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Abstract—We propose a hierarchical framework that combines
global path planning, local path planning and reactive strategies,
ensuring a safe and socially-aware navigation. We test the
effectiveness our approach on real robotic platforms.

Index Terms—Multi-robot navigation, Socially-aware naviga-
tion, Distributed systems.

I. INTRODUCTION

The ability to move in dynamic and partially unknown
environments is a fundamental requirement for modern ground
robots, either considering legged or wheeled robots. When we
deal with robots navigation in human-shared environments, it
turns out to be necessary meet multiple requirements:

R1: Robustness and safety in navigation. The first essen-
tial requirement concerns the safety guarantees. In particular,
we have to ensure collision avoidance with obstacles, other
robots and human beings. This condition must be ensured
even in the face of inaccurate obstacle’s velocity estimation
or inaccurate robot localisation.

R2: Socially-aware motion planning. Ensuring safety is
not enough in a human-shared environment. Indeed the robot
has to stay clear enough from the human private space, it has to
follow smooth trajectories and it should anticipate the human
motion intentions as well. In this way, the robot presence will
not intimidate the humans in the scene, since the robot follows
trajectories that are easily predictable by the pedestrian.

R3: Multi-agent coordination. Most often, we are con-
sidering spaces that are shared with multiple robots, thus
requiring the definition of a distributed coordination strategy
between the robots.

R4: Dynamic environment. The prior knowledge of the
mission space is an obvious prerequisite: however, the naviga-
tion algorithm should be able to 1. quickly react to unmapped
obstacles that are detected by on-board sensors and 2. drive
the robot towards its goal location.

R5: Computation efficiency. The last requirement regards
the computation efficiency. This is necessary mainly for two
reasons: 1. the robot should be able to compute the control
inputs with high frequency to ensure a timely response to
unexpected situations and 2. we need to adopt lean hardware
with reduced costs and low energy consumption.
Related works To the best of the Authors’ knowledge, a
comprehensive solution that satisfies all the requirements
mentioned above is not available in the literature.

In [1] the authors provide a brief survey on robots navigation
in human environments; they identify mainly three different
approaches to the problem: reactive methods, predictive plan-
ners and learning-based methods. In the following we under-
line the pros and cons of the three methods just mentioned.

Reactive methods: These methods synthesise directly the
control inputs on the basis of local information. The most pop-
ular examples are Force field based [2] or Velocity Obstacle
(VO) based methods [3]. These methods are by construction
computationally efficient (R5) and typically they can be ex-
tended to the multi-agent case (R3). As the name suggests,
these methods are designed to react promptly and safely to
the presence of obstacles (R1). Nevertheless, the majority of
these approaches, e.g. VO-based methods, need a very good
accuracy in the obstacles’ velocity estimation; when this is not
possible, collisions cannot be ruled out (failing R1). Moreover,
the main drawback is induced by the short-sighted decision
mechanism, which leads to 1. possible deadlocking conditions
(failing R4), and 2. paths that may not stay clear enough from
the pedestrian private space, hence violating the socially-aware
requirement (failing R2).

Predictive methods: The predictive methods synthesise a
safe path, which optimise a desired cost function, that takes
into account local information and also a reliable human
motion prediction. As long as the human motion prediction
perfectly fits the trajectory that the person will go through
and the cost function is properly selected, the planned path
results to be safe (R1) and socially-aware (R2). By relying
on these methods, deadlock is typically avoided because of
the longer planning horizon (R4). On the other hand these
methods are computationally expensive, hence they cannot
execute with a sufficiently high frequency (failing R5). As
a consequence, if the human motion prediction results to be
inaccurate, safety cannot be ensured (failing R1). Moreover,
the multi-agent coordination cannot be straightforwardly inte-
grated; some adaptation is possible but priorities among agents
have to be assigned (failing R3).

Learning-based methods: Finally, learning-based methods
can obtain a good level of safety and socially-awareness
(R1, R2) by training the robots with a lot of examples.
However, these techniques may easily fall in what is called
data overfitting, which leads to the incapability to generalise
the behaviour in different or dynamic environments (failing
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R4). Rigorous safety guarantees cannot be provided by relying
on pure learning-based methods (failing R1), moreover multi-
agent management (R3) increases considerably the degree
of complexity at the learning stage. Nonetheless, the com-
putational requirements are usually acceptable for real-time
navigation aims (R5).

II. SOLUTION OVERVIEW

Our proposal [4] identify a hierarchical architecture com-
posed by 3 layers that works together in order to satisfy
the requirements R1 - R5. As we depict in Figure 1 we
called the three layers: Global path planner (GPP), Local path
planner + Human motion prediction (LPP) and Lloyd-based
controller (LB) . Thanks to the interaction between the three
layers we achieve: guarantees on safety and robustness thanks
to the imposed safety redundancy and the high frequency
correction implemented by LB (R1); generation of socially-
aware trajectories thanks to the LPP module, which generates
smooth and safe paths taking into account human motion
predictions to anticipate their intentions and to stay clear
enough to their private space (R2); an effective distributed
coordination for the multiple robots in the scene, due to
the LB design (R3); a successful management of partially
dynamic environments and the progress towards the goal
location because of the interaction between GPP and LPP
layers (R4); quick computation of the control inputs thanks
to the LB controller and a moderate computational power
requirement to run the overall algorithm (R5).

As it can be noticed in Figure 1, the inputs for the i–th
agent are the CAD map, the initial position pi(0) and the
final goal position ei. The sensors used for the localisation
of the unicycle-like robot adopted in the experiments are the
wheel encoders, the Inertial Measurements unit (IMU) and
the Light Detection and Ranging (LiDAR). The GPP layer
uses the CAD map, pi(0) and ei to generate the global path
Pg,i, which safely links the initial robot position pi(0) to its
final goal location ei. The global path is computed only upon
request, typically at the beginning of the mission. The global
path Pg,i is passed to the second layer, i.e. the LPP, to generate
the local path Pl,i(t) incorporating the human beings motion
predictions Ph(t, t+ nfδt). This layer uses local information
in a range of 5−10 m and it is computed with a frequency of
1.25− 2 Hz. The path Pl,i(t) generated fits the requirements
(R1), (R2) and (R4), without considering the presence of the
other robots. Then, the local path Pl,i(t) is passed to the
LB controller that generates the forward velocity vi and the
angular velocity ωi of the unicycle robot. The LB layer has a
reduced space of interest i.e. 3 m, and it generates updated
control inputs every 50 ms. The communication network
is mainly used to share information about the neighbours
positions pj(t), to coordinate the robots, and the data collected
from the environment. Roughly speaking, the LB controller
builds a safe region around the robot and it checks if the Pl,i

path is safe: if so, the robot basically follows the Pl,i path;
otherwise it computes a safety-preserving deviation. The Pl,i

path may be unsafe mainly for two reasons 1. there is another
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Fig. 1. Proposed hierarchical architecture for the i–th agent.

Fig. 2. Navigation with 3 robots in human shared environment. We depict
the past trajectories (solid lines), the cells computed by LB for each robot, the
planned paths by using LPP (dashed lines) and the human motion predictions
(lines with asterisks).

robot on the planned path (LPP does not consider the presence
of other robots) and 2. the environment is highly dynamic,
hence the updating frequency may be too slow.

We tested the proposed framework on real robotic plat-
forms fully developed at the University of Trento and we
proved through extensive experiments the effectiveness of
our approach. In particular, Figure 2 shows a snapshot for
an experiment conducted with 3 robots in a human shared
environment, where the paths and the attention space of the
LB are clearly visible.

III. FUTURE WORKS

In the near future we plan to integrate more sensors with
the aim of obtaining more accurate human motion predictions
and hence improve the LPP. Other studies should be done to
integrate in the LPP a distributed and computationally efficient
(not sequential) multi-agent management system.

REFERENCES

[1] J. Cheng, H. Cheng, M. Q.-H. Meng, and H. Zhang, “Autonomous
navigation by mobile robots in human environments: A survey,” in 2018
IEEE International Conference on Robotics and Biomimetics (ROBIO).
IEEE, 2018, pp. 1981–1986.

[2] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous robot vehicles. Springer, 1986, pp. 396–404.

[3] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The International Journal of Robotics Research,
vol. 17, no. 7, pp. 760–772, 1998.

[4] M. Boldrer, A. Antonucci, P. Bevilacqua, L. Palopoli, and D. Fontanelli,
“Multi-agent navigation in human-shared environments: a safe and
socially-aware approach,” Robotics and Autonomous Systems, submitted.

22


