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ABSTRACT 

Although knowledge graphs (KGs) are used extensively in the biomedical domain to model 

complex phenomena. Unfortunately, existing KG construction methods often lack 

standardization, have limited scope, and scale poorly as the size of input data sources increase. 

PheKnowLator (Phenotype Knowledge Translator), a fully customizable semantic ecosystem for 

Findable, Accessible, Interoperable, and Reusable (FAIR) construction of ontologically-

grounded KGs, was developed to address these problems. Pheknowlator resolves the lack of 

standardization using ontologies and the FAIR principles. Limited scope and poor scaling are 

resolved by enabling the construction of multiple types of KGs and using distributed 

computation. PheKnowLator was evaluated in two ways. First, a survey of existing open-source 

KG construction methods available on GitHub was performed. The survey identified 14 existing 

open-source KG construction methods and found that the PheKnowLator Ecosystem was 

comparable to the other methods in terms of its KG construction functionality, maturity, 

availability, usability, and reproducibility. Next, the KGs of human disease mechanisms were 

built by applying PheKnowLator to 12 Open Biological and Biomedical Foundry Ontologies and 

31 publicly available resources using 15 edge types. The computational performance of the KG 

builds was recorded. The resulting KGs varied significantly in size from 737,556 nodes and 

5,487,821 edges with 293 unique edge types to 15,903,225 nodes and 47,420,725 edges with 

847 unique edge types. Computational performance varied by build step such that on average, 

the data download step used the least resources (3.5 min; 7.9 GiB) and the KG construction 

step used the most resources (319.6 min; 119.7 GiB). The performance also varied by KG build; 

the subclass-based build with inverse relations and OWL-NETS transformation took the longest 

time and used the most memory (615.9 min; 147.1 GiB). PLACEHOLDER FOR EMBEDDING 

EXPERIMENT RESULTS. Although relatively new, PheKnowLator’s user base is growing 

rapidly supporting projects focused on toxicogenomic mechanistic inference, human disease 

causation, and pharmacokinetic natural product-drug interaction. Preliminary results 

demonstrate that the PheKnowLator Ecosystem is one of the first fully customizable open-

source KG construction frameworks able to provide a wide range of functionality without 

compromising performance or usability.  
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INTRODUCTION 

The worldwide growth of biomedical data is exponential with the volume of molecular data alone 

and it is expected to surpass more than four Exabytes by 2025 [1]. Rapid advancements in 

next-generation sequencing technology and personal health data produced from the continual 

sharing of data via wearable devices and social networking have made tremendous amounts of 

diverse data available for secondary use [2,3]. Multimodal data like these capture different views 

and, when properly combined, help characterize complex systems [4]. Unfortunately, these data 

are often highly distributed and heterogeneous, can be difficult to access due to licensing 

restrictions, lack interoperability, and often have inconsistent underlying models or 

representations, which limits most researchers from fully utilizing and/or combining them [5,6]. 

Knowledge graphs have frequently been used to systematically interrogate the biology 

underlying complicated systems, organisms, and diseases [7]. Graph representation learning 

algorithms have been developed to analyze biomedical KGs, ranging from random walk-based 

homogeneous graph embedding methods [8] to graph neural networks expressly designed to 

manage heterogeneous data [9]. In the biomedical domain, KGs are usually constructed from 

the combination of a wide range of data sources like Linked Open Data, ontologies, the 

literature, data derived from electronic health records, and multi-omics experiments [6,10]. 

Although KGs are extensively used in the biomedical domain, we have found that many KG 

construction methods remain largely unable to account for the use of different standardized 

terminologies or vocabularies, which are often difficult to use, and perform poorly as the size of 

the resulting KG increases in scale [6,10]. 

To solve these problems, we developed PheKnowLator (Phenotype KNowledge Translator), an 

ecosystem of tools for FAIR construction of ontologically-grounded KGs.To address challenges 

with integrating data from different standards, PheKnowLator provides a suite of tools, built on 

the FAIR Data Principles (i.e., Findable, Accessible, Interoperable, and Reproducible; [11]). To 

improve usability, PheKnowLator includes several Jupyter Notebooks with step-by-step 

examples of how to use the tools provided in the Ecosystem. PheKnowLator also includes an 

interactive script that walks users through the steps needed to compile the different input 

dependencies required to build a KG. Finally, in terms of scalability, PheKnowLator is built on 

Ray (https://www.ray.io/), providing users with the ability to parallelize KG builds. The rest of this 

paper is organized as follows. First, we provide a detailed definition of a KG. Next, we provide a 

review of existing KG construction methods. Then, we describe the unsolved barriers and 

challenges to automating KG construction. The paper concludes with the introduction of 

PheKnowLator.  

What is a Knowledge Graph? 

In the simplest terms, a graph can be thought of as an undirected, unweighted network 𝐺(𝑁, 𝐿), 

where 𝑁 is the set of nodes and 𝐿 is the set of observed edges between these nodes. In the 

biomedical context, nodes usually represent different kinds of biological entities like genes, 

proteins or diseases. Edges or relations are used to specify different types of relationships (e.g., 

interaction, substance that treats) that can exist between a pair of nodes. A triple can then be 

defined as a node-relation-node statement (e.g., geneA - interacts with - geneB). Please see 

https://paperpile.com/c/yqG5qK/2pF8
https://paperpile.com/c/yqG5qK/CQhD+jQ8V
https://paperpile.com/c/yqG5qK/3zJW
https://paperpile.com/c/yqG5qK/utMMs+u7dFh
https://paperpile.com/c/yqG5qK/gcLi
https://paperpile.com/c/yqG5qK/t1CA
https://paperpile.com/c/yqG5qK/Td63
https://paperpile.com/c/yqG5qK/u7dFh+dZ8P
https://paperpile.com/c/yqG5qK/u7dFh+dZ8P
https://paperpile.com/c/yqG5qK/nR5d8
https://www.ray.io/
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Supplemental Table 1 for definitions of concepts introduced throughout the manuscript. 

At the state of the art, multiple definitions of KGs have been proposed [12–14], all sharing the 

understanding that KGs are more than simple large-scale graphs; indeed, we believe all the 

various definitions may be best summarized by Ehrlinger's and Wöb's (2016) KG definition: "A 

knowledge graph acquires and integrates information into an ontology and applies a reasoner to 

derive new knowledge." [12]. We extend Ehrlinger's and Wöb's (2016) definition and consider a 

KG a graph-based data structure representing a variety of heterogeneous entities (i.e., nodes) 

and multiple types of relationships between them and serving as an “abstract framework” that 

can infer new knowledge to address a variety of applications and use cases. Within the scope of 

our extended definition, we include a wide variety of KGs; KGs constructed using a highly formal 

approach to representation where every entity and relationship is modeled as assertions and 

axioms in a formal logic such as a description logic like the Web Ontology Language (OWL; 

[15]), grounded in ontological primitives, and suitable for logical reasoning [16]. An example 

would be KaBOB (Knowledge Base of Biomedicine [KaBOB]; [5]). There are also KGs that are 

constructed with much less logical formality such as those represented solely in RDF and 

RDFSchema [17] (e.g., KG-COVID-19 [18], DisGeNET [19], OpenBioLink [20], Bio2RDF [21] 

and those that do not use a formal standard like Hetionet [22], SPOKE [23], SemMedDB [24]. 

An example of a KG designed to represent the Central Dogma in Homo sapiens is shown in 

Figure 1. 

Methods to Construct Biomedical Knowledge Graphs 

Researchers have made substantial efforts to develop novel methods to construct, integrate, 

and evaluate KGs, as highlighted in recent reviews [6,10]. Regardless of the specific approach 

utilized to construct a KG, most methods apply the following steps, which are ultimately driven 

by the use case: (1) Resource Identification. Identify the data sources that will be used for 

nodes and edges. Most biomedical KGs are built from data that have been extracted or 

transformed from an existing KG (e.g., SPOKE [23]), the literature (e.g., SemMedDB [24]) or 

most commonly from data database/Linked Open Data resources (e.g., KG-COVID-19 [18], 

DisGeNET [19], OpenBioLink [20], Bio2RDF [21], and Hetionet [22]); (2) Data Integration. 

Transformation and/or preprocessing of resources from the prior step into an edge list or set of 

nodes and edges. This usually consists of procedures to verify the quality of the ingested data, 

normalize node and edge identifiers, and extract and format needed node and edge metadata 

(e.g., node and edge labels, and edge weights); and (3) KG Construction. Combine edges 

and/or nodes into a KG (which usually follows an existing framework, model, or knowledge 

representation schema). 

 

As the base building blocks, Steps 1 to 3 tend to be implemented using a mix of manual and 

automatic techniques. While an extensive review of the techniques within each of these 

methods is not within the scope of this project, in the following we recall the main characteristics 

and examples of manual and automatic KG construction techniques. An overview of each 

method type is described below.

https://docs.google.com/document/d/1WVUSbp2p67J-UBM6_kXVlz60D6nCOUJH1HXmlZTEZBc/edit#heading=h.nwcsse3t1fm0
https://paperpile.com/c/yqG5qK/qUjF+3HCL+Ougp
https://paperpile.com/c/yqG5qK/qUjF
https://paperpile.com/c/yqG5qK/bBDm
https://paperpile.com/c/yqG5qK/m6xJj
https://paperpile.com/c/yqG5qK/utMMs
https://paperpile.com/c/yqG5qK/wEne
https://paperpile.com/c/yqG5qK/ouRf
https://paperpile.com/c/yqG5qK/Yqljk
https://paperpile.com/c/yqG5qK/Fzuy
https://paperpile.com/c/yqG5qK/Up4fS
https://paperpile.com/c/yqG5qK/uvyNA
https://paperpile.com/c/yqG5qK/1Irt
https://paperpile.com/c/yqG5qK/w63PD
https://paperpile.com/c/yqG5qK/u7dFh+dZ8P
https://paperpile.com/c/yqG5qK/1Irt
https://paperpile.com/c/yqG5qK/w63PD
https://paperpile.com/c/yqG5qK/ouRf
https://paperpile.com/c/yqG5qK/Yqljk
https://paperpile.com/c/yqG5qK/Fzuy
https://paperpile.com/c/yqG5qK/Up4fS
https://paperpile.com/c/yqG5qK/uvyNA
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Figure 1. A Knowledge Graph Representation of the Central Dogma in the Context of Human Disease. 

This KG is an attempt to provide a simple overview of our currently accepted knowledge of the Central Dogma, where anatomical 
entities like tissues, cells, and fluids contain genomic entities like DNA, RNA, mRNA, and proteins. DNA encodes genes that can 
interact with each other. Genes can also be altered by variants and cause disease. Finally, proteins can also interact with each other 
and participate in pathways and biological processes.
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Manual KG Construction 

Manual methods usually consist of some form of human curation, parsing, and/or extraction of 

specific data from existing sources. In some cases, manual curation has also been used to 

construct a brand-new resource [citation?]. Manually constructing a KG includes identifying the 

nodes that will comprise an edge as well as selecting the, possibly multiple, relations that will 

connect them (e.g., if the nodes are the gene entity A2M (NCBIGene:2; 

https://www.ncbi.nlm.nih.gov/gene/2) and Alzheimer's Disease (HP:0002511; 

https://hpo.jax.org/app/browse/term/HP:0002511), the relation Causes or Contributes to 

(RO:0003302; http://purl.obolibrary.org/obo/RO_0003302) could be used to connect them). In 

addition to identifying nodes and selecting relations between them, manual construction efforts 

will usually also include metadata for each edge (e.g., an identifier that describes who created 

the edge). 

The community-curated collection of Open Biomedical Ontologies (OBOs) is a prime example of 

manually constructed KGs. Built to the standards and principles governed by the OBO Foundry 

[25,26] is an open-source collaborative that provides standards and principles for the 

construction of biomedical ontologies (e.g., Human Phenotype Ontology [27], Human Disease 

Ontology [28], Protein Ontology [29]). While many of the ontologies within the OBO Foundry are 

verified using reasoners, which can also be used to derive novel assertions (or novel, logical 

inferred, triples, which are logically inferred), most of these ontologies are manually constructed 

using rigorous processes and through the collaboration of domain experts. Gene Ontology 

Causal Activity Models (GO-CAMs; [30]) are another example of a manually constructed KG, 

which are built on top of the Gene Ontology [29] by a team of professional ontologists and/or 

biocurators.  

The primary benefit of using a manual approach to construct KGs is that the resulting structure 

is much less likely to contain unpredicted inconsistencies, errors, or other sources of variance, 

since humans are naturally able to detect and correct them. On the other hand, manual KG 

construction is a time-demanding task, which may be prone to human errors, especially when 

the volume of data is large and when we lack clear standardization rules. The manual 

construction of a high-quality KG requires the collaboration of multiple domain experts and can 

take a significant amount of time to complete and resources to maintain. In this case, when the 

KG being constructed becomes large, inter- and intra-curator variability may result in 

inconsistencies due to human errors. For these reasons, without a well-organized protocol and 

a dedicated community, manual construction approaches often lack the scalability to stay up to 

date with the speed at which data and knowledge are generated in the biomedical domain.  

Automatic KG Construction 

Like manual construction methods, automatic methods to construct KGs must also identify 

nodes and relations and can also provide metadata. The core functionality of most automated 

techniques consists of algorithms that: (1) extract entities and relations from both structured and 

unstructured data sources [32]; (2) align or normalize extracted entities to a standard set of 

identifiers (i.e., using custom mapping frameworks, an existing gold standard corpus, or through 

the use of other KGs or ontologies [6]); and (3) construct the final KG by combining the 

https://www.ncbi.nlm.nih.gov/gene/2
https://www.ncbi.nlm.nih.gov/gene/2
https://www.ncbi.nlm.nih.gov/gene/2
http://purl.obolibrary.org/obo/
http://purl.obolibrary.org/obo/
http://purl.obolibrary.org/obo/
http://purl.obolibrary.org/obo/RO_0003302
http://purl.obolibrary.org/obo/RO_0003302
http://purl.obolibrary.org/obo/RO_0003302
https://paperpile.com/c/yqG5qK/0Lpq+YPjq
https://paperpile.com/c/yqG5qK/vlab
https://paperpile.com/c/yqG5qK/o7T5
https://paperpile.com/c/yqG5qK/O0To
https://paperpile.com/c/yqG5qK/tIpHc
https://paperpile.com/c/yqG5qK/QzOs
https://paperpile.com/c/yqG5qK/Pvxi
https://paperpile.com/c/yqG5qK/u7dFh
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extracted entities and relations. These algorithms are usually either supervised, semi-

supervised rule-based, or fully unsupervised. Supervised techniques require access to labeled 

data and leverage classical machine learning techniques and deep learning models [10]. 

Examples of supervised methods in the Bioinformatics field are those developed to identify 

protein-protein [33–36], disease-gene [37–40], and drug-target and/or drug-disease [41–47] 

relations. Semi-supervised rule-based approaches are heavily influenced by work done in the 

Natural Language Processing (NLP) domain and include tools which help reduce the initial 

space manual experts are required to verify (e.g., Argo [48], BioQRator [49], PubAnnotation 

[50], TextPresso Central [51], CurEx [52], LocText [53]). Unsupervised methods aim to remove 

manual curation efforts altogether and as a result must make inferences directly from the data. 

Also rooted deeply in the NLP domain, these techniques often heavily rely on thresholding from 

scores derived from techniques like co-occurrence [54–60], link prediction [61–63], clustering 

[64], and entity similarity [65–69]. For a detailed review of some of these techniques see [6,10]. 

An example of a KG constructed using semi-supervised rule-base techniques is MedTruth [70]. 

This KG is constructed from a pre-trained model that has been designed to distinguish reliable 

data from untrustworthy data. Once trained, the model is combined with a subset of existing 

knowledge (in the form of triples) and used to score new triples via their similarity to trustworthy 

triples. COMET [71] and NormCo [72] are examples of KGs constructed using fully 

unsupervised techniques. COMET or COMmonsEnse Transformers derive KGs from 

transferring knowledge from pre-trained language models (built from rich text sources) into 

common sense KGs [71]. NormCo uses entity embeddings to train recurrent neural networks 

designed to predict specific types of co-mention sequences learned via distantly supervised 

priors derived from the BioASQ [73] dataset [72]. 

The primary benefits of using automated KG construction methods are scalability and 

maintainability. By relying on existing and trusted sources of existing relationships, these 

approaches do not require the same amount of resources as manual curation. While these 

methods have better scalability, as fundamentally statistical approaches they are subject to 

false positives and false negatives and are only as good as the methods they are trained 

against or the gold standards they are verified with. 

Challenges to Constructing Knowledge Graphs 

Current barriers and challenges to fully automating the construction of large-scale KGs within 

the biomedical domain include: (i) requiring substantial data preprocessing in order to address 

data quality and interoperability issues; (ii) a lack of agreed upon models or schemas for 

representing knowledge; and (iii) a lack of benchmark tasks to validate KGs and the methods to 

construct them. 

Data Quality and Interoperability 

Biomedical data, especially data that have been extracted from experiments or sources of free-

text, are notoriously prone to data quality errors [74–78]. While it seems clear that there should 

be procedures to verify data quality in place when constructing KGs from biomedical resources, 

very few KG construction approaches include methods to verify data prior to constructing a KG. 

Biomedical data are represented using a wide range of standards and identifiers. Interoperability 

https://paperpile.com/c/yqG5qK/dZ8P
https://paperpile.com/c/yqG5qK/RkcI+Z5mW+kuSU+zCE0
https://paperpile.com/c/yqG5qK/eN2q+eMzm+CGE8+9yX5
https://paperpile.com/c/yqG5qK/7xyX+UECw+heRt+i8R3+iYkw+v86n+jSyK
https://paperpile.com/c/yqG5qK/UxYC
https://paperpile.com/c/yqG5qK/sRdS
https://paperpile.com/c/yqG5qK/esUK
https://paperpile.com/c/yqG5qK/SO0T
https://paperpile.com/c/yqG5qK/1G5v
https://paperpile.com/c/yqG5qK/ysPr
https://paperpile.com/c/yqG5qK/UZob+nZKr+KpTU+VJ9f+fobD+WuwW+Bl0G
https://paperpile.com/c/yqG5qK/pL2m+m8Qa+ZZTI
https://paperpile.com/c/yqG5qK/AbHo
https://paperpile.com/c/yqG5qK/0Wig+NMIy+xRy6+jjos+efTT
https://paperpile.com/c/yqG5qK/dZ8P+u7dFh
https://paperpile.com/c/yqG5qK/mSAc4
https://paperpile.com/c/yqG5qK/4Mvop
https://paperpile.com/c/yqG5qK/TG4D4
https://paperpile.com/c/yqG5qK/4Mvop
https://paperpile.com/c/yqG5qK/Qg71
https://paperpile.com/c/yqG5qK/TG4D4
https://paperpile.com/c/yqG5qK/GNq4+m2dI+nZay+wRij+D6E1
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can be improved through the use of ontologies and by following FAIR Data Principles (i.e., 

Findable, Accessible, Interoperable, and Reproducible; [11]). While many existing approaches 

to construct KGs use ontologies and some follow the FAIR principles, very few do both. 

Knowledge Models 

While there are many methods for constructing a KG, the best model for representing these 

data and the complex relationships between them is less clear [79,80]. Although not a 

comprehensive list, some of the models or approaches to represent knowledge that have been 

used in the biomedical domain include well-established models like BioPax [81] and the 

Biological Expression Language (BEL; [82]). A highly expressive Semantic Web standard for 

representing complex knowledge, OWL allows for expressive representation of existing 

knowledge and the generation of new knowledge via deductive inference [16]. By enforcing 

explicit semantics, OWL provides a common data representation language, which has shown 

promise when used to integrate large biomedical data [83]. Finally, there are also methods that 

sit on top of some of the prior described knowledge models or standards. For example, OWL-

NETS [84] and Hetionet metapaths [22] are methods which have been developed to convert 

complicated representations of knowledge into simpler representations and have proven useful 

for tasks like link prediction and visualization. While there is no universal schema or model to 

represent biomedical data stored in a KG, there are also no existing studies which have 

compared all existing models (or even a subset of existing models). Understanding if, how, and 

when the different models for representing knowledge matter is an important area in need of 

exploration. 

Validation Benchmarks 

One of the biggest challenges to developing novel KG construction methods and to constructing 

novel KGs is knowing how to verify and validate them. Other types of algorithms within the 

biomedical domain, like link prediction and knowledge graph embedding, make use of well-

established benchmarks like YAGO [85], DBPedia [86], and Wikidata [87]. While these 

benchmarks, which are not strictly biomedical in nature, can be used for validating methods 

designed for biomedical data, they cannot as easily be used to construct biomedical KGs. 

OpenBioLink [20] was developed as a benchmark for biomedical KGs, but exclusively for use in 

link prediction tasks. While it might not be possible to create a benchmark KG explicitly intended 

to verify or validate biomedical KG construction methods, development of a set of tasks (e.g., 

specific types of biomedical entity prediction or node classification) for verifying or validating 

biomedical KG content and construction would benefit the community. The current work does 

not claim to address this issue, but recognizes it is an important area of future research that we 

would like to invite others in the community to work on with us. 

Objectives 

Although KGs are used extensively in the biomedical domain, existing KG construction methods 

remain largely unable to account for the use of different standards and knowledge models used 

by the various relevant sources of knowledge. Current KG construction methods are also 

difficult to use and often perform poorly as the size of the resulting KGs increase in scale. To 

solve these problems, we developed PheKnowLator (Phenotype KNowledge Translator), an 

https://paperpile.com/c/yqG5qK/nR5d8
https://paperpile.com/c/yqG5qK/uNbv+qeMKN
https://paperpile.com/c/yqG5qK/peBY
https://paperpile.com/c/yqG5qK/CRYA
https://paperpile.com/c/yqG5qK/m6xJj
https://paperpile.com/c/yqG5qK/MMnPf
https://paperpile.com/c/yqG5qK/FOze
https://paperpile.com/c/yqG5qK/uvyNA
https://paperpile.com/c/yqG5qK/aSBq
https://paperpile.com/c/yqG5qK/erq8
https://paperpile.com/c/yqG5qK/VKen
https://paperpile.com/c/yqG5qK/Fzuy
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ecosystem of tools for FAIR construction of ontologically grounded KGs. PheKnowLator KGs 

are fully customizable, enabling the use of alternative knowledge models, unidirectional or 

bidirectional relations, and with or without semantic property graph abstraction. In the following 

sections we first introduce the PheKnowLator Ecosystem. Then, we evaluate the Ecosystem 

using tasks designed to test its functionality and performance. A dedicated Zenodo Community 

has been established and provides access to software, presentations, and preprints related to 

this ecosystem (https://zenodo.org/communities/pheknowlator-ecosystem). 

METHODS 

Please see the Supplemental Material for definitions and acronyms used throughout the paper 

(Supplemental Material Table 1), source code, example workflows, and additional results from 

analyses presented in this paper. 

The PheKnowLator Ecosystem 

The PheKnowLator Ecosystem is built on the FAIR principles  [11]. As illustrated in Figure 2, 

with respect to Findability, PheKnowLator uses unique persistent identifiers for all downloaded 

and processed data, metadata documentation, generated reports, log files, and all cloud 

compute instances and containers. With respect to Accessibility, all data, documentation, and 

log files are accessible via RESTful API access to a dedicated Google Cloud Storage (GCS) 

Bucket. All builds are versioned on GitHub, Google’s Container Registry, and DockerHub. 

Finally, Jupyter Notebooks are created as a means for providing user-friendly access and to 

assist with running different portions of the KG build pipeline. With respect to Interoperability, 

PheKnowLator uses Semantic Web standards like OWL, is grounded in Open Biomedical 

Foundry ontologies (OBO), and, wherever possible, adopts standard identifiers, like Universal 

Resource Identifiers (URIs). Finally, with respect to Reusability, PheKnowLator provides 

extensive documentation of all code, output, and workflows. PheKnowLator also uses Semantic 

Versioning, is licensed (Apache-2.0) and includes documentation of the licensing constraints 

enforced for all ingested data sources. PheKnowLator adopts a standard Description Logics 

architecture [88] that defines a KG as 𝐾 = ⟨𝑇, 𝐴⟩, where 𝑇 is the TBox and 𝐴 is the ABox. The 

TBox is defined as the set of terminological axioms that represent the schema of a specific 

domain and is composed of classes and properties (i.e., relationships). TBox concepts and roles 

are defined with respect to the World Wide Web Consortium’s OWL 2 EL standard [89,90] and 

consist of concept names 𝐶0, 𝐶1, … (e.g., neoplasm [HP:0002664]), property names 𝑅0, 𝑅1, … 

(e.g., determined by [RO:0002507]), and constructors like 𝐶1  ⊓  𝐶2 intersection (i.e., “and”; 

modeled using the owl:intersectionOf relation), 𝐶1  ⊔  𝐶2 union (i.e., “or” ; modeled using 

the owl:unionOf relation), ¬𝐶 complement (i.e., “not” ; modeled using the 

owl:complementOf relation), and 𝑅 − inverse (modeled using the owl:complementOf 

relation). Primitive concept axioms take the form of 𝐶1  ⊑  𝐶2, where 𝐶1 is a concept name and 

𝐶2is an EL concept. In this form, 𝐶2 is subsumed by 𝐶1 or 𝐶2 is-a 𝐶1. The rdfs:subClassOf 

property is used for this type of axiom. The ABox is defined as the set of assertional axioms that 

represent the data used to make assertions about a specific domain and is composed of 

individuals or instances of TBox-defined classes and their attributes and roles. ABox assertions 

are defined as an instance of some TBox class 𝐶(𝑎) and roles are defined as an instance of    

https://zenodo.org/communities/pheknowlator-ecosystem
https://docs.google.com/document/d/1WVUSbp2p67J-UBM6_kXVlz60D6nCOUJH1HXmlZTEZBc/edit#heading=h.nwcsse3t1fm0
https://paperpile.com/c/yqG5qK/nR5d8
https://www.apache.org/licenses/LICENSE-2.0
https://paperpile.com/c/yqG5qK/fxtck
https://paperpile.com/c/yqG5qK/PTB41+WN64b
https://hpo.jax.org/app/browse/term/HP:0002664
https://www.ebi.ac.uk/ols/ontologies/ro/properties?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FRO_0002507
https://www.w3.org/TR/owl-ref/#intersectionOf-def
https://www.w3.org/TR/owl-ref/#unionOf-def
https://www.w3.org/TR/owl-ref/#complementOf-def
https://www.w3.org/TR/owl-ref/#complementOf-def
https://www.w3.org/TR/owl-ref/#subClassOf-def
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Figure 2. The PheKnowLator Ecosystem on FAIR Principles. 

The PheKnowLator Ecosystem is built on the FAIR principles of Findability, Accessibility, 
Interoperability, and Reusability. 

some TBox property 𝑅(𝑎, 𝑏), where 𝑎 and 𝑏 are two named individuals. The rdf:type property 

is used to instantiate or create an individual. Unlike other construction methods that we are 
aware of, PheKnowLator enables the construction of KGs using either a TBox or an ABox-
based knowledge representation. 

As shown in Figure 3, the PheKnowLator Ecosystem consists of four primary components: (i) 

Data Download; (ii) Data Preparation; (iii) KG Construction; and (iv) Output Generation. Each of 

these components are described below.  

Data Download 

This component takes as input three text files1 (examples of each file are provided in 

Supplemental Material Figure 1). The first two files contain lists of Universal Resource Links 

(URLs) for downloading ontologies (ontology_source_list.txt) and non-ontology data sources 

(edge_source_list.txt), such as Uniprot, Comparative Toxicogenomics Database, or data from 

 
1To reduce the burden of creating these documents and help users identify needed information, there is a command 

line script (https://github.com/callahantiff/PheKnowLator/blob/master/generates_dependency_documents.py). 

https://www.w3.org/TR/rdf-schema/#ch_type
https://github.com/callahantiff/PheKnowLator/blob/master/resources/ontology_source_list.txt
https://github.com/callahantiff/PheKnowLator/blob/master/resources/edge_source_list.txt
https://github.com/callahantiff/PheKnowLator/blob/master/generates_dependency_documents.py
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the Human Protein Atlas. Within these documents, each resource is tagged with a keyword that 

indicates the type of entity it represents (e.g., “gene”, “disease”, “drug”). These keywords 

correspond to tuples or keyword pairs (e.g., “gene-disease”) in the third document 

(resource_info.txt), which provides instructions on how to assemble the edges for each entity 

referenced in the keyword tuples. The steps to construct each edge type are implemented in the 

Data Preparation component. Custom tools are available to automatically download each 

resource. During the download process, detailed metadata is recorded and stored for each 

resource (downloaded_build_metadata.txt; July 2021 build in Supplemental Material Figure 2).  

Data Preparation 

This component processes all data from the Data Download component. For this process, there 

are scripts and Jupyter Notebooks that facilitate detailed workflows for preparing and processing 

ontology and non-ontology data. The ontology cleaning protocol corresponds to the Jupyter 

Notebook titled Ontology_Cleaning.ipynb2. This notebook performs several steps to clean an 

individual ontology and/or a set of merged ontologies. After the processing is complete, an 

ontology cleaning report is output that documents statistics for each ontology pre- and post-

processing (ontology_cleaning_report.txt; an example from the July 2021 build is shown in 

Supplemental Material Figure 3). The non-ontology data source cleaning process also has a 

corresponding Jupyter Notebook (Data_Preparation.ipynb3). Currently, the workflow provides 

several steps for processing a wide range of Linked Open Data and is built to support 

PheKnowLators Monthly builds (described in detail below) as well as to provide examples for 

users who want to create their own pipelines. The current processing procedures include 

everything from identifier cross-mapping, entity metadata extraction, concept annotation, and 

filtering data. These procedures are purposefully defined to take advantage of existing public 

endpoints and Application Programming Interfaces (APIs) whenever possible. All processed 

data for the ontology and non-ontology cleaning protocols are documented in metadata reports, 

which are output at each processing stage (preprocessed_build_metadata.txt; July 2021 build 

shown in Supplemental Material Figure 4).  

Knowledge Graph Construction 

This component consists of the following three stages: 

1. Build Edge Lists. This step follows the processing instructions documented in the 

resource_info.txt document. The edge list procedure consists of applying filtering and 

evidence criteria, removing unneeded columns and duplicate values, mapping 

identifiers, and retrieving entity namespace types (i.e., “gene”, “disease”, “drug”). To 

facilitate these steps, a universal file parser is being developed, which when used in 

combination with the instructions in resource_info.txt, is currently able to automatically 

process over 30 distinct file types. Once processing is complete, the edge lists are 

output as a hashtable or dictionary (Master_Edge_List_Dict.json [July 2021 build 

example]) and metadata for each processed edge data source are output to a document 

called edge_source_metadata.txt (July 2021 build shown in Supplemental Material 

 
2Ontology Cleaning: https://github.com/callahantiff/PheKnowLator/blob/master/notebooks/Ontology_Cleaning.ipynb.  
3Data Cleaning: https://github.com/callahantiff/PheKnowLator/blob/master/notebooks/Data_Preparation.ipynb.   

https://github.com/callahantiff/PheKnowLator/blob/master/resources/resource_info.txt
https://console.cloud.google.com/storage/browser/_details/pheknowlator/archived_builds/release_v2.1.0/build_06JUL2021/data/original_data/downloaded_build_metadata.txt?pageState=(%22StorageObjectListTable%22:(%22f%22:%22%255B%255D%22))&project=pheknowlator
https://github.com/callahantiff/PheKnowLator/blob/master/notebooks/Ontology_Cleaning.ipynb
https://storage.googleapis.com/pheknowlator/archived_builds/release_v2.1.0/build_06JUL2021/data/processed_data/ontology_cleaning_report.txt
https://github.com/callahantiff/PheKnowLator/blob/master/notebooks/Data_Preparation.ipynb
https://storage.googleapis.com/pheknowlator/archived_builds/release_v2.1.0/build_06JUL2021/data/processed_data/preprocessed_build_metadata.txt
https://github.com/callahantiff/PheKnowLator/blob/master/resources/resource_info.txt
https://github.com/callahantiff/PheKnowLator/blob/master/resources/resource_info.txt
https://storage.googleapis.com/pheknowlator/archived_builds/release_v2.1.0/build_06JUL2021/knowledge_graphs/subclass_builds/relations_only/owl/Master_Edge_List_Dict.json
https://storage.googleapis.com/pheknowlator/archived_builds/release_v2.1.0/build_06JUL2021/knowledge_graphs/subclass_builds/relations_only/owl/edge_source_metadata.txt
https://github.com/callahantiff/PheKnowLator/blob/master/notebooks/Ontology_Cleaning.ipynb
https://github.com/callahantiff/PheKnowLator/blob/master/notebooks/Data_Preparation.ipynb
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Figure 5). 

2. Merge Ontologies. This step leverages OWLTools [91] (April 06, 2020 release) to 

merge all ontologies listed in the ontology_source_list.txt. If the ontology cleaning 

protocol is followed, then this step is not needed. Similar to the edge resources, 

metadata for each ontology source is output to a document called 

ontology_source_metadata.txt (July 2021 build example shown in Supplemental Material 

Figure 6). 

3. Select Hyperparameters. This step executes the primary KG construction processes 

via configuration of three hyperparameters. (a) Knowledge Model. PheKnowLator is 

equipped with two knowledge representation approaches: ABox or instance-based [92] 

and TBox or subclass-based [5] (Figure 4 provides an example of how these 

approaches differ). For the instance-based approach, non-ontology data are made from 

an instance of an existing ontology class. For the subclass-based approach, non-

ontology data are made a subclass of an existing ontology class. Both approaches 

require the alignment of non-ontology entities to existing ontologies, which are stored as 

a dictionary (subclass_construction_map.pkl) and created as part of the processes 

described in the Data Preparation component. For additional examples, see the 

construction approach README4; (b) Relation Strategy. It is assumed that relations will 

be drawn from ontologies like the Relation Ontology (RO; https://oborel.github.io/), 

although this is not a requirement. The benefit of using an ontology for relations is that 

PheKnowLator is able to use a reasoner to infer inverse relations. Additional functionality 

is also provided to automatically generate inverse relations for one-way, implicitly 

symmetric relations for edge types that represent different kinds of biological interactions 

(e.g., molecular interactions); and (c) Semantic Abstraction. OWL is a highly expressive 

language, but its use comes at the cost of structurally complex KGs. Many of the triples 

or edges responsible for this complexity do not contain biologically meaningful 

information (e.g., OWL-encoded classes and axioms). To enable users the ability to 

create versions of PheKnowLator KGs that only include biologically meaningful edges 

(i.e., all edges representing OWL syntactic elements have been removed), the OWL-

NETS method (v2.05) [84], is made accessible through the PheKnowLator Ecosystem. 

An example of the OWL-NETS output for an OWL-encoded class is shown in Figure 5.  

As of release v2.1.06, PheKnowLator also includes functionality to ensure that the resulting KG 

contains a single connected component, and all edges are “purified” or harmonized to the KG 

construction approach. To ensure that the KG contains a single connected component, a set of 

root nodes are derived by searching for each node's highest ancestor concept. If a node has no 

ancestors, its immediate neighbors are searched and the most frequently visited, highest 

common ancestor among its neighbors is selected. If none of the node’s neighbors have any 

common ancestors, an ancestor concept is selected at random. If a node has more than one 

neighbor, the highest common ancestor concept among the neighbors is selected. Each root 

 
4README: https://github.com/callahantiff/PheKnowLator/tree/master/resources/construction_approach#readme  
5OWL-NETS v2.0: https://github.com/callahantiff/PheKnowLator/wiki/OWL-NETS-2.0 
6PheKnowLator (pkt-kg) v2.1.0: https://github.com/callahantiff/PheKnowLator/releases/tag/v2.1.0  

https://paperpile.com/c/yqG5qK/haKt7
https://github.com/callahantiff/PheKnowLator/blob/master/resources/ontology_source_list.txt
https://storage.googleapis.com/pheknowlator/archived_builds/release_v2.1.0/build_06JUL2021/knowledge_graphs/subclass_builds/relations_only/owl/ontology_source_metadata.txt
https://paperpile.com/c/yqG5qK/8hMYE
https://paperpile.com/c/yqG5qK/utMMs
https://storage.googleapis.com/pheknowlator/archived_builds/release_v2.1.0/build_06JUL2021/data/processed_data/subclass_construction_map.pkl
https://oborel.github.io/
https://paperpile.com/c/yqG5qK/FOze
https://github.com/callahantiff/PheKnowLator/tree/master/resources/construction_approach#readme
https://github.com/callahantiff/PheKnowLator/wiki/OWL-NETS-2.0
https://github.com/callahantiff/PheKnowLator/releases/tag/v2.1.0
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node is then added to the KG as rdfs:subClassOf or rdf:type of a user-provided class 

(defaults to BFO:0000001 [entity]).  

The purification or harmonization procedure ensures an OWL-NETS KG is consistent with the 

KG construction approach (i.e., subclass- or instance-based). For subclass-based builds, all 

edges containing rdf:type are updated to rdfs:subClassOf and all ancestors of the 

subjects included in the rdf:type edges are made rdfs:subClassOf of the corresponding 

object. For instance-based builds, all edges containing rdfs:subClassOf are updated to 

rdf:type and all ancestors of the subjects included in the rdfs:subClassOf edge are 

made rdf:type of the corresponding object. 

Output Generation 

In addition to the metadata files described in the prior components, node and relation metadata 

information are also output as a dictionary (node_metadata_dict.pkl) and a tab-delimited flat text 

file (*_NodeLabels.txt). Additionally, PheKnowLator outputs each KG in a variety of different 

formats (see Supplemental Material Table 2). PheKnowLator also supports the generation of 

node embeddings and includes a public SPARQL Endpoint (http://sparql.pheknowlator.com/). 

A Hub for Knowledge Graph Benchmarks 

In addition to providing an algorithm to construct KGs, the PheKnowLator Ecosystem also 

supports monthly KG builds. These builds are implemented using dedicated Docker containers, 

which output data directly to a PheKnowLator GCS Bucket. See the build README for 

additional details (https://github.com/callahantiff/PheKnowLator/tree/master/builds#readme). 

The knowledge representation and data used for each monthly build are detailed on the Wiki 

(https://github.com/callahantiff/PheKnowLator/wiki/v2.0.0) and described in the Evaluation 

section below. Each build is extensively documented via log files, which are output to a 

timestamped PheKnowLator GCS Bucket associated with each build (i.e., data download and 

preprocessing steps [pkt_builder_phases12_log.log]; kg build steps [pkt_build_log.log]; both 

files are examples from the July 2021 build). 

Technical Specifications 

PheKnowLator was developed using Python 3.6.2 and is available through GitHub 

(https://github.com/callahantiff/PheKnowLator) and PyPI (https://pypi.org/project/pkt-kg/). For 

the Data Preprocessing and KG Construction components, PheKnowLator is automatically 

parallelized using Ray (v.1.1.1). The codebase is actively maintained using GitHub Actions-

based continuous integration and includes a unit test coverage of 92% of the current codebase 

[as of August 2021]. PheKnowLator can be installed via pip install and run from the command 

line using the Main.py script or from the main.ipynb notebook. Scripts maintain custom builds 

through Docker and pre-built containers (v20.10.6) from DockerHub 

(https://hub.docker.com/repository/docker/callahantiff/pheknowlator). All monthly build data are 

publicly available through the PheKnowLator GCS bucket 

(https://console.cloud.google.com/storage/browser/pheknowlator). 

https://www.w3.org/TR/owl-ref/#subClassOf-def
https://www.w3.org/TR/rdf-schema/#ch_type
https://www.ebi.ac.uk/ols/ontologies/bfo/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FBFO_0000001
https://www.w3.org/TR/rdf-schema/#ch_type
https://www.w3.org/TR/owl-ref/#subClassOf-def
https://www.w3.org/TR/rdf-schema/#ch_type
https://www.w3.org/TR/owl-ref/#subClassOf-def
https://www.w3.org/TR/owl-ref/#subClassOf-def
https://www.w3.org/TR/rdf-schema/#ch_type
https://www.w3.org/TR/owl-ref/#subClassOf-def
https://www.w3.org/TR/rdf-schema/#ch_type
https://storage.googleapis.com/pheknowlator/archived_builds/release_v2.1.0/build_06JUL2021/data/processed_data/node_metadata_dict.pkl
http://sparql.pheknowlator.com/
https://github.com/callahantiff/PheKnowLator/tree/master/builds#readme
https://github.com/callahantiff/PheKnowLator/wiki/v2.0.0
https://storage.googleapis.com/pheknowlator/archived_builds/release_v2.1.0/build_06JUL2021/knowledge_graphs/subclass_builds/relations_only/owl/pkt_builder_phases12_log.log
https://storage.googleapis.com/pheknowlator/archived_builds/release_v2.1.0/build_06JUL2021/knowledge_graphs/subclass_builds/relations_only/owl/pkt_build_log.log
https://github.com/callahantiff/PheKnowLator
https://pypi.org/project/pkt-kg/
https://github.com/callahantiff/PheKnowLator/blob/master/Main.py
https://github.com/callahantiff/PheKnowLator/blob/master/main.ipynb
https://hub.docker.com/repository/docker/callahantiff/pheknowlator
https://console.cloud.google.com/storage/browser/pheknowlator
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Figure 3. The PheKnowLator Ecosystem. 

The PheKnowLator Ecosystem includes tools to download and prepare data, construct knowledge graphs, and generate a wide range of outputs. 
These outputs support the production of benchmarks and are accessible through public endpoints. Click the following link to access a larger version 
of this figure https://bit.ly/3xZaKCI. Acronyms - NT: N-Triples file format; OWL: Web Ontology Language; PKL: Python pickle file format; SPARQL: 
SPARQL Protocol and RDF Query Language.

https://bit.ly/3xZaKCI
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Figure 4. Construction Approach Hyperparameter. 

This figure provides an example of the instance- and subclass-based construction approaches. 
Additional information can be found on GitHub in the construction approach README.md 
(https://bit.ly/2W4Ih1m). Acronyms - HP: Human Phenotype Ontology; OWL: Web Ontology 
Language; RDF: Resource Description Framework; RDFS: Resource Description Framework 
Schema; SO: Sequence Ontology; UUID: Universally Unique Identifier. 

Evaluation 

PheKnowLator was evaluated in two ways: (i) survey and manual review of existing biomedical 

KG construction methods on GitHub and (ii) construction of human disease mechanism KGs, 

where the computational performance of each build was recorded, and descriptive statistics of 

the resulting builds was examined. 

Open-Source Software Survey 

A survey was performed to examine how PheKnowLator compares to existing open-source 

biomedical KG construction methods. To provide an unbiased comparison, no assumptions 

were made regarding a specific set of user requirements. Instead, the goal of the survey was to 

provide a detailed overview of existing methods. To assist with this survey, five criteria (adapted 

from [93]) were used to compare methods with respect to the task of constructing biomedical 

KGs, as shown in Table 1. The criteria included: KG construction functionality, maturity, 

availability, usability, and reproducibility. Examples of questions used to assess each criterion 

are provided in the table. The full set of survey questions (n = 44) are available as a Google 

Form [94]. Existing open-source biomedical KG construction methods were identified by 

performing a keyword search against the GitHub API. The following words were combined to 

form 31 distinct keyword phrases which were queried against existing GitHub repository 

descriptions and README content:  

https://bit.ly/2W4Ih1m
https://paperpile.com/c/yqG5qK/SDvF2
https://paperpile.com/c/yqG5qK/9XX8
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Figure 5. OWL-NETS owl:Class Example. 

This figure provides examples of how OWL-NETS decodes owl:Class entities constructed using 

owl:intersectionOf and owl:unionOf. Acronyms - BFO: Basic Formal Ontology; CL: Cell Line Ontology; 

HP: Human Phenotype Ontology; OWL: Web Ontology Language; PATO: Phenotype And Trait Ontology; RDF: 
Resource Description Framework; RDFS: Resource Description Framework Schema; RO: Relation Ontology; 
UBERON: Uber-Anatomy Ontology.

https://www.w3.org/TR/owl-ref/#Class
https://www.w3.org/TR/owl-ref/#intersectionOf-def
https://www.w3.org/TR/owl-ref/#unionOf-def
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“biological“, “bio“, “medical“, “biomedical“, “life science“, 

“semantic”, “knowledge graph“, “kg“, “graph“, “network”, 

“build“,“construction“, “construct“, “create“, “creation” 

The GitHub scraper is a publicly available GitHub Gist and was run May 2020 

(https://gist.github.com/callahantiff/0ae1c00df9bec7228be3f6bda5466d73). The survey was 

completed and verified in June 2021 by two researchers independently. The survey was scored 

out of a total score of 5 points, which was derived as the sum of the ratio of coverage out of 1 

point for each survey category (i.e., KG Construction Functionality (10/11 questions scored); 

Availability (2/5 questions scored); Usability (9/10 questions scored); Maturity (5/5 questions 

scored); and Reproducibility (6/6 questions scored)). 

Human Disease Mechanism Knowledge Graph Builds 

A biologically meaningful KG representation, designed to model mechanisms of human disease, 

was developed through collaboration with a PhD-level molecular biologist7. KGs were 

constructed using 12 open biomedical ontologies, 31 Linked Open Data sets, and results from 

two large-scale experiments. Combining these sources facilitated the addition of the following 

edge types:  

chemical-disease, chemical-gene, chemical-biological process, 

chemical-cellular component, chemical-molecular function, 

chemical-pathway, chemical-phenotype, chemical-protein, disease-

phenotype, gene-disease, gene-gene, gene-pathway, gene-phenotype, 

gene-protein, gene-rna, biological process-pathway, pathway-cellular 

component, pathway-molecular function, protein-anatomy, protein-

catalyst, protein-cell, protein-cofactor, protein-biological process, 

protein-cellular component, protein-molecular function, protein-

pathway, protein-protein, rna-anatomy, rna-cell, rna-protein, variant-

disease, variant-gene, variant-phenotype. 

Additional details on the data sources used to construct these KGs can be found on the project 

Wiki (https://github.com/callahantiff/PheKnowLator/wiki/v2-Data-Sources). All data were   

downloaded and processed on May 1, 2021 (May 2021 build GCS Bucket: https://bit.ly/3ATj7l5). 

The 12 different parameterizations of PheKnowLator KGs were constructed to demonstrate the 

range of KGs that PheKnowLator can produce. These KGs were built by varying the 

construction approach (i.e., instance- versus subclass-based), relation strategy (i.e., using only 

relations versus relations with their inverse), and whether OWL-encoded classes were decoded 

[with and without construction approach harmonization].  

Using these 12 builds, two forms of evaluation were applied: (i) Computational Performance. 

Performance metrics evaluated when building the PheKnowLator KGs included the total runtime 

(minutes) and minimum, maximum, and average memory use (GiB); and (ii) Descriptive   

 
7The knowledge representation developed as part of this collaboration is used to create the knowledge graphs 

generated each month. For more details see: https://github.com/callahantiff/PheKnowLator/tree/master/builds. 

https://gist.github.com/callahantiff/0ae1c00df9bec7228be3f6bda5466d73
https://github.com/callahantiff/PheKnowLator/wiki/v2-Data-Sources
https://bit.ly/3ATj7l5
https://github.com/callahantiff/PheKnowLator/tree/master/builds
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Table 1. Open-Source Knowledge Graph Construction Tool Survey. 

Criteria Description Example Question 

Construction 
Functionality 

Evaluated by examining how well the 
method covers the steps needed to 
construct a knowledge graph from 
downloading and processing data and 
building edge lists to generating and 
outputting a KG 

Is there functionality to download data? 

Can multiple types of KGs be 
constructed? 

Is preprocessing or filtering performed as 
part of the construction process? 

Maturity 
Evaluated by examining the level, stage 
or development phase of a method 

Is a versioning system in place? 

Have many releases been made? 

Are procedures in place to enable 
collaboration? 

Availability 
Evaluated by examining the openness of 
a method and the ease of obtaining a 
copy of the method 

Is the method licensed? 

What type of license is used? 

Usability 

Evaluated by examining efforts put in 
place to ensure that a user, with 
reasonable technical skills, could use the 
method 

Is there a Wiki, Read the Docs, or 
GitPage associated with the method? 

Are there examples of how to use the 
method? 

Reproducibility 

Evaluated by examining whether or not 
the method provides tools or resources to 
help reproduce the KG construction 
process and maintain the code base 

What tools are provided to help enable 
reproducibility (e.g., Docker container, 
Jupyter Notebook, R Markdown)? 

Does the repository include any form of 
testing? 

 

Network Statistics. Statistics were calculated to help characterize each build and included 

counts of nodes, edges, self-loops, minimum, maximum, mean, and median degree, the number 

of connected components, and the density. 

Each OWL-NETS abstracted build was visualized using Gephi [95] (v0.9.2). The OpenOrd 

Force-Directed layout [96] was applied with an edge cut of 0.5, a fixed time of 0.2, and trained 

for 750 iterations. To help with interpretation, nodes were colored according to their biological 

type, which included: anatomical entities, chemical entities, diseases, genomic type, genes, 

genomic features, organisms, pathways, phenotypes, proteins, sequence features, transcripts, 

and variants. All KGs were constructed using Docker (v19.03.8) on a Google Cloud Platform N1 

Container-Optimized OS instance configured with 24 CPUs, 500 GB of memory, and a 500 GB 

solid-state drive Boot Disk. 

RESULTS 

GitHub Open-Source Tool Survey 

The search for open-source biomedical KG construction methods on GitHub  

returned a total of 1,905 repositories. Of these repositories, 231 contained course, tutorial or 

https://paperpile.com/c/yqG5qK/DH0q9
https://paperpile.com/c/yqG5qK/5rEPU
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presentation material (i.e., manuscript reviews and slide decks), 278 were duplicate or cloned 

repositories, 79 were KG applications or services, 60 were websites or resource lists, and 1,253 

were determined to be irrelevant (i.e., mislabeled, not biomedical, or not a KG construction 

method). The list of revised methods was supplemented to include 11 additional methods 

identified through a recent review article [6]. The final list contained the 16 methods (including 

PheKnowLator), which are shown in Supplemental Material Table 3. Results from applying the 

five criteria are presented in Figure 6. 

For KG Construction Functionality (presented in Supplemental Material Table 4), 81.3% (n=13) 

of methods provided functionality to download data, 62.5% (n=10) could build multiple types of 

KGs, 31.3% (n=5) processed free-text, and 37.5% (n=6) processed clinical data. With respect to 

Availability (Supplemental Material Table 5), 75% (n=12) of the methods were written in Python, 

18.8% (n=3) were written in Java-based language, and 6.2% (n=1) were written in R. All of the 

methods but one were licensed with GPL, 4 MIT, or BSD-3. The Usability (Supplemental 

Material Table 6) results found that 94.4% (n=17) of the methods provided sample data to help 

test the method and 80% (n=14) provided literate programming tutorials via R Markdown or 

Jupyter Notebook. For Maturity (Supplemental Material Table 7), we found that on average, 

across the 16 methods, the range of commits per year was between 17 and 1,000, over half of 

the methods included testing and continuous integration, and 43.8% (n=7) provided 

collaboration guidelines. Finally, with respect to Reproducibility (Supplemental Material Table 8), 

75% (n=12) provided tools to enable reproducible workflows and ease installation. Most often, 

these tools included Docker containers (n=6) and Jupyter or R (n=7) Notebooks. More than 

37.5% (n=6) of the methods surveyed used a dependency management program like PyPI or 

CRAN. Although not an explicit survey question, PheKnowLator was the only method that was 

able to be verified with a description logic reasoner. 

Human Disease Mechanism Knowledge Graph Builds 

The knowledge representation used to build the human disease mechanism KGs is shown in 

Figure 7. Descriptive information for each of the ontologies pre- and post- cleaning is shown in   

Table 2. As shown in this table, the size of the ontologies varied widely with Chemical Entities of 

Biological Interest (ChEBI; https://www.ebi.ac.uk/chebi/) containing the largest number of edges 

(n = 5,190,458) and human taxon-specific Protein Ontology (PR; https://proconsortium.org/) 

containing the most classes (n = 148,243). Aside from the RO, which was used only for 

relations, the Pathway Ontology (PW; https://rgd.mcw.edu/wg/home/pathway2/) contained the 

fewest edges (n = 34,901), and the Sequence Ontology (SO; 

http://www.sequenceontology.org/) contained the fewest classes (n = 2,569). The core set of 

merged ontologies contained 545,259 classes, 13,748,009 edges, 846 object properties, and 

188 individuals. The unique counts of the subjects, objects, relations, and inverse relations for 

each edge type added to the core set of merged ontologies are shown in Table 3. As shown in y 

this table, the largest edge sets (relations only/inverse relations) added to the KGs consisted of 

protein-protein (n = 618,069 edges), rna-anatomy (n = 444,668/889,336 edges) relations 

followed by disease-phenotype (n = 414,193/828,386 edges), and chemical-GOBP (n = 

288,921/577,842 edges) relations. The smallest edge sets added to the KG consisted of GOBP-

pathway (n = 655 edges) and pathway-GOMF (n = 2,416/4,832 edges), variant-phenotype (n =  

https://paperpile.com/c/yqG5qK/u7dFh
https://www.ebi.ac.uk/chebi/
https://proconsortium.org/
https://rgd.mcw.edu/wg/home/pathway2/
http://www.sequenceontology.org/
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Figure 6. GitHub Survey Results. 

Figure 6 (A) Presents the final set of 16 knowledge graph construction methods surveyed from according to the 
year they were published on GitHub. Figure 5 (B) Presents a chart of the methods evaluated in terms of the 
different survey categories. As shown in this figure, a total score of 5 points was possible. Acronyms: CKG: 
Clinical Knowledge Graph; COVID: Coronavirus Disease of 2019; iASiS: Automated Semantic Integration of 
Disease-Specific Knowledge; KaBOB: Knowledge Base Of Biomedicine; KG: Knowledge Graph; KGX: 
Knowledge Graph Exchange; KGTK: Knowledge Graph Toolkit; SEMi: SEmantic Modeling machine.
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2,526 edges), gene-gene (n = 1,668/3,336 edges), and protein-cofactor (n = 1,999/3,998 edges) 

relations. 

Descriptions of each KG build parameterization are shown in Table 4. As demonstrated by this 

table, the core set of merged ontologies contained 1,399,756 nodes and 4,044,658 edges. With 

respect to the full OWL builds, the subclass-based construction approach was the largest (n = 

13,803,521 classes and 41,116,791 edges) and both instance-based builds (only relations and 

inverse relations) were smaller than the subclass-based construction approach KGs with 

standard relations (n = 8,479,167 nodes and 25,143,729 edges). 

All of the full OWL builds, regardless of the construction approach or relation strategy, contained 

two connected components and three self-loops. All of the builds were highly sparse with the 

average density across the subclass-based builds ranging from 2.16 x 10-7 - 3.50 x 10-7 and 

across the instance-based builds ranging from 3.03 x 10-7 - 3.40 x 10-7. When applying OWL-

NETS (visualized in Figure 8), 449,347 (subclass; Figure 8 (A-B)) to - 235,760 (instance; Figure 

8 (E-F)) classes were removed for the standard relation builds and 35,760 (instance; Figure 8 

(G-H)) - 587,914 (subclass; Figure 8 (C-D)) classes were removed for the inverse relation 

builds. For all builds, three miscellaneous classes, 18 owl:complementOf, 1,646 

owl:disjointWith, and 18 classes containing negation (e.g., pr#lacks_part, 

cl#has_not_completed) were removed. As there is not yet a reasonable way to represent 

negation in OWL-NETS without adding nodes that are not biologically meaningful, axioms 

containing negation were removed. In contrast to the OWL builds, all of the instance-based 

OWL-NETS builds were larger than the subclass-based builds except for the builds that 

included standard relations. We also (note that the harmonized instance-based build with 

standard relations was larger than the harmonized subclass-based build with standard 

relations). Harmonized instance-based builds had a larger average degree than the harmonized 

subclass-based builds, which is further confirmed by the visualizations in Figure 8 (9.79 and 

12.94 versus 6.68 and 10.26, respectively). It took more than 900 edges to make the subclass-

based (relations only: 917; inverse relations: 910) and instance-based (relations only: 917; 

inverse relations: 943) builds a single connected component. With respect to the harmonized 

OWL-NETS builds, 161 subclass-based edges required harmonization and 1,162,970 instance-

based edges required harmonization. 

Computational Performance 

All builds were performed on a pre-merged set of cleaned ontologies. When not using the pre-

merged set of core ontologies, it took approximately 22 minutes and used an average of 7.29 

GiB (1.8-9.8 GiB) of memory to merge all the ontologies. The performance metrics for Steps 1-3 

for each KG parameterization are shown in Figure 9. On average, across all KG 

parameterizations, Step 1 (Data Download) took 3.5 minutes (2.7-5.5 minutes) and used an 

average of 7.9 GiB of max memory (7.9-8 GiB). Step 2 (Edge List Creation) took an average of 

4.8 minutes to complete (4.8-4.9 minutes) and used an average of 39.4 GiB of max memory 

(38.9-40.4 GiBs). Finally, Step 3 (i.e. Graph Construction) took an average of 391.6 minutes 

(6.5 hours) to complete (265.9-615.9 minutes or 4.4-10.3 hours) and used an average of 119.7 

GiB of max memory (104.3-147.1 GiBs). These plots demonstrate that on average, KG 

https://www.w3.org/TR/owl-ref/#complementOf-def
https://www.w3.org/TR/owl-ref/#disjointWith-def
https://proconsortium.org/pro_doc.shtml
https://www.ebi.ac.uk/ols/ontologies/cl/properties?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2Fcl%23has_not_completed
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Table 2. Application of Data Quality Checks to Eleven Open Biomedical Ontologies. 

Statistics CLO ChEBI GO HP MONDO PRa 

Pre-Processed Statistics 

Edges 1,387,096 5,264,571 1,425,434 884,999 2,313,343 2,079,356 

Classes 111,712 156,098 62,237 38,843 55,478 148,243 

Individuals 41 0 0 0 18 0 

Object 
Properties 

116 10 9 231 331 12 

Annotation 
Properties 

192 37 53 257 119 11 

Connected 
Components 

7 1 2 1 1 3 

Data Quality Check Errors 

Value Errors 1 0 0 0 0 0 

Identifier 
Errors 

0 0 0 0 0 0 

Deprecated 
Entities 

2 18,506 6,430 304 2,305 0 

Obsolete 
Entities 

13 0 0 0 0 0 

Punning 16 0 0 0 0 0 

Consistencyb Yes Yes Yes Yes Yes Yes 

Semantic 
Heterogeneity 

--- --- --- --- --- --- 

Identifier 
Alignment 

--- --- --- --- --- --- 

Post-Processed Statistics 

Edges 1,422,153 5,190,485 1,343,218 885,379 2,277,425 2,079,356 

Classes 111,696 137,592 55,807 38,530 52,937 148,243 

Individuals 33 0 0 0 17 0 

Object 
Properties 

112 10 9 231 330 12 

Annotation 
Properties 

187 37 53 257 119 11 

Connected 
Components 

7 1 2 1 1 3 
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Statistics PW RO SO UBERON VO Mergedb 

Pre-Processing Statistics 

Edges 35,291 7,970 44,655 752,291 86,454 13,746,883 

Classes 2,642 116 2,910 28,738 7,089 548,947 

Individuals 0 5 0 0 165 195 

Object 
Properties 

1 604 50 242 232 847 

Annotation 
Properties 

19 106 41 284 97 656 

Connected 
Components 

1 3 1 2 5 8 

Data Quality Check Errors 

Value Errors 0 0 0 0 0 0 

Identifier 
Errors 

0 0 0 0 2 2 

Deprecated 
Entities 

42 11 341 1,570 0 0 

Obsolete 
Entities 

0 1 0 0 0 0 

Punning 0 0 0 0 0 8 

Consistencyc Yes Yes Yes Yes Yes --- 

Semantic 
Heterogeneity 

--- --- --- --- --- 7 

Identifier 
Alignment 

--- --- --- --- --- 23,624 

Post-Processing Statistics 

Edges 34,901 7,873 41,980 734,768 89,764 13,748,009 

Classes 2,600 115 2,569 27,170 7,085 545,259 

Individuals 0 5 0 0 165 188 

Object 
Properties 

1 594 50 238 232 846 

Annotation 
Properties 

19 106 41 284 97 656 

Connected 
Components 

1 3 1 2 5 8 

Acronyms - CLO: Cell Line Ontology; ChEBI: Chemical Entities of Biological Interest; GO: Gene Ontology; MONDO: Mondo Disease 
Ontology; PRO: Protein Ontology; PW: Pathway Ontology; RO: Relation Ontology; SO: Sequence Ontology; UBERON: Uber-Anatomy 
Ontology; VO: Vaccine Ontology. 
aThe PR version references the human (NCBITaxon_9606) subset created for the PheKnowLator ecosystem. 
bConsistency was evaluated using the ELK reasoner. The reasoner was only applied to individual ontologies
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Figure 7. Human Disease Mechanism Knowledge Representation. 

The knowledge representation that was used to construct the eight different parameterizations of the PheKnowLator knowledge graphs. 
The purple box contains experimental data, and the blue box contains molecular mechanisms created by integrating open biomedical 
ontologies and linked open data.
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Table 3. Edge Types Added to the Core Set of Merged Ontologies. 

Edge Relation (Inverse) Subjects Objects Relations 
Inverse 

Relations 

chemical-disease 
substance that treats 

(is treated by substance) 
4,290 4,574 170,675 341,350 

chemical-gene interacts with* 462 11,981 16,699 33,398 

chemical-gobp molecularly interacts with* 1,338 1,584 288,921 577,842 

chemical-gocc molecularly interacts with* 1,086 250 44,553 89,106 

chemical-gomf molecularly interacts with* 1,105 208 26,165 52,330 

chemical-pathway 
participates in 

(has participant) 
2,105 2,213 28,691 57,382 

chemical-phenotype 
substance that treats 

(is treated by substance) 
4,055 1,721 108,452 216,904 

chemical-protein interacts with* 4,179 6,389 65,124 130,248 

disease-phenotype 
has phenotype  
(phenotype of) 

11,746 9,717 414,193 828,386 

gene-disease causes or contributes to 5,035 4,429 12,735 --- 

gene-gene genetically interacts with* 247 263 1,668 3,336 

gene-pathway 
participates in (has 

participant) 
10,371 1,860 107,025 214,050 

gene-phenotype causes or contributes to 6,785 1,530 23,516 --- 

gene-protein 
has gene product 
(gene product of) 

19,327 19,143 19,534 39,068 

gene-rna 
transcribed to 

(transcribed from) 
25,529 179,870 182,736 365,472 

gobp-pathway realized in response to 471 665 665 --- 

pathway-gocc has component 11,134 99 15,846 --- 

pathway-gomf has function (function of) 2,412 726 2,416 4,832 

protein-anatomy located in (location of) 10,747 68 30,682 61,364 

protein-catalyst molecularly interacts with* 3,025 3,734 24,967 49,934 

protein-cell located in (location of) 10,045 128 75,318 150,636 

protein-cofactor molecularly interacts with* 1,585 44 1,999 3,998 

protein-gobp 
participates in (has 

participant) 
17,527 12,246 137,812 275,624 

protein-gocc located in (location of) 18,427 1,757 81,602 163,204 

protein-gomf has function (function of) 17,779 4,324 68,633 137,266 
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Edge Relation (Inverse) Subjects Objects Relations 
Inverse 

Relations 

protein-pathway 
participates in 

 (has participant) 
10,886 2,480 117,585 235,170 

protein-protein molecularly interacts with* 14,230 14,230 618,069 618,069 

rna-anatomy 
located in 

(location of) 
29,115 103 444,668 889,336 

rna-cell 
located in 

(location of) 
14,038 130 65,156 130,312 

rna-protein 
ribosomally translates to 
(ribosomal translation of) 

44,144 19,200 44,147 88,294 

variant-disease causes or contributes to 13,297 3,621 38,129 --- 

variant-gene 
causally influences 

(causally influenced by) 
121,790 3,236 121,790 243,580 

variant-phenotype causes or contributes to 1,824 373 2,526 --- 

Relations marked with an asterisk (*) are those where symmetric relations were computationally inferred. 
Acronyms - gobp: Gene Ontology Biological Process; gocc: Gene Ontology Cellular Component; gomf: Gene Ontology Molecular 
Function. 
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Table 4. PheKnowLator Build Descriptive Statistics. 

Approach 
Relation 
Strategy 

OWL-NETS Purified Edges Nodes Relations 
Connected 

Components 
Self-Loops Density 

Average 
Degree 

Merged 
Ontologies 

NA No No 4,044,658 1,399,756 847 2 3 2.06E-06 2.89 

Subclass 

Relations 
Only 

No No 25,143,729 8,479,167 847 2 3 3.50E-07 2.97 

Yes 
No 4,967,427 743,829 294 1 445 8.98E-06 6.68 

Yes 4,967,429 743,829 293 1 445 8.98E-06 6.68 

Inverse 
Relations 

No No 41,116,791 13,803,521 847 2 3 2.16E-07 2.98 

Yes 
No 7,629,597 743,829 301 1 445 1.38E-05 10.26 

Yes 7,629,599 743,829 300 1 445 1.38E-05 10.26 

Instance 

Relations 
Only 

No No 21,770,455 8,479,167 847 2 3 3.03E-07 2.57 

Yes 
No 4,967,391 743,829 294 1 409 8.98E-06 6.68 

Yes 7,285,496 743,829 293 1 649 1.32E-05 9.79 

Inverse 
Relations 

No No 24,432,633 8,479,167 847 2 3 3.40E-07 2.88 

Yes 
No 7,629,594 743,829 301 1 409 1.38E-05 10.26 

Yes 9,624,232 743,829 300 1 650 1.74E-05 12.94 
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parameterizations constructed using the subclass-based construction approach took roughly the 

same amount of time and used roughly the same maximum amount of memory as the instance-

based construction approach. Additionally, regardless of the construction approach, KGs that 

included inverse relations and performed OWL decoding took longer to run and used more 

memory, on average. 

DISCUSSION 

This work introduces PheKnowLator, the first non-commercial open source fully customizable 

KG construction framework that enables users to build complex KGs that are Semantic Web-

compliant and amenable to automatic OWL reasoning, conform to contemporary property graph 

standards, and are importable by today’s popular graph toolkits. PheKnowLator provides this 

functionality by offering multiple build types, automatically including inverse edges, creating 

OWL-decoded KGs to support automated deductive reasoning, and outputting KGs in several 

formats (e.g., edge lists, OWL API-formatted RDF/XML, and graph-pickled NetworkX 

MultiDiGraphs). By providing flexibility in the way relations are modeled and facilitating the 

creation of OWL-NETS property graphs, PheKnowLator also enables the use of cutting-edge 

graph-based learning and sophisticated inference algorithms.  

Surveying open-source tools on GitHub for constructing KGs identified 14 similar methods. 

Using five criteria, these methods were compared to PheKnowLator, revealing that while 

PheKnowLator has comparable functionality for constructing KGs, most methods were built with 

specific use cases in mind, whereas PheKnowLator was built to help users solve a wide variety 

of challenges (some of which are mentioned/described below). This survey also identified areas 

in which PheKnowLator could be improved, specifically, with respect to the types of input data it 

can process; when compared to the other methods, three methods (i.e., iASiS Open Data 

Graph, BioGrakn, and Bio2RDF) were found to process free-text and clinical data, which 

PheKnowLator does not currently do. PheKnowLator is grounded in ontologies and at the time 

of the survey, was the only method that could enable description logic-based reasoning. With 

respect to Availability and Usability, PheKnowLator and six other methods (i.e., the Clinical 

Knowledge Graph, Hetionet, KaBOB, KG-COVID-19, KGTK, and the Knowledge Graph 

Exchange) are equally open source, provide useful examples, and well documented. In terms of 

Maturity, PheKnowLator was one of only three methods (i.e., KG-COVID-19 and KGTK) to 

provide collaboration documentation, include testing and continuous integration, and actively 

engage with a user base via GitHub Issue trackers. Similarly, for Reproducibility, PheKnowLator 

was found to be one of the best methods for providing tools and resources that enable fully 

reproducible builds. 

When leveraging PheKnowLator to build KGs representing human disease mechanisms, 

descriptive statistics and visual inspection confirmed that each of the 12 builds resulted in KGs 

with different topologies. As expected, the OWL builds were significantly larger than the OWL- 

NETS property graphs, and instance-based builds were larger for all builds except for the 

subclass-based standard relation OWL-NETS builds. This finding is interesting considering that 

the computational performance of the different builds was roughly the same.  
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Figure 8. Visualizing PheKnowLator OWL-NETS Builds. 

The figure visualizes eight different OWL-NETS builds: (A) subclass-based with standard relations; (B) subclass-based with standard 
relations (purified); (C) subclass-based with inverse relations; (D) subclass-based with inverse relations (purified); (E) instance-based 
with standard relations; (F) instance-based with standard relations (purified); (G) instance-based with inverse relations; (H) instance-
based with inverse relations (purified). Nodes are colored by entity type: anatomical entities (light blue), chemical entities (light purple), 
diseases (red), genes (purple), genomic features (light green), organisms (yellow), pathways (dark green), phenotypes (magenta), 
proteins (dark blue), sequence features (orange), transcripts (turquoise), and variants (light pink). This figure was created using the 
OpenOrd Force-Directed layout [93] provided by Gephi [92] (v0.9.2).
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Figure 9. PheKnowLator Computational Performance. 

The computational performance for each build step by build configuration with respect to the (A) 
log runtime and (B) log max memory use (GiB) is presented.  

Limitations and Future Work 

This work has limitations. Computational performance metrics were only computed over a single 

build run due to the amount of resources required to build the KGs. While it is not expected that 

the results for these metrics would significantly change, small deviations related to the Google 

Cloud Platform or constraints on data providers with respect to accessing build data, could 

result in different outcomes. Currently, the PheKnowLator Ecosystem relies heavily on 

OWLTools, but newer Semantic Web tools like ROBOT [97] exist and should be used because 

it allows for the integration of the OWL API and has improved Jena-based functionality. 

Validating very large KGs like the ones produced by PheKnowLator is challenging but important. 

https://paperpile.com/c/yqG5qK/RuWAi
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Additional validation of the work presented in this section is needed to demonstrate the 

usefulness of these KGs and provide more insight into which builds are best for which types of 

downstream applications. 

Current Collaborations and Avenues for Future Work  

The PheKnowLator Ecosystem has already fostered many exciting collaborations and is 

currently being used by the following projects:  

- PheKnowLator KGs have recently been used in applications of toxicogenomic 

mechanistic inference [98] and biomedical hypergraphs [99]. 

- Although results are not yet available, PheKnowLator is currently included in the 

Continuous Evaluation of Relational Learning in Biomedicine (CERLIB; 

https://biochallenge.bio2vec.net/) task. This task aims to provide a means for evaluating 

prediction models as new knowledge becomes available over time. Results from this 

task will provide insight into the usefulness of the PheKnowLator builds and will be used 

to identify areas where the Ecosystem can be improved. 

- PheKnowLator has been deployed to create a disease-specific KG that combines 

ontology-grounded resources with literature-derived computable knowledge from 

machine reading that fills in knowledge gaps and and resolves machine-reading errors in 

the extracted knowledge [100]. The resulting KG is then searched to identify 

confounders with the goal of improving causal inference from observational clinical data 

by addressing confounding bias. 

- The PheKnowLator ecosystem is being used in another project to generate hypotheses 

for potential pharmacokinetic natural product-drug interactions. The project is creating a 

KG involving biomedical ontologies, natural product-ontology extensions, and machine 

reading from literature (https://github.com/sanyabt/napdi-kg). Preliminary results of this 

work were presented at the 2021 International Society of Computational Biology [101] 

and the American Medical Informatics Association Informatics Summit 2022. 

- Currently we are working with PheKnowLator KGs to analyze variant-disease 

associations using cutting edge graph embedding AI tools [102], and we plan to apply 

random walk- based embedding methods for heterogeneous graphs to analyze the full 

builds of the PheKnowLator KGs representing human disease mechanisms [103]. 

- The NIH Common Fund Human BioMolecular Atlas Program (HuBMAP)[104] needed to 

assemble a KG based on its own preferred graph schema[105–107], with one focus 

being to maximize leverage of external references among ontologies for translation. The 

initial effort used the Unified Medical Language System (UMLS) [108] for its data and 

model construction. The need to add 12 OWL-formatted ontologies to the graph, thereby 

interoperating the “UMLS-world” directly with the “OWL-world” (e.g., integration of 

Uberon and Cell Ontology with Foundation Model of Anatomy, etc…). This key problem 

in the community was solved by using OWL-NETS [84] to extract the relevant assertions 

from the OWL files into tables followed by a transformation and load script (also in 

https://paperpile.com/c/yqG5qK/lsFsw
https://paperpile.com/c/yqG5qK/foeI
https://biochallenge.bio2vec.net/
https://paperpile.com/c/yqG5qK/zler
https://paperpile.com/c/yqG5qK/jinL
https://paperpile.com/c/yqG5qK/uuev
https://paperpile.com/c/yqG5qK/Enjw
https://paperpile.com/c/yqG5qK/n4AD
https://paperpile.com/c/yqG5qK/IoOg+2gOA+133P
https://paperpile.com/c/yqG5qK/vtvv
https://paperpile.com/c/yqG5qK/FOze
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Python) into the HuBMAP KG neo4j import format developed for UMLS ingestion. The 

OWL-NETS node metadata and edge list tables are now being used as a standard to 

implement ingestion of other operational ontologies (whether in OWL or not) into 

HuBMAP. 

We would like to invite the community to collaborate with us to examine the utility of 

PheKnowLator across an even wider variety of use cases. 

Avenues for Future Work 

Evaluation 

Although we have generated embeddings for earlier versions of PheKnowLator, the pipelines to 

create embeddings for the current builds are still under construction. Future work will leverage 

these embeddings to provide additional validation of the PheKnowLator Ecosystem and 

subsequent KGs. 

User Experience and Usability 

While we are working hard to improve the usability of PheKnowLator, this is an area that we will 

continue to build on in the future. Aside from improving documentation and working on scripts… 

- Improving scripts which automate the preparation of build docs 

- Having a workshop 

- Adding YouTube videos to help introduce users to the codebase, tools, and functionality 

CONCLUSION 

PheKnowLator is an ecosystem for the FAIR construction of ontologically grounded KGs. 

PheKnowLator KGs can be built under alternative knowledge models, using unidirectional or 

bidirectional relations, and with or without semantic property graph abstraction. Although 

additional experiments are needed to demonstrate the value of the different KGs that can be 

produced by this Ecosystem, PheKnowLator is one of the first fully customizable open-source 

KG construction frameworks able to provide a wide range of functionality without compromising 

usability. 
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