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Abstract—The aim of our study is to understand the 
perceptual and motor mechanisms of adaptation underlying 
human-robot interaction.  Our long-term goal is to develop 
novel models of adaptation that could be implemented in robots 
to enhance human-robot collaboration. Realizing adaptive 
robots would be fundamental not only in the biomedical field for 
assistance and rehabilitation, but also in industrial settings to 
improve human-robot cooperation. In the current paper, we 
present a pilot experiment aimed at exploring perceptual and 
motor strategies adopted by participants who try to adapt their 
perception to that of a robot with different prior sensory 
experience. 
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I. INTRODUCTION 
Humans are continuously exposed to sensory stimuli 

coming from the surrounding environment. In order to cope 
with neural noise and sensory uncertainty, human perception 
does not rely only on the current sensory information, but 
takes into account previous experience [1]. For instance, when 
a set of stimuli (e.g., spatial lengths or temporal durations) is 
presented to a subject, the perception of the current stimulus 
is affected by the mean magnitude of previous stimuli. This 
perceptual mechanism can be referred to as central tendency. 
Central tendency can be modeled through Bayesian 
techniques [2, 3], by treating previous experience as priors [4]. 
Through the mechanism of central tendency, we can improve 
our perception by decreasing the magnitude of the total error 
and, therefore, increasing the reliability of what is perceived 
[5]. On the contrary, in interactive contexts, central tendency 
might not be the best strategy to coordinate with others. When 
we aim at coordinating with individuals that have different 
priors than ours, one hypothesis is that our perceptual 
processes would benefit from relying less on priors and more 
on the sensory information coming from the environment or 
from our partners [6]. In line with this hypothesis, a recent 
study has shown that, if a robot presents a series of stimuli 
during a task, participants perceive those stimuli relying less 
on their prior experience and this effect is stronger when the 
behavior of the robot is human-like [7].  

To collaborate efficiently with others, humans have also to 
identify their partner’s motor cues: thanks to this kinematic 
feedback, spatial and temporal adaptations between agents are 
facilitated [8, 9]. Therefore, understanding the interplay 
between perceptual mechanisms and motor strategies may be 
crucial to characterize adaptation during interaction, 
improving the development of adaptive robots, able to 
collaborate with humans in a human-like way [10]. 

In this pilot study, we designed an experimental task aimed 
at investigating how humans spontaneously adapt their 
perception and their kinematics to those of a robot in a joint 
temporal perception task. Participants had to reproduce the 
length of temporal stimuli by hitting a target with a wooden 
stick. Then they received a feedback on the estimate of a robot, 
which was programmed to have a different prior experience 

than participants’ one and, therefore, a different perceptual 
model. In this case, participants had the goal to match the 
robot’s estimate. We investigated how participants adapted 
their perception and their kinematics to align with the 
perceptual model of the robot.   

In future experiments, the perceptual and motor strategies 
of adaptation identified in the current study will be 
implemented in robots in order to investigate the interplay 
between perception and kinematics in more complex and 
interactive human-robot contexts. 

II. MATERIALS AND METHODS 

A. Experimental Setup 
The participant is positioned in front of a square-shaped 

table (78x78 cm). At the same time, two strips of leds are 
located horizontally on the table, respectively at a distance of 
24 cm and 32 cm from the edge near the participant. A 
piezoelectric sensor is enveloped in a rubber pad, to register 
the event of the participant’s hit. This represents the target for 
the participant’s movement. To acquire the kinematic data, 
markers are attached to the shoulder, the elbow and three 
points on the metacarpal bones of the hand. The Optotrak 
system is used to register the positions of the markers, with a 
frequency of 100 Hz. (For a complete view of the 
experimental setup, see Fig. 1.)  

B. Experimental Paradigm 
Two consecutive flashes are presented to participants 

through a strip of white leds. The two flashes are separated by 
a temporal duration, chosen randomly in the range of 1.0-4.0 
s with a step of 0.375 s. This temporal duration represents the 
target stimulus duration. The participant’s task varies across 
three different conditions: 

a) Individual (IND): The participant’s goal is to 
estimate the temporal duration between the presented flashes 
in the most accurate way. 

b)  Social with Feedback (SWF): Differently from the 
Individual condition, participants perform the task with a 
robot, which is supposed to produce a perceptual estimate of 
the current temporal stimulus. The participant’s goal is to 
align their response with the robot’s one. The temporal 
estimate of the robot is showed through the lighting of a strip 
of green leds, whereas the robot is not physically present in 
the room during the experiment.  

c) Social No Feedback (SNF): As in SWF, the 
participant’s goal is to align their response with the robot’s 
one. Differently from SWF, the robot’s response is not 
showed and participants have to use the strategy they have 
learnt during SWF.  

The participants’ estimated temporal duration (which 
should be accurate in the Individual condition and match the 
one of the robot in the social conditions) is defined as the 
temporal distance from the second flash and the hit on the 
target. To replicate the desired temporal interval, participants 
have to move a wooden stick from the resting position and hit 
a target on the same horizontal plane. We gratefully acknowledge the financial support of the European 
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Fig. 1. Experimental setup. The participant is seated in front of a square-
shaped table with two strips of leds, located horizontally. The participant, 
with motion capture markers on the right arm, assumes the resting position. 
The target point is positioned on the opposite corner of the table, aligned to 
the resting position. 

Ten volunteers took part in the experiment and each of 
them addressed the three sessions in the described order. IND 
and SWF conditions are characterized by 54 trials where 9 
different stimuli are presented six times in a random order. In 
SNF, each stimulus is repeated three times, for a total of 27 
trials. 

C. Perceptual Behavior of the robot 
To realize the robot behavior, we ran a modified version 

of the Individual condition of the experimental paradigm with 
other 10 participants. In this version, we presented temporal 
durations in the range 4.0-7.0 s with a step of 0.375 s, resulting 
in 9 different stimuli, the mean of the participants’ temporal 
estimates was computed for each stimulus and linear 
regression was used in order to simulate the participants’ mean 
responses in the range of shorter stimuli (1.0-4.0 s): therefore, 
these simulated values were used as the means of nine 
different normal distributions with the corresponding standard 
deviation, derived from the analyzed data. Following the 
previous approach, the standard deviation was realized from 
behavioral data: we considered the mean of the standard 
deviation of the reproduced temporal durations in the range of 
4.0-7.0 s. Subsequently, applying linear regression, mean 
standard deviations were computed in the range of shorter 
stimuli (1.0-4.0 s). 

In this way, the behavior of the robot was realized so that 
every time the robot has to give its response, a value was 
picked from the normal distribution, associated to the 
corresponding stimulus. Therefore, the model of the robot was 
designed in order to produce perceptual responses in the range 
of shorter stimuli (1.0-4.0 s), taking into account a prior 
experience in longer temporal durations (4.0-7.0 s). Thanks to 
this approach, it was possible to investigate human adaptation 
to an agent, characterized by a different sensory experience 
(i.e., prior, in Bayesian terms). 

III. RESULTS 

A. Perceptual Results 
First, we highlight that participants’ responses were 

shorter than that of the robot (mean participants’ estimated 
duration in IND: 2244 ms; mean robot’s estimated duration in 
SWF: 3211 ms). This is the result of the manipulation of the 
robot’s perceptual behavior, which was programmed to 

converge to a different (i.e., longer) prior (Fig. 2 and 3). To 
investigate between-condition differences in participants’ 
perceptual responses, we ran a mixed-effects model with trial-
by-trial reproduced duration (in ms) as dependent variable, 
condition as categorical factor and random effect at the subject 
level. The random effect was applied to the intercept to adjust 
for the individual differences in baseline reproduced duration 
levels and model intra-subject correlation of repeated 
measurements. Results reveal that participants’ reproduced 
durations were longer in the social conditions (SWF and SNF) 
than in the Individual one (SWF – IND: B = 444.47, z = 7.93, 
p < 0.001; SNF – IND: B = 993.23, z = 14.47 p < 0.001). 
Moreover, reproduced temporal durations were longer in SNF 
compared to SWF (SNF – SWF: B = 548.77, z = 7.99, p < 
0.001). In addition, we compared participants’ and robot’s 
estimation means in IND and SNF conditions, to understand 
whether participants shifted from their original response 
distribution in IND to that of the robot in the SNF condition. 
Results show that in the IND condition participants and the 
robot have a significantly different mean of perceptual 
responses, while in the SNF participants’ mean of reproduced 
temporal durations is aligned with the robot’s one  (Wilcoxon-
rank sum test, IND, ROBOT-HUMAN: z = 3.02, p = 0.002; 
SNF, ROBOT– HUMAN: z = -0.53, p =0.597). This result 
demonstrates that participants’ responses in the SNF condition 
are converging to a different prior, which coincides with that 
of the robot (Fig. 2 and 3). 

B. Kinematic Results 
In each trial, the onsets of the movement were computed 

as the 20% of the peak of the velocity profile (Fig. 4). Results 
show that average onsets were significantly different across 
the three conditions: we ran a mixed-effects model with trial-
by-trial onset as dependent variable, condition as categorical 
factor and random effect at the subject level. Results reveal 
that participants’ movements started later in the social 
conditions (SWF and SNF) than in the Individual condition 
(SWF – IND: B = 0.50, z = 4.26, p < 0.001; SNF – IND: B = 
1.04, z = 7.30, p < 0.001). Moreover, movements started later 
in SNF compared to SWF (SNF – SWF: B = 0.54, z = 3.78, p 
< 0.001). Results on participants’ kinematics mirror our 
behavioral results, revealing that the perceptual adaptation 
observed in SWF and SNF (i.e., increase in the reproduced 
stimulus duration) is implemented through a delay in the onset 
of the action (Fig. 5).  

 
Fig. 2. Normal distribution of reproduced durations. We plot  the frequency 
of each reproduced duration: reproduced durations are represented on the x-
axis, while the y-axis refers to their frequencies. Comparing these three 
distributions, it is notable that there is a shift in the prior (distribution mean) 
among conditions. 
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Fig. 3. Linear regression of reproduced durations. Real durations are 
represented on the x-axis, while the y-axis refers to the reproduced durations 
of each values. Each colored line represents the linear regression of the 
means of subjects’ reproduced durations in the different conditions. The 
green line represents the set of responses of the robot. The black one 
corresponds to the identity line: it represents the line of the correct responses. 
We can see a shift in the mean of reproduced durations among conditions 
(vertical shift between IND and SNF). Moreover, we can observe that 
participants’ estimate gravitate towards these means due to the phenomenon 
of central tendency (the slope of the regression lines in IND and SNF is lower 
than that of the identity line). 

 

Fig. 4. Velocity profile: comparison among conditions. This figure shows 
only one subject’s velocity profile in three trials with the same stimulus 
duration, assigned to different conditions. Time is represented on the x-axis, 
while the y-axis refers to the velocity of the hand until the participant’s hit 
on the rubber pad. The three vertical lines identify the onset of the movement 
to reproduce the temporal duration equal to 2.5 s in the three different 
conditions. It is clear that the onset of the movement is delayed in the social 
conditions (SWF and SNF). 

 
Fig. 5. Normal distribution of onsets: comparison among conditions. The 
values of frequency of each onset are plotted in this figure: onsets are 
represented on the x-axis, while the y-axis refers to the frequency of each 
value. Comparing these three distributions, it is notable that there is a shift 
in the start of the movement among conditions, mirroring the behavioral 
analysis (Fig. 2). 

IV. CONCLUSION 
Results of this pilot study reveal that participants can learn 

and align with the perceptual model of a robot during a joint 
perceptual task. Moreover, through the analysis of kinematic 
data, we identified a relationship between perceptual and 
motor mechanisms of adaptation. In particular, participants 
use the robot’s feedback to shift the prior of their response 
distribution to align it with the one of the robot. From a motor 
perspective, this adaptation is implemented through a shift in 
the onset of movement, suggesting the emergence of top-
down processes of action modulation, guided by perceptual 
adaptation.  

Future studies will implement a model of the perceptual 
mechanisms and the motor strategies observed in the current 
pilot study in a social robot. Indeed, participants will 
physically see the robot and will have an embodied interaction 
with it. In this way, the movements of the robot will be visible: 
therefore, participants’ kinematics will be studied in order to 
investigate whether and how motor feedbacks can help the 
participant to align with the robot.  

In conclusion, the current study offers novel insights on 
how humans adapt their perceptual and motor strategies to 
align with another agent during interaction. In the future, the 
implementation of human-inspired perceptual and kinematic 
models will enable robot to be adaptive so that they can assist 
elderly people and be used for rehabilitation. In the former 
scenario, robots will manage to predict humans’ perceptual, 
motor and behavioral peculiarities in order to tailor their 
actions or warn them in case of inaccuracy. In the context of 
rehabilitation, patients have to repeat the same actions 
multiple times, inducing to regress to the mean: thanks to this 
research, it may be possible to understand and predict patients’ 
actions and guide them towards an improvement [11]. 
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