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The excellent linear relations between sets of specific quantum mechanical quantities, certain molecular 
properties and selective topological indices have previously been explained on the basis of the additive nature 
of both propertie.."i and the indices. Such explanations, based on parallelism, appear to be extrinsic. A more 
intrinsic explanation having its root in the tridiagonalities of the matrix forms of the involved entiti~ seems 
to be a more general and unified interpretation. Hcside."i new interrelations are also derived for these quantities. 

Ever since graph theory was brought to the doorway 
of chemistry, it was shown that various topological 
indices could be divined or contrived which would cor­
relate with different physical properties of such mol­
ecules. Molecules belonging to homologous series are 
specially adapted for such correlations. Certain mo­
lecular properties, quantum mechanical quantities and 
thermodynamic functions that are additive in charac­
ter show excellent linear dependence on suitably cho­
sen topological invariants of such molecules 1--4. 

No basic interpretation, apart from the conceivable 
additivity of definite and constant contributions for 
each addition of -CH2- group to both the molecular 
property and the corresponding topological index, has 
been offered. Considering the diversity and the gamut 
of such quantities, a deeper level unifying interpreta­
tion is overdue. A previous attempt in this direction 
by us4 resulted in an extrinsic explanation only. It 
hinged on an analysis of the theoretical structures of 
the quantum mechanical quantities and molecular (also 
thermodynamic) properties and, incidentally, also of 
the topological invariants (viz. Z =half the modular 
sum of eigenvalues, N = number of vertices in the 
graph, RBI = Randic branching index) to show how 
constant lumps of contributions arise from each unit 
addition of -CH2- group. Although the definite con­
tributions were thus established mathematically and 
piecewise for each property, quantum mechanical quan­
tity and Z, N, RBI, the process still lacks the aura of a 
Unified and intrinsic explanation. 

A truly topological graph of a molecule consisting 
of vertices and connectivities only is such a high de­
gree of abstraction that hardly any physics or chemis­
try is left in it. Consequently, in any sort of interpreta­
tion of con-elation involving the pure molecular topol­
ogy and its matrix, it is futile to search for any physi­
cal or chemical link as the basic underlying cause of 
con-elation. Expectedly, therefore, the topological ma­
trix or some matrix property becomes our natural sus­
pect as the possible cause. Proceeding along this line, 
we may arrive at what may be termed as an intrinsic 
explanation for the host of observed linear con·ela­
tions 1•3•4. The quantities presented in Table 1, amongst 
many others, show intra- and inter-correlations in the 
forms of excellent linear graphs4. 

It is known that for conjugated hydrocarbons, the 
modular sum of energy eigenvalues I I e1 l is given by 
the modular sum of their topological eigenvalues, 
called the energy of the graph Eg, which according to 
McClelland 7, is 

Eg=IIA-1 1 =IIe1 l =0.91 JzMN (l) 
1 I 

where ManN represent the number of edges and ver­
tices respectively, in the topological graph. For the hy­
drogen suppressed graphs (HSG) of the normal al­
kanes, equation (1) will still be valid although A.1 'S are 
merely eigenvalues and not identical with energy eigen­

values of the alkanes, 

2Z=IIA-1 1 =Eg'==! 0.91 JzMN 
1 

(2) 
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TABLE 1 

Topological quantities Quantum mechanical quantities Molecular/Thermodynamic properties 

' ' . i ; 
I . RBI (branching index) 1. Eex = Total two-electron exchange 

energy (CND0/2) 

I. Molar diamagnetic susceptibility Xm 

2. Half the modular sum of topological 

eigenvalues = (f/2) ~I A; I 
2. Eb = Binding energy5 2. Enthalpy of formation 

3. N = Number of verti~es in a 

top0logical graph 

3. ISab =Total adjacent diatomic 

overlap6 

3. Entropy of formation 

To understand the excellent linear relationships, let us 
tirst pick the pair Eex and Z, the total diatomic ex­
change integral (CNDO) and half the modular sum of 
topological eigenvalues respectively of the alkanes. 

As an illustration, we choose n-hexane. The di­
atomic-exchange integral (d.e.i.) mattix Dis (20 x 20) 
dimensional and its topological matrix a (6 x 6) one. 
In order that some comparison be feasible between the 
two, let us agree to write a condensed form of d.e.i. 
matrix (henceforth, abbreviated m; c.d.e.i. matrix) to 
reduce it to a (6 x 6) dimension. In achieving this end, 
we divide the atoms of hexane into six groups CH3 

(gr. l), CH2 (gr. 2), CH2 (gr. 3) ... CH3 (gr. 6) and 
write the c.d.e.i. matrix in such a way that each diago­
nal element of the matrix is a group sum of original 
d.e.i. mattix elements of the atoms pertaining to a group 
and that an off-diagonal matrix element of c.d.e.i. 
matrix represents a sum of d.e.i. matrix elements of 
the atoms pertaining to two different groups (say gr. I 
and gr. 2 so on). The o<cond) matrix elements thus re­
tain the basic information of the d.e.i. matrix elements 
only in the form of their sums over atoms of a group 
and not in detail relating to each pair of atoms. 

We may write down specifically the c.d.e.i. matrix 
computed by us and the topological matrix of n-hex.­
ane to help clarify our arguments, 

o<cond) = c.d.e.i. matrix of n-hexane 

-0.63 -0.17 0.0 0.0 0.0 0.0 
-0.17 -0.42 -0.17 0.0 0.0 0.0 

= 0.0 -0.17 -0.42 -0.17 0.0 0.0 (3) 
0.0 0.0 -0.17 -0.42 -0.17 0.0 
0.0 0.0 0.0 -0.17 -0.42 -0.17 
0.0 0.0 0.0 0.0 -0.17 -0.63 
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4. Enthalpy of atomisation 

T = Topological matrix of n-hexane 

0 1 0 0 0 0 
I 0 1 0 0 0 

= 0 1 0 1 0 0 
() 0 I 0 1 0 

0 0 0 () I 

0 0 0 0 1 0 

All exchange integrals between any two classically 
non-bonded atoms are, as actual CND0/2 calculations 
show, very small compared to those ofthe bonded ones 
and are thus omitted in writing the otcond) matrix. 

Let o<cond) represent the two-centre (CND0/2) 
c.d.e.i. matrix and T, the topological matrix of any par­
ticular member with N vertices of a homologous se­
ries, say, alkanes. Then, in general o<cond> =a 'f + b 
1 + M; M is a matrix where all the elements are zero 
except the ( 11 )th. and (NN)th. elements, each of the 
latter being equal to a C-H exchange energy (-0.21 
a.u.). 1 is unit matrix f(l)ii = 1] and a and h arc two 
numerical constants [for any alkane a= -0.17 (a.u.) = 
C--C exchange energy and b = -0.21 x 2 (a.u.) =two 
times the C-H exchange energy; vide Table 2]. 

At this point we diversify our treatment under two 
heads, viz. (A) cause of linear relationships and (B) 
discovery of further correlations. 

(A) Intrinsic cause of linear graphs : 

The total diatomic exchange Eex (CNDO) is the 
sum of all the matrix elements in n<cond) which is 
tridiagonal in form exactly similar to its topological 
matrix T. The relation, viz. 

Eex = N b + 2 (N-l)a + 2 (b/2) 

= N b + f2(N-1)a +b) (5) 
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TABLE 2 - MATRIX ELhMFNl'> 01· u;, AND T' (ALKANES) 

Molecule d~. ~~. 

n-Hcxanc -0.1137 -I.XOI 9 

-0.20X 0 -1.247 0 

-0.344 1 -fl.445 () 

-0.41)5 7 () 445 () 

-0.632 0 1.247 0 

-0.726 3 I .XO I f.J 

n-Pcntanc -0.125 6 -1.732 I 

-0.250 -1.00 

-0.420 0.0 

-0.590 ).0 

-0.714 4 I. 732 I 

n-Butanc -0 144 l) -I.(>IXO 

-0. H4 9 -0.(>1 X 0 

-0.525 I 0.618 () 

-0.69 5 (j 1.61X 0 

Propane -0. I 7'J 6 -1.414 2 

-0.420 0.0 

-0.6(,() 4 1.414 2 

is easily scooped lium the tridiagonal D(conll) matrix ol 

an alkane with a topology of N vertices. The two (h/2) 

terms arc the (II )th. and (NN)Ih. matrix clcmenh ol 
theM matrix. Since his a constant(= -0.42 a.u.) fo1 
the alkane series representing twice the value of a C­
H exchange energy, the linearity of Ecx on N is at once 
evident. Again since 2 Z = 0. 91 J2 MX, (cJ cq. 2) and 
M = N- I for a HSG of the alkane sc1 ics 

(&') o.9JN Z-:=: O.YI --2- = J2 (6) 

whenever N2 » N. a conJition thai is readily attained 

tor N = 1 or more. Recasting equation (5) with the 

help or equation (o), whe1c c = J2 !0. 9 I, we have 

Ecx = cZb + 2 ( c:Z- I ) a + b (7) 

1l1is accounts for the linear depenJcnce of Ecx on Z. 

1l1c intrinsic explanation thus rests on tridiago­

nalitics of both the T and olcnnd) matrices. A 

tridiagonal T essentially mean~ adjacent atom 

connectivities. The Ecx• being amenable to be ex­
J/CS-4 

pressed as tridiagonal o<comt) matrix, virtually means 

that only the exchange integral clements associated 
with two bonded atoms arc significant, the non-bonded 
atom contributions arc effectively tero It is tllis com­
mon feature, Vi/. the importance of the adjacency fac­
lor. that sneaks into the domain ofEcx and help'> in the 
emcrgenccs of equations ( 5) and (7). 

We may now consider other members of the intra­

and inter-relationships, Vii. Eb, I sah (adjacent al-
a<h 

oms), RBI and Xm mentioned earlier. Since Eh = ( 1/2) 

(I + 11 k 11 ) Ecx (c..:f. Ret. 5) and Ecx is topology depen­
dent (eqs. 5 and 7), Eh will he linearly dependent on 
both N and Z fm the alkane series. Actual computa­
tiuns of sah for liOn-bonded atoms4·6 in alkane seric' 
~how these to he negligible compared to the value~ of 
the bonded one~. Hence, an s<'-'<HHl) matrix, tridiagonal 

in form and dimensionally the same a~ the tridiagonal 
topological matrix ol HSG, can he written down a'> 

s<conJJ = c T + d 1 + P (X) 

where, c = 0.65, d = l.::lX and the P matrix ha~ the 
clements P 11 = PNN = (d/2) and others, t.ero. ()nee 
again noting its snnilm·ity with o<..:ond) matrix and em­
ploying similar m·guments it can he estahli~hed that 
I Sah is a linear function of both N and z. the topo­
logical invariants. · 

The Randic branching index matrix R with RBI = 

I (\'1 v1) (1!2) can directly he buill up. Fo1 n-hexanc 
<J 

(HSG) it wi II have the tridiagonal structure 

0.0 0.7 0.0 0.0 0.0 ().() 

0.7 0.0 0.5 0.0 0.0 0.0 
R= 0.0 0.5 0.0 0.5 0.0 0.0 (I}) 

0.0 0.0 0.5 0.0 0.5 0.0 
0.0 0.0 0.0 0.5 0.0 0.7 
0.0 0.0 0.0 0.0 0.7 0. 0 I 

For a general alkane one can write, 

R =ti' T + Q ( 10) 

where, qt2 = q21 = q--- = q - = 0.2 and tlw 
N-1 N N N-1 

other matrix elements of Q arc zero. The linem· de-

pendences of other foregoing quantities on RBI an· 

manifestly evident. 

Diamagnelic .\Usceplihi/ity matrix (X) :The explcs-
797 
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sion for diamagnetic susceptihilityx ot a molecule 
A1HkC1 in the singlet ground state is 

( Ne2 
){ 2 2 2} X m = - --2 } .2: '";1 + /.. .2: r,, ' I .2: r 'I 

fiiiiC .JI If If 
(11) 

Evaluatino r 2 "}" etc. quantum mechanically it is 
.0 I' , 11' ., 

pos~ihle to wnte down the mairix X· Hut such a ma-
tnx will he diagonal and not tnd1agonal type as for a 
10pnlogical matrix. Instead, one can huild up x-ma­
tnx wdircclly in tridtagonal form by ~prcadmg Pascal's 
constants9 over atom-atom hond conllihutions so a~ 
to match the final value or dwmagnetic su~ceptihility 
of the molecule in a homologous <>cries of compounds. 
A o;pccilic example of x-matrix for n-hexanl! will he 

Xtmnlar) llk"X:mc] = 
12.6 l.5fi 0.0 ().f) 0.0 0.0 

l.5fi X.43 t.Sn 0.0 0.0 0.0 
--lO (> 0.0 l.Sfi 8.43 1.5fi 0.0 0.0 (l2) 

0.0 0.0 1.56 X.43 1.56 0.0 

0.0 0.0 0.0 1.56 8.43 

0.0 OJ) on 0.0 1.56 12.6 

Hence X (for a general member of the homologous 
SCIIeS of alkanes) 

=liT+If 1+1\t (13) 

where, ll :== -1.56 X w-6 and If"' -8.43 X w-6 . M is a 
matrix where, <M>,, = (M)NN =-4.213 X w-6 and all 
other (M)1/S <1!-·c l".cro. 

Hence. all the ohserved linear relations arc cxpli­
cahlc tollowing the reasonings employed for Eex and 
l:Sah previously. Similarly, the matrices of the ther­
modynamic functions can he built up in tridiagonal 
forms only indirectly like x-matrix. 

(U) IJi,w:oven of new imer-relationsllips: 

J_ct U'> revert to the equations for the c.d.e.i. matnx 
o(.:nnd} =aT+ hI+ M. where theM matrix is diago­
nal w1th (M) 11 = (M)NN = (/J/2) and others, zero. It 
the eigenvector matrix forT be U, the urutary trans­
formation leads to 

u1 (D(coud}- MJ u = u; DC u = 

au* T u + uf b 1 u, 
i.e., u* DC u = D'c =aT'+ b I 04) 

7l)8 

whercT' is diagonal and contains the topological eigen­
values as the diagonal clements. Since I is a unit ma­
trix, it follows that D~ should necessary be diagonal 
containing its eigenvalues, though these eigenvalues 
may not connote anything of physical or chemical rel­
evance . 

D' T' l If A1 c ( = lf 11), A1 ( = t' 11) and A1 ( =o11) he the i -th. 
eigenvalues of D~ matrix, T' matrix and 1 matrix re­
spectively, then by McClelland's relation 7, 

or, d'u = a 1~ 1 + b £\1 (16) 

wherf,"! N is the dimensionality of the matrices. Since b 
(exchange energy component) is intrinsically negative, 
it follows that 

\ ~ d;1 \ =091 aJ2MN- NJbJ 

=2 Za-NJbJ 

(17) 

While equation ( 16) demands a linear relation between 
the eigenvalues ofD~ and the corresponding topologi­
cal eigenvalues, equation ( 17) predicts a lineat plot 
for thr..: modular sum of the eigenvalues of D~ vs Z. 
These predictions arc horne out hy actual calculations 
and plots (Table 2. Fig. 1). A close analysis reveals 
that the eigenvalues of D~ matnx are those of the 
tridiagonal c.d.e.i. matrix of a polymcthylcnc -(CH2)11 -

concsponding to the normal alkane C 11H211+2 !rom 

which two terminal H-atoms have hcen dipped. 

Thus it is found that not only arc the Ecx's of nor­
mal alkanes hut the E~x's also of the derivable 
polymethylenes topologically vary with Nand Z in ex­
cellent linear relationships. Extension ol such mgu­
ment to the overlap matriX equation, Vi7. s(cond) = c T + 
d I + P (cq. ~)enables one to predict the correspond­
ing mtcrTelationshlpS covering both U1c normal alkane~ 
and the polymethylcncs. 

Treatments meted out to the normal alkanes under 
(A) and (R) can at once he extended to the homolo­
gous series of primary alcohols and of carhoxylic ac­
ids wherein the oxygen atoms in -0-H and >C=O 
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groups can he deemed as pseudo-carhon atoms. The 
latter consideration is justified on the ground that the 
diatomic exchange integrals of the pairs f-OH, -CHI 
and f>C =0, -C-C-I are close enough as Tahle 3 dem­
onstrates. This justifies the linear topological 
coiTelationships3•4 with the quantum mechanical quan-

TABLE 3- DIATOMIC EXCHANGE INTEGRALS OF SOME ATOM 

PAIRS IN HoMOLOGOUS SERIES (CND0/2) 

I Iomulogous Diatomic exchange integral (a.u.) 

series 
0-H C-11 0-C C-C 

Alkane~ -0.21 -0.17 

Alcohols -0.24 -0.21 -0.18 -0.17 

Carboxylic acids -0.24 --0.21 -0.19 -0.17 

tities and moleculru· properties of the molecules of these 
homologous seties. Expectedly and in reality such prop­
erties of silanes and primaty amines are likewise re­
lated to topology. 

In fine, we conclude with the following generali-

sation : f'or a homologous series, quantum m~dwnt­
cal quantities and properties of molecules, which an: 
solely or predominautly the sum of two hnndcd-atom 
contrihutions, can he expressed in suitahlc tridiagonal 
condensed matrices which arc dimensionally and stmc­
tura!ly similar to the tridiagonal topological matric~., 
Such quantities/propet1ies are topology-dependent and 
exhihit excellent linear variations with N, Z and RBI. 
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