methods, we can conclude that the MAT-Index bottleneck

lies in the compressing step complexity that can vary from linear to quadratic depending on

the number of semantic composite keys. Again, two unlikely situations, as demonstrated in all

the state-of-the-art assessed datasets.

Considering that MAT-Index processes the dimensions independently before integrating

the data, in cases where the matching criteria are changed, only the affected dimension must

be reprocessed and then reintegrated. Considering the building costs for each dimension, the

update represents a minimal time compared to the original similarity measures performance.

5 Evaluating MAT-index for Trajectory Similarity Measuring

In this section we evaluate the performance of MSM and MUITAS using MAT-index. We also

compare MAT-index with FTSM [11], a spatial index proposed to accelerate the comparison of

the spatial dimension of MSM. MAT-Index is general and can be potentially applied to other

point-to-point similarity measures for multiple aspect trajectories. We implemented both MSM

and MUITAS with and without using the proposed index. The source code of MAT-index and

the datasets used in the experiments are available in a public GitHub repository MasterDegree

at https://github.com/anapbr/, branch PaperVersion.

Before we detail the experimental evaluation it is important to remember that MSM com-

putes the similarity by pairwise comparing a set of attributes, while MUITAS compares fea-

tures, that are a non empty set F of attributes. MUITAS can also compute MSM similarity

by considering the particular case where each feature is composed of only one attribute. For
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instance, suppose a dataset composed of three attributes att1, att2, and att3. MSM pairwise

compare all three attributes separated, while MUITAS can process different feature config-

urations like F = {{att1}, {att2}, {att3}} (where each feature has one attribute, leading to

MSM definition), F = {{att1}, {att2, att3}}, or even all attributes together in the same feature

F = {{att1, att2, att3}}.
We evaluate MAT-index considering both qualitative and quantitative aspects: Section 5.1

concerns the qualitative perspective where we show throughout an example how using our

index simplifies the similarity computation, thus drastically reducing the number of compar-

isons needed to compute the similarity for both evaluated algorithms; Section 5.2 presents the

quantitative evaluation of MAT-Index, focusing on time and scalability metrics.

5.1 Qualitative Evaluation

We start this subsection presenting a scenario where both MUITAS and MSM employ MAT-

Index to obtain the similarity score of two trajectories. By exploiting MAT-Index, the similarity

for both MSM and MUITAS no longer requires to compare each pair of attributes/features to

compute the point-to-point score as the original methods do. It means that both similarity

measures can start with the parity (MSM Equation 1, MUITAS Equation 7) computation,

thus skipping for MSM Equations 3 and 2, and for MUITAS Equations 5 and 6. Accessing

MAT-Index data structure to get the top scores consolidated – Figure 11 (c) –, we compute

the final score in linear time of |P |+ |Q| accesses whose contents are added, while the original

problem would require quadratic cost by comparing all points of P with all points of Q, for

each dimension, i.e., |P | × |Q| × |A| comparisons, being A the number of attributes processed

(space, time, and semantic attributes).

Going back to the running example in Figure 5 and considering the features F = {{price}, {poi}, {weather}},
suppose we want to measure the similarity between trajectory ids 126 and 128. For reference,

the first column (tid) of the dataset in Figure 5 (a) identifies the trajectory ids and its points.

The first step to find the similarity score Sim(126, 128) is to compute the parities by querying

the top scores of the points of both trajectories in MAT-Index (Figure 11 (c)). Starting from

the computation of parity(126, 128), we recall that the trajectory 126 (cId = 0) is composed

of four points with rIds = {1, 2, 3, 4}. It is necessary to retrieve the value in key = rId at

position cId = 2 (128) to get their top scores. Once MAT-Index indexes five features (space,

time, and the semantics price, poi, and weather), the sum of scores must be divided by 5.

Therefore,

parity(126, 128) =

∑4
rId=1max(rId, cId)

|F|
=

3 + 1 + 3 + 3

5
= 2

The process must be repeated by inverting the references for all points of 128 to get the

parity(128, 126), thus summing the retrieved scores at position cId = 0.

parity(128, 126) =

∑11
rId=9max(rId, cId)

|F|
=

3 + 2 + 3

5
= 1.6

22



After calculating the parities, the final similarity score Sim(126, 128), i.e., MSM(126,128)

and MUITAS(126,128) are the sum of parities divided by the sum of each trajectory length

(number of points), such that:

Sim(126, 128) =
parity(126, 128) + parity(128, 126)

|126|+ |128|
=

2 + 1.6

4 + 3
≈ 0.51

The presented process can be repeated for any pair of trajectories, using their rIds as key

to find the top scores of all trajectory points in the dataset.

5.2 Quantitative Evaluation

The quantitative evaluation is organized into two parts: first, we employ two publicly available

datasets composed of spatial, temporal, and multiple semantic dimensions to compare the

running times of the similarity measures MSM and MUITAS with and without the MAT-Index

support. In the second part, we employ a synthetic dataset to evaluate the index scalability

to state the impact of the trajectory size in the processing times.

All quantitative experiments were performed in an Intel® Core™ i7-9750H Coffee Lake CPU

@ 2.60GHz (12MB cache), 32GB Crucial Dual-Channel @ 1330MHz (19-19-19-43), 500GB

Samsung SSD 970 EVO Plus, and 4GB NVIDIA GeForce GTX 1650 in a Windows 10 Educa-

tion 64-bit, using a command prompt boot option without graphical and network support to

avoid overlapping second plan processes.

5.2.1 Evaluating MAT-Index Processing Time for Similarity Measuring

We split this experiment in two parts: (i) how faster do both similarity measures process the

entire dataset when employing MAT-index and FTSM access methods and; (ii) how do the

number of attributes and the distinct semantic combinations affect the performance. We used

two publicly available datasets that contain spatial, temporal, and multiple semantic dimen-

sions. The Foursquare NYC [32] dataset contains real data, while the other is a benchmarck

dataset generated by BerlinMOD [6]. These datasets have different characteristics, includ-

ing the number of points and trajectory average sizes that make them suitable for evaluating

MAT-Index.

The Foursquare NYC contains semantically enriched check-ins of users collected from April

2008 to October 2010. The Foursquare API1 provided the semantic information related to the

POI: category (root-type), subcategory (type), and price – this last one is a numeric classifica-

tion; the Weather Wunderground API2 provided the weather conditions. The Berlin Moving

Object Dataset (BerlinMOD) is a public spatio-temporal dataset containing moving point

data, simulating workers commuting between their homes and workplaces on the real street

network of the German capital Berlin during two days. It holds two semantic attributes re-

1https://developer.foursquare.com/
2https://www.wunderground.com/weather/api/
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garding the type of the user and the transportation mode. In both datasets, the timestamp

provided the weekday (day).

Table 1 summarizes the main characteristics of the datasets. Traj Size refers to the tra-

jectory average length followed by the ± signal with its standard deviation; the # of Users

attribute indicates the number of distinct anonymous users tracked; thus, the attribute # of

Traj means that there are one or more trajectories of each user; finally, Attributes are the

spatial, temporal and semantic attributes processed in the experiment.

Dataset Description

Foursquare
NYC

[32]

Traj Size: 209, 97± 188, 36
# of Traj.: 3,079

# of Points: 227,403
# of Users: 1,083

Attributes:
Latitude, longitude, time, weekday, price,
weather, POI type and root-type.

SECONDO
BerlinMOD

[6]

Traj Size: 417, 24± 279, 68
# of Traj.: 1,797

# of Points: 346,657
# of Users: 141

Attributes:
Latitude, longitude, start time, weekday,
type of user, and transportation mode.

Table 1: Summary of the trajectory datasets used in the experiments.

Figure 12 shows the running times comparison for each dataset considering MSM and

MUITAS original implementations, using FTSM that indexes only the spatial dimension and

MAT-Index, developed to consider all trajectory dimensions. To properly evaluate both MSM

and MUITAS fully exploiting their characteristics, the Foursquare dataset was evaluated con-

sidering two different sets of features given as follows:

• NYC1 This scenario considers each semantic attribute as individual features, thus, it can

be applied to both measures. In other words, we have 5 features f composing the set

F = {f1, ..., f5}, such that f1 = {day}, f2 = {price}, f3 = {weather}, f4 = {root-type},
and f5 = {type};

• NYC2 This scenario considers the root-type and the type attributes as semantically re-

lated, i.e., they are processed together in the same feature. In other words, we have 4 fea-

tures f for 5 semantic attributes, which cannot be processed by MSM. Consequently, only

the performances of MUITAS are plotted for this case. The set of features F = {f1, ..., f4}
is such that f1 = {day}, f2 = {price}, f3 = {weather}, f4 = {root-type, type}.

By observing the results in Figure 12, we can notice that, in the Original implementations,

MUITAS performed worse than MSM in all datasets due to the computation overhead for

checking the semantic related attributes. We also can notice in the Figure 12 that, although

FTSM efficiently indexes the spatial dimension in average cases, its integration to both MSM

and MUITAS similarity measures for space, time and semantics overloaded the processing time
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Figure 12: Similarity computation elapsed time by dataset

in all datasets. However, MAT-Index treats all dimensions in an integrated data structure;

thus, the results are much better, reducing between 93.6% and 98.1% of the execution times,

i.e., up to 52 times faster. The semantic relationships among the attributes did not affect

the performance, keeping very close results in both similarity measures. In the larger dataset

BerlinMOD, both MSM and MUITAS performed even better than processing Foursquare,

suggesting that the larger the dataset, the better the results with MAT-index. We observe

that since grouping data is the basic idea of MAT-Index, BerlinMOD performance resulted in

being better also due to the low variability of values, including time and space, which reduced

the computation cost. This indicates that the variability of values influences performance,

where the larger a dataset is, the more its data tend to repeat.

It is worth recalling that each set of attributes leads to a different number of distinct

semantic composite keys. Therefore, we evaluate how the amount of semantic composite keys

and attributes impacts the processing times in each dataset. Considering that the semantic

related attributes did not affect the processing time in the first evaluation (Figure 12), both

datasets were executed in all possible ways, excluding the semantically related attributes: the

five semantic attributes from the Foursquare dataset (Table 1) were distributed in scenarios

combining 1 to 5 attributes, resulting in 31 distinct possibilities. The three semantic attributes

from the BerlinMOD dataset were analogously distributed, resulting in 7 other processing

possibilities, totaling 38 scenarios. For instance, a possible scenario with 1 attribute for the

Foursquare dataset can be only the price F = {{price}}, only the weather F = {{weather}},
etc.; with 2 attributes, we can process the price and weather F = {{price}, {weather}} or

other pairs of semantic attributes, and so on.

Figure 13 shows, for each dataset, the elapsed time variability considering the number of

processed attributes. We can notice that MAT-Index is stable and faster in all tested scenarios.

The BerlinMOD dataset elapsed time varies between 63 and 67 seconds, and the Foursquare

NYC between 76 and 105 seconds. The original implementation stays between 1,200 and

3,516 seconds for the BerlinMOD, and between 519 and 2,380 seconds for the Foursquare

NYC, increasing with the number of attributes. As expected, the results with MAT-Index

tend to improve as the number of trajectory aspects/attributes increase. This characteristic is
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particularly important for multiple aspect trajectories since they tend to have a large number

of attributes.

Figure 13: Elapsed Times By the Number of Semantic Attributes

In order to better understand how the variability of values affects the performance, Figure

14 presents the same elapsed times of the previous Figure 13, now grouped by the number

of semantic composite keys processed. For instance, in the Foursquare dataset, the scenario

F = {{price}} produces only five distinct price possibilities (-1, 1, 2, 3, and 4); the weather

F = {{weather}} has 6 distinct possibilities (Clear, Clouds, Fog, Unknown, Rain, and Snow).

However, F = {{price}, {weather}} has 29 distinct possibilities in the dataset (one less than if

we individually combine price and weather values). The chart Figure 14 shows the number of

composite keys sorted in ascending order, grouped by the number of processed attributes. We

segregate both results by dataset – indicated at the top – to compare how the length influences

the performance.

Figure 14: Elapsed Times By the Number of Composite Keys

We can notice how the dataset size and the number of attributes generate an explosion in the

elapsed times for the original implementations. However, we also notice that the MAT-Index

performance is more associated with the number of processed semantic composite keys, and this
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is the reason why the BerlinMOD scenarios are fastly processed than the Foursquare dataset,

even if they have the same number of attributes. In conclusion, MAT-Index successfully reduces

the execution time in a percentage ranging from 84.5% and 98.1%.

5.2.2 Evaluating the MAT-Index Scalability Performance

In this experiment we evaluate the scalability of MAT-Index by studying the impact of the

trajectory size in the processing times. For this reason, we use a synthetic dataset designed in

[7] with 200,000 points, having as attributes latitude, longitude, time, weekday, price, weather,

and poi-category. The points are distributed into six versions of the dataset with increasing

trajectory lengths of 10, 20, 50, 100, 200, and 500 points. The computational time spent by

each similarity measure with and without MAT-Index support is reported in Figure 15.

Figure 15: Elapsed Times Varying the Trajectory Size for the Same Content

It is worth noticing that, as expected, the shorter a trajectory is, the more the problem tends

to a linear comparison. The two public datasets (Table 1) reported in Section 5.2.1 contain

trajectories longer than all the datasets used in this scalability experiment. Therefore, here we

cover situations not present in the previous experiments. Indeed, the scalability results show a

considerable improvement with consistent elapsed times for both methods where MAT-Index

is used, in all tested scenarios, reducing the running times between 75.5% and 87.2%.

Considering all the results presented in this evaluation, we can conclude that MAT-Index

performs consistently faster. Its efficiency is more associated with the number of semantic

composite keys than with the dataset size. For this reason, the larger BerlinMOD dataset

performed even faster than the Foursquare dataset. The larger a dataset is, the more it tends

to present spatial, temporal and semantic data repetition. For instance, most attributes like

weekdays, price categories, ratings, and even POIs are finite sets. Besides, according to the

Principle of Pareto [25], 20% of the causes compass 80% of the problems, reinforcing the

repetition tendency. Thus, MAT-Index perfectly fits the aims of this work that is to make

faster the processing of similarity for larger datasets.
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6 Conclusions and Future Work

Similarity measuring multidimensional data as trajectories is a very costly task for clustering,

nearest neighbor queries, etc. Existing similarity measures cannot deal with the high volume

of real datasets. Current indexes cannot efficiently manage all trajectory dimensions for sim-

ilarity analysis. The proposed MAT-Index intends to fill this gap by indexing the semantic

content with multiple attributes, having spatial and temporal dimensions into a compact data

structure, assuring efficiency in similarity computation while reducing data redundancy. The

index is a combination of a dictionary and inverted indexes. The ”MAT-Index” evaluation

used the state-of-the-art trajectory similarity algorithms Multidimensional Similarity Measure

and MUltIple aspect TrAjectory Similarity (MUITAS). On the one hand, we qualitatively show

how the MAT-Index support for MSM and MUITAS drastically reduces the needed compar-

isons. On the other hand, we compute the index performance in running time exploiting two

public datasets and scalability using one synthetic dataset. Experiments show an improvement

of 98.1% in running time and 87.2% in scalability.

Future works include: (1) experiment MAT-Index with additional semantically enriched

trajectories datasets; and (2) develop an efficient way to update the index without the need of

fully reprocessing when new data are added to the dataset.
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