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Abstract— Underactuated compliant arms are a promising
technology to outperform traditional rigid robots in interaction
tasks, thanks to their adaptability and shock-absorbing prop-
erties. However, the control problem is yet to be solved. In
this paper, we study the controllability for a class of planar
underactuated compliant arms under gravity. We prove the
Kalman rank condition for a system with one actuated elastic
joint, i.e., base joint, and a generic number of unactuated
elastic ones. The proof relies on the induction principle on
the dimension of the reachability matrix. Finally, we generalize
the result for a generic number of actuated elastic joints in the
chain.

I. INTRODUCTION

Underactuated compliant robots include systems with elas-
tic elements lumped at the joints, i.e., articulated robots [1],
flexible links robots [2], and continuum robots [3]. Despite
the great effort into the design of highly performant and
compliant structures [4], the control problem is still open.

To tackle this challenge, it is necessary to analyze the
controllability [5], and in particular, the small-time local
controllability (STLC). Roughly speaking, if the system is
STLC from a state, there exists a control action capable to
bring the robot from the initial state to the final one in a
finite time. Additionally, the reachability set is not empty in
a neighborhood of the initial state [6].

In the literature, many articles investigate the controllabil-
ity for planar rigid structures [7]. However, when the number
of robot Degrees of Freedom (DoFs) increases the analysis
results are complicated [8]. Thus, strong hypotheses are
required to prove the controllability, e.g., in [9], the Authors
consider links in the chain without masses. Surprisingly,
these systems are accessible as showed in [10]. However,
the sufficient conditions developed in [6], [11], and [12]
can not prove the STLC also for a 2-DoFs robot, namely
Pendubot. For this reason, in [13], the analysis is carried out
for a multi-link rigid planar robot with one input deriving
rank conditions, which depend on the dynamic parameters
of the robot. The same kind of system is studied in [14], the
controllability descends from the use of a global stabilizing
feedback control law, which guarantees the convergence of
the state. Then, in [15], the case of multiple actuators is
considered. However, in all these articles, no elasticity is
embedded in the robot model. Thus, the controllability of a
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planar underactuated compliant n−link arm with any number
of actuators is still an open problem.

Finally, the main contribution of this work is the proof
of the STLC property for the class of compliant arms. The
proof relies on the Kalman rank condition using the induction
principle on the dimension of the reachability matrix.

II. PROBLEM DEFINITION

We model the underactuated compliant arm such as a
combination of active and passive elastic joints [16], i.e.,

M(q)q̈+C(q, q̇)q̇+G(q)+Dq̇+Kq = Sτ , (1)

where q, q̇, q̈ ∈Rn are the joint position, velocity, and accel-
eration vectors, respectively. We indicate with na the number
of actuated joints. M(q) ∈ Rn×n such as M(q)� 0 ,∀q ∈ Rn

and C(q, q̇) ∈Rn×n are the inertia and Coriolis matrix of the
robot, respectively. G(q) ∈ Rn includes the gravity effect,
and D ∈ Rn×n is diagonal damping matrix such as D � 0.
K ∈ Rn×n is the spring matrix computed such as K � 0. In
torque term Sτ , τ is the control input, and S : Rn×Rna →Rn

is the underactuation matrix.
The system (1) can be written in the classical state-space

affine form by defining the state vector x =
[
q> , q̇>

]> ∈R2n

ẋ(t) = f (x(t))+g(x(t))u(t) , (2)

where t ∈ [0, tf] is the time variable, while u ∈ Rna is the
control action, i.e., τ in (1). f (·) : Rn× [0, tf]→Rn, and g(·) :
Rn × [0, tf]→ Rn×na are the drift and control vector field,
respectively, i.e.,

f (x) =
[

q̇
−M−1(q)Q(q, q̇)

]
, g(x) =

[
0n×na

M−1(q)S

]
, (3)

where Q(q, q̇),C(q, q̇)q̇+G(q)+Kq+Dq̇.
Finally, the goal of this article in to prove that the under-

actuated compliant arm (1)-(2) is STLC from an equilibrium
point, i.e., verify the Kalman rank condition.

III. MAIN RESULT

Recalling the systems (1)-(2), any underactuated compliant
arm has a rich equilibria set, which is equal to

Θeq =

{
x(0) =

[
q>(0) , 0>n×1

]>
∈ R2n ,τ(0) ∈ Rna∣∣∣G(q(0))+Kq(0) = Sτ(0)

}
. (4)

It is worth nothing that G(q(0)) + Kq(0) = Sτ(0) is a
nonlinear system of n equations containing n+1 unknowns,
thus the number of solutions is infinite.
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In the following proposition, we prove the STLC prop-
erty [5] of the system (1)-(2).

Proposition 1. The system (1)-(2) is STLC from the equi-
librium point x(0) =

[
q>(0), 0>n×1

]> ∈R2n, u(0) ∈Rna with
(x(0), u(0)) ∈Θeq , if rank{∂G(q)/∂q

∣∣
q(0)+K}= n.

Proof. Linearizing the system (2) around the equilibrium
point (x(0) , u(0)) ∈ Θeq, leads to ξ̇ = Aξ +Bυ , where ξ ∈
R2n, υ ∈ Rna , A ∈ R2n×2n, and B ∈ R2n×na are computed
as Taylor series. Without loss of generality, let us consider
q(0) = 0 ∈ Rn, na = 1, and u(0) = 0 ∈ R. If

rank
{[

B, AB, A2B, · · · , A2n−1B
]}

= rank{R}= 2n , (5)

then the system (1)-(2) is STLC from x(0) ∈ R2n.
The expressions of A and B are

A ,

[
0n In
A21 A22

]
, B ,

[
0n×na

B2

]
, (6)

where
A21 = −M−1

(
∂G
∂q +K

)∣∣∣
q(0),u(0)

,

A22 = −M−1D
∣∣
q(0),u(0) ,

B2 = M−1S
∣∣
q(0),u(0) .

(7)

Let us define the block-diagonal matrix B =
blkdiag(B2, · · · ,B2) ∈ Rn2×nna . Then, we can rewrite
(5) such as

R ,
[
R0 R1 R2 R3 · · ·

]
B =[

0n In A22 A21 +A22 · · ·
In A22 A21 +A22 A22 (A21 +A22)+A21A22 · · ·

]
B ,

(8)

where

Ri ,

[
Ai
[1]

Ai
[2]

]
=

[
Ai−1
[2]

A21Ai−1
[1] +A22Ai−1

[2]

]
, i = 1, · · · ,2n−1 . (9)

From direct computation, we have that
i) rank{A21}= rank{A22}= n.

ii) rank{A21 +A22}= n.
iii) rank{A21A22}= rank{A22A21}= n.
iv) rank{A21B2}= rank{A22B2}= rank{B2}= na = 1.

Now, we proceed by induction on the dimension of R in
(8). Let h = 0, · · · ,2n−1 be the inductive index.

The base step h = 0 leads to rank{R0B2} = na = 1.
Analogously, from direct computation we have
rank

{[
R0B2 R1B2

]}
= 2na = 2 when h = 1.

Now, we apply the induction hypotheses on h= 2, · · · ,2n−
2, which yields to rank

{[
R0B2 · · · R2n−2B2

]}
= 2n−1 .

The induction step h = 2n− 1 leads to R in (8). Due to
the inductive hypotheses, R2n−2B2 is linear independent form
[R0B2, . . . ,R2n−3B2]. Hence, recalling (9) and (i)-(iv) we have
also that R2n−1B2 is full rank and linearly independent from
[R0B2, . . . ,R2n−2B2] leading to the thesis, i.e., (5) holds.

Remark 1. The extension to na ∈N such as na ≤ n actuators
can be trivially obtained considering Ad2n/nae−1 products
instead of A2n−1 in (5), and following analogous steps.

IV. CONCLUSION

This article proposes proof of the controllability for com-
pliant underactuated arms. The proof relies on the Kalman
rank condition using the induction principle on the dimension
of the reachability matrix. Future work will investigate the
observability.
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