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Recognizing Italian Gestures with Wearable

Sensors
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Abstract—For humans, gestures are a means of commu-
nication. In order to create a more spontaneous interaction
between humans and robots, social robots should be able to
understand the information we convey with gestures. To this aim,
(i) we collected a dataset with 1469 examples of twelve common
Italian hand-gestures using a custom-made inertial glove, via
experiments organized as human-robot interactions, and (ii) we
propose an offline gesture recognition model based on a Long-
Short Term Memory (LSTM) Recurrent Neural Network (RNN),
which achieved an overall accuracy equal to 87.0 & 3.7%.

Index Terms—Non-Verbal Communication, Gesture Recogni-
tion, Recurrent Neural Network, Inertial Measurement Unit

I. INTRODUCTION

In the past few years, research has shown that social robotics
may bring major benefits to the lives of people. Robots could
be used in public spaces, education and personal care [1]. In
order to be truly effective in the interaction, robots should
understand human communication signals. In a general sense,
human communication exploits different modalities. It can be
explicit, if two or more people intend to exchange information
[2]l, or implicit, if a person communicates to others uninten-
tionally, e.g., through eye gaze or body posture [3]]. Gestural
communication is a common way of expressing ourselves with
our body, with the hands playing a preferential role. It is an
explicit, culture-oriented form of communication, and Italian
hand gestures are a well-known, idiosyncratic, example [4]—
[6]. These gestures are characterized by a gesture-meaning
pair, which is well defined and understood. However, their
specificity notwithstanding, they are a natural and spontaneous
form of communication.

In a broad sense, gesture recognition is a process involving
two main sub-processes, i.e., the definition of a gesture model
and its online implementation. To start with, it is often required
to collect human data through sensors. These can be image-
based, e.g., depth or stereo cameras, or non-image-based,
such as accelerometers or gyroscopes, as in this study. The
latter, compared to image-based approaches, are a good choice
in terms of portability and size of the data they produce.
Moreover, it is important to extract only relevant information,
by looking at the portions of data referring to the gestures,
i.e., its detection. This is usually achieved through auto-
matic gesture segmentation techniques which, for example,
apply a threshold on the variations between two consecutive
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Fig. 1. Data collection setup. iCub asks the participant, wearing the glove
on their right hand, to perform the Italian hand gesture that will be shown on
the monitor.

velocities [7]. Building a model usually requires solving a
multi-classification problem, often addressed through data-
driven approaches. A probabilistic classifier can be defined
and trained to classify the detected gestures under a closed
world assumption: each input gesture is necessarily one of the
gestures in the dictionary.

In this paper, we address the problem of classifying some
of the most typical Italian hand gestures. To this extent,
we collected a novel dataset, and developed a recognition
architecture capable of classify them offline.

II. METHODS

In this study, we consider twelve, typically Italian gestures
[8]. The complete gesture selection can be seen in the accom-
panying Videdﬂ Given the social nature of the study, emphasis
must be placed on interactions with participants, an essential
step towards replicating gestures. Since the robot can provide
the same Human-Robot Interaction (HRI) for everyone, we
designed an HRI experiment to collect a gesture dataset, as
shown in Figure [I] During the experiment, each volunteer sits
in front of a desk and initially holds their hands on the table.
For each gesture class, iCub asks the participant to watch a
video depicting an example of the gesture. At the end of an
emitted sound, the participant can perform the gesture and
then return to the initial position. Data collection was carried
out using a custom-made data glove, worn by volunteers on
their right hand. The glove has two Inertial Measurement Units
(IMUs) for each finger. In the thumb, they are close to the
metacarpal and intermediate phalanges. In all other fingers,
IMUs are always located on the proximal and intermediate
phalanges. Moreover, an additional IMU is placed on the
hand back, i.e., on the metacarpal bones. Each IMU allows
to detect ten features with a 28 Hz frequency: the triaxial
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linear accelerations, the triaxial angular velocities, and the four
orientations expressed as quaternions. The collection process
involved 31 Italian volunteers (19 males, 12 females, age:
29 £ 5 years). Each participant experienced the same human-
robot interaction, and carried out every gesture four times.
Gestures can be represented as a time-series of 110 different
features, i.e., 10 features for each of the 11 IMUs. Since
each volunteer performed four repetitions of each gesture type,
the dataset contains 124 examples for each class and 1.488
examples in total. However, we removed 19 examples (1.27%),
performed outside the predetermined time interval (signaled by
the described sound). Hence, we considered 1469 examples.
Since raw data contain more than just gesture-related infor-
mation, we developed an automatic segmentation algorithm to
extract (offline) the relevant portions of data from the input
sequences. Given a gesture, the algorithm computes, for each
IMU, the norm of the acceleration components and identifies
the start and the end points of a gesture by applying a threshold
estimated when the hand was held steady in the initial rest
position. This assumes, obviously enough, that the relevant
motion in each trial corresponds to the gesture execution.
The network model we selected is a Long-Short Term
Memory (LSTM) Recurrent Neural Network (RNN) for its
capability to learn time-dependent information. More specifi-
cally, the model is characterized by: an initial masking layer;
an LSTM layer, with 200 neurons, “tanh” activation function,
“sigmoid” recurrent activation function and L2 kernel regular-
izer; a dropout layer; a dense layer with 200 neurons and a
“relu” activation function; a final dense layer with 12 neurons
and a “softmax” activation function. The classification model
is implemented using Keras and TensorFlow. It is trained with
batches of 128 gestures, with (a randomly selected) 70% of
the dataset (training set) and evaluated, considering k-fold
cross-validation approaches, with the rest of the dataset (fest
set). In addition, 20% of the training set (validation set) is
evaluated for early stopping. Note that the LSTM-model is
trained and evaluated offline, providing as inputs complete
gestures, i.e. time-series of 160 timestamps and 110 features.
An important consideration regarding the dataset is that each
gesture may have a different length. This occurs because each
participant carries out the gestures in their own way, taking
a slightly different amount of time. For this reason, we pad
the data to obtain sequences of 160 samples and use an initial
masking layer, which allows us to exclude, from the following
computations, the values added during the padding.

III. RESULTS AND CONCLUSIONS

Figure [2] shows one of the confusion matrices computed
when carrying out the k-fold cross validation (kFCV). From
the matrix diagonal, we can observe how almost all classes
are correctly classified, with a test set accuracy, precision
and recall equal to 93%. The overall accuracy, computed as
mean of all the KFCV accuracies, is equal to 87.0 + 3.7%.
This level of generalization is a satisfactory result considering
two reasons. On the one hand, the number of classes to be
recognized is larger if compared to other similar studies [9].
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Fig. 2. Confusion matrix summing up the model performance. Gesture labels
are on the left/bottom sides. The full label descriptions can be observed in
the video (link in note [T).

On the other hand, the variability among gestures performed
by people with different experiences does not compromise the
generalization capabilities of the model. The main drawback
of the current stage of this work is related to the closed world
assumption made while training the model: if the input gesture
is unknown to the model, it will be anyhow classified as
one of the classes in the dictionary. Future developments of
this work will be aimed at overcoming this issue. We will
consider, for example, an indirect detection module after the
classification module [10]. In addition, we plan to release an
online version of the architecture, to be used in actual human-
robot interaction scenarios.
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