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Abstract—In this paper, we study the fundamental limits of
simultaneous information and power transfer over a Rayleigh
fading channel in the presence of high-power amplifier (HPA)
nonlinearity. In particular, a three-party communication system
is considered, where a transmitter aims simultaneously conveying
information to an information receiver and delivering energy to
an energy harvester receiver. We study the information-energy
capacity region and the associated input distribution under: i)
average-power, peak-power (PP) constraints at the transmitter, b)
HPA nonlinearity at the transmitter, and c) nonlinearity of the
energy harvesting circuit at the energy receiver. By extending
Smith’s mathematical framework [1], we show that the optimal
input distribution under those constraints is discrete with a
finite number of mass points. Moreover, we derive a closed-form
expression of the capacity-achieving distribution for the low PP
regime, where there is no trade-off between information and
energy transfer. Finally, we show that HPA significantly reduces
the information energy capacity region.

Index Terms—SWIPT, wireless power transfer, high-power
amplifier, optimal input distribution, information-energy capacity
region, HPA.

I. INTRODUCTION

Simultaneous information and power transfer (SWIPT) is
a technology that exploits the duality of the radio frequency
(RF) signals, which can carry both information and energy
[2] through appropriate co-design and engineering. The
idea of wireless power transfer (WPT) was first proposed
by Tesla in the 20-th century [3], and now presents a
promising solution for modern communication systems such
as low-power short-range communication systems, sensor
networks, machine-type networks, and body-area networks
[4]. The notion of the information-energy capacity region for
SWIPT systems, it was first formalized by Varshney [5] in
the context of point-to-point scenarios. This work has been
extended in [6] for a parallel links point-to-point channel.
More recent works study the integration of SWIPT to more
complex network topologies e.g., multiple access channel [7],
interference channel [8], multiple-input multiple-output [9],
multiple-antenna cellular networks [10], etc. A comprehensive
overview of existing results in SWIPT for various fundamental
multi-user channels is presented in [11].
The design of the WPT component is crucial in order to
characterize SWIPT systems. Most of the literature assumes
simple linear models for the RF energy harvester (EH)
receiver [9], [12] to simplify analysis. However, one of

the main particularities of a SWIPT network is that the
WPT channel is highly nonlinear (in contrast to the linear
information transfer channel). Recent studies take into account
the nonlinearity of the rectification circuit, and study the
impact of waveform design and/or input distribution on the
achieved information energy capacity region. For instance,
the work in [13] models the rectifier behavior and introduces
a mathematical framework to design waveforms that exploit
nonlinearity. This observation introduces a relevant question
for SWIPT networks: ”what is the fundamental limits of a
SWIPT system with a non-linear EH receiver ?”
The problem was first formalized in [14] by considering
a truncated Taylor expansion series approximation for the
diode’s characterization function over an additive white
Gaussian noise (AWGN) channel. The authors have shown
that the optimal input distribution is zero-mean complex
Gaussian distribution, with an asymmetric power allocation
for the real and the imaginary parts. However, a more general
model was proposed in [15], by using the exact form of the
diode’s characteristic function. The authors have extended
Smith’s mathematical framework [1] and have shown that
the optimal input distribution under the first the and second
moments statistics as well as a peak power (PP) constraint at
the transmitter, it is unique, discrete with a finite number of
mass points.
On the other hand, experimental studies demonstrate that
signals with high peak-to-average-power-ratio (PAPR) e.g.,
multi-sine, chaotic signals, white noise, etc [16], provide a
higher direct-current (DC) output, in comparison to constant-
envelop sinusoidal signals [17], [18]. However, signals with
high PAPR are more sensitive to high-power amplifier (HPA)
nonlinearities, which significantly degrade the quality of
the communication [19], [20]. With the exception of a few
studies (e.g., [21]), existing works do not consider the effects
of HPA on SWIPT performance and assume that the HPA
operates always in the linear regime. In addition, most of
the aforementioned studies on SWIPT systems focus on
simple AWGN channels and therefore the impact of the
channel fading has not been investigated. To the best of the
authors’ knowledge, this is the first work that takes into
account the effect of HPA’s non-linearity on SWIPT systems
over fading channels from an information theoretic standpoint.



Fig. 1. A SWIPT system over a fading channel with HPA at the transmitter
and a non linear EH channel.

Specifically, this paper studies the fundamental limits of
SWIPT over a Rayleigh-fading channel by taking into account
a memoryless HPA model at the transmitter. We consider a
basic SWIPT system, where a transmitter simultaneously sends
data to an information receiver and power to an EH receiver
through a Rayleigh-fading channel; we consider average power
(AP) and PP constraints at the transmitter as well as a non-
linear power transfer channel. We characterize the information
energy capacity region and we show that the associated
capacity-achieving input distribution is unique, discrete, with a
finite number of mass points. This study generalizes the result
for the capacity-achieving input distribution of a discrete-
memoryless Rayleigh-fading channel under AP, which has
been studied in [22]. We show that HPA significantly reduces
the information energy capacity region, while increasing the
PP constraint enlarges the associated region. Finally, we study
the optimal input distribution for the low PP regime, where no
trade-off between information and energy transfer is observed.

II. SYSTEM MODEL

Consider a three part communication system, where a
transmitter aims simultaneously convey information to an
information receiver (IR) and energy to an EH receiver through
a Rayleigh-fading channel. The IR converts the received signal
to the baseband to decode the transmit information, while
the EH receiver harvests energy from the received RF signal.
In each channel use, the transmitter inputs a pulse-amplitude
modulated signal x(t) =

∑∞
k=−∞ x[k]p(t − kT ), with an

average power P , where p(t) is the rectangular pulse shaping
filter (i.e., p(t) = 1 for 0 < t ≤ T ), T is the symbol interval,
and x[k] is the information symbol at time index k, modeled
as the realization of an independent and identically distributed
(i.i.d) real random variable X with a cumulative distribution
function F . We assume a normalized symbol interval T = 1
and thus the measures of energy and power become identical
and therefore are used equivalently. The system model is
depicted in Fig. 1. The transmitted amplitude-modulated signal
x(t) is subjected to nonlinearities induced by the HPA; the
output of the nonlinear HPA can be written as x̂[k] = d(x[k])
(i.e., random variable X̂ = d(X)), where d(·) denote the AM-
to-AM conversion which is given by the considered solid state
power amplifier (SSPA) HPA model [19] i.e.,

d(r) =
r[

1 +
(
r
As

)2β
] 1

2β

, (1)

where As is the output saturation voltage, and β represents
the smoothness of the transition from the linear regime to the
saturation.

A. Information transfer
From information transmission standpoint, we consider a

memoryless discrete-time Rayleigh-fading channel proposed
in [22]; the channel output at the receiver during the channel
use t is given by

y(t) = h1,tx̂(t) + Zt, (2)

where x̂(t) is the channel input induced by the HPA and h1,t

and Zt are independent complex circular Gaussian random
variables distributed as

h1,t ∼ CN (0, σ2
1), (3)

Zt ∼ CN (0, σ2
2). (4)

Since the phase of the fading parameter h1,t is uniform, an
equivalent channel with nonnegative input X̂ and nonnegative
output Y was proposed in [22]. The conditional probability of
this channel is given by

p(y|x̂) =
1

1 + x̂2
exp

(
− y

1 + x̂2

)
. (5)

B. Power transfer
At the EH receiver, the contribution of the noise is assumed

to be negligible, hence, the representation of received signal
at the EH receiver (in the baseband) is given by

s(t) = h2x̂(t), (6)

where h2 ∈ R is the channel fading for the link between the
transmitter and the EH receiver; it is assumed to be static in
this workIn practical SWIPT environments, the EH receivers
are located close to the transmitter (e.g., a line of sight link).
Hence, we can assume that the channel fading h2 (associated
to the power transfer) is a constant [15].. Let E : R → R+

be the function that determines the average energy harvested
[15], which is given by

E(X̂) = E
[
I0

(√
2Bh2|X̂|

)]
, (7)

where I0(·) is the modified Bessel function of the first kind
and order zero and B is a constant that depends on the
characteristics of the rectification circuit. The EH constraint
is reduced as

E(X̂) ≥ Ereq. (8)

C. Problem formulation
The main objective is to maximize the average mutual in-

formation between X and Y subject to AP and PP constraints
on the transmit symbols X , and a minimum harvested power
constraints at the EH receiver. The optimization problem can
be written as

sup
F∈F

I(F ) =

∫ ∫
p(y|x) log

p(y|x)

p(y;F )
dydF (x),

subject to E[X2] ≤ P,
E(X̂) ≥ Ereq,

(9)



where F is the set of distribution functions of nonnegative
random variables. The mutual information between X and Y ,
as well as the AP, PP constraints and the minimum energy
required at the EH receiver, can be expressed in function of
the distribution F . Denote by g1 : F → <, and g2 : F → <
the following functions

I(F )
4
=

∫ A

0

i(x;F )dF (x), (10)

g1(F )
4
=

∫ A

0

x2dF (x)− P, (11)

g2(F )
4
= Ereq −

∫ A

0

I0

(√
2Bh2|x̂|

)
dF (x), (12)

and let Ω be the set of all input distribution, such that

Ω =

{
F ∈ F ;

∫ A

−A
dF (x) = 1; gi(F ) ≤ 0; i ∈ {1, 2}

}
.

(13)
Then the optimization problem in (9), could be written simply
as C = sup

F∈Ω
I(F ).

III. MAIN RESULTS

A. Discreteness of the optimal input distribution

In this section, we study the properties of the capacity
achieving distribution, i.e., the solution of the optimization
problem in (9). By extending the mathematical framework
proposed in [1], Theorem 1 establishes the existence and the
uniqueness of the optimal input distribution. By using the
Lagrangian Theorem, the dual equivalent problem is given by
Corollary 1. Furthermore, we give necessary and sufficient
conditions for the optimal input distribution in Corollary 2.
Finally, we show that the capacity-achieving input distribution
is discrete in Theorem 2.

Theorem 1. The capacity C is achieved by a unique input
distribution F ?, i.e.,

C = sup
F∈Ω

I(F ) = I(F ?). (14)

Proof: The proof is presented in [23].
Note that in the case where the EH receiver is omitted, the

problem is reduced to the information capacity of a Rayleigh-
fading channel [22]; in this case, it has been shown that the
optimal input distribution is discrete with a finite number of
mass points, even without considering the AP constraint.

Corollary 1. The strong duality holds for the optimization
problem in (14), i.e., there exist constants λ1 ≥ 0 and λ2 ≥ 0
such that

C = sup
F∈Ω

I(F )− λ1g1(F )− λ2g2(F ), (15)

Proof: The proof follows similar arguments as [15] and
[22] and is presented in [23].

The following Theorem establishes a necessary and suffi-
cient condition on the optimal input distribution.

Corollary 2. Let E0 be the point of increase of a distribution
F ?, then F ? is the optimal input distribution, if there exist
λ1 ≥ 0 and λ2 ≥ 0, such that

λ1

(
x2 − P

)
− λ2

(
I0(
√

2Bh2x)− Ereq

)
+ C

−
∫
p(y|x) log

p(y|x)

p(y;F ?)
dy ≥ 0, (16)

for all x, with equality if x ∈ E0.

Proof: The proof follows the same arguments as [15] and
[22] and is presented in [23].

By using the invertible change of variables, i.e., s = 1
1+x2 ,

we have
p(y|s) = s exp(−ys), s ∈ (0, 1]. (17)

The following proposition holds by using the new random
variable S.

Proposition 1. S? is the optimal input distribution on (0, 1],
if there exist λ1 ≥ 0 and λ2 ≥ 0, such that

λ1

(
1

s
− 1− P

)
− λ2

(
I0(
√

2Bh2

(√
1

s
− 1

)
− Ereq

)

+C − log s+ 1 +

∫ ∞
0

se−sy log p(y;F ?)dy ≥ 0, (18)

for all s ∈ (0, 1], with equality if S?(x) 6= 0

In the following, we will show that the equality in Propo-
sition 1 cannot be satisfied in a set that has an accumulation
point, hence the support of S? must be discrete. The discret-
ness property of the optimal input distribution is given by the
following theorem,

Theorem 2. The optimal input distribution that achieves the
capacity in (9) is discrete with a finite number of mass points.

Proof: The proof is presented in Appendix A.

B. Properties of the mass points

We give some insights on the behavior of the optimal
input distribution F ? with respect to both the PP and the
AP constraints. It has been shown that the optimal input
distribution is discrete, therefore the CDF is determined by
the vectors q,x, and the number of the mass points N .
Specifically, the location of the mass points is given by

x = (x1, . . . , xN ), (19)

and the weights associated with the mass points,

q = (q1, . . . , qN ). (20)

Without loss of generality, we assume that x1 < x2 . . . <
xn < A. In addition, we assume that F ?N is the optimal input
distribution and is characterized by the triplet (q?,x?, N),
which is the solution of the optimization problem in (9). The



conditions which are satisfied by the optimal input distribution
for some λ1 ≥ 0 and λ2 ≥ 0 are

i(x;F ?N ) ≤ C+λ1

(
x2−P

)
−λ2 (E(x)−Ereq) , for x ∈ [0, A],

i(x?i ;F
?
N ) = C + λ1

(
x?i

2−P
)
− λ2 (E(x?i )−Ereq) .

(21)

Denote by g the following function i.e.,

g(w,F ?N ) = i(w;F ?N )−λ1

(
w2−P

)
+λ2 (E(w)− Ereq) .

(22)

It has been shown in [24] that a point of increase (except A)
is a local maximum for the function g(x, F ?N ), and hence

∂g(w,F ?N )

∂ω

∣∣∣∣∣
w=xi

= 0. (23)

Unfortunately, a closed form solution for (23) is cumbersome
even for the simpler case (AWGN channel). However, in the
next remark, we are able to characterize a particular mass point
of the optimal input distribution.

Remark 1. The input distribution has a necessary mass point
at zero; by contradiction, we assume that 0 < x1, then it can
be shown

∂g(w,F ?N )

∂ω

∣∣∣∣∣
w=x1

< 0. (24)

Hence, x1 is not a point of increase for the function g(x, F ?N )
according to (23).

In the following, we study the behavior of the optimal
input distribution at the transition point, where the binary
distribution gives away to a ternary [24]. Specifically, we give
a closed-form expression of the optimal input distribution on
the transition point, where the binary distribution is not longer
optimal. This is a critical point in SWIPT systems, since the
binary distribution maximizes both information and energy
transfer simultaneously and therefore there is not a trade-off
between them [21]. For simplicity, we assume that the AP
constraint is active, for a low PP constraint, the optimal input
distribution is binary and is characterized by x? and q, i.e.,

x? = (0, x1), (25a)

q =

(
1− P

x2
1

,
P

x2
1

)
. (25b)

Note that if
∂I(F ?N )

∂x1
> 0, (26)

then we have x1 = A. Let us assume that at the amplitude
value Ā, the binary distribution is not longer optimal. Thus
at the amplitude value Ā + ∆Ā, a new mass point appears
denoted by x?2 ∈ [0, A], which satisfies

i(x?2;F ?3 ) = C + λ1

(
x?2

2 − P
)
− λ2 (E(x?2)− Ereq) . (27)
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Fig. 2. Information-energy capacity region with different PP constraints;
β = 1, P = 30 dB.

Let q the transition probability associated to the mass point
x?2, then the optimal input distribution F ?3 is characterized by

q? =

(
1− P

(x1 + ∆x1)2
−
(

1− x?2
(x1+∆x1)2

)
q, q,

P

(x1 + ∆x1)2
− x?2

2q

(x1 + ∆x1)2

)
, (28)

x? = (0, x?2, x1 + ∆x1). (29)

Remark 2. Note at that for low PP constraints, there is not
a trade-off between information and energy transfer, since
the optimal input distribution is binary and hence it maxi-
mizes both information and energy transfer simultaneously.
By increasing the PP constraint, we show that there exist an
amplitude value Ā, in which the binary distribution is not
longer optimal and hence, a trade-off between information and
energy transfer is observed. The transition point Ā at the low
PP regime, satisfies the following condition

I
(
F ?3 (Ā+ ∆Ā)

)
> I

(
F ?2 (Ā+ ∆Ā)

)
. (30)

Hence by choosing ∆ to be small enough (∆Ā → 0), we
obtain a sufficient condition for the transition point Ā [25].

IV. NUMERICAL RESULTS

In the previous section, we characterized the optimal input
distribution for a Rayleigh-fading channel with AP, PP, and
EH constraints in the presence of HPA. Now, we numerically
evaluate the information-energy capacity region by using a
numerical solver such CVX [26]. Fig. 2 shows the information-
energy capacity region for different PP constraints. The cor-
responding region is obtained by solving the optimization
problem in (9). A trade-off is observed between the infor-
mation rate transmitted to the information decoder and the
energy delivered to the EH receiver; this trade-off becomes
evident since for higher EH constraints, the transmitter selects
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Fig. 3. Effect of the HPA on the Information-energy capacity region; A = 5,
β = 1, B = 0.5, P = 30 dB.

a symbol with a higher amplitude and thus it degrades the
information transfer performance. Another interesting remark
is that for low amplitude constraints, there is no trade-off
between the two objectives. The optimal input distribution for
this regime is binary, hence it maximizes both the information
and the energy transfer simultaneously (Remark 2).

Finally, Fig. 3 highlights the effect of the HPA non-linearity
on the information-energy capacity region. It can be seen that
there is a gap between the two regions; this is mainly due to
the negative effect of the HPA.

V. CONCLUSION

In this paper, we studied the fundamental limits of a SWIPT
system over a Rayleigh- fading channel with non-linear EH,
and by taking into account the non-linearity imposed by the
HPA. We proved that the input distribution that maximizes
the information-energy capacity region is unique, discrete,
with a finite number of mass points. Also, we proposed
a mathematical framework to study the capacity achieving
distribution for low PP constraints, where there is not a trade-
off between information and energy transfer. Finally, we have
shown that the information energy capacity region increases
by relaxing the PP constraint, while the HPA significantly
degrades the performance of both objectives.

APPENDIX A
PROOF OF THEOREM 2

Assuming that S? is not discrete, then the support of S? has
a limit point by the Bolzano-Weierstrass theorem [27]. Denote
by h : z → h(z) the following function

h(z) = λ1

(
1

z
−1− P

)
−λ2

(
I0(
√

2Bh2

(√
1

z
− 1

)
−Ereq

)

+C−log z + 1 +

∫ ∞
0

ze−zy log p(y)dy, z ∈ D, (31)

with D defined by <(z) > 0. By extending the necessary and
sufficient conditions of Proposition 1 to the complex domain,
we have

h(z) = 0, z ∈ Supp(S?). (32)

Recall that the support of S? has an accumulation point
and the function h(z) is analytic over the domain D, hence
by applying the identity theorem [1]

h(z) = 0, z ∈ D. (33)

By using the expression in (33), then for all s ∈]0, 1], we have∫ ∞
0

se−sy log p(y)dy = −1

s

[
λ1

(
1

s
− 1− P

)
−λ2

(
I0(
√

2Bh2

(√
1

s
− 1

)
− Ereq

)

+C − log s+ 1

]
. (34)

The left hand side in (34) is the unilateral Laplace transform
of the function log p(y), while the right-hand side (without the
Bessel function) can be recognized as the Laplace transform
of

−λ1y + [λ1(1 + a)− C − 1− CE ]− log y, (35)

where CE is Euler’s constant. The modified Bessel function
is given by

I0

(
√

2Bh2(

√
1

s
− 1)

)
=

n∑
n=0

an

(
1

s
− 1

)n
=

∞∑
n=0

an

n∑
k=0

(
n

k

)
1

sk
(−1)n−k, (36)

with an = (Bh2/
√

2)2n

n!2 . By using the fact that

L−1

(
1

sk

)
=
yn−1

n!
, (37)

and by taking into account the uniqueness of the Laplace
transform for continuous functions with a bounded variation,
the following holds

p(y) = K
exp(−λ1y)

y

× exp

(
λ2

∞∑
n=0

an

n∑
k=0

(
n

k

)
yk

(k + 1)!
(−1)n−k

)
. (38)

For every λ1 > 0 and λ2 > 0, we have∫ ∞
0

p(y)dy >∞, (39)

hence, p(y) cannot be a probability distribution, and Supp(S?)
cannot have an accumulation point; which means that the
optimal input distribution is discrete.
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