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Translator’s abstract

The hypothesis entertained in the FirstMemoir—that thewave-normal speeds in a biaxial birefringent
crystal are given by the maximum and minimum radii of the diametral section of an ellipsoid in a
plane parallel to the wavefront—is an approximation valid for weakly birefringent crystals. It cannot
be true in general, because it does not give the correct result for calcite—a strongly birefringent
(albeit uniaxial) crystal. But the author has accounted for all these cases by supposing the existence
of three perpendicular directions (axes of elasticity) in which a displacement produces a restoring
force parallel thereto. Then, for a general orientation of the wavefront, the permitted polarizations
(those which can propagate unchanged) are those for which the restoring force is coplanar with the
displacement and the wave-normal. It turns out that the associated directions of displacement are
those in which the component of the restoring force parallel to the displacement is a maximum or a
minimum (per unit displacement). Hence the wave-normal speed is indeed given by the maximum
and minimum radii of the diametral section of a certain surface in a plane parallel to the wavefront.
The equation of this surface, which the author calls the surface of elasticity, turns out to be

E2 = 02 cos2 - + 12 cos2. + 22 cos2 / ,

where E is the wave-normal speed, -,., / are the angles between the wave-normal velocity and the
coordinate axes, and the constants 0, 1, 2 are the semi-axes of the surface. This surface is indeed
well approximated by an ellipsoid when 0, 1, 2 are not too different. Like an ellipsoid, it has the
property that there are generally two directions in which a plane through the center cuts the surface
in a circle, and these directions merge when two of the constants 0, 1, 2 are equal—explaining why
there are at most two optical axes, and sometimes only one.
If the object point is sufficiently distant from the crystal that the waves can be taken as plane, the
refractions can be worked out by knowing the wave-normal speed as a function of direction. If
the object point is closer, however, it becomes necessary to know the shape of the wave surface
(secondary wavefront) within the crystal. This surface is tangential to all the plane wavefronts, with
all orientations, that travel from the origin in unit time. For a uniaxial crystal, the wave surface
reduces to an ellipsoid of revolution, in agreement with Huygens’ theory.
That the wave-normal speed is proportional to the square root of the elasticity in play can be shown
by analogy with waves on a stretched string.
The author concludes by drawing attention to the extreme economy of assumptions by which he
accounts for the laws of polarization and double refraction of both biaxial and uniaxial crystals.
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Translator’s preface

The “Memoir” [3] to which this “Extrait of the Supplement” relates was first submitted on 19 November
1821, and revised on 26 November 1821. An extrait [4] of the revised version was read to the French
Academy of Sciences on the latter date. According to the Oeuvres complètes d’Augustin Fresnel [8,
vol. 2, p.335 & vol. 3, p.645], the “Extrait of the Supplement” was read to the Academy on 13 January
1822, whereas the Procès-verbaux of the Academy [1] do not record anymeeting for that date and do not
record any such reading at the meetings of 7 and 14 January. It is clear, however, that the Supplement
proper [5] was signed on 13 January and submitted on 22 January, 1822. For further information on this
memoir and the related supplements and extraits, see my preface to the translation of [6].

Footnotes to the present translation are numbered sequentially. After their sequential numbers,
footnotes by the editors of the Oeuvres complètes are further identified by their original letters in their
original parentheses. Unusually, there are no footnotes by Fresnel himself. Footnotes identified by
sequential numbers alone, together with all items in square brackets (in the analytical table or the main
text or the footnotes, and including citations such as “[5, §8]”), are mine.

— Translator.
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∗ ∗ ∗

1. In the Memoir [3] that I had the honor to submit to the Academy on 26 November last, I assumed
that the law of elasticity for crystals endowed with double refraction could be represented by an ellipsoid,
at least if the double refraction is weak; for I had noticed that for calcareous spar [calcite], where the
difference in speed of the ordinary and extraordinary rays is considerable, this empirical construction
no longer agrees with the law of Huygens, which the experiments of Wollaston and Malus seem to have
proven exact.1 One could therefore also assume that, for other crystals whose double refraction has less
energy, the ellipsoid was only an approximate representation of the true law of elasticity of the medium.
It is this law, which at first seemed to me so difficult to determine a priori, that I have succeeded in
discovering by a very simple calculation, without making any hypothesis on the nature of the forces
which tend to maintain the molecules of the vibrating medium in their relative positions of equilibrium.
I assume only three perpendicular axes of elasticity—that is, three perpendicular directions inwhich each
displaced molecule is pushed back in the direction of displacement. For this it suffices that, by reason of
a certain symmetry in the arrangement of the particles of the body, each vibrating molecule displaced
along one of the three axes is equally repelled to the right and to the left of this axis, in all azimuths,
so that the resultant of all these repulsive forces is directed along the axis itself. The hypothesis thus
reduced is hardly one any more, strictly speaking; for it is natural to suppose that among crystallized
bodies—whose particles are arranged in a regular manner—there must be many which offer in three
perpendicular directions the property that I have just stated.

2. When light passes through a diaphanous body, do the molecules belonging to this body participate
in the vibrations of light, or are the vibrations propagated only by the ether contained in the body? This
is a question which is not yet decided. But even if this ether were the only vehicle of the light waves, one
could very well admit that a particular arrangement of the molecules of the body modifies the elasticity
of the ether, i.e. the mutual dependence of its consecutive layers, so that it no longer has the same energy
in all directions. Thus, without trying to discover whether the whole refractive medium, or only a portion
of this medium, participates in the vibrations of light, I consider only the vibrating part, whatever it may
be; and the mutual dependence of its molecules is what I call the elasticity of the medium. I suppose
moreover that, if there is only a portion of the medium which participates in the vibrations of light,
this vibrating part always remains the same, in whatever direction the oscillations of the molecules are
executed, and that the elasticity alone can vary with this direction.2

3. When there are three perpendicular axes of elasticity and the intensities of elasticity along these
axes are known, it is easy to deduce its intensity3 in any direction using the following principle:

As long as there are only small displacements, whatever the law of the forces that the molecules of
the medium exert on each other, the displacement of a molecule in any direction produces a repulsive
force equal in magnitude and direction to the resultant of the three repulsive forces produced by three
perpendicular displacements of this molecule equal to the static components of the first displacement.

4. I demonstrate this principle in the Supplement [5] to my Memoir that I have the honor to submit
to the Academy [5, §3], and I then deduce from it the general law of elasticity of media with three axes
[5, §§ 4–7].4 Representing by 02, 12, 22 the intensities of the elasticities parallel to these axes, and by

1 , (a) See No.XXXIX [reference 4], §§ 15 to 21.
2 In particular, the effective density of the vibrating part cannot vary with direction.
3 Stiffness, not compliance.
4A similar argument in English may be found in [7], tr. Hobson, pp. 282–5.
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E2 the intensity of the elasticity in a direction which makes the angles -, ., and / with these same axes,
I find the equation

E2 = 02 cos2 - + 12 cos2. + 22 cos2 / .

Here E2 represents not the totality of the elastic force which the displacement puts in play, but only the
component of this force parallel to the displacement—the only component that we need for calculating
the speed of propagation of the waves. Indeed the accelerating force developed by the displacement of
a slice of the vibrating medium, sliding on itself, can be resolved into two others, one directed along
the same line as the displacement, and the other perpendicular thereto. This second component is not
generally perpendicular to the plane of the wave; but in this plane there are always two perpendicular
directions for which this condition is fulfilled,5 and one can conceive of the original motion decomposed
into two others parallel to these directions. Now, since the accelerating force developed by each of them
resolves into two other forces, one of which is parallel to the displacement and the other perpendicular
to the plane of the wave, the latter will have no effect (according to my hypothesis on the constitution of
light waves)6 and the displacement of the next slice will be caused only by the parallel component. We
see that in this way the successive displacements of the slices will always be made in the same direction,
since the forces which they develop are constantly parallel to them. This would not be so for the other
directions, where the component perpendicular to the line of displacement is not also perpendicular to
the plane of the wave, because from it there arises in the plane of the wave a component perpendicular
to the displacement, by virtue of which the next slice must move obliquely with respect to the first
displacement, which thus changes direction from one slice to another, and to the propagation of which
we can no longer apply the ordinary laws of wave propagation. This is why I relate the initial motion to
the two directions (taken in the plane of the wave) for which this deviation does not take place, because
the component perpendicular to the displacement is also perpendicular to the plane of the wave. The
calculation shows that the two directions which satisfy this condition are those for which E2 is amaximum
or a minimum [5, §8].7

5. Taking E for the radius vector, I give the name surface of elasticity to the surface represented by
the equation of elasticity,

E2 = 02 cos2 - + 12 cos2. + 22 cos2 / ,

in which - , ., and / represent the angles that the radius vector makes with the three axes; then 0 ,
1, and 2 are the semi-axes of this surface, whose radius vector is generally equal to the square root of
the parallel component of the accelerating force produced by a displacement directed along this same
radius vector. Hence, if we make in this surface a diametral section by the plane of the wave, the largest
and smallest of the radius vectors included in this section will give the two directions in which we
must decompose the oscillatory movement, in order that each component movement propagates without
deviation. These movements will generally produce two wavetrains whose propagation speeds will be
respectively proportional to the largest and the smallest radius vector; so these two radius vectors will
measure the speeds of the ordinary and extraordinary rays (counted perpendicular to the plane of the
wave), and, giving the directions of their vibrations, will determine the directions of their planes of
polarization, which must be perpendicular. Such was also the construction that I had indicated in my
first Memoir, except that I employed an ellipsoid instead of the true surface of elasticity; but these two
surfaces nearly coincide when the three semi-axes 0 , 1, and 2 differ little, which is the case for nearly
all crystals, except calcareous spar. So the conclusions that I had drawn from the ellipsoid also apply to
the true surface of elasticity, when the double refraction is not stronger than that of the various crystals

5 That is, within the plane of the wavefront, there are two perpendicular directions of displacement for which the restoring
force component normal to the displacement is also normal to the wavefront—in other words, two perpendicular directions of
displacement for which the restoring force is in the plane of the displacement and the wave-normal.

6 , (a) See below.
7 The same “calculation” is given in English in [7], tr. Hobson, pp. 286–8.
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of two axes studied so far. The new elastic surface, determined a priori, is therefore as well supported
as the ellipsoid by the facts observed so far in the double refraction of crystals with two axes.

6. However different its three axes may be, this surface always has, like the ellipsoid, the property
of being cut along a circle by two of its diametrical planes,8 and only by two—whence it follows that a
medium having three perpendicular axes of elasticity must always present two optical axes, and present
only two, whatever the energy of its double refraction. When two of the axes of the surface of elasticity
are equal to each other, it becomes [a surface] of revolution: the two optical axes merge into one,
perpendicular to the plane of the equator, and the equation of the surface leads to the law of Huygens.9

7. As long as one supposes that the object point observed through the crystal is infinitely distant
from it, the waves, being taken as plane at their arrival on the first surface of the prism, are still so in its
interior and at their exit; and hence, to know the deviation of the rays, it suffices to determine the mutual
inclination of the incident wave and the emerging wave, because it is perpendicular to the plane of each
that the object point is seen without the prism and through the prism:10 now the mutual inclination of
the incident and emergent waves can, in a pinch, be calculated from the knowledge of only the speed
of propagation of the plane wave11 introduced into the crystal, and without having first determined the
nature of the curved surface that would be assumed by the light waves produced in the interior of the
crystal. Thus, in the case of an infinitely distant object point, the verification of the surface of elasticity
by the law of Huygens was easy.12

8. But when the object point is close enough for the curvature of the wave to become noticeable, as
in the experiments of Malus (where the proximity of this point was even an essential element, since he
observed it through plates of calcareous spar with parallel faces), then it becomes necessary to know the
shape of the wavefronts in the interior of the crystal in order to calculate, by the principle of the shortest
path, the direction of the visual ray.13

9. Using the principle of the composition14 of small movements, I easily succeed in proving the
following theorem:

“To obtain the wave surface [surface de l’onde] produced by a center of disturbance in any medium—
that is, to obtain the set of all points of the medium simultaneously disturbed at the end of a unit of
time—it suffices to know the propagation speeds of plane waves (speeds measured perpendicular to the
plane of the wave), and, starting these plane waves from the center of disturbance, to determine, for all
the initial directions of their planes, the distance to which they will be transported at the end of the unit
of time; the surface simultaneously tangential to all these planes will be the wavefront produced by the
center of disturbance.”

10. Applying this theorem to the law of propagation speeds deduced from the equation of elasticity,
I find that in crystals of one axis the extraordinary wavefronts must indeed be ellipsoids of revolution,15

8 Indeed it is easily demonstrated that the surface given by Fresnel is obtainable from the ellipsoid 02G2+ 12H2+ 22I2 = 1
by inversion in the unit sphere centered on the origin; and under this inversion a circle centered on the origin is transformed to
a circle in the same plane, centered on the origin.

9 In other words, the relation between the wave-normal speed and the wave-normal direction, as given by the surface of
elasticity, is consistent with spheroidal secondary wavefronts.

10 That is, “seen” by an observer in the isotropic air, in which the rays are perpendicular to the wavefronts.
11As a function of the wave-normal direction.
12 See [5], §11—essentially repeated in English in [7], tr. Hobson, pp. 291–4, except that some features of the diagram are

missing. Here the “law of Huygens” apparently refers to his use of secondary wavefronts, of which the only ones used in the
diagram are spherical.

13 That the “shortest path” means the path of least time is not made explicit in this “Extrait of the Supplement”, but is clear
enough in the Supplement proper [5, §§ 11, 13–15].

14 Superposition.
15 The corresponding entry in the Analytical Table [8, vol. 3, 1870, p. 646] incorrectly states that the surface of elasticity

becomes an ellipsoid of revolution. In the original French, this is an obvious slip of the pen, substituting surface d’élasticité
for surface de l’onde. The error has been corrected [in square brackets] in the present translation of the Analytical Table.
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as Huygens had supposed; and thus I complete the demonstration of the agreement between the law
resulting from his ingenious construction, and the equation of elasticity.

11. I have been able to demonstrate the theorem which I have just cited only for the case where the
wave is already removed from the center of disturbance by a very large distance relative to the wavelength,
as I have been able to account for the general laws of reflection and refraction, and calculate those of the
various phenomena of diffraction, only when the wave is distant from the refractive or diffractive surface
by a very large measure relative to the wavelength. But if we note that a millimeter already contains
nearly two thousand times the mean wavelength of light, we will sense that the formulae thus deduced
from the theory of waves apply with sufficient accuracy to the ordinary circumstances of observations.

12. By supposing that the light waves have the constitution that I have indicated, all the known laws
of light can be deduced from the principle of the composition of small movements. It seems to me that as
soon as one accepts this principle as general and without exception, one cannot reject the consequences
that I have drawn from it: to me they appear to be mathematical. A learned geometer [Poisson], who
was kind enough to pay some attention to them, has indeed judged them very susceptible to controversy;
and while admitting the principle of the composition of small movements in all the generality of his
statement, he has made several objections to the consequences that I have deduced from them;16 but
I think it is easy to respond. That is what I have tried to do in this Supplement by briefly setting out the
demonstration of the principle of the shortest path,17 which is the basis of the laws of refraction in the
wave theory. I intend to publish a more detailed version of this demonstration.18 But in submitting it
now to the judgment of the Academy, I have the honor to offer to give Mssrs. the Commissioners19 all
the clarifications and elaborations that they will deem necessary on this subject.

13. I have supposed that when we had reduced the oscillatory movements, directed in any way, to
two other perpendicular movements directed along the largest and smallest radius vector included in the
plane of the wave, we could consider the propagation speeds of these two movements as proportional
to the square roots of the elasticities that they put in play, because the accelerating forces developed are
then parallel to the displacement and propagate it without altering its direction; but, as the application
of a principle demonstrated for a medium of a uniform elasticity, and waves of a different constitution,
could appear hazardous when the question concerns elastic media such as those which I consider, it was
necessary to show that the speed of propagation measured perpendicular to the plane of the wave was
still proportional to the square root of the elasticity put in play. This I did without calculation by bringing
the question back, by a small artifice of reasoning, to the ordinary cases of vibrating strings [5, §20].

14. Thus the theoretical results presented in this Supplement are mathematical consequences of the
very simple definition that I have given, of crystals with one and two axes. I supposed that in these
the vibrating medium had three perpendicular axes of elasticity—that is, three directions in which the
displacement of a molecule produced a repulsive force directed in the very line of displacement. When
the intensity of these forces is the same for two of the axes, the medium exhibits the properties of
crystals with one axis, such as calcareous spar. It is quite remarkable that, without making any further
hypothesis on the nature and the law of the forces which the molecules of the medium exert on each
other, and supposing only a certain symmetry of elasticity which, moreover, the regular arrangement of
the molecules of the crystal makes quite probable, we arrive at the elliptical waves of Huygens, together
with all the known laws of polarization and double refraction of crystals with two axes.

∗ ∗ ∗

16 , (a) See No.XXXIV [8, vol. 2, pp. 183–238].
17 See footnote 13.
18Cf. [7], tr. Hobson, pp. 292–7, 305–6, 309–11.
19Arago, Ampère, Fourier, and Poisson [1, p.248].
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