query;authors;date;title;doi;model1;model2;model3 Initial;"Abi-Akar, F; Schmolke, A; Roy, C; Galic, N; Hinarejos, S; ";2020;Simulating Honey Bee Large-Scale Colony Feeding Studies Using the BEEHAVE Model-Part II: Analysis of Overwintering Outcomes;http://dx.doi.org/10.1002/etc.4844;Population models;NA;NA Initial;"Accolla, C;Vaugeois, M; Grimm, V; Moore, Ap; Rueda-Cediel, P; Schmolke, A; Forbes, Ae;";2020;A review of key features and their implementation in unstructured, structured, and agent-based population models for ecological risk assessment. ;http://doi.org/10.1002/ieam.4362;Population models;NA;NA Initial;"Arlos, Mj; Focks, A; Hollender, J; Stamm, C;";2020;Improving Risk Assessment by Predicting the Survival of Field Gammarids Exposed to Dynamic Pesticide Mixtures;http://doi.org/10.1021/acs.est.0c03939;DR and TKTD models;NA;NA Initial;"Arlos, Mj; Schürz, F; Fu, Q; Lauper, Bb; Stamm, C; Hollender, J;";2020;Coupling River Concentration Simulations with a Toxicokinetic Model Effectively Predicts the Internal Concentrations of Wastewater-Derived Micropollutants in Field Gammarids;http://doi.org/10.1021/acs.est.9b05736;DR and TKTD models;NA;NA Initial;"Ashauer, R; Kuhl, R; Zimmer, E; Junghans, M; ";2020;Effect Modeling Quantifies the Difference Between the Toxicity of Average Pesticide Concentrations and Time-Variable Exposures from Water Quality Monitoring;http://dx.doi.org/10.1002/etc.4838;Population models;DR and TKTD models;NA Initial;"Asselman, J; Pfrender, Me; Lopez, Ja; Shaw, Jr; De Schamphelaere, Kac; ";2018;Gene Coexpression Networks Drive and Predict Reproductive Effects in &ITDaphnia&IT in Response to Environmental Disturbances;http://dx.doi.org/10.1021/acs.est.7b05256;Mixture models;NA;NA Initial;"Awkerman, J; Raimondo, S; Schmolke, A; Galic, N; Rueda-Cediel, P; Kapo, K; Accolla, C; Vaugeois, M; Forbes, V; ";2020;Guidance for Developing Amphibian Population Models for Ecological Risk Assessment;http://dx.doi.org/10.1002/ieam.4215;Population models;NA;NA Initial;"Azevedo-Linhares, M; Souza, Atc; Lenz, Ca; Leite, Nf; Brito, Ia; Folle, Nmt; Garcia, Je; Filipak Neto, F; Oliveiro Ribeiro, Ca; ";2018;Microcystin and pyriproxyfen are toxic to early stages of development in Rhamdia quelen: An experimental and modelling study;http://dx.doi.org/10.1016/j.ecoenv.2018.09.064;Population models;NA;NA Initial;"Babic, S; Barisic, J; Stipanicev, D; Repec, S; Lovric, M; Malev, O; Martinovic-Weigelt, D; Coz-Rakovac, R; Klobucar, G; ";2018;Assessment of river sediment toxicity: Combining empirical zebrafish embryotoxicity testing with in silico toxicity characterization;http://dx.doi.org/10.1016/j.scitotenv.2018.06.124;DR and TKTD models;NA;NA Initial;"Baillard, V; Sulmon, C; Bittebiere, Ak; Mony, C; Couee, I; Gouesbet, G; Delignette-Muller, Ml; Devin, S; Billoir, E; ";2020;Effect of interspecific competition on species sensitivity distribution models: Analysis of plant responses to chemical stress;http://dx.doi.org/10.1016/j.ecoenv.2020.110722;Multi-species models;NA;NA Initial;"Banks, Je; Ackleh, As; Veprauskas, A; Stark, Jd; ";2019;The trouble with surrogates in environmental risk assessment: a daphniid case study;http://dx.doi.org/10.1007/s10646-018-1999-0;Population models;NA;NA Initial;"Bart, S; Jager ,T; Robinson, A; Lahive, E; Spurgeon, Dj, Ashauer R;";2021;Predicting Mixture Effects over Time with Toxicokinetic − Toxicodynamic Models (GUTS): Assumptions, Experimental Testing, and Predictive Power;http://doi.org/10.1021/acs.est.0c05282;Mixture models;NA;NA Initial;"Bart, S; Pelosi, C; Nelieu, S; Lamy, I; Pery, Arr; ";2020;An energy-based model to analyze growth data of earthworms exposed to two fungicides;http://dx.doi.org/10.1007/s11356-019-06985-z;DR and TKTD models;NA;NA Initial;"Bartell, Sm; Nair, Sk; Grant, S; Brain, Ra;";2018;Modeling the effects of thiamethoxam on Midwestern farm ponds and emergent wetlands;http://dx.doi.org/10.1002/etc.4010;Landscape models;NA;NA Initial;"Baudrot, V; Walker, E; Lang, A; Stefanescu, C; Rey, Jf; Soubeyrand, S; Messean, A;";2021;When the average hides the risk of Bt-corn pollen on non-target Lepidoptera: Application to Aglais io in Catalonia. ;http://doi.org/10.1016/j.ecoenv.2020.111215;Landscape models;NA;NA Initial;"Bauer, Fj; Thomas, Pc; Fouchard, Sy; Neunlist, Sjm;";2018;A new classification algorithm based on mechanisms of action. ;https://doi.org/10.1016/j.comtox.2017.11.001;QSARs;NA;NA Initial;"Bauer, Fj; Thomas, Pc; Fouchard, Sy; Neunlist, Sjm;";2017;High-accuracy prediction of mechanisms of action using structural alerts.;https://doi.org/10.1016/j.comtox.2018.06.004;QSARs;NA;NA Initial;"Bayen, S; Estrada, Es; Zhang, H; Lee, Wk; Juhel, G; Smedes, F; Kelly, Bc; ";2019;Partitioning and Bioaccumulation of Legacy and Emerging Hydrophobic Organic Chemicals in Mangrove Ecosystems;http://dx.doi.org/10.1021/acs.est.8b06122;Population models;NA;NA Initial;"Becher, Ma; Grimm, V; Thorbek, P; Horn, J; Kennedy, Pj; Osborne, Jl;";2014;BEEHAVE: A systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure;https://doi.org/10.1111/1365-2664.12222;Population models;NA;NA Initial;"Becher, Ma; Twiston-Davies, G; Penny, Td; Goulson, D; Rotheray, El; Osborne, Jl; ";2018;Bumble-BEEHAVE: A systems model for exploring multifactorial causes of bumblebee decline at individual, colony, population and community level;http://dx.doi.org/10.1111/1365-2664.13165;Multi-species models;NA;NA Initial;"Belden, Jb; Brain, Ra; ";2018;Incorporating the joint toxicity of co-applied pesticides into the ecological risk assessment process;http://dx.doi.org/10.1002/ieam.1957;Mixture models;NA;NA Initial;"Belz, Rg; Duke, So; ";2018;Predicting hormesis in mixtures of herbicidal compounds - where are we and how far can we go?;http://dx.doi.org/10.5073/jka.2018.458.023;Mixture models;NA;NA Initial;"Berntssen, Mhg; Hoogenveen, R; Rosenlund, G; Garlito, B; Zeilmaker, Mj; ";2020;Do background levels of the pesticide pirimiphosmethyl in plant-based aquafeeds affect food safety of farmed Atlantic salmon?;http://dx.doi.org/10.1080/19440049.2020.1829717;DR and TKTD models;NA;NA Initial;"Boone, Ks; Di Toro, Dm; ";2019;Target site model: Application of the polyparameter target lipid model to predict aquatic organism acute toxicity for various modes of action;http://dx.doi.org/10.1002/etc.4278;QSARs;NA;NA Initial;"Booton, Rd; Yamaguchi, R; Marshall, Jar; Childs, Dz; Iwasa, Y; ";2018;Interactions between immunotoxicants and parasite stress: Implications for host health;http://dx.doi.org/10.1016/j.jtbi.2018.02.018;Population models;NA;NA Initial;"Bourque, J; Desforges, Jp; Levin, M; Atwood, Tc; Sonne, C; Dietz, R; Jensen, Th; Curry, E; Mckinney, Ma; ";2020;Climate-associated drivers of plasma cytokines and contaminant concentrations in Beaufort Sea polar bears (Ursus maritimus);http://dx.doi.org/10.1016/j.scitotenv.2020.140978;DR and TKTD models;NA;NA Initial;"Brain, Ra; Teed, Rs; Bang, J; Thorbek, P; Perine, J; Peranginangin, N; Kim, M; Valenti, T; Chen, Wl; Breton, Rl; Rodney, Si; Moore, Drj;";2015;Risk Assessment Considerations With Regard to the Potential Impacts of Pesticides on Endangered Species;http://dx.doi.org/10.1002/ieam.1572;Population models;Multi-species models;NA Initial;"Brain, Ra; Teed, Rs; Bang, J; Thorbek, P; Perine, J; Pranginangin, N; Kim, M; Valenti, T; Chen, Wl; Breton, Rl; Rodney, Si; Moore, Drj; ";2009;TOXICITY OF A DISSOLVED PYRETHROID MIXTURE TO HYALELLA AZTECA AT ENVIRONMENTALLY RELEVANT CONCENTRATIONS;http://dx.doi.org/10.1897/08-374.1;Mixture models;NA;NA Initial;"Breitwieser, M; Vigneau, E; Viricel, A; Becquet, V; Lacroix, C; Erb, M; Huet, V; Churlaud, C; Le Floch, S; Guillot, B; Graber, M; Thomas, H; ";2018;What is the relationship between the bioaccumulation of chemical contaminants in the variegated scallop Mimachlamys varia and its health status? A study carried out on the French Atlantic coast using the Path ComDim model;http://dx.doi.org/10.1016/j.scitotenv.2018.05.317;DR and TKTD models;NA;NA Initial;"Brock, Tcm; Arena, M; Cedergreen, N; Charles, S; Duquesne, S; Ippolito, A; Klein, M; Reed, M; Teodorovic, I; Van Den Brink, Pj; Focks, A; ";2020;Application of General Unified Threshold Models of Survival Models for Regulatory Aquatic Pesticide Risk Assessment Illustrated with An Example for the Insecticide Chlorpyrifos;http://dx.doi.org/10.1002/ieam.4327;DR and TKTD models;NA;NA Initial;"Brock, Tcm; Arts, Ghp; Maltby, L; Van Den Brink, Pj; ";2006;Aquatic Risks of Pesticides, Ecological Protection Goals, and Common Aims in European Union Legislation;http://dx.doi.org/10.1002/ieam.5630020402;Methods;NA;NA Initial;"Brock, Tcm; Belgers, Jdm; Boerwinkel, Mc; Jollie, L; Kraak, Mhs; Papo, Mj; Vonk, Ja; Roessink, I; ";2018;Toxicity of sediment-bound lufenuron to benthic arthropods in laboratory bioassays;http://dx.doi.org/10.1016/j.aquatox.2018.03.005;DR and TKTD models;Multi-species models;NA Initial;"Brock, Tcm; Crum, Sjh; Deneer, Jw; Heimbach, F; Roijackers, Rmm; Sinkeldam, Ja; ";2004;Comparing aquatic risk assessment methods for the photosynthesis-inhibiting herbicides metribuzin and metamitron;http://dx.doi.org/10.1016/j.envpol.2003.12.022;Multi-species models;NA;NA Initial;"Brock, Tcm; Romao, J; Yin, X; Osman, R; Roessink, I; ";2020;Sediment toxicity of the fungicide fludioxonil to benthic macroinvertebrates-evaluation of the tiered effect assessment procedure;http://dx.doi.org/10.1016/j.ecoenv.2020.110504;Population models;NA;NA Initial;"Broerse, M; Van Gestel, Cam; ";2010;Mixture effects of nickel and chlorpyrifos on Folsomia candida (Collembola) explained from development of toxicity in time;http://dx.doi.org/10.1016/j.chemosphere.2010.02.032;Mixture models;NA;NA Initial;"Brox, S; Seiwert, B; Kuster, E; Reemtsma, T; ";2016;Toxicokinetics of Polar Chemicals in Zebrafish Embryo (Danio rerio): Influence of Physicochemical Properties and of Biological Processes;http://dx.doi.org/10.1021/acs.est.6b04325;DR and TKTD models;NA;NA Initial;"Bryden, J; Gill, Rj; Mitton, Raa; Raine, Ne; Jansen, Vaa; ";2013;Chronic sublethal stress causes bee colony failure;http://dx.doi.org/10.1111/ele.12188;Population models;NA;NA Initial;"Cacciatore, Lc; Guerrero, Nrv; Cochon, Ac;";2018;Toxicokinetic and toxicodynamic studies of carbaryl alone or in binary mixtures with azinphos methyl in the freshwater gastropod Planorbarius corneus;http://dx.doi.org/10.1016/j.aquatox.2018.04.005;Mixture models;NA;NA Initial;"Campero, M; De Block, M; Ollevier, F; Stoks, R; ";2008;Correcting the short-term effect of food deprivation in a damselfly: mechanisms and costs;http://dx.doi.org/10.1111/j.1365-2656.2007.01308.x;DR and TKTD models;NA;NA Initial;"Carafa, R; Marinov, D; Dueri, S; Wollgast, J; Giordani, G; Viaroli, P; Zaldivar, Jm; ";2009;A bioaccumulation model for herbicides in Ulva rigida and Tapes philippinarum in Sacca di Goro lagoon (Northern Adriatic);http://dx.doi.org/10.1016/j.chemosphere.2008.10.058;DR and TKTD models;NA;NA Initial;"Cardoso, Dfn; Bastos, Ac; Soares, Amvm; Loureiro, S; ";2014;Short-term exposure to carbaryl and UV radiation increases the reproduction output of the collembolan Folsomia candida;http://dx.doi.org/10.1007/s11368-014-0892-6;Mixture models;NA;NA Initial;"Carnesecchi, E; Svendsen, C; Lasagni, S; Grech, A; Quignot, N; Amzal, B; Toma, C; Tosi, S; Rortais, A; Cortinas-Abrahantes, J; Capri, E; Kramer, N; Benfenati, E; Spurgeon, D; Guillot, G; Dorne, Jlcm; ";2019;Investigating combined toxicity of binary mixtures in bees: Meta-analysis of laboratory tests, modelling, mechanistic basis and implications for risk assessment;http://dx.doi.org/10.1016/j.envint.2019.105256;Mixture models;NA;NA Initial;"Carnesecchi, E; Toma, C; Roncaglioni, A; Kramer, N; Benfenati, E; Dorne, Jlcm; ";2020;Integrating QSAR models predicting acute contact toxicity and mode of action pro filing in honey bees ( A. mellifera ): Data curation using open source databases, performance testing and validation;http://dx.doi.org/10.1016/j.scitotenv.2020.139243;QSARs;NA;NA Initial;"Carpenter, Dj; Mathiassen, Sk; Boutin, C; Strandberg, B; Casey, Cs; Damgaard, C; ";2020;Effects of Herbicides on Flowering;http://dx.doi.org/10.1002/etc.4712;DR and TKTD models;NA;NA Initial;"Casalegno, M; Sello, G; Benfenati, E; ";2006;Top-priority fragment QSAR approach in predicting pesticide aquatic toxicity;http://dx.doi.org/10.1021/tx0601814;QSARs;NA;NA Initial;"Cedergreen, N; ";2014;Quantifying Synergy: A Systematic Review of Mixture Toxicity Studies within Environmental Toxicology;http://dx.doi.org/10.1371/journal.pone.0096580;Mixture models;NA;NA Initial;"Cedergreen, N; Rasmussen, Jj;";2017;Low Dose Effects of Pesticides in the Aquatic Environment;http://dx.doi.org/10.1021/bk-2017-1249.ch012;Mixture models;NA;NA Initial;"Cedergreen, N; Spliid, Nh; Streibig, Jc;";2004;Species-specific sensitivity of aquatic macrophytes towards two herbicide;http://dx.doi.org/10.1016/j.ecoenv.2004.04.002;Multi-species models;NA;NA Initial;"Cederlund, H; ";2017;Effects of spray drift of glyphosate on nontarget terrestrial plantsA critical review;http://dx.doi.org/10.1002/etc.3925;Multi-species models;NA;NA Initial;"Chandler, Gt; Cary, Tl; Bejarano, Ac; Pender, J; Ferry, Jl;";2004;Population consequences of fipronil and degradates to copepods at field concentrations: An integration of life cycle testing with Leslie matrix population Modeling;http://dx.doi.org/10.1021/es049654o;Population models;NA;NA Initial;"Charles, S; Wu, D; Ducrot ,V;";2021;How to account for the uncertainty from standard toxicity tests in species sensitivity distributions: an example in non-target plants;http://doi.org/10.1371/journal.pone.0245071;DR and TKTD models;Multi-species models;NA Initial;"Chaudhuri, A; Johnson, R; Rakshit, K; Bednarova, A; Lackey, K; Sen Chakraborty, S; Krishnan, N; ";2020;Exposure to Spectracide (R) causes behavioral deficits in Drosophila melanogaster: Insights from locomotor analysis and molecular modeling;http://dx.doi.org/10.1016/j.chemosphere.2020.126037;QSARs;NA;NA Initial;"Chaumet, B; Morin, S; Boutry, S; Mazzella, N; ";2019;Diuron sorption isotherms in freshwater biofilms;http://dx.doi.org/10.1016/j.scitotenv.2018.09.286;DR and TKTD models;NA;NA Initial;"Chaumet, B; Morin, S; Hourtane, O; Artigas, J; Delest, B; Eon, M; Mazzella, N; ";2019;Flow conditions influence diuron toxicokinetics and toxicodynamics in freshwater biofilms;http://dx.doi.org/10.1016/j.scitotenv.2018.10.265;DR and TKTD models;NA;NA Initial;"Chen, C; Wang, Yh; Zhao, Xp; Qian, Yz; Wang, Q; ";2014;Combined toxicity of butachlor, atrazine and lambda-cyhalothrin on the earthworm Eisenia fetida by combination index (CI)-isobologram method;http://dx.doi.org/10.1016/j.chemosphere.2014.04.070;Mixture models;NA;NA Initial;"Chen, C; Wang, Yh; Zhao, Xp; Wang, Q; Qian, Yz; ";2014;Comparative and combined acute toxicity of butachlor, imidacloprid and chlorpyrifos on earthworm, Eisenia fetida;http://dx.doi.org/10.1016/j.chemosphere.2013.12.023;Mixture models;NA;NA Initial;"Chen, C; Wang, Yh; Zhao, Xp; Wang, Q; Qian, Yz; ";2014;The combined toxicity assessment of carp (Cyprinus carpio) acetylcholinesterase activity by binary mixtures of chlorpyrifos and four other insecticides;http://dx.doi.org/10.1007/s10646-013-1165-7;Mixture models;NA;NA Initial;"Chen, Jj; Chen, Yj; Teuschler, Lk; Rice, G; Hamernik, K; Protzel, A; Kodell, Rl;";2003;Cumulative risk assessment for quantitative response data;http://dx.doi.org/10.1002/env.587;Mixture models;NA;NA Initial;"Chen, L; Li, Sb; Zhou, Ym; Zhou, Xx; Jiang, H; Liu, Xg; Yuan, Sk;";2020;Risk assessment for pesticide mixtures on aquatic ecosystems in China: a proposed framework;http://dx.doi.org/10.1002/ps.5529;Methods;NA;NA Initial;"Chen, L; Song, Yf; Tang, Bh; Song, Xy; Yang, Hr; Li, By; Zhao, Y; Huang, Ct; Han, X; Wang, Sy; Li, Zl;";2015;Aquatic risk assessment of a novel strobilurin fungicide: A microcosm study compared with the species sensitivity distribution approach;http://dx.doi.org/10.1016/j.ecoenv.2015.06.027;Multi-species models;NA;NA Initial;"Chen, Yq; Yu, Wj; Jin, L; Wang, Q; Yin, J; Lin, Jw; Li, Jy;";2019;Stabilization of hydrophobic organic contaminants in sediments by natural zeolites: bioavailability-based assessment of efficacy using equilibrium passive sampling;http://dx.doi.org/10.1007/s11368-019-02381-9;DR and TKTD models;NA;NA Initial;"Chevre, N; Brazzale, Ar; Becker-Van Slooten, K; Behra, R; Tarradellas, J; Guettinger, H; ";2005;Modeling the concentration-response function of the herbicide dinoseb on Daphnia magna (survival time, reproduction) and Pseudokirchneriella subcapitata (growth rate);http://dx.doi.org/10.1016/j.ecoenv.2004.08.001;Multi-species models;NA;NA Initial;"Ciffroy, P;";2020;A comprehensive probabilistic approach for integrating and separating natural variability and parametric uncertainty in the prediction of distribution coefficient of radionuclides in rivers;http://doi.org/10.1016/j.jenvrad.2020.106371;Methods;NA;NA Initial;"Clemow, Yh; Manning, Ge; Breton, Rl; Winchell, Mf; Padilla, L; Rodney, Si; Hanzas, Jp; Estes, Tl; Budreski, K; Toth, Bn; Hill, Kl; Priest, Cd; Teed, Rs; Knopper, Ld; Moore, Drj; Stone, Ct; Whatling, P;";2018;A Refined Ecological Risk Assessment for California Red-legged Frog, Delta Smelt, and California Tiger Salamander Exposed to Malathion;http://dx.doi.org/10.1002/ieam.2002;Multi-species models;NA;NA Initial;"Como, F; Carnesecchi, E; Volani, S; Dorne, Jlcm; Richardson, J; Bassan, A; Pavan, M; Benfenati, E; ";2017;Predicting acute contact toxicity of pesticides in honeybees (Apis mellifera) through a k-nearest neighbor model;http://dx.doi.org/10.1016/j.chemosphere.2016.09.092;QSARs;NA;NA Initial;"Conder, Jm; Sorensen, Mt; Leitman, P; Martello, Lb; Wenning, Rj;";2009;Avian ecological risk potential in an urbanized estuary: Lower Hackensack River, New Jersey, USA;http://dx.doi.org/10.1016/j.scitotenv.2008.09.043;Landscape models;NA;NA Initial;"Conolly, Rb; Ankley, Gt; Cheng, Wy; Mayo, Ml; Miller, Dh; Perkins, Ej; Villeneuve, Dl; Watanabe, Kh;";2017;Quantitative Adverse Outcome Pathways and Their Application to Predictive Toxicology;http://doi.org/10.1021/acs.est.6b06230;Population models;DR and TKTD models;NA Initial;"Coors, A; De Meester, L; ";2008;Synergistic, antagonistic and additive effects of multiple stressors: predation threat, parasitism and pesticide exposure in Daphnia magna;http://dx.doi.org/10.1111/j.1365-2664.2008.01566.x;Mixture models;NA;NA Initial;"Copin, Pj; Chevre, N; ";2018;Modelling the effects of PSII inhibitor pulse exposure on two algae in co-culture;http://dx.doi.org/10.1007/s10646-017-1881-5;DR and TKTD models;NA;NA Initial;"Copin, Pj; Chevre, N; ";2015;Modelling the effects of pulse exposure of several PSII inhibitors on two algae;http://dx.doi.org/10.1016/j.chemosphere.2015.05.035;DR and TKTD models;NA;NA Initial;"Copin, Pj; Coutu, S; Chevre, N; ";2015;Modelling the effect of fluctuating herbicide concentrations on algae growth;http://dx.doi.org/10.1016/j.ecoenv.2014.12.010;DR and TKTD models;NA;NA Initial;"Copin, Pj; Perronet, L; Chevre, N; ";2016;Modelling the effect of exposing algae to pulses of S-metolachlor: How to include a delay to the onset of the effect and in the recovery;http://dx.doi.org/10.1016/j.scitotenv.2015.08.154;Mixture models;NA;NA Initial;"Crall, Jd; De Bivort, Bl; Dey, B; Versypt, Anf;";2019;Social Buffering of Pesticides in Bumblebees: Agent-Based Modeling of the Effects of Colony Size and Neonicotinoid Exposure on Behavior Within Nests;http://dx.doi.org/10.3389/fevo.2019.00051;Population models;NA;NA Initial;"Crenna, E; Jolliet, O; Collina, E; Sala, S; Fantke, P; ";2020;Characterizing honey bee exposure and effects from pesticides for chemical prioritization and life cycle assessment;http://dx.doi.org/10.1016/j.envint.2020.105642;DR and TKTD models;NA;NA Initial;"Cresswell, Je;";2017;A demographic approach to evaluating the impact of stressors on bumble bee colonies;http://dx.doi.org/10.1111/een.12376;Population models;NA;NA Initial;"Crocker, Dr;";2005;Estimating the exposure of birds and mammals to pesticides in long-term risk assessments;http://dx.doi.org/10.1007/s10646-005-0031-7;Multi-species models;NA;NA Initial;"Crocker, Dr; Lawrence, Aj;";2018;Estimating the potential effects of pesticide seed treatments on the reproductive success of arable birds;http://dx.doi.org/10.1016/j.ecoenv.2017.08.035;Population models;NA;NA Initial;"Croft, S; Brown, M; Wilkins, S; Hart, A; Smith, Gc;";2018;Evaluating European Food Safety Authority Protection Goals for Honeybees (Apis mellifera): What Do They Mean for Pollination?;http://dx.doi.org/10.1002/ieam.4078;Population models;NA;NA Initial;"Cruzeiro, C; Rocha, E; Pardal, Ma; Rocha, Mj;";2016;Environmental assessment of pesticides in the Mondego River Estuary (Portugal);http://dx.doi.org/10.1016/j.marpolbul.2015.12.013;Mixture models;NA;NA Initial;"Cuevas, N; Martins, M; Costa, Pm;";2018;Risk assessment of pesticides in estuaries: a review addressing the persistence of an old problem in complex environments;http://dx.doi.org/10.1007/s10646-018-1910-z;Methods;NA;NA Initial;"Daam, Ma; Silva, E; Leitao, S; Trindade, Mj; Cerejeira, Mj;";2010;Does the actual standard of 0.1 mu g/L overestimate or underestimate the risk of plant protection products to groundwater ecosystems?;http://dx.doi.org/10.1016/j.ecoenv.2009.12.029;Multi-species models;NA;NA Initial;"Dalhoff, K; Gottardi, M; Rinnan, A; Rasmussen, Jj; Cedergreen, N; ";2018;Seasonal sensitivity of Gammarus pulex towards the pyrethroid cypermethrin;http://dx.doi.org/10.1016/j.chemosphere.2018.02.153;DR and TKTD models;NA;NA Initial;"Dalhoff, K; Hansen, Amb; Rasmussen, Jj; Focks, A; Strobel, Bw; Cedergreen, N; ";2020;Linking Morphology, Toxicokinetic, and Toxicodynamic Traits of Aquatic Invertebrates to Pyrethroid Sensitivity;http://dx.doi.org/10.1021/acs.est.0c00189;DR and TKTD models;NA;NA Initial;"Dalkvist, T; Sibly, Rm; Topping, Cj;";2013;Landscape structure mediates the effects of a stressor on field vole populations;http://dx.doi.org/10.1007/s10980-013-9932-7;Landscape models;NA;NA Initial;"Dalkvist, T; Topping, Cj; Forbes, Ve; ";2009;Population-level impacts of pesticide-induced chronic effects on individuals depend more on ecology than toxicology;http://dx.doi.org/10.1016/j.ecoenv.2008.10.002;Population models;NA;NA Initial;"Damgaard, C; Mathiassen, Sk; Kudsk, P;";2008;Modeling effects of herbicide drift on the competitive interactions between weeds;http://dx.doi.org/10.1897/07-267.1;Multi-species models;NA;NA Initial;"Davidson, C; ";2004;Declining downwind: Amphibian population declines in california and historical pesticide use;http://dx.doi.org/10.1890/03-5224;Mixture models;NA;NA Initial;"De Castro-Catala, N; Munoz, I; Riera, Jl; Ford, At;";2017;Evidence of low dose effects of the antidepressant fluoxetine and the fungicide prochloraz on the behavior of the keystone freshwater invertebrate Gammarus pulex;http://dx.doi.org/10.1016/j.envpol.2017.07.088;Mixture models;NA;NA Initial;"De Coninck, Dim; De Schamphelaere, Kac; Jansen, M; De Meester, L; Janssen, Cr; ";2013;Interactive effects of a bacterial parasite and the insecticide carbaryl to life-history and physiology of two Daphnia magna clories differing in carbaryl sensitivity;http://dx.doi.org/10.1016/j.aquatox.2013.01.008;Mixture models;NA;NA Initial;"De Hoop, L; De Troch, M; Hendriks, Aj; De Laender, F;";2013;MODELING TOXIC STRESS BY ATRAZINE IN A MARINE CONSUMER-RESOURCE SYSTEM;http://dx.doi.org/10.1002/etc.2160;Multi-species models;NA;NA Initial;"De Laender, F; Soetaert, K; Middelburg, Jj; ";2010;Inferring chemical effects on carbon flows in aquatic food webs: Methodology and case study;http://dx.doi.org/10.1016/j.envpol.2009.11.009;Multi-species models;NA;NA Initial;"De Laender, F; Van Den Brink, Pj; Janssen, Cr; ";2011;Functional redundancy and food web functioning in linuron-exposed ecosystems;http://dx.doi.org/10.1016/j.envpol.2011.04.048;Multi-species models;NA;NA Initial;"De Perre, C; Murphy, Tm; Lydy, Mj; ";2017;MIXTURE TOXICITY OF PHOSTEBUPIRIM AND CYFLUTHRIN: SPECIES-SPECIFIC RESPONSES;http://dx.doi.org/10.1002/etc.3724;Mixture models;NA;NA Initial;"De Zwart, D; ";2005;Ecological Effects of Pesticide Use in The Netherlands: Modeled and Observed Effects in the Field Ditch;http://dx.doi.org/10.1897/IEAM_2004-015.1;Multi-species models;Mixture model: CA / IA model, …,;NA Initial;"Devillers, J; ";2001;A general QSAR model for predicting the acute toxicity of pesticides to Lepomis macrochirus;http://dx.doi.org/10.1080/10629360108035361;QSARs;NA;NA Initial;"Devillers, J; Flatin, J; ";2000;A general QSAR model for predicting the acute toxicity of pesticides to Oncorhynchus mykiss;http://dx.doi.org/10.1080/10629360008033227;QSARs;NA;NA Initial;"Di Marzio, Wd; Cifoni, M; Saenz, Me; Galassi, Dmp; Di Lorenzo, T; ";2018;The ecotoxicity of binary mixtures of Imazamox and ionized ammonia on freshwater copepods: Implications for environmental risk assessment in groundwater bodies;http://dx.doi.org/10.1016/j.ecoenv.2017.11.031;QSARs;NA;NA Initial;"Diepens, Nj; Beltman, Whj; Koelmans, Aa; Van Den Brink, Pj; Baveco, Jm; ";2016;Dynamics and recovery of a sediment-exposed Chironomus riparius population: A modelling approach;http://dx.doi.org/10.1016/j.envpol.2016.03.051;Population models;NA;NA Initial;"Dittrich, R; Giessing, B; Benito, Mm; Russ, A; Wolf, C; Foudoulakis, M; Norman, S; ";2019;Multiyear monitoring of bird communities in chlorpyrifos-treated orchards in Spain and the United Kingdom: Spatial and temporal trends in species composition, abundance, and site fidelity;http://dx.doi.org/10.1002/etc.4317;DR and TKTD models;NA;NA Initial;"Dohmen, Gp; Preuss, Tg; Hamer, M; Galic, N; Strauss, T; Van Den Brink, Pj; De Laender, F; Bopp, S; ";2016;Population-Level Effects and Recovery of Aquatic Invertebrates after Multiple Applications of an Insecticide;http://dx.doi.org/10.1002/ieam.1676;DR and TKTD models;Population models;NA Initial;"Donatelli, M; Magarey, Rd; Bregaglio, S; Willocquet, L; Whish, Jpm; Savary, S; ";2017;Modelling the impacts of pests and diseases on agricultural systems;http://dx.doi.org/10.1016/j.agsy.2017.01.019;Population models;NA;NA Initial;"Duchet, C; Coutellec, Ma; Franquet, E; Lagneau, C; Lagadic, L; ";2010;Population-level effects of spinosad and Bacillus thuringiensis israelensis in Daphnia pulex and Daphnia magna: comparison of laboratory and field microcosm exposure conditions;http://dx.doi.org/10.1007/s10646-010-0507-y;Population models;NA;NA Initial;"Ducrot, V; Pery, Arr; Lagadic, L; ";2010;Modelling effects of diquat under realistic exposure patterns in genetically differentiated populations of the gastropod Lymnaea stagnalis;http://dx.doi.org/10.1098/rstb.2010.0047;DR and TKTD models;NA;NA Initial;"Dupraz, V; Menard, D; Akcha, F; Budzinski, H; Stachowski-Haberkorn, S; ";2019;Toxicity of binary mixtures of pesticides to the marine microalgae Tisochrysis lutea and Skeletonema marinoi: Substance interactions and physiological impacts;http://dx.doi.org/10.1016/j.aquatox.2019.03.015;Mixture models;NA;NA Initial;"El-Amrani, S; Pena-Abaurrea, M; Sanz-Landaluze, J; Ramos, L; Guinea, J; Camara, C; ";2012;Bioconcentration of pesticides in Zebrafish eleutheroembryos (Danio rerio);http://dx.doi.org/10.1016/j.scitotenv.2012.02.065;DR and TKTD models;NA;NA Initial;"Elliott, Je; Miller, Mj; Wilson, Lk; ";2005;Assessing breeding potential of peregrine falcons based on chlorinated hydrocarbon concentrations in prey;http://dx.doi.org/10.1016/j.envpol.2004.08.002;DR and TKTD models;NA;NA Initial;"Engelman, Ca; Grant, We; Mora, Ma; Woodin, M; ";2012;Modelling effects of chemical exposure on birds wintering in agricultural landscapes: The western burrowing owl (Athene cunicularia hypugaea) as a case study;http://dx.doi.org/10.1016/j.ecolmodel.2011.10.017;Landscape models;NA;NA Initial;"Englert, D; Zubrod, Jp; Pietz, S; Stefani, S; Krauss, M; Schulz, R; Bundschuh, M; ";2017;Relative importance of dietary uptake and waterborne exposure for a leaf-shredding amphipod exposed to thiacloprid-contaminated leaves;http://dx.doi.org/10.1038/s41598-017-16452-9;Mixture models;NA;NA Initial;"Etterson, M; Garber, K; Odenkirchen, E; ";2017;Mechanistic modeling of insecticide risks to breeding birds in North American agroecosystems;http://dx.doi.org/10.1371/journal.pone.0176998;Population models;NA;NA Initial;"Etterson, Ma; Bennett, Rs; ";2013;Quantifying the Effects of Pesticide Exposure on Annual Reproductive Success of Birds;http://dx.doi.org/10.1002/ieam.1450;Population models;NA;NA Initial;"Evans, Ad; Nipper, M; ";2007;Toxicity of phenanthrene and lindane mixtures to marine invertebrates;http://dx.doi.org/10.1002/tox.20279;Mixture models;NA;NA Initial;"Faggiano, L; De Zwart, D; Garcia-Berthou, E; Lek, S; Gevrey, M; ";2010;Patterning ecological risk of pesticide contamination at the river basin scale;http://dx.doi.org/10.1016/j.scitotenv.2010.02.002;Mixture models;NA;NA Initial;"Fargnoli, M; Lombardi, M; Puri, D; Casorri, L; Masciarelli, E; Mandic-Rajcevic, S; Colosio, C; ";2019;The Safe Use of Pesticides: A Risk Assessment Procedure for the Enhancement of Occupational Health and Safety (OHS) Management;http://dx.doi.org/10.3390/ijerph16030310;Methods;NA;NA Initial;Felten V, Toumi H, Masfaraud Jf, Billoir E, Camara Bi, Férard Jf;2020;Microplastics enhance Daphnia magna sensitivity to the pyrethroid insecticide deltamethrin: Effects on life history traits;http://doi.org/10.1016/j.scitotenv.2020.136567;DR and TKTD models;NA;NA Initial;"Filimonova, V; Nys, C; De Schamphelaere, Kac; Goncalves, F; Marques, Jc; Goncalves, Amm; De Troch, M; ";2018;Ecotoxicological and biochemical mixture effects of an herbicide and a metal at the marine primary producer diatom Thalassiosira weissflogii and the primary consumer copepod Acartia tonsa;http://dx.doi.org/10.1007/s11356-018-2302-x;Mixture models;NA;NA Initial;"Finizio, A; Di Nica, V; Rizzi, C; Villa, S; ";2020;A quantitative structure-activity relationships approach to predict the toxicity of narcotic compounds to aquatic communities;http://dx.doi.org/10.1016/j.ecoenv.2019.110068;QSARs;NA;NA Initial;"Firdaus, Mam; Agatz, A; Hodson, Me; Al-Khazrajy, Osa; Boxall, Aba; ";2018;Fate, Uptake, and Distribution of Nanoencapsulated Pesticides in Soil-Earthworm Systems and Implications for Environmental Risk Assessment;http://dx.doi.org/10.1002/etc.4094;DR and TKTD models;NA;NA Initial;"Focks, A; Belgers, D; Boerwinkel, Mc; Buijse, L; Roessink, I; Van Den Brink, Pj; ";2018;Calibration and validation of toxicokinetic-toxicodynamic models for three neonicotinoids and some aquatic macroinvertebrates;http://dx.doi.org/10.1007/s10646-018-1940-6;DR and TKTD models;NA;NA Initial;"Focks, A; Luttik, R; Zorn, M; Brock, Tcm; Roex, E; Van Der Linden, T; Van Den Brink, Pj; ";2014;A SIMULATION STUDY ON EFFECTS OF EXPOSURE TO A COMBINATION OF PESTICIDES USED IN AN ORCHARD AND TUBER CROP ON THE RECOVERY TIME OF A VULNERABLE AQUATIC INVERTEBRATE;http://dx.doi.org/10.1002/etc.2502;Population models;NA;NA Initial;"Focks, A; Ter Horst, M; Van Den Berg, E; Baveco, H; Van Den Brink, Pj; ";2014;Integrating chemical fate and population-level effect models for pesticides at landscape scale: New options for risk assessment;http://dx.doi.org/10.1016/j.ecolmodel.2013.09.023;Population models;NA;NA Initial;Forbes Ve, Salice Cj, Birnir B, Bruins Rjf, Calow P, Ducrot V, Galic N, Garber K, Harvey Bc, Jager H, Kanarek A, Pastorok R, Railsback Sf, Rebarber R, Thorbeck P;2017;A framework for predicting impacts on ecosystem services from (sub)organismal responses to chemicals;https://doi.org/10.1002/etc.3720;Population models;NA;NA Initial;"Forbes, Ve; Agatz, A; Ashauer, R; Butt, Kr; Capowiez, Y; Duquesne, S; Ernst, G; Focks, A; Gergs, A; Hodson, Me; Holmstrup, M; Johnston, As; Meli, M; Nickisch, D; Pieper, S; Rakel, Kj; Reed, M; Roembke, J; Schafer, Rb; Thorbek, P; Spurgeon, Dj; Van Den Berg, E; Van Gestel, Ca; Zorn, Mi; Roeben, V; ";2020;Mechanistic Effect Modeling of Earthworms in the Context of Pesticide Risk Assessment: Synthesis of the FORESEE Workshop;http://dx.doi.org/10.1002/ieam.4338;Population models;DR and TKTD models;Landscape models Initial;"Forbes, Ve; Brain, R; Edwards, D; Galic, N; Hall, T; Honegger, J; Meyer, C; Moore, Drj; Nacci, D; Pastorok, R; Preuss, Tg; Railsback, Sf; Salice, C; Sibly, Rm; Tenhumberg, B; Thorbek, P; Wang, M; ";2015;Assessing Pesticide Risks to Threatened and Endangered Species Using Population Models: Findings and Recommendations from a CropLife America Science Forum;http://dx.doi.org/10.1002/ieam.1628;Population models;NA;NA Initial;"Forbes, Ve; Galic, N; Schmolke, A; Vavra, J; Pastorok, R; Thorbek, P; ";2016;Assessing the risks of pesticides to threatened and endangered species using population modeling: A critical review and recommendations for future work;http://dx.doi.org/10.1002/etc.3440;Population models;NA;NA Initial;"Fraser, AJ; Burkow, IC; Wolkers, H; Mackay, D; ";2002;Modeling biomagnification and metabolism of contaminants in harp seals of the Barents Sea;http://dx.doi.org/10.1002/etc.5620210108;DR and TKTD models;NA;NA Initial;"Furuhama, A; Hayashi, Ti; Yamamoto, H; ";2019;Development of QSAAR and QAAR models for predicting fish early-life stage toxicity with a focus on industrial chemicals;http://dx.doi.org/10.1080/1062936X.2019.1669707;QSARs;NA;NA Initial;"Gabsi, F; Solga, A; Bruns, E; Leake, C; Preuss, Tg; ";2019;Short-term to long-term extrapolation of lethal effects of an herbicide on the marine mysid shrimp Americamysis Bahia by use of the General Unified Threshold Model of Survival (GUTS);http://dx.doi.org/10.1002/ieam.4092;DR and TKTD models;NA;NA Initial;"Galic, N; Ashauer, R; Baveco, H; Nyman, Am; Barsi, A; Thorbek, P; Bruns, E; Van Den Brink, Pj; ";2014;MODELING THE CONTRIBUTION OF TOXICOKINETIC AND TOXICODYNAMIC PROCESSES TO THE RECOVERY OF GAMMARUS PULEX POPULATIONS AFTER EXPOSURE TO PESTICIDES;http://dx.doi.org/10.1002/etc.2481;Population models;NA;NA Initial;"Galic, N; Salice, Cj; Birnir, B; Bruins, Rjf; Ducrot, V; Jager, Hi; Kanarek, A; Pastorok, R; Rebarber, R; Thorbek, P; Forbes, Ve; ";2019;Predicting impacts of chemicals from organisms to ecosystem service delivery: A case study of insecticide impacts on a freshwater lake;http://dx.doi.org/10.1016/j.scitotenv.2019.05.187;Multi-species models;NA;NA Initial;"Galimberti, F; Moretto, A; Papa, E; ";2020;Application of chemometric methods and QSAR models to support pesticide risk assessment starting from ecotoxicological datasets;http://dx.doi.org/10.1016/j.watres.2020.115583;QSARs;NA;NA Initial;"Gao, Yx; Chen, Jh; Wang, Hl; Liu, C; Lv, Xt; Li, Jz; Guo, By; ";2013;Enantiomerization and Enantioselective Bioaccumulation of Benalaxyl in Tenebrio molitor Larvae from Wheat Bran;http://dx.doi.org/10.1021/jf4020125;DR and TKTD models;NA;NA Initial;"Garcia-Gomez, C; Babin, M; Garcia, S; Almendros, P; Perez, Ra; Fernandez, Md; ";2019;Joint effects of zinc oxide nanoparticles and chlorpyrifos on the reproduction and cellular stress responses of the earthworm Eisenia andrei;http://dx.doi.org/10.1016/j.scitotenv.2019.06.083;Mixture models;NA;NA Initial;"George, Tk; Liber, K; Solomon, Kr; Sibley, Pk; ";2003;Assessment of the probabilistic ecological risk assessment-toxic equivalent combination approach for evaluating pesticide mixture toxicity to zooplankton in outdoor microcosms;http://dx.doi.org/10.1007/s00244-003-2123-9;Mixture models;NA;NA Initial;"Gholami-Seyedkolaei, Sj; Mirvaghefi, A; Farahmand, H; Kosari, Aa; ";2013;Optimization of recovery patterns in common carp exposed to roundup using response surface methodology: Evaluation of neurotoxicity and genotoxicity effects and biochemical parameters;http://dx.doi.org/10.1016/j.ecoenv.2013.09.009;DR and TKTD models;NA;NA Initial;"Ginebreda, A; Kuzmanovic, M; Guasch, H; De Alda, Ml; Lopez-Doval, Jc; Munoz, I; Ricart, M; Romani, Am; Sabater, S; Barcelo, D; ";2014;Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: Compound prioritization, mixture characterization and relationships with biological descriptors;http://dx.doi.org/10.1016/j.scitotenv.2013.08.086;Mixture models;NA;NA Initial;"Gokce, S; Sacan, Mt; ";2019;Assessments of Algal Toxicity and PBT Behaviour of Pesticides with No Eco-toxicological Data: Predictive Ability of QSA/(T)R Models;http://dx.doi.org/10.1002/minf.201800137;QSARs;NA;NA Initial;Golden N, Noguchi Ge, Paul Ka, Buford Dj;2012;Consideration of Nontraditional Endpoints in the Assessment of Ecological Risk under the Endangered Species Act ;http://doi.org/10.1021/bk-2012-1111.ch019;Methods;NA;NA Initial;"Gomez-Eyles, Jl; Svendsen, C; Lister, L; Martin, H; Hodson, Me; Spurgeon, Dj; ";2009;Measuring and modelling mixture toxicity of imidacloprid and thiacloprid on Caenorhabditis elegans and Eisenia fetida;http://dx.doi.org/10.1016/j.ecoenv.2008.07.006;Mixture models;NA;NA Initial;"Goutte, A; Barbraud, C; Herzke, D; Bustamante, P; Angelier, F; Tartu, S; Clernent-Chastel, C; Moe, B; Bech, C; Gabrielsen, Gw; Bustnes, Jo; Chastel, O; ";2015;Survival rate and breeding outputs in a high Arctic seabird exposed to legacy persistent organic pollutants and mercury;http://dx.doi.org/10.1016/j.envpol.2015.01.033;Methods;NA;NA Initial;"Goutte, A; Meillere, A; Barbraud, C; Budzinski, H; Labadie, P; Peluhet, L; Weimerskirch, H; Delord, K; Chastel, O; ";2018;Demographic, endocrine and behavioral responses to mirex in the South polar skua;http://dx.doi.org/10.1016/j.scitotenv.2018.02.326;Population models;NA;NA Initial;"Hanson, N; Stark, Jd; ";2012;Utility of population models to reduce uncertainty and increase value relevance in ecological risk assessments of pesticides: An example based on acute mortality data for daphnids;http://dx.doi.org/10.1002/ieam.272;Population models;NA;NA Initial;"Hasenbein, S; Peralta, J; Lawler, Sp; Connon, Re; ";2017;Environmentally relevant concentrations of herbicides impact non-target species at multiple sublethal endpoints;http://dx.doi.org/10.1016/j.scitotenv.2017.06.270;Mixture models;NA;NA Initial;"Hayashi, Ti; Imaizumi, Y; Yokomizo, H; Tatarazako, N; Suzuki, N; ";2016;Ecological risk assessment of herbicides in japan: integrating spatiotemporal variation in exposure and effects using a multimedia model and algal density dynamics models;http://dx.doi.org/10.1002/etc.3162;Population models;DR and TKTD models;NA Initial;"He, W; Qin, N; Kong, Xz; Liu, Wx; Wu, Wj; He, Qs; Yang, C; Jiang, Yj; Wang, Qm; Yang, B; Xu, Fl; ";2014;Ecological risk assessment and priority setting for typical toxic pollutants in the water from Beijing-Tianjin-Bohai area using Bayesian matbugs calculator (BMC);http://dx.doi.org/10.1016/j.ecolind.2014.04.008;Multi-species models;NA;NA Initial;"Herrmann, K; Holzwarth, A; Rime, S; Fischer, Bc; Kneuer, C; ";2020;(Q)SAR tools for the prediction of mutagenic properties: Are they ready for application in pesticide regulation?;http://dx.doi.org/10.1002/ps.5828;Methods;NA;NA Initial;"Hesketh, H; Lahive, E; Horton, Aa; Robinson, Ag; Svendsen, C; Rortais, A; Dorne, Jl; Baas, J; Spurgeon, Dj; Heard, Ms; ";2016;Extending standard testing period in honeybees to predict lifespan impacts of pesticides and heavy metals using dynamic energy budget modelling;http://dx.doi.org/10.1038/srep37655;DR and TKTD models;NA;NA Initial;"Hodgson, Dj; Townley, S; ";2004;Linking management changes to population dynamic responses: the transfer function of a projection matrix perturbation;http://dx.doi.org/10.1111/j.0021-8901.2004.00959.x;Population models;NA;NA Initial;"Hoffmann, Kc; Deanovic, L; Werner, I; Stillway, M; Fong, S; Teh, S; ";2016;An analysis of lethal and sublethal interactions among type I and type II pyrethroid pesticide mixtures using standard Hyalella azteca water column toxicity tests;http://dx.doi.org/10.1002/etc.3422;Mixture models;NA;NA Initial;Holland-Letz T, Leibner A, Knopp-Schneider A;2020;Modeling dose–response functions for combination treatments with log-logistic or Weibull functions.;http://doi.org/10.1007/s00204-019-02631-2;Methods;NA;NA Initial;"Hommen, U; Forbes, V; Grimm, V; Preuss, Tg; Thorbek, P; Ducrot, V; ";2016;How to Use Mechanistic Effect Models in Environmental Risk Assessment of Pesticides: Case Studies and Recommendations from the SETAC Workshop MODELINK;http://dx.doi.org/10.1002/ieam.1704;DR and TKTD models;Population models;NA Initial;"Hommen, U; Schmitt, W; Heine, S; Brock, Tcm; Duquesne, S; Manson, P; Meregalli, G; Ochoa-Acuna, H; Van Vliet, P; Arts, Ghp; ";2016;How TK-TD and Population Models for Aquatic Macrophytes Could Support the Risk Assessment for Plant Protection Products;http://dx.doi.org/10.1002/ieam.1715;DR and TKTD models;Population models;NA Initial;"Horig, K; Maus, C; Nikolakis, A; Ratte, Ht; Ross-Nickoll, M; Schmitt, W; Preuss, Tg; ";2015;The advantage of a toxicokinetic model of the honey bee colony in the context of the risk assessment of plant protection products;NA;DR and TKTD models;NA;NA Initial;"Hughes, A; Lissenden, N; Viana, M; Toe, Kh; Ranson, H; ";2020;Anopheles gambiae populations from Burkina Faso show minimal delayed mortality after exposure to insecticide-treated nets;http://dx.doi.org/10.1186/s13071-019-3872-2;DR and TKTD models;NA;NA Initial;"Ippolito, A; Carolli, M; Varolo, E; Villa, S; Vighi, M; ";2012;Evaluating pesticide effects on freshwater invertebrate communities in alpine environment: a model ecosystem experiment;http://dx.doi.org/10.1007/s10646-012-0957-5;Multi-species models;NA;NA Initial;"Ishimota, M; Tajiki-Nishino, R; Fukuyama, T; Tomiyama, N; Sakamoto, M; Ohyama, K; ";2020;Long-Term Tolerance Acquisition and Changes in Acetylcholinesterase Activity in Three Cladoceran Species After a 48-H Pulsed Exposure to Pirimicarb;http://dx.doi.org/10.1007/s11270-020-04670-3;DR and TKTD models;NA;NA Initial;"Ives, Ar; Paull, C; Hulthen, A; Downes, S; Andow, Da; Haygood, R; Zalucki, Mp; Schellhorn, Na; ";2017;Spatio-Temporal Variation in Landscape Composition May Speed Resistance Evolution of Pests to Bt Crops;http://dx.doi.org/10.1371/journal.pone.0169167;Landscape models;NA;NA Initial;"Ivorra, L; Cruzeiro, C; Chan, Sk; Tagulao, Ka; Cardoso, Pg; ";2019;Uptake and depuration kinetics of dicofol metabolite 4,4 '-dichlorobenzophenone, in the edible Asiatic clam Meretrix meretrix;http://dx.doi.org/10.1016/j.chemosphere.2019.06.155;DR and TKTD models;NA;NA Initial;"Jackson, Sh; Cowan-Ellsberry, Ce; Thomas, G; ";2009;Use of Quantitative Structural Analysis To Predict Fish Bloconcentration Factors for Pesticides;http://dx.doi.org/10.1021/jf803064z;QSARs;NA;NA Initial;"Jager, T; ";2020;Revisiting simplified DEBtox models for analysing ecotoxicity data;http://dx.doi.org/10.1016/j.ecolmodel.2019.108904;DR and TKTD models;NA;NA Initial;"Jager, T; Crommentuijn, T; Van Gestel, Cam; Kooijman, Salm; ";2007;Chronic exposure to chlorpyrifos reveals two modes of action in the springtail Folsomia candida;http://dx.doi.org/10.1016/j.envpol.2006.04.028;DR and TKTD models;NA;NA Initial;"Jager, T; Kooijman, Salm; ";2005;Modeling receptor kinetics in the analysis of survival data for organophosphorus pesticides;http://dx.doi.org/10.1021/es050817y;DR and TKTD models;NA;NA Initial;"Jesenska, S; Nemethova, S; Blaha, L; ";2013;Validation of the species sensitivity distribution in retrospective risk assessment of herbicides at the river basin scale-the Scheldt river basin case study;http://dx.doi.org/10.1007/s11356-013-1644-7;Multi-species models;NA;NA Initial;"Jia, Qz; Liu, T; Yan, Fy; Wang, Q; ";2020;Norm Index-Based QSAR Model for Acute Toxicity of Pesticides Toward Rainbow Trout;http://dx.doi.org/10.1002/etc.4621;QSARs;NA;NA Initial;"Johnston, Asa; Holmstrup, M; Hodson, Me; Thorbek, P; Alvarez, T; Sibly, Rm; ";2014;Earthworm distribution and abundance predicted by a process-based model;http://dx.doi.org/10.1016/j.apsoil.2014.06.001;Population models;NA;NA Initial;"Johnston, Jm; ";2001;A scientific and technological framework for evaluating comparative risk in ecological risk assessments;http://dx.doi.org/10.1007/978-94-010-0884-6_13;Methods;NA;NA Initial;"Jonsson, Cm; Paraiba, Lc; Mendoza, Mt; Sabater, C; Carrasco, Jm; ";2001;Bioconcentration of the insecticide pyridaphenthion by the green algae Chlorella saccharophila;http://dx.doi.org/10.1016/S0045-6535(00)00145-4;DR and TKTD models;NA;NA Initial;"Kattwinkel, M; Kuhne, Jv; Foit, K; Liess, M; ";2011;Climate change, agricultural insecticide exposure, and risk for freshwater communities;http://dx.doi.org/10.1890/10-1993.1;Landscape models;NA;NA Initial;"Kattwinkel, M; Liess, M; Arena, M; Bopp, S; Streissl, F; Rombke, J; ";2015;Recovery of aquatic and terrestrial populations in the context of European pesticide risk assessment;http://dx.doi.org/10.1139/er-2015-0013;Landscape models;Population models;Multi-species models Initial;"Kattwinkel, M; Reichert, P; Ruegg, J; Liess, M; Schuwirth, N; ";2016;Modeling Macroinvertebrate Community Dynamics in Stream Mesocosms Contaminated with a Pesticide;http://dx.doi.org/10.1021/acs.est.5b04068;Multi-species models;NA;NA Initial;"Khan, K; Khan, Pm; Lavado, G; Valsecchi, C; Pasqualini, J; Baderna, D; Marzo, M; Lombardo, A; Roy, K; Benfenati, E; ";2019;QSAR modeling of Daphnia magna and fish toxicities of biocides using 2D descriptors;http://dx.doi.org/10.1016/j.chemosphere.2019.04.204;QSARs;NA;NA Initial;"Khan, Pm; Roy, K; Benfenati, E; ";2019;Chemometric modeling of Daphnia magna toxicity of agrochemicals;http://dx.doi.org/10.1016/j.chemosphere.2019.02.147;QSARs;NA;NA Initial;"Kim, M; Shin, D; Suh, E; Cho, K; ";2004;An assessment of the chronic toxicity of fenpyroximate and pyridaben to Tetranychus urticae using a demographic bioassay;http://dx.doi.org/10.1303/aez.2004.401;Population models;NA;NA Initial;"King, Gkk; Larras, F; Charles, S; Delignette-Muller, Ml; ";2015;Hierarchical modelling of species sensitivity distribution: Development and application to the case of diatoms exposed to several herbicides;http://dx.doi.org/10.1016/j.ecoenv.2015.01.022;Multi-species models;NA;NA Initial;"Kleinmann, Ju; Wang, M; ";2017;Modeling individual movement decisions of brown hare (lepus europaeus) as a key concept for realistic spatial behavior and exposure: a population model for landscape-level risk assessment.;http://dx.doi.org/10.1002/etc.3760;Landscape models;NA;NA Initial;"Knezevic, V; Tunic, T; Gajic, P; Marjan, P; Savic, D; Tenji, D; Teodorovic, I; ";2016;Getting More Ecologically Relevant Information from Laboratory Tests: Recovery of Lemna minor After Exposure to Herbicides and Their Mixtures;http://dx.doi.org/10.1007/s00244-016-0321-5;Mixture models;NA;NA Initial;"Kretschmann, A; Ashauer, R; Hollender, J; Escher, Bi; ";2012;Toxicokinetic and toxicodynamic model for diazinon toxicity-mechanistic explanation of differences in the sensitivity of Daphnia magna and Gammarus pulex;http://dx.doi.org/10.1002/etc.1905;DR and TKTD models;NA;NA Initial;"Kristofco, La; Du, Bw; Chambliss, Ck; Berninger, Jp; Brooks, Bw; ";2015;Comparative Pharmacology and Toxicology of Pharmaceuticals in the Environment: Diphenhydramine Protection of Diazinon Toxicity in Danio rerio but Not Daphnia magna;http://dx.doi.org/10.1208/s12248-014-9677-5;Mixture models;NA;NA Initial;"Kulakowska, Ka; Kulakowski, Tm; Inglis, Ir; Smith, Gc; Haynes, Pj; Prosser, P; Thorbek, P; Sibly, Rm; ";2014;Using an individual-based model to select among alternative foraging strategies of woodpigeons: Data support a memory-based model with a flocking mechanism;http://dx.doi.org/10.1016/j.ecolmode1.2013.09.019;Landscape models;NA;NA Initial;"Kurth, D; Brack, W; Luckenbach, T; ";2015;Is chemosensitisation by environmental pollutants ecotoxicologically relevant?;http://dx.doi.org/10.1016/j.aquatox.2015.07.017;Mixture models;NA;NA Initial;"Kuzmanovic, M; Lopez-Doval, Jc; De Castro-Catala, N; Guasch, H; Petrovic, M; Munoz, I; Ginebreda, A; Barcelo, D; ";2016;Ecotoxicological risk assessment of chemical pollution in four Iberian river basins and its relationship with the aquatic macroinvertebrate community status;http://dx.doi.org/10.1016/j.scitotenv.2015.06.112;Mixture models;NA;NA Initial;"Landis, Wg; Chu, Vr; Graham, Se; Harris, Mj; Markiewicz, Aj; Mitchell, Cj; Von Stackelberg, Ke; Stark, Jd; ";2020;Integration of Chlorpyrifos Acetylcholinesterase Inhibition, Water Temperature, and Dissolved Oxygen Concentration into a Regional Scale Multiple Stressor Risk Assessment Estimating Risk to Chinook Salmon;http://dx.doi.org/10.1002/ieam.4199;Population models;NA;NA Initial;"Lanteigne, M; Whiting, Sa; Lydy, Mj; ";2015;Mixture Toxicity of Imidacloprid and Cyfluthrin to Two Non-target Species, the Fathead Minnow Pimephales promelas and the Amphipod Hyalella azteca;http://dx.doi.org/10.1007/s00244-014-0086-7;Mixture models;NA;NA Initial;"Lao,-W;";2021;Fiproles as a proxy for ecological risk assessment of mixture of fipronil and its degradates in effluent-dominated surface water;http://doi.org/10.1016/j.watres.2020.116510;DR and TKTD models;Multi-species models;NA Initial;"Lazartigues, A; Thomas, M; Banas, D; Brun-Bellut, J; Cren-Olive, C; Feidt, C; ";2013;Accumulation and half-lives of 13 pesticides in muscle tissue of freshwater fishes through food exposure;http://dx.doi.org/10.1016/j.chemosphere.2012.12.032;DR and TKTD models;NA;NA Initial;"Legrand, E; Boulange-Lecomte, C; Restoux, G; Tremolet, G; Duflot, A; Forget-Leray, J; ";2017;Individual and mixture acute toxicity of model pesticides chlordecone and pyriproxyfen in the estuarine copepod Eurytemora affinis;http://dx.doi.org/10.1007/s11356-016-8294-5;Mixture models;NA;NA Initial;"Lennon, Rj; Isaac, Njb; Shore, Rf; Peach, Wj; Dunn, Jc; Pereira, Mg; Arnold, Ke; Garthwaite, D; Brown, Cd; ";2019;Using long-term datasets to assess the impacts of dietary exposure to neonicotinoids on farmland bird populations in England;http://dx.doi.org/10.1371/journal.pone.0223093;Landscape models;NA;NA Initial;"Li, Hz; You, J; ";2015;APPLICATION OF SPECIES SENSITIVITY DISTRIBUTION IN AQUATIC PROBABILISTIC ECOLOGICAL RISK ASSESSMENT OF CYPERMETHRIN: A CASE STUDY IN AN URBAN STREAM IN SOUTH CHINA;http://dx.doi.org/10.1002/etc.2851;Multi-species models;NA;NA Initial;"Li, Hz; You, J; Wang, Wx; ";2018;Multi-compartmental toxicokinetic modeling of fipronil in tilapia: Accumulation, biotransformation and elimination;http://dx.doi.org/10.1016/j.jhazmat.2018.07.085;DR and TKTD models;NA;NA Initial;"Li, Zj; ";2020;Spatiotemporal pattern models for bioaccumulation of pesticides in herbivores: An approximation theory for North American white-tailed deer;http://dx.doi.org/10.1016/j.scitotenv.2020.140271;DR and TKTD models;NA;NA Initial;"Liess, M; Foit, K; Knillmann, S; Schafer, Rb; Liess, Hd; ";2016;Predicting the synergy of multiple stress effects;http://dx.doi.org/10.1038/srep32965;Mixture models;NA;NA Initial;"Lindsay, S; Chasse, J; Butler, Ra; Morrill, W; Van Beneden, Rj; ";2010;Impacts of stage-specific acute pesticide exposure on predicted population structure of the soft-shell clam, Mya arenaria;http://dx.doi.org/10.1016/j.aquatox.2010.02.012;Population models;NA;NA Initial;"Lister, Lj; Svendsen, C; Wright, J; Hooper, Hl; Spurgeon, Dj; ";2011;Modelling the joint effects of a metal and a pesticide on reproduction and toxicokinetics in Lumbricid earthworms;http://dx.doi.org/10.1016/j.envint.2011.01.006;Mixture models;DR and TKTD models;NA Initial;"Lo Piparo, E; Fratev, F; Lemke, F; Mazzatorta, P; Smiesko, M; Fritz, Ji; Benfenati, E; ";2006;QSAR models for Daphnia magna toxicity prediction of benzoxazinone allelochemicals and their transformation products;http://dx.doi.org/10.1021/jf050918f;QSARs;NA;NA Initial;"Lopes, C; Pery, Arr; Chaumot, A; Charles, S; ";2005;Ecotoxicology and population dynamics: Using DEBtox models in a Leslie modeling approach;http://dx.doi.org/10.1016/j.ecolmodel.2005.05.004;DR and TKTD models;Population models;NA Initial;"Lopez Aca, Vl; Gonzalez, Pv; Carriquiriborde, P; ";2018;Lethal and sublethal responses in the fish, Odontesthes bonariensis, exposed to chlorpyrifos alone or under mixtures with endosulfan and lambda-cyhalothrin;http://dx.doi.org/10.1007/s10646-018-1941-5;Mixture models;NA;NA Initial;"Loureiro, S; Sousa, Jp; Nogueira, Aja; Soares, Amvm; ";2002;Assimilation efficiency and toxicokinetics of C-14-lindane in the terrestrial isopod Porcellionides pruinosus: The role of isopods in degradation of persistent soil pollutants;http://dx.doi.org/10.1023/A:1021013519330;DR and TKTD models;NA;NA Initial;"Maclachlan, Dj; ";2010;Physiologically based pharmacokinetic (PBPK) model for residues of lipophilic pesticides in poultry;http://dx.doi.org/10.1080/19440040903296683;DR and TKTD models;NA;NA Initial;"Maclachlan, Dj; ";2009;Influence of physiological status on residues of lipophilic xenobiotics in livestock;http://dx.doi.org/10.1080/02652030802669170;DR and TKTD models;NA;NA Initial;"Madariaga-Mazon, A; Osnaya-Hernandez, A; Chavez-Gomez, A; Garcia-Ramos, Jc; Cortes-Guzman, F; Castillo-Pazos, Dj; Martinez-Mayorga, K; ";2019;Distribution of toxicity values across different species and modes of action of pesticides from PESTIMEP and PPDB databases;http://dx.doi.org/10.1039/c8tx00322j;DR and TKTD models;NA;NA Initial;"Maloney, Em; Morrissey, Ca; Headley, Jv; Peru, Km; Liber, K; ";2018;Can chronic exposure to imidacloprid, clothianidin, and thiamethoxam mixtures exert greater than additive toxicity in Chironomus dilutus?;http://dx.doi.org/10.1016/j.ecoenv.2018.03.003;Mixture models;NA;NA Initial;"Maloney, Em; Morrissey, Ca; Headley, Jv; Peru, Km; Liber, K; ";2017;Cumulative toxicity of neonicotinoid insecticide mixtures to Chironomus dilutus under acute exposure scenarios;http://dx.doi.org/10.1002/etc.3878;Mixture models;NA;NA Initial;"Maltby, L; Blake, N; Brock, Tcm; Van Den Brink, Pj; ";2005;Insecticide species sensitivity distributions: Importance of test species selection and relevance to aquatic ecosystems;http://dx.doi.org/10.1897/04-025R.1;Multi-species models;NA;NA Initial;"Mansano, As; Moreira, Ra; Dornfeld, Hc; Freitas, Ec; Vieira, Em; Daam, Ma; Rocha, O; Seleghim, Mhr; ";2020;Individual and mixture toxicity of carbofuran and diuron to the protozoan Paramecium caudatum and the cladoceran Ceriodaphnia silvestrii;http://dx.doi.org/10.1016/j.ecoenv.2020.110829;Mixture models;NA;NA Initial;"Mansano, As; Moreira, Ra; Dornfeld, Hc; Freitas, Ec; Vieira, Em; Sarmento, H; Rocha, O; Seleghim, Mhr; ";2017;Effects of diuron and carbofuran and their mixtures on the microalgae Raphidocelis subcapitata;http://dx.doi.org/10.1016/j.ecoenv.2017.04.024;Mixture models;NA;NA Initial;"Marimuthu, P; Lee, Yj; Kim, B; Seo, Ss; ";2019;In silico approaches to evaluate the molecular properties of organophosphate compounds to inhibit acetylcholinesterase activity in housefly;http://dx.doi.org/10.1080/07391102.2018.1426046;QSARs;NA;NA Initial;"Marques, Cr; Goncalves, Amm; Pereira, R; Goncalves, F; ";2012;Ecotoxicological Effects of MIKADO (R) and VIPER (R) on Algae and Daphnids;http://dx.doi.org/10.1002/tox.20687;Mixture models;NA;NA Initial;"Martin, Hl; Svendsen, C; Lister, Lj; Gomez-Eyles, Jl; Spurgeon, Dj; ";2009;MEASUREMENT AND MODELING OF THE TOXICITY OF BINARY MIXTURES IN THE NEMATODE CAENORHABDITIS ELEGANS-A TEST OF INDEPENDENT ACTION;http://dx.doi.org/10.1897/07-215.1;Mixture models;NA;NA Initial;"Maund, Sj; Travis, Kz; Hendley, P; Giddings, Jm; Solomon, Kr; ";2001;Probabilistic risk assessment of cotton pyrethroids: V. Combining landscape-level exposures and ecotoxicological effects data to characterize risks;http://dx.doi.org/10.1002/etc.5620200330;Landscape models;NA;NA Initial;"Mavroudis, Pd; Hermes, He; Teutonico, D; Preuss, Tg; Schneckener, S; ";2018;Development and validation of a physiology based model for the prediction of pharmacokinetics/toxicokinetics in rabbits;http://dx.doi.org/10.1371/journal.pone.0194294;DR and TKTD models;NA;NA Initial;"Mayer, M; Duan, Xd; Sunde, P; Topping, Cj; ";2020;European hares do not avoid newly pesticide-sprayed fields: Overspray as unnoticed pathway of pesticide exposure;http://dx.doi.org/10.1016/j.scitotenv.2020.136977;Population models;NA;NA Initial;"Mazzatorta, P; Benfenati, E; Lorenzini, P; Vighi, M; ";2004;QSAR in ecotoxicity: An overview of modern classification techniques;http://dx.doi.org/10.1021/ci034193w;QSARs;NA;NA Initial;"Mazzatorta, P; Cronin, Mtd; Benfenati, E; ";2006;A QSAR study of avian oral toxicity using support vector machines and genetic algorithms;http://dx.doi.org/10.1002/qsar.200530189;QSARs;NA;NA Initial;"Mchugh, B; Law, Rj; Allchin, Cr; Rogan, E; Murphy, S; Foley, Mb; Glynn, D; Mcgovern, E; ";2007;Bioaccumulation and enantiomeric profiling of organochlorine pesticides and persistent organic pollutants in the killer whale (Orcinus orca) from British and Irish waters;http://dx.doi.org/10.1016/j.marpolbul.2007.07.004;DR and TKTD models;NA;NA Initial;"Mensah, Pk; Palmer, Cg; Muller, Wj; ";2013;Derivation of South African water quality guidelines for Roundup (R) using species sensitivity distribution;http://dx.doi.org/10.1016/j.ecoenv.2013.06.009;Multi-species models;NA;NA Initial;"Millot, F; Berny, P; Decors, A; Bro, E; ";2015;Little field evidence of direct acute and short-term effects of current pesticides on the grey partridge;http://dx.doi.org/10.1016/j.ecoenv.2015.03.017;Population models;NA;NA Initial;"Mintram, Ks; Brown, Ar; Maynard, Sk; Liu, C; Parker, Sj; Tyler, Cr; Thorbek, P; ";2018;Assessing population impacts of toxicant-induced disruption of breeding behaviours using an individual-based model for the three-spined stickleback;http://dx.doi.org/10.1016/j.ecolmodel.2018.09.003;Population models;NA;NA Initial;"Moe, Sj; Hjermann, Do; Ravagnan, E; Bechmann, Rk; ";2019;Effects of an aquaculture pesticide (diflubenzuron) on non-target shrimp populations: Extrapolation from laboratory experiments to the risk of population decline;http://dx.doi.org/10.1016/j.ecolmodel.2019.108833;Population models;NA;NA Initial;"Moe, Sj; Wolf, R; Xie, L; Landis, Wg; Kotamaki, N; Tollefsen, Ke; ";2020;Quantification of an Adverse Outcome Pathway Network by Bayesian Regression and Bayesian Network Modeling;http://dx.doi.org/10.1002/ieam.4348;DR and TKTD models;NA;NA Initial;"Monti, Gs; Migliorati, S; Hron, K; Hruzova, K; Fiserova, E; ";2015;Log-ratio approach in curve fitting for concentration-response experiments;http://dx.doi.org/10.1007/s10651-014-0298-z;DR and TKTD models;NA;NA Initial;"Moore, Drj; Priest, Cd; Olson, Ad; Teed, Rs; ";2018;A Probabilistic Risk Assessment for the Kirtland's Warbler Potentially Exposed to Chlorpyrifos and Malathion During the Breeding Season and Migration;http://dx.doi.org/10.1002/ieam.2004;Landscape models;Multi-species models;NA Initial;"Moreira, Ra; Daam, Ma; Vieira, Bh; Sanches, Alm; Reghini, Mv; Mansano, Ad; De Freitas, Ec; Espindola, Elg; Rocha, O; ";2017;Toxicity of abamectin and difenoconazole mixtures to a Neotropical cladoceran after simulated run-off and spray drift exposure;http://dx.doi.org/10.1016/j.aquatox.2017.02.001;Mixture models;NA;NA Initial;"Morgado, Rg; Gomes, Pad; Ferreira, Ngc; Cardoso, Dn; Santos, Mjg; Soares, Amvm; Loureiro, S; ";2016;Toxicity interaction between chlorpyrifos, mancozeb and soil moisture to the terrestrial isopod Porcellionides pruinosus;http://dx.doi.org/10.1016/j.chemosphere.2015.10.034;Mixture models;NA;NA Initial;"Morrison, Sa; Belden, Jb; ";2016;Development of helisoma trivolvis pond snails as biological samplers for biomonitoring of current-use pesticides;http://dx.doi.org/10.1002/etc.3400;DR and TKTD models;NA;NA Initial;"Nagai, T; ";2014;Algal Population Growth Model Integrated with Toxicokinetics for Ecological Risk Assessment under Time-Varying Pesticide Exposure;http://dx.doi.org/10.1080/10807039.2013.791545;DR and TKTD models;Population models;NA Initial;"Nagai, T; Inao, K; Horio, T; ";2008;Probabilistic ecological risk assessment of paddy herbicide in Japanese river waters using uncertainty analysis: A case study for simetryn;http://dx.doi.org/10.1584/jpestics.33.393;Multi-species models;NA;NA Initial;"Nagai, T; Taya, K; ";2015;ESTIMATION OF HERBICIDE SPECIES SENSITIVITY DISTRIBUTION USING SINGLE-SPECIES ALGAL TOXICITY DATA AND INFORMATION ON THE MODE OF ACTION;http://dx.doi.org/10.1002/etc.2828;Multi-species models;NA;NA Initial;"Nélieu, S; Delarue, G; Amossé, J; Bart, S; Péry, A; Pelosi, C;";2020;Soil dissipation and bioavailability to earthworms of two fungicides under laboratory and field conditions;https://doi.org/10.1007/s11356-020-10222-3;DR and TKTD models;NA;NA Initial;"Nendza, M; Herbst, T; ";2011;Screening for low aquatic bioaccumulation (2): physico-chemical constraints;http://dx.doi.org/10.1080/1062936X.2011.569896;QSARs;NA;NA Initial;"Nfon, E; Armitage, Jm; Cousins, It; ";2011;Development of a dynamic model for estimating the food web transfer of chemicals in small aquatic ecosystems;http://dx.doi.org/10.1016/j.scitotenv.2011.08.070;Multi-species models;DR and TKTD models;NA Initial;"Nian, Xg; He, Yr; Lu, Lh; Zhao, R; ";2015;Evaluation of the time-concentration-mortality responses of Plutella xylostella larvae to the interaction of Isaria fumosorosea with the insecticides beta-cypermethrin and Bacillus thuringiensis;http://dx.doi.org/10.1002/ps.3784;DR and TKTD models;NA;NA Initial;"Nielsen, Lw; Dahllof, I; ";2007;Direct and indirect effects of the herbicides Glyphosate, Bentazone and MCPA on eelgrass (Zostera marina);http://dx.doi.org/10.1016/j.aquatox.2007.01.004;Mixture models;NA;NA Initial;"Nienstedt, Km; Brock, Tcm; Van Wensem, J; Montforts, M; Hart, A; Aagaard, A; Alix, A; Boesten, J; Bopp, Sk; Brown, C; Capri, E; Forbes, V; Kopp, H; Liess, M; Luttik, R; Maltby, L; Sousa, Jp; Streissl, F; Hardy, Ar";2012;Development of a framework based on an ecosystem services approach for deriving specific protection goals for environmental risk assessment of pesticides;http://dx.doi.org/10.1016/j.scitotenv.2011.05.057;Methods;NA;NA Initial;"Nogeire-Mcrae, T; Lawler, Jj; Schumaker, Nh; Cypher, Bl; Phillips, Se; ";2019;Land use change and rodenticide exposure trump climate change as the biggest stressors to San Joaquin kit fox;http://dx.doi.org/10.1371/journal.pone.0214297;Landscape models;NA;NA Initial;"Nogeire, Tm; Lawler, Jj; Schumaker, Nh; Cypher, Bl; Phillips, Se; ";2015;Land Use as a Driver of Patterns of Rodenticide Exposure in Modeled Kit Fox Populations;http://dx.doi.org/10.1371/journal.pone.0133351;Landscape models;NA;NA Initial;"Nowell, Lh; Norman, Je; Moran, Pw; Martin, Jd; Stone, Ww; ";2014;Pesticide Toxicity Index-A tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms;http://dx.doi.org/10.1016/j.scitotenv.2013.12.088;Mixture models;NA;NA Initial;"Nyman, Am; Hintermeister, A; Schirmer, K; Ashauer, R; ";2013;The Insecticide Imidacloprid Causes Mortality of the Freshwater Amphipod Gammarus pulex by Interfering with Feeding Behavior;http://dx.doi.org/10.1371/journal.pone.0062472;DR and TKTD models;NA;NA Initial;"Nyman, Am; Schirmer, K; Ashauer, R; ";2012;Toxicokinetic-toxicodynamic modelling of survival of Gammarus pulex in multiple pulse exposures to propiconazole: model assumptions, calibration data requirements and predictive power;http://dx.doi.org/10.1007/s10646-012-0917-0;DR and TKTD models;NA;NA Initial;"Ockleford, C; Adriaanse, P; Berny, P; Brock, Tcm; Duquesne, S; Grilli, S; Hernandez-Jerez, Af; Bennekou, Sh; Klein, M; Kuhl, T; Laskowski, R; Machera, K; Pelkonen, O; Pieper, S; Smith, Rh; Stemmer, M; Sundh, I; Tiktak, A; Topping, Cj; Wolterink, G; Cedergreen, N; Charles, S; Focks, A; Reed, M; Arena, M; Ippolito, A; Byers, H; Teodorovic, I; ";2018;Scientific Opinion on the state of the art of Toxicokinetic/Toxicodynamic (TKTD) effect models for regulatory risk assessment of pesticides for aquatic organisms;http://dx.doi.org/10.2903/j.efsa.2018.5377;DR and TKTD models;NA;NA Initial;"Ockleford, C; Adriaanse, P; Berny, P; Brock, Tcm; Duquesne, S; Grilli, S; Hernandez-Jerez, Af; Bennekou, Sh; Klein, M; Kuhl, T; Laskowski, R; Machera, K; Pelkonen, O; Pieper, S; Stemmer, M; Sundh, I; Teodorovic, I; Tiktak, A; Topping, Cj; Wolterink, G; Aldrich, A; Berg, C; Ortiz-Santaliestra, M; Weir, S; Streissl, F; Smith, Rh; ";2018;Scientific Opinion on the state of the science on pesticide risk assessment for amphibians and reptiles;http://dx.doi.org/10.2903/j.efsa.2018.5125;Methods;NA;NA Initial;"Ockleford, C; Adriaanse, P; Berny, P; Brock, Tcm; Duquesne, S; Grilli, S; Hernandez-Jerez, Af; Bennekou, Sh; Klein, M; Kuhl, T; Laskowski, R; Machera, K; Pelkonen, O; Pieper, S; Stemmer, M; Sundh, I; Teodorovic, I; Tiktak, A; Topping, Cj; Wolterink, G; Craig, P; De Jong, F; Manachini, B; Sousa, P; Swarowsky, K; Auteri, D; Arena, M; Rob, S; ";2017;Scientific Opinion addressing the state of the science on risk assessment of plant protection products for in-soil organisms;http://dx.doi.org/10.2903/j.efsa.2017.4690;Methods;NA;NA Initial;"Olmstead, Aw; Leblanc, Ga; ";2003;Insecticidal juvenile hormone analogs stimulate the production of male offspring in the crustacean Daphnia magna;http://dx.doi.org/10.1289/ehp.5982;Mixture models;NA;NA Initial;"Onstad, Dw; Meinke, Lj; ";2010;Modeling Evolution of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) to Transgenic Corn With Two Insecticidal Traits;http://dx.doi.org/10.1603/EC09199;Methods;NA;NA Initial;"Onwona-Kwakye, M; Hogarh, Jn; Van Den Brink, Pj; ";2020;Environmental risk assessment of pesticides currently applied in Ghana;http://dx.doi.org/10.1016/j.chemosphere.2020.126845;Methods;NA;NA Initial;"Pandey, Sk; Ojha, Pk; Roy, K; ";2020;Exploring QSAR models for assessment of acute fish toxicity of environmental transformation products of pesticides (ETPPs);http://dx.doi.org/10.1016/j.chemosphere.2020.126508;QSARs;NA;NA Initial;"Perez, J; Domingues, I; Soares, Amvm; Loureiro, S; ";2011;Growth rate of Pseudokirchneriella subcapitata exposed to herbicides found in surface waters in the Alqueva reservoir (Portugal): a bottom-up approach using binary mixtures;http://dx.doi.org/10.1007/s10646-011-0661-x;Mixture models;NA;NA Initial;"Pestana, Jlt; Loureiro, S; Baird, Dj; Soares, Amm; ";2010;Pesticide exposure and inducible antipredator responses in the zooplankton grazer, Daphnia magna Straus;http://dx.doi.org/10.1016/j.chemosphere.2009.10.066;Mixture models;NA;NA Initial;"Petschick, Ll; Bub, S; Wolfram, J; Stehle, S; Schulz, R; ";2019;Modeling Regulatory Threshold Levels for Pesticides in Surface Waters from Effect Databases;http://dx.doi.org/10.3390/data4040150;QSARs;NA;NA Initial;"Phyu, Yl; Palmer, Cg; Warne, Ms; Hose, Gc; Chapman, Jc; Lim, Rp; ";2011;A comparison of mixture toxicity assessment: Examining the chronic toxicity of atrazine, permethrin and chlorothalonil in mixtures to Ceriodaphnia cf. dubia;http://dx.doi.org/10.1016/j.chemosphere.2011.07.061;Mixture models;NA;NA Initial;"Pieters, Bj; Jager, T; Kraak, Mhs; Admiraal, W; ";2006;Modeling responses of Daphnia magna to pesticide pulse exposure under varying food conditions: intrinsic versus apparent sensitivity;http://dx.doi.org/10.1007/s10646-006-0100-6;DR and TKTD models;NA;NA Initial;"Pisani, Jm; Grant, We; Mora, Ma; ";2008;Simulating the impact of cholinesterase-inhibiting pesticides on non-target wildlife in irrigated crops;http://dx.doi.org/10.1016/j.ecolmodel.2007.07.017;DR and TKTD models;NA;NA Initial;"Preuss, Tg; Hammers-Wirtz, M; Ratte, Ht; ";2010;The potential of individual based population models to extrapolate effects measured at standardized test conditions to relevant environmental conditions-an example for 3,4-dichloroaniline on Daphnia magna;http://dx.doi.org/10.1039/c0em00096e;Population models;NA;NA Initial;"Prud'homme, Sm; Chaumot, A; Cassar, E; David, Jp; Reynaud, S; ";2017;Impact of micropollutants on the life-history traits of the mosquito Aedes aegypti: On the relevance of transgenerational studies;http://dx.doi.org/10.1016/j.envpol.2016.09.056;Population models;NA;NA Initial;"Qiao, K; Fu, Wj; Jiang, Y; Chen, Ll; Li, Sy; Ye, Qf; Gui, Wj; ";2020;QSAR models for the acute toxicity of 1,2,4-triazole fungicides to zebrafish (Danio rerio) embryos;http://dx.doi.org/10.1016/j.envpol.2020.114837;QSARs;NA;NA Initial;"Qin, Lt; Wu, J; Mo, Ly; Zeng, Hh; Liang, Yp; ";2015;Linear regression model for predicting interactive mixture toxicity of pesticide and ionic liquid;http://dx.doi.org/10.1007/s11356-015-4584-6;Mixture models;NA;NA Initial;"Qiu, X; Tanoue, W; Kawaguchi, A; Yanagawa, T; Seki, M; Shimasaki, Y; Honjo, T; Oshima, Y; ";2017;Interaction patterns and toxicities of binary and ternary pesticide mixtures to Daphnia magna estimated by an accelerated failure time model;http://dx.doi.org/10.1016/j.scitotenv.2017.07.034;Mixture models;NA;NA Initial;"Qu, Cs; Chen, W; Bi, J; Huang, L; Li, Fy; ";2011;Ecological risk assessment of pesticide residues in Taihu Lake wetland, China;http://dx.doi.org/10.1016/j.ecolmodel.2010.07.014;Multi-species models;NA;NA Initial;"Raby, M; Maloney, E; Poirier, Dg; Sibley, Pk; ";2019;Acute Effects of Binary Mixtures of Imidacloprid and Tebuconazole on 4 Freshwater Invertebrates;http://dx.doi.org/10.1002/etc.4386;Mixture models;NA;NA Initial;Raimondo S, Schmolke A, Pollesch N, Accolla C, Galic N, Moore A, Vaugeois M, Rueda-Cediel P, Kanarek A, Awkerman J, Forbes V;2021;Pop-GUIDE: Population modeling Guidance, Use, Interpretation, and Development for Ecological Risk Assessment.;http://dx.doi.org/10.1002/ieam.4377;Population models;NA;NA Initial;"Raimondo, S; Barron, Mg; ";2020;Application of Interspecies Correlation Estimation (ICE) models and QSAR in estimating species sensitivity to pesticides;http://dx.doi.org/10.1080/1062936X.2019.1686716;QSARs;NA;NA Initial;"Raimondo, S; Mckenney, Cl; ";2005;Projected population-level effects of thiobencarb exposure on the mysid, Americamysis bahia, and extinction probability in a concentration-decay exposure system;http://dx.doi.org/10.1897/04-187R.1;Population models;NA;NA Initial;"Ramo, Ra; Van Den Brink, Pj; Ruepert, C; Castillo, Le; Gunnarsson, Js; ";2018;Environmental risk assessment of pesticides in the River Madre de Dios, Costa Rica using PERPEST, SSD, and msPAF models;http://dx.doi.org/10.1007/s11356-016-7375-9;Multi-species models;NA;NA Initial;"Reed, M; Alvarez, T; Chelinho, S; Forbes, V; Johnston, Asa; Meli, M; Voss, F; Pastorok, R; ";2016;A Risk Assessment Example for Soil Invertebrates Using Spatially Explicit Agent-Based Models;http://dx.doi.org/10.1002/ieam.1713;Population models;NA;NA Initial;"Reeg, J; Heine, S; Mihan, C; Mcgee, S; Preuss, Tg; Jeltsch, F; ";2018;Simulation of herbicide impacts on a plant community: comparing model predictions of the plant community model IBC-grass to empirical data;http://dx.doi.org/10.1186/s12302-018-0174-9;Multi-species models;NA;NA Initial;"Reeg, J; Heine, S; Mihan, C; Preuss, Tg; Mcgee, S; Jeltsch, F; ";2018;Potential impact of effects on reproductive attributes induced by herbicides on a plant community;http://dx.doi.org/10.1002/etc.4122;Multi-species models;NA;NA Initial;"Reeg, J; Schad, T; Preuss, Tg; Solga, A; Korner, K; Mihan, C; Jeltsch, F; ";2017;Modelling direct and indirect effects of herbicides on non-target grassland communities;http://dx.doi.org/10.1016/j.ecolmodel.2017.01.010;Population models;NA;NA Initial;"Reinert, Kh; Giddings, Ja; Judd, L; ";2002;Effects analysis of time-varying or repeated exposures in aquatic ecological risk assessment of agrochemicals;http://dx.doi.org/10.1002/etc.5620210928;DR and TKTD models;NA;NA Initial;"Ren, J; Wang, Xp; Wang, Cf; Gong, P; Wang, Xr; Yao, Td; ";2017;Biomagnification of persistent organic pollutants along a high-altitude aquatic food chain in the Tibetan Plateau: Processes and mechanisms;http://dx.doi.org/10.1016/j.envpol.2016.10.019;DR and TKTD models;NA;NA Initial;"Ren, Zm; Liu, L; Fu, Rs; Miao, Ms; ";2013;The Stepwise Behavioral Responses: Behavioral Adjustment of the Chinese Rare Minnow (Gobiocypris rarus) in the Exposure of Carbamate Pesticides;http://dx.doi.org/10.1155/2013/697279;DR and TKTD models;NA;NA Initial;"Richardson, L; Bang, Js; Budreski, K; Dunne, J; Winchell, M; Brain, Ra; Feken, M; ";2019;A Probabilistic Co-Occurrence Approach for Estimating Likelihood of Spatial Overlap Between Listed Species Distribution and Pesticide Use Patterns;http://dx.doi.org/10.1002/ieam.4191;Landscape models;NA;NA Initial;"Rico, A; Arenas-Sanchez, A; Pasqualini, J; Garcia-Astillero, A; Cherta, L; Nozal, L; Vighi, M; ";2018;Effects of imidacloprid and a neonicotinoid mixture on aquatic invertebrate communities under Mediterranean conditions;http://dx.doi.org/10.1016/j.aquatox.2018.09.004;Multi-species models;NA;NA Initial;"Rico, A; Brock, Tcm; Daam, Ma; ";2019;Is the Effect Assessment Approach for Fungicides as Laid Down in the European Food Safety Authority Aquatic Guidance Document Sufficiently Protective for Freshwater Ecosystems?;http://dx.doi.org/10.1002/etc.4520;Population models;NA;NA Initial;"Rico, A; Van Den Brink, Pj; Gylstra, R; Focks, A; Brock, Tcm; ";2016;Developing ecological scenarios for the prospective aquatic risk assessment of pesticides;http://dx.doi.org/10.1002/ieam.1718;Population models;NA;NA Initial;"Rico, A; Waichman, Av; Geber-Correa, R; Van Den Brink, Pj; ";2011;Effects of malathion and carbendazim on Amazonian freshwater organisms: comparison of tropical and temperate species sensitivity distributions;http://dx.doi.org/10.1007/s10646-011-0601-9;Multi-species models;NA;NA Initial;"Robinson, A; Hesketh, H; Lahive, E; Horton, Aa; Svendsen, C; Rortais, A; Dorne, Jl; Baas, J; Heard, Ms; Spurgeon, Dj; ";2017;Comparing bee species responses to chemical mixtures: Common response patterns?;http://dx.doi.org/10.1371/journal.pone.0176289;Mixture models;DR and TKTD models;NA Initial;"Rocha, O; Neto, Ajg; Lima, Jcd; Freitas, Ec; Miguel, M; Mansano, Ad; Moreira, Ra; Daam, Ma; ";2018;Sensitivities of three tropical indigenous freshwater invertebrates to single and mixture exposures of diuron and carbofuran and their commercial formulations;http://dx.doi.org/10.1007/s10646-018-1921-9;Mixture models;NA;NA Initial;"Roeben, V; Oberdoerster, S; Rakel, Kj; Liesy, D; Capowiez, Y; Ernst, G; Preuss, Tg; Gergs, A; Oberdoerster, C; ";2020;Towards a spatiotemporally explicit toxicokinetic-toxicodynamic model for earthworm toxicity;http://dx.doi.org/10.1016/j.scitotenv.2020.137673;DR and TKTD models;NA;NA Initial;"Rortais, A; Arnold, G; Dorne, Jl; More, Sj; Sperandio, G; Streissl, F; Szentes, C; Verdonck, F; ";2017;Risk assessment of pesticides and other stressors in bees: Principles, data gaps and perspectives from the European Food Safety Authority;http://dx.doi.org/10.1016/j.scitotenv.2016.09.127;Population models;NA;NA Initial;"Rosch, A; Gottard, M; Vignet, C; Cedergreen, N; Hollender, J; ";2017;Mechanistic Understanding of the Synergistic Potential of Azole Fungicides in the Aquatic Invertebrate Gammarus pulex;http://dx.doi.org/10.1021/acs.est.7b03088;DR and TKTD models;NA;NA Initial;"Rubach, Mn; Ashauer, R; Maund, Sj; Baird, Dj; Van Den Brink, Pj; ";2010;TOXICOKINETIC VARIATION IN 15 FRESHWATER ARTHROPOD SPECIES EXPOSED TO THE INSECTICIDE CHLORPYRIFOS;http://dx.doi.org/10.1002/etc.273;DR and TKTD models;NA;NA Initial;"Rubach, Mn; Baird, Dj; Boerwinkel, Mc; Maund, Sj; Roessink, I; Van Den Brink, Pj; ";2012;Species traits as predictors for intrinsic sensitivity of aquatic invertebrates to the insecticide chlorpyrifos;http://dx.doi.org/10.1007/s10646-012-0962-8;DR and TKTD models;NA;NA Initial;"Rueda-Cediel, P; Brain, R; Galic, N; Forbes, V; ";2019;Comparative Analysis of Plant Demographic Traits Across Species of Different Conservation Concern: Implications for Pesticide Risk Assessment;http://dx.doi.org/10.1002/etc.4472;Population models;NA;NA Initial;"Sanches, Alm; Daam, Ma; Freitas, Ec; Godoy, Aa; Meireles, G; Almeida, Ar; Domingues, I; Espindola, Elg; ";2018;Lethal and sublethal toxicity of abamectin and difenoconazole (individually and in mixture) to early life stages of zebrafish;http://dx.doi.org/10.1016/j.chemosphere.2018.07.027;Mixture models;NA;NA Initial;"Sanchez-Avila, J; Vicente, J; Echavarri-Erasun, B; Porte, C; Tauler, R; Lacorte, S; ";2013;Sources, fluxes and risk of organic micropollutants to the Cantabrian Sea (Spain);http://dx.doi.org/10.1016/j.marpolbul.2013.04.010;Methods;NA;NA Initial;"Sanchez-Bayo, F; Baskaran, S; Kennedy, Ir; ";2002;Ecological relative risk (EcoRR): another approach for risk assessment of pesticides in agriculture;http://dx.doi.org/10.1016/S0167-8809(01)00258-4;Multi-species models;NA;NA Initial;"Santos, Mjg; Soares, Amvm; Loureiro, S; ";2010;Joint effects of three plant protection products to the terrestrial isopod Porcellionides pruinosus and the collembolan Folsomia candida;http://dx.doi.org/10.1016/j.chemosphere.2010.05.031;Mixture models;NA;NA Initial;"Satyanarayan, S; Ramakant, ; ";2004;Bioaccumulation kinetics and bioconcentration factor of chlorinated pesticides in tissues of Puntius ticto (Ham.);http://dx.doi.org/10.1081/PFC-120030245;DR and TKTD models;NA;NA Initial;"Schaefer, Rb; Kuhn, B; Hauer, L; Kattwinkel, M; ";2017;Assessing recovery of stream insects from pesticides using a two-patch metapopulation model;http://dx.doi.org/10.1016/j.scitotenv.2017.07.222;Landscape models;NA;NA Initial;"Schaefer, Rb; Von Der Ohe, Pc; Rasmussen, J; Kefford, Bj; Beketov, Ma; Schulz, R; Liess, M; ";2012;Thresholds for the Effects of Pesticides on Invertebrate Communities and Leaf Breakdown in Stream Ecosystems;http://dx.doi.org/10.1021/es2039882;Multi-species models;DR and TKTD models;NA Initial;"Schell, T; Goedkoop, W; Zubrod, Jp; Feckler, A; Luderwald, S; Schulz, R; Bundschuh, M; ";2018;Assessing the effects of field-relevant pesticide mixtures for their compliance with the concentration addition model - An experimental approach with Daphnia magna;http://dx.doi.org/10.1016/j.scitotenv.2018.06.334;Mixture models;NA;NA Initial;"Schmidt, Am; Sengupta, N; Saski, Ca; Noorai, Re; Baldwin, Ws; ";2017;RNA sequencing indicates that atrazine induces multiple detoxification genes in Daphnia magna and this is a potential source of its mixture interactions with other chemicals;http://dx.doi.org/10.1016/j.chemosphere.2017.09.107;Mixture models;NA;NA Initial;"Schmidt, S; Busch, W; Altenburger, R; Kuster, E; ";2016;Mixture toxicity of water contaminants-effect analysis using the zebrafish embryo assay (Danio rerio);http://dx.doi.org/10.1016/j.chemosphere.2016.03.006;Mixture models;NA;NA Initial;"Schmitt, W; Bruns, E; Dollinger, M; Sowig, P; ";2013;Mechanistic TK/TD-model simulating the effect of growth inhibitors on Lemna populations;http://dx.doi.org/10.1016/j.ecolmodel.2013.01.017;Population models;NA;NA Initial;"Schmolke, A; Abi-Akar, F; Hinarejos, S; ";2019;Honey bee colony-level exposure and effects in realistic landscapes: An application of BEEHAVE simulating clothianidin residues in corn pollen;http://dx.doi.org/10.1002/etc.4314;Population models;NA;NA Initial;"Schmolke, A; Brain, R; Thorbek, P; Perkins, D; Forbes, V; ";2018;Assessing and mitigating simulated population-level effects of 3 herbicides to a threatened plant: Application of a species-specific population model of Boltonia decurrens;http://dx.doi.org/10.1002/etc.4093;Population models;DR and TKTD models;NA Initial;"Schmolke, A; Brain, R; Thorbek, P; Perkins, D; Forbes, V; ";2017;Population modeling for pesticide risk assessment of threatened species - A case study of a terrestrial plant, Boltonia decurrens;http://dx.doi.org/10.1002/etc.3576;Population models;NA;NA Initial;"Schmolke, A; Kapo, Ke; Rueda-Cediel, P; Thorbek, P; Brain, R; Forbes, V; ";2017;Developing population models: A systematic approach for pesticide risk assessment using herbaceous plants as an example;http://dx.doi.org/10.1016/j.scitotenv.2017.05.116;Population models;NA;NA Initial;"Schmolke, A; Roy, C; Brain, R; Forbes, V; ";2018;Adapting population models for application in pesticide risk assessment: A case study with Mead's milkweed;http://dx.doi.org/10.1002/etc.4172;Population models;DR and TKTD models;NA Initial;"Schmolke, A; Thorbek, P; Chapman, P; Grimm, V; ";2010;ECOLOGICAL MODELS AND PESTICIDE RISK ASSESSMENT: CURRENT MODELING PRACTICE;http://dx.doi.org/10.1002/etc.120;Population models;NA;NA Initial;"Scholz-Starke, B; Bo, L; Holbach, A; Norra, S; Floehr, T; Hollert, H; Ross-Nickoll, M; Schaffer, A; Ottermanns, R; ";2018;Simulation-based assessment of the impact of fertiliser and herbicide application on freshwater ecosystems at the Three Gorges Reservoir in China;http://dx.doi.org/10.1016/j.scitotenv.2018.05.057;DR and TKTD models;NA;NA Initial;"Schuler, Lj; Rand, Gm; ";2008;Aquatic risk assessment of herbicides in freshwater ecosystems of south Florida;http://dx.doi.org/10.1007/s00244-007-9085-2;Mixture models;NA;NA Initial;Schuwirth N, Borgwardt F, Domisch S, Friedrichs M, Kattwinkel M, Kneis D, Kuemmerlen M, Langhans Sd, Martinez-Lopez J, Vermeiren P;2019;How to make ecological models useful for environmental management;https://doi.org/10.1016/j.ecolmodel.2019.108784;Methods;NA;NA Initial;"Shahid, N; Liess, M; Knillmann, S; ";2019;Environmental Stress Increases Synergistic Effects of Pesticide Mixtures on Daphnia magna;http://dx.doi.org/10.1021/acs.est.9b04293;Mixture models;NA;NA Initial;"Silva, C; Nunes, B; Nogueira, Aja; Goncalves, F; Pereira, Jl; ";2016;In vitro test systems supporting the development of improved pest control methods: a case study with chemical mixtures and bivalve biofoulers;http://dx.doi.org/10.1080/08927014.2016.1241993;Mixture models;NA;NA Initial;"Silva, E; Daam, Ma; Cerejeira, Mj; ";2015;Predicting the aquatic risk of realistic pesticide mixtures to species assemblages in Portuguese river basins;http://dx.doi.org/10.1016/j.jes.2014.11.006;Multi-species models;NA;NA Initial;"Silva, Lde; Alves, Mf; Scotti, L; Lopes, Ws; Scotti, Mt; ";2018;Predictive ecotoxicity of MoA 1 of organic chemicals using in silico approaches;http://dx.doi.org/10.1016/j.ecoenv.2018.01.054;QSARs;NA;NA Initial;"Slater, R; Stratonovitch, P; Elias, J; Semenov, Ma; Denholm, I; ";2017;Use of an individual-based simulation model to explore and evaluate potential insecticide resistance management strategies;http://dx.doi.org/10.1002/ps.4456;Population models;NA;NA Initial;"Solomon, Kr; Giddings, Jm; Maund, Sj; ";2001;Probabilistic risk assessment of cotton pyrethroids: I. Distributional analyses of laboratory aquatic toxicity data;http://dx.doi.org/10.1002/etc.5620200326;Multi-species models;NA;NA Initial;"Sorensen, Pb; Kjaer, C; Wiberg-Larsen, P; Bruus, M; Strandberg, B; Rasmussen, Jj; Damgaard, Cf; Larsen, Se; Strandberg, M; ";2020;Pesticide risk indicator for terrestrial adult stages of aquatic insects;http://dx.doi.org/10.1016/j.ecolind.2020.106718;DR and TKTD models;NA;NA Initial;"Spurgeon, Dj; ";2020;Higher than ... or lower than .... ? Evidence for the validity of the extrapolation of laboratory toxicity test results to predict the effects of chemicals and ionising radiation in the field;http://dx.doi.org/10.1016/j.jenvrad.2018.06.022;Methods;Multi-species models;NA Initial;"Stark, Jd; ";2012;Demography and Modeling To Improve Pesticide Risk Assessment of Endangered Species;http://dx.doi.org/10.1021/bk-2012-1111.ch018;Population models;NA;NA Initial;"Stark, Jd; Banks, Je; ";2003;Population-level effects of pesticides and other toxicants on arthropods;http://dx.doi.org/10.1146/annurev.ento.48.091801.112621;Population models;NA;NA Initial;"Stark, Jd; Banks, Je; Acheampong, S; ";2004;Estimating susceptibility of biological control agents to pesticides: influence of life history strategies and population structure;http://dx.doi.org/10.1016/j.biocontrol.2003.07.003;Population models;NA;NA Initial;"Stark, Jd; Vargas, Ri; Banks, Je; ";2015;Incorporating variability in point estimates in risk assessment: Bridging the gap between LC50 and population endpoints;http://dx.doi.org/10.1002/etc.2978;Population models;NA;NA Initial;"Stenrod, M; Heggen, He; Bolli, Ri; Eklo, Om; ";2008;Testing and comparison of three pesticide risk indicator models under Norwegian conditions - A case study in the Skuterud and Heiabekken catchments;http://dx.doi.org/10.1016/j.agee.2007.03.003;DR and TKTD models;NA;NA Initial;"Strassemeyer, J; Golla, B; ";2018;Environmental Risk Assessment of Surveyed Pesticide Applications from Reference Farms Using SYNOPS;http://dx.doi.org/10.1007/s10343-018-0426-z;Landscape models;NA;NA Initial;"Streissl, F; Egsmose, M; Tarazona, Jv; ";2018;Linking pesticide marketing authorisations with environmental impact assessments through realistic landscape risk assessment paradigms;http://dx.doi.org/10.1007/s10646-018-1962-0;Methods;NA;NA Initial;"Sullivan, Jp; Wisk, Jd; ";2013;Using the terrestrial residue exposure (T-REX) model to assess threatened and endangered bird exposure to and risk from pesticides;http://dx.doi.org/10.1002/ieam.1390;DR and TKTD models;NA;NA Initial;"Sunding, D; Zivin, J; ";2000;Insect population dynamics, pesticide use, and farmworker health;http://dx.doi.org/10.1111/0002-9092.00044;Population models;NA;NA Initial;"Svendsen, C; Siang, P; Lister, Lj; Rice, A; Spurgeon, Dj; ";2010;Similarity, independence, or interaction for binary mixture effects of nerve toxicants for the nematode caenorhabditis elegans;http://dx.doi.org/10.1002/etc.140;Mixture models;NA;NA Initial;"Szabo, Jk; Davy, Pj; Hooper, Mj; Astheimer, Lb; ";2009;Predicting avian distributions to evaluate spatiotemporal overlap with locust control operations in eastern Australia;http://dx.doi.org/10.1890/08-0264.1;Landscape models;NA;NA Initial;"Tagun, R; Boxall, Aba; ";2018;The Response of Lemna minor to Mixtures of Pesticides That Are Commonly Used in Thailand;http://dx.doi.org/10.1007/s00128-018-2291-y;Mixture models;NA;NA Initial;"Tang, Jym; Escher, Bi; ";2014;Realistic environmental mixtures of micropollutants in surface, drinking, and recycled water: herbicides dominate the mixture toxicity toward algae;http://dx.doi.org/10.1002/etc.2580;Mixture models;NA;NA Initial;"Tang, Sy; Liang, Jh; Xiang, Cc; Xiao, Yn; Wang, X; Wu, Jh; Li, Gp; Cheke, Ra; ";2019;A general model of hormesis in biological systems and its application to pest management;http://dx.doi.org/10.1098/rsif.2019.0468;Population models;NA;NA Initial;"Tao, Mt; Bian, Zq; Zhang, J; Wang, T; Shen, Hy; ";2020;Quantitative evaluation and the toxicity mechanism of synergism within three organophosphorus pesticide mixtures toChlorella pyrenoidosa;http://dx.doi.org/10.1039/d0em00262c;Mixture models;NA;NA Initial;Thomas Pc, Bicherel P, Bauer Fj;2019;How in silico and QSAR approaches can increase confidence in environmental hazard and risk assessment;http://dx.doi.org/10.1002/ieam.4108;Methods;QSARs;NA Initial;"Thompson, Hm; Wilkins, S; Battersby, Ah; Waite, Rj; Wilkinson, D; ";2005;The effects of four insect growth-regulating (IGR) insecticides on honeybee (Apis mellifera l.) colony development, queen rearing and drone sperm production;http://dx.doi.org/10.1007/s10646-005-0024-6;Population models;NA;NA Initial;"Thorbek, P; Campbell, Pj; Sweeney, Pj; Thompson, Hm; ";2017;Using BEEHAVE to explore pesticide protection goals for European honeybee (Apis melifera L.) worker losses at different forage qualities;http://dx.doi.org/10.1002/etc.3504;Population models;NA;NA Initial;"Thursby, G; Sappington, K; Etterson, M; ";2018;Coupling toxicokinetic-toxicodynamic and population models for assessing aquatic ecological risks to time-varying pesticide exposures;http://dx.doi.org/10.1002/etc.4224;Population models;DR and TKTD models;NA Initial;"Tonnang, Henri E. Z.; Herve, Bisseleua D. B.; Biber-Freudenberger, Lisa; Salifu, Daisy; Subramanian, Sevgan; Ngowi, Valentine B.; Guimapi, Ritter Y. A.; Anani, Bruce; Kakmeni, Francois M. M.; Affognong, Hippolyte; Niassy, Saliou; Landmann, Tobias; Ndjornatchoua, Frank T.; Pedro, Sansao A.; Johansson, Tino; Tanga, Chrysantus M.; Nana, Paulin; Fiaboe, Komi M.; Mohamed, Samira F.; Maniania, Nguya K.; Nedorezov, Lev V.; Ekesi, Sunday; Borgemeister, Christian";2017;Advances in crop insect modelling methods-Towards a whole system approach;http://dx.doi.org/10.1016/j.ecolmodel.2017.03.015;Population models;Methods: sans pesticide transervale;NA Initial;"Topping, Cj; Craig, Ps; De Jong, F; Klein, M; Laskowski, R; Manachini, B; Pieper, S; Smith, R; Sousa, Jp; Streissl, F; Swarowsky, K; Tiktak, A; Van Der Linden, T; ";2015;Towards a landscape scale management of pesticides: ERA using changes in modelled occupancy and abundance to assess long-term population impacts of pesticides;http://dx.doi.org/10.1016/j.scitotenv.2015.07.152;Landscape models;NA;NA Initial;"Topping, Cj; Dalby, L; Skov, F; ";2016;Landscape structure and management alter the outcome of a pesticide ERA: Evaluating impacts of endocrine disruption using the ALMaSS European Brown Hare model;http://dx.doi.org/10.1016/j.scitotenv.2015.10.042;Landscape models;NA;NA Initial;"Topping, Cj; Odderskaer, P; ";2004;Modeling the influence of temporal and spatial factors on the assessment of impacts of pesticides on skylarks;http://dx.doi.org/10.1897/02-524a;Population models;NA;NA Initial;"Topping, Cj; Sibly, Rm; Akcakaya, Hr; Smith, Gc; Crocker, Dr; ";2005;Risk assessment of UK skylark populations using life-history and individual-based landscape models;http://dx.doi.org/10.1007/s10646-005-0027-3;Population models;Landscape models;NA Initial;"Toropov, Aa; Benfenati, E; ";2007;Optimisation of correlation weights of SMILES invariants for modelling oral quail toxicity;http://dx.doi.org/10.1016/j.ejmech.2006.11.018;QSARs;NA;NA Initial;"Toschik, Pc; Rattner, Ba; Mcgowan, Pc; Christman, Mc; Carter, Db; Hale, Rc; Matson, Cw; Ottinger, Ma; ";2005;Effects of contaminant exposure on reproductive success of ospreys (Pandion haliaetus) nesting in Delaware River and bay, USA;http://dx.doi.org/10.1897/04-141R.1;Methods;NA;NA Initial;"Toumi, H; Boumaiza, M; Millet, M; Radetski, Cm; Camara, Bi; Felten, V; Masfaraud, Jf; Ferard, Jf; ";2018;Combined acute ecotoxicity of malathion and deltamethrin to Daphnia magna (Crustacea, Cladocera): comparison of different data analysis approaches;http://dx.doi.org/10.1007/s11356-018-1909-2;Mixture models;NA;NA Initial;"Traas, Tp; Janse, Jh; Van Den Brink, Pj; Brock, Tcm; Aldenberg, T; ";2004;A freshwater food web model for the combined effects of nutrients and insecticide stress and subsequent recovery;http://dx.doi.org/10.1897/02-524;Multi-species models;NA;NA Initial;"Trimble, Aj; Belden, Jb; Mueting, Sa; Lydy, Mj; ";2010;Determining modifications to bifenthrin toxicity and sediment binding affinity from varying potassium chloride concentrations in overlying water;http://dx.doi.org/10.1016/j.chemosphere.2010.03.037;Mixture models;NA;NA Initial;"Tyne, W; Little, S; Spurgeon, Dj; Svendsen, C; ";2015;Hormesis depends upon the life-stage and duration of exposure: Examples for a pesticide and a nanomaterial;http://dx.doi.org/10.1016/j.ecoenv.2015.05.024;DR and TKTD models;NA;NA Initial;"Vaj, C; Barmaz, S; Sorensen, Pb; Spurgeon, D; Vighi, M; ";2011;Assessing, mapping and validating site-specific ecotoxicological risk for pesticide mixtures: A case study for small scale hot spots in aquatic and terrestrial environments;http://dx.doi.org/10.1016/j.ecoenv.2011.07.011;Mixture models;NA;NA Initial;"Van Dam, Jw; Uthicke, S; Beltran, Vh; Mueller, Jf; Negri, Ap; ";2015;Combined thermal and herbicide stress in functionally diverse coral symbionts;http://dx.doi.org/10.1016/j.envpol.2015.05.013;Mixture models;NA;NA Initial;"Van Dam, Ra; Camilleri, C; Bayliss, P; Markich, Sj; ";2004;Ecological risk assessment of tebuthiuron following application on tropical Australian wetlands;http://dx.doi.org/10.1080/10807030490887140;Multi-species models;NA;NA Initial;"Van Den Brink, Pj; Baveco, Jm; Verboom, J; Heimbach, F; ";2007;An individual-based approach to model spatial population dynamics of invertebrates in aquatic ecosystems after pesticide contamination;http://dx.doi.org/10.1897/07-022R.1;Landscape models;NA;NA Initial;"Van Den Brink, Pj; Blake, N; Brock, Tcm; Maltby, L; ";2006;Predictive value of species sensitivity distributions for effects of herbicides in freshwater ecosystems;http://dx.doi.org/10.1080/10807030500430559;Multi-species models;NA;NA Initial;"Van Den Brink, Pj; Brown, Cd; Dubus, Ig; ";2006;Using the expert model PERPEST to translate measured and predicted pesticide exposure data into ecological risks;http://dx.doi.org/10.1016/j.ecolmodel.2005.08.015;Multi-species models;NA;NA Initial;"Van Den Brink, Pj; Buijert-De Gelder, Dm; Brock, Tcm; Roessink, I; Focks, A; ";2019;Exposure pattern-specific species sensitivity distributions for the ecological risk assessments of insecticides;http://dx.doi.org/10.1016/j.ecoenv.2019.05.022;DR and TKTD models;NA;NA Initial;"Van Den Brink, PJ; Roelsma, J; Van Nes, EH; Scheffer, M; Brock, TCM; ";2002;PERPEST model, a case-based reasoning approach to predict ecological risks of pesticides;http://dx.doi.org/10.1002/etc.5620211132;Multi-species models;NA;NA Initial;"Venko, K; Drgan, V; Novic, M; ";2018;Classification models for identifying substances exhibiting acute contact toxicity in honeybees (Apis mellifera)($);http://dx.doi.org/10.1080/1062936X.2018.1513953;QSARs;NA;NA Initial;"Verro, R; Finizio, A; Otto, S; Vighi, M; ";2009;Predicting Pesticide Environmental Risk in Intensive Agricultural Areas. II: Screening Level Risk Assessment of Complex Mixtures in Surface Waters;http://dx.doi.org/10.1021/es801858h;Mixture models;NA;NA Initial;"Verweij, F; Booij, K; Satumalay, K; Van Der Molen, N; Van Der Oost, R; ";2004;Assessment of bioavailable PAH, PCB and OCP concentrations in water, using semipermeable membrane devices (SPMDs), sediments and caged carp;http://dx.doi.org/10.1016/j.chemosphere.2003.10.002;DR and TKTD models;NA;NA Initial;"Viaene, Kpj; De Laender, F; Van Den Brink, Pj; Janssen, Cr; ";2013;Using additive modelling to quantify the effect of chemicals on phytoplankton diversity and biomass;http://dx.doi.org/10.1016/j.scitotenv.2013.01.046;Multi-species models;NA;NA Initial;"Vignardi, Cp; Muller, Eb; Tran, K; Couture, J; Means, -J; Murray, -J; Ortiz, C; Keller, -A; Sanchez, N; Lenihan, -H;";2020;Conventional and nano-copper pesticides are equally toxic to the estuarine amphipod Leptocheirus plumulosus;https://doi.org/10.1016/j.aquatox.2020.105481;DR and TKTD models;NA;NA Initial;"Villain, J; Lozano, S; Halm-Lemeille, Mp; Durrieu, G; Bureau, R; ";2014;Quantile regression model for a diverse set of chemicals: application to acute toxicity for green algae;http://dx.doi.org/10.1007/s00894-014-2508-x;QSARs;NA;NA Initial;"Villaverde, Jj; Santin-Montanya, I; Sevilla-Moran, B; Alonso-Prados, Jl; Sandin-Espana, P; ";2018;Assessing the Effects of Alloxydim Phototransformation Products by QSAR Models and a Phytotoxicity Study;http://dx.doi.org/10.3390/molecules23050993;QSARs;NA;NA Initial;"Villaverde, Jj; Sevilla-Morn, B; Lpez-Goti, C; Alonso-Prados, Jl; Sandn-Espaa, P; ";2020;QSAR/QSPR models based on quantum chemistry for risk assessment of pesticides according to current European legislation;http://dx.doi.org/10.1080/1062936X.2019.1692368;QSARs;NA;NA Initial;"Wang, Gm; Edge, Wd; Wolff, Jo; ";2001;Demographic uncertainty in ecological risk assessments;http://dx.doi.org/10.1016/S0304-3800(00)00378-1;Population models;NA;NA Initial;"Wang, M; ";2013;From home range dynamics to population cycles: Validation and realism of a common vole population model for pesticide risk assessment;http://dx.doi.org/10.1002/ieam.1377;Population models;NA;NA Initial;"Wang, M; Grimm, V; ";2010;Population models in pesticide risk assessment: lessons for assessing population-level effects, recovery, and alternative exposure scenarios from modeling a small mammal;http://dx.doi.org/10.1002/etc.151;Landscape models;NA;NA Initial;"Wang, Mc; Liu, Ss; Chen, F; ";2014;Predicting the Time-dependent Toxicities of Three Triazine Herbicide Mixtures to V. qinghaiensis sp Q67 Using the Extended Concentration Addition Model;http://dx.doi.org/10.6023/A13101034;Mixture models;NA;NA Initial;"Wang, Sh; Li, Hz; You, J; ";2019;Enantioselective degradation and bioaccumulation of sediment-associated fipronil in Lumbriculus variegatus: Toxicokinetic analysis;http://dx.doi.org/10.1016/j.scitotenv.2019.03.490;DR and TKTD models;NA;NA Initial;"Weber, D; Schaefer, D; Dorgerloh, M; Bruns, E; Goerlitz, G; Hammel, K; Preuss, Tg; Rattey, Ht; ";2012;Combination of a higher-tier flow-through system and population modeling to assess the effects of time-variable exposure of isoproturon on the green algae Desmodesmus subspicatus and Pseudokirchneriella subcapitata;http://dx.doi.org/10.1002/etc.1765;Population models;NA;NA Initial;"Weber, D; Weyman, G; Fruhmann, T; Gagniarre, M; Minten, B; Memmert, U; ";2019;Time-Variable Exposure Experiments in Conjunction with Higher Tier Population and Effect Modeling to Assess the Risk of Chlorotoluron to Green Algae;http://dx.doi.org/10.1002/etc.4544;Population models;NA;NA Initial;"Weijs, L; Yang, Rsh; Das, K; Covaci, A; Blust, R; ";2013;Application of Bayesian Population Physiologically Based Pharmacokinetic (PBPK) Modeling and Markov Chain Monte Carlo Simulations to Pesticide Kinetics Studies in Protected Marine Mammals: DDT, DDE, and DDD in Harbor Porpoises;http://dx.doi.org/10.1021/es400386a;DR and TKTD models;NA;NA Initial;"Wilkinson, Ad; Collier, Cj; Flores, F; Negri, Ap; ";2015;Acute and additive toxicity of ten photosystem-II herbicides to seagrass;http://dx.doi.org/10.1038/srep17443;Mixture models;NA;NA Initial;"Wu, X; Zhu, Lz; ";2019;Prediction of organic contaminant uptake by plants: Modified partition-limited model based on a sequential ultrasonic extraction procedure;http://dx.doi.org/10.1016/j.envpol.2018.11.066;DR and TKTD models;NA;NA Initial;"Xiao, X; Li, C; Huang, Hm; Lee, Yp; ";2019;Inhibition effect of natural flavonoids on red tide alga Phaeocystis globosa and its quantitative structure-activity relationship;http://dx.doi.org/10.1007/s11356-019-05482-7;QSARs;NA;NA Initial;"Xu, Yq; Liu, Ss; Lu, Bq; Wang, Zj; ";2020;Acute toxicity dataset for QSAR modeling and predicting missing data of six pesticides;http://dx.doi.org/10.1016/j.dib.2020.105150;QSARs;Multi-species models;NA Initial;"Yan, Fy; He, Ws; Jia, Qz; Xia, Sq; Wang, Q; ";2018;QSAR models for describing the toxicological effects of ILs against Candida albicans based on norm indexes;http://dx.doi.org/10.1016/j.chemosphere.2018.02.147;QSARs;NA;NA Initial;"Yang, Gl; Chen, C; Wang, Yh; Peng, Q; Zhao, Hy; Guo, Dm; Wang, Q; Qian, Yz; ";2017;Mixture toxicity of four commonly used pesticides at different effect levels to the epigeic earthworm, Eisenia fetida;http://dx.doi.org/10.1016/j.ecoenv.2017.03.037;Mixture models;NA;NA Initial;"Yang, L; Wang, Yh; Chang, J; Pan, Yf; Wei, Rj; Li, Jz; Wang, Hl; ";2020;QSAR modeling the toxicity of pesticides against Americamysis bahia;http://dx.doi.org/10.1016/j.chemosphere.2020.127217;QSARs;NA;NA Initial;"Yang, L; Wang, Yh; Hao, Wy; Chang, J; Pan, Yf; Li, Jz; Wang, Hl; ";2020;Modeling pesticides toxicity to Sheepshead minnow using QSAR;http://dx.doi.org/10.1016/j.ecoenv.2020.110352;QSARs;NA;NA Initial;"Yu, Sy; Wages, M; Willming, M; Cobb, Gp; Maul, Jd; ";2015;Joint effects of pesticides and ultraviolet-B radiation on amphibian larvae;http://dx.doi.org/10.1016/j.envpol.2015.09.029;Mixture models;NA;NA Initial;"Zhao, Js; Chen, By; ";2016;Species sensitivity distribution for chlorpyrifos to aquatic organisms: Model choice and sample size;http://dx.doi.org/10.1016/j.ecoenv.2015.11.039;Multi-species models;NA;NA Initial;"Zhao, X; Zhang, Yl; Li, Sy; ";2008;Ecological risk assessment of DDT accumulation in aquatic organisms of Taihu Lake, China;http://dx.doi.org/10.1080/10807030802235268;Multi-species models;Population models;NA Initial;"Zhou, Xf; Sang, Wj; Liu, Ss; Zhang, Yl; Ge, Hl; ";2010;Modeling and prediction for the acute toxicity of pesticide mixtures to the freshwater luminescent bacterium Vibrio qinghaiensis sp.-Q67;http://dx.doi.org/10.1016/S1001-0742(09)60126-1;Mixture models;NA;NA Initial;"Zubrod, Jp; Baudy, P; Schulz, R; Bundschuh, M; ";2014;Effects of current-use fungicides and their mixtures on the feeding and survival of the key shredder Gammarus fossarum;http://dx.doi.org/10.1016/j.aquatox.2014.03.002;Mixture models;NA;NA Additional;"Abbas, R; Hayton, Wl;";1997;A physiologically based pharmacokinetic and pharmacodynamic model for paraoxon in rainbow trout;https//doi.org/10.1006/taap.1997.8168 ;DR and TKTD models;NA;NA Additional;"Add-My-Pet;";2021;Online database of DEB parameters, implied properties and referenced underlying data;NA;DR and TKTD models;NA;NA Additional;"Aldenberg, T; Jaworska, Js;";2000; Uncertainty Of The Hazardous Concentration and Fraction Affected For Normal Species Sensitivity Distributions;http://dx.doi.org/10.1006/Eesa.1999.1869;Multi-species models;NA;NA Additional;"Anzecc and Armcanz;";2000;Australian and New Zealand Guidelines For Fresh and Marine Water Quality;NA;Methods;NA;NA Additional;"Baas, J ; Schotten, M ; Plume, A ; Cote, G ; Karimi, R";2020;Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies;NA;NA;NA;NA Additional;"Baas, J; Van, Houte, B; Van, Gestel, C; Kooijman, S;";2007;Modeling The Effects Of Binary Mixtures On Survival In Time;https//doi.org/10.1897/06-437r.1 ;Mixture models;DR and TKTD models;NA Additional;"Balls, M;";2020; It’s Time to Reconsider The Principles of Humane Experimental Technique;https://doi.org/10.1177/0261192920911339;Methods;NA;NA Additional;"Barnthouse, Lw;";1992;The role of models in ecological risk assessment: A 1990's perspective;https://doi.org/10.1002/etc.5620111207;Methods;NA;NA Additional;"Barry, S; Henderson, B;";2014;Burrlioz 2.0;NA;Multi-species models;NA;NA Additional;"Bartell, Sm; Nair, Sk; Galic, N; Brain, Ra;";2020;The Comprehensive Aquatic Systems Model (CASM): Advancing Computational Capability for Ecosystem Simulation;https://doi.org/10.1002/etc.4843;Multi-species models;NA;NA Additional;"Basant, N; Gupta, S; Singh, Kp;";2015;Predicting Toxicities of Diverse Chemical Pesticides in Multiple Avian Species Using Tree-Based QSAR Approaches for Regulatory Purposes;http://doi.org/10.1021/acs.jcim.5b00139;QSARs;NA;NA Additional;"Basant, N; Gupta, S; Singh, Kp;";2015;Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches;https://doi.org/10.1016/j.chemosphere.2015.06.063;QSARs;NA;NA Additional;"Basant, N; Gupta, S; Singh, Kp;";2016;Modeling the toxicity of chemical pesticides in multiple test species using local and global QSTR approaches;http://dx.doi.org/10.1039/C5TX00321K;QSARs;NA;NA Additional;"Basic Report;";2021;Pesticides: a model that’s costing us dearly;NA;NA;NA;NA Additional;"Baudrot, V; Charles, S;";2019;Recommendations To Address Uncertainties In Environmental Risk Assessment Using Toxicokinetics-Toxicodynamics Models;http://dx.doi.org/10.1101/356469;DR and TKTD models;NA;NA Additional;"Baudrot, V; Fernandez-De-Simon, J; Coeurdassier, M, Couval, G, Giraudoux, P, Lambin, X;";2020;Trophic transfer of pesticides: The fine line between predator–prey regulation and pesticide–pest regulation.;https://doi.org/10.1111/1365-2664.13578;DR and TKTD models;NA;NA Additional;"Belanger, Se; Carr, Gj;";2019;Ssds Revisited: Part II‚ A practical Considerations In The Development and Use Of Application Factors Applied To Species Sensitivity Distributions;http://dx.doi.org/10.1002/Etc.4444;Multi-species models;NA;NA Additional;"Belden, Jb; Gilliom, Rj; Lydy, Mj;";2007;How well can we predict the toxicity of pesticide mixtures to aquatic life?;https://doi.org/10.1002/ieam.5630030307;Mixture models;NA;NA Additional;"Belden, Jb; Lydy, Mj;";2006; Joint toxicity of chlorpyrifos and esfenvalerate to fathead minnows and midge larvae.;https://doi.org/10.1897/05-370R.1;DR and TKTD models;NA;NA Additional;"Benfenati, E; Manganaro, A; Gini, G;";2013;VEGA-QSAR: AI Inside a Platform for Predictive Toxicology;NA;QSARs;NA;NA Additional;"Benigni, Serafimova, R; Parra Morte, Jm; Battistelli, Cl; Bossa, C; Giuliani, A; Fioravanzo, E; Bassan, A; Gatnik, Mf; Rathman, J; Yang, C; Mostrag-Szlichtyng, A; Sacher, O; Tcheremenskaia, O;";2020;Evaluation of the applicability of existing (Q)SAR models for predicting the genotoxicity of pesticides and similarity analysis related with genotoxicity of pesticides for facilitating of grouping and read across: An EFSA funded project;https://doi.org/10.1016/j.yrtph.2020.104658;QSARs;NA;NA Additional;"Bhowmick, T; Sen, G; Mukherjee, Joydeep, And, Das, R;";2021;Assessing The Effect Of Herbicide Diuron On River Biofilm: A Statistical Model;http://dx.doi.org/10.1016/J.Chemosphere.2021.131104;DR and TKTD models;NA;NA Additional;"Bray, J; Miranda, A; Keely-Smith, A; Kaserzon, S, Elisei, G; Chou, A; Nichols, Sj; Thompson, R; Nugegoda, D, Kefford, Bj;";2021;Sub-organism (acetylcholinesterase activity), population (survival) and chemical concentration responses reinforce mechanisms of antagonism associated with malathion toxicity.;https://doi.org/10.1016/j.scitotenv.2021.146087;DR and TKTD models;NA;NA Additional;"Campbell, E; Palmer, M; Shao, Q; Warne, M; Wilson, D;";2000;Burrlioz: A Computer Program For Calculating Toxicant Trigger Values For The Anzecc and Armcanz Water Quality Guidelines;NA;Multi-species models;NA;NA Additional;"Campbell, K. R.; Bartell, S. M.; Shaw, J. L.;";2000;Characterizing aquatic ecological risks from pesticides using a diquat dibromide case study. II. Approaches using quotients and distributions.;https//doi.org/10.1002/etc.5620190331;Multi-species models;NA;NA Additional;"Carr, G. J.; Belanger, S. E.;";2009;SSDs Revisited: Part I—A Framework for Sample Size Guidance on Species Sensitivity Distribution Analysis.;https://doi.org/10.1002/etc.4445;Multi-species models;NA;NA Additional;"Caswell, H;";2001;Matrix Population Models;NA;Population models;NA;NA Additional;"Charles, S; Ratier, A, Baudrot, V, Multari, G, Siberchicot, A; Wu, D, Lopes, C;";2021; Taking full advantage of modelling to better assess environmental risk due to xenobiotics.;https://doi.org/10.1101/2021.03.24.436474v2;DR and TKTD models;NA;NA Additional;"Chaumot, A; Charles, S; Flammarion, P; Auger, P;";2003;Ecotoxicology and spatial modeling in population dynamics: An illustration with brown trout;https://doi.org/10.1002/ETC.5620220502;Population models;Landscape models;NA Additional;"Chen, Sh; Pollino, Ca;";2012;Good Practice In Bayesian Network Modelling;https://doi.org/10.1016/j.envsoft.2012.03.012;Methods;NA;NA Additional;"Claudio Cacciatore, L; Verrengia Guerrero, NR; Cristina Cochon, A;";2018;Toxicokinetic and Toxicodynamic Studies Of Carbaryl Alone Or In Binary Mixtures With Azinphos Methyl In The Freshwater Gastropod Planorbarius Corneus;https://doi.org/10.1016/J.Aquatox.2018.04.005;DR and TKTD models;NA;NA Additional;"Conolly, R; Ankley, G; Cheng, W; Mayo, M; Miller, D; Perkins, E; Villeneuve, D; Watanabe, K;";2017;Quantitative adverse outcome pathways and their application to predictive toxicology;https://doi.org/10.1021/acs.est.6b06230;Population models;NA;NA Additional;"David, V; Joachim, S; Tebby, C; Porcher, Jm; Beaudouin, R;";2019;Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model;https//doi.org/10.1016/j.ecolmodel.2019.02.008;Population models;NA;NA Additional;"Delignette-Muller, Ml; Lopes, C; Veber, P; Charles, S;";2014;Statistical Handling Of Reproduction Data For Exposure-Response Modeling.;http://dx.doi.org/10.1021/Es502009r;DR and TKTD models;NA;NA Additional;"Douziech, M; Ragas, Amj; Van Zelm, R; Oldenkamp, R; Jan Hendriks, A; King, H; Oktivaningrum, R; Huijbregts, Maj;";2020;Reliable and representative in silico predictions of freshwater ecotoxicological hazardous concentrations;https://doi.org/10.1016/j.envint.2019.105334;QSARs;NA;NA Additional;"Drgan, C; Zuperl, S; Vracko, M; Como, F; Novic, M;";2016;Robust modelling of acute toxicity towards fathead minnow (Pimephales promelas) using counter-propagation artificial neural networks and genetic algorithm;https://doi.org/10.1080/1062936X.2016.1196388;QSARs;NA;NA Additional;"EFSA PPR Panel;";2015;Scientific Opinion addressing the state of the science on risk assessment of plant protection products for non-target terrestrial plants;https//doi.org/10.2903/j.efsa.2014.3800;Methods;NA;NA Additional;"EFSA PPR Panel;";2014;Scientific Opinion On Good Modelling Practice In The Context Of Mechanistic Effect Models For Risk Assessment Of Plant Protection Products;http://dx.doi.org/10.2903/j.efsa.2014.3589;Methods;NA;NA Additional;"EFSA PPR Panel;";2013;Guidance On Tiered Risk Assessment For Plant Protection Products For Aquatic Organisms In Edge-of-field Surface Waters;https://doi.org/10.2903/j.efsa.2013.3290;Methods;NA;NA Additional;"EFSA PPR Panel;";2013;Guidance On The Risk Assessment Of Plant Protection Products On Bees (Apis Mellifera, Bombus Spp. and Solitary Bees);https://doi.org/10.2903/j.efsa.2013.3295;Methods;NA;NA Additional;"EFSA PPR Panel;";2015;Scientific Opinion Addressing The State Of The Science On Risk Assessment Of Plant Protection Products For Non-target Arthropods;https://doi.org/10.2903/j.efsa.2015.3996;Methods;NA;NA Additional;"EFSA PPR Panel;";2015;Scientific Opinion On The Effect Assessment For Pesticides On Sediment Organisms In Edge-of-field Surface Water;https://doi.org/10.2903/j.efsa.2015.4176;Methods;NA;NA Additional;"EFSA PPR Panel;";2015;Statement On The Suitability Of The BEEHAVE Model For Its Potential Use In A Regulatory Context and For The Risk Assessment Of Multiple Stressors In Honeybees At The Landscape Level;https://doi.org/10.2903/j.efsa.2015.4125;Methods;NA;NA Additional;EFSA Scientific Committee;2016;Guidance to develop specific protection goals options for environmental risk assessment at EFSA, in relation to biodiversity and ecosystem services;https://doi.org/10.2903/j.efsa.2016.4499;Methods;NA;NA Additional;"EFSA, Scientific Committee;";2018;Guidance On Uncertainty Analysis In Scientific Assessments;http://dx.doi.org/10.2903/j.efsa2018.5123;Methods;NA;NA Additional;"EFSA;";2009;Risk Assessment For Birds and Mammals;https://doi.org/10.2903/j.efsa.2009.1438;Methods;NA;NA Additional;"Eriksson, L;Jaworska, J; Worth, Ap; Cronin, Mtd; Mcdowell, Rm; Gramatica, P;";2003;Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs;https://doi.org/10.1289/ehp.5758;QSARs;NA;NA Additional;"Etterson, M;";2020;Technical Manual: Ssd Toolbox Version 1.0;NA;Multi-species models;NA;NA Additional;"European Commission;";2003; Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation ;https://op.europa.eu/s/qsgS;Methods;NA;NA Additional;"European Commission;";2017;Scientific advice on Guidance document 27: Technical guidance for deriving environmental quality standards;NA;Methods;NA;NA Additional;"European Commission;";2002;Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy;NA;NA;NA;NA Additional;"European Commission;";2009;Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC;NA;NA;NA;NA Additional;"European Commission;";2020;Evaluation Du Réglement (CE) Numéro 1107/2009 Concernant La Mise Sur Le Marche Des Produits Phytopharmaceutiques Et Du Réglement (Ce) Numéro 396/2005 Concernant Les Limites Maximales Applicables Aux Residus De Pesticides;NA;NA;NA;NA Additional;"European Commission;";2002;Guidance Document on Terrestrial Ecotoxicology Under Council Directive 91/414/EEC;NA;NA;NA;NA Additional;"European Food Safety Authority;";2017;EFSA Guidance Document For Predicting Environmental Concentrations Of Active Substances Of Plant Protection Products and Transformation Products Of These Active Substances In Soil;http://dx.doi/org/10.2903/j.efsa.2017.4982;Methods;NA;NA Additional;"Forbes, Ve; Calow, P;";2002;Species Sensitivity Distributions Revisited: A Critical Appraisal;http://dx.doi.org/10.1080/10807030290879781;Multi-species models;NA;NA Additional;"Forbes, Ve; Calow, P; Sibly, Rm;";2001;Are Current Species Extrapolation Models A Good Basis For Ecological Risk Assessment?;https//doi.org/10.1002/ETC.5620200227;Multi-species models;NA;NA Additional;"Forbes, Ve; Hommen, U; Thorbek, P; Heimbach, F; Van, Den, Brink, Pj; Wogram, J; Thulke, Hh; Grimm, V;";2009;Ecological models in support of regulatory risk assessments of pesticides: developing a strategy for the future;https://doi.org/10.1897/IEAM_2008-029.1;Population models;NA;NA Additional;"Forfait-Dubuc, C; Charles, S; Billoir, E; And, Delignette-Muller, Ml;";2012;Survival Data Analyses In Ecotoxicology: Critical Effect Concentrations, Methods and Models. What Should We Use?;http://dx.doi.org/10.1007/S10646-012-0860-0;DR and TKTD models;NA;NA Additional;"Fox, Dr, Dam, Ra, Fisher, R, Batley, Ge, Tillmanns, Ar, Thorley, J, Schwarz, Cj, Spry, Dj, Mctavish, K;";2020; Recent developments in SSD Modeling;https://doi.org/10.1002/etc.4925;DR and TKTD models;NA;NA Additional;"Galic, N; Baveco, H; Hengeveld, Gm; Thorbek, P; Bruns, E; Van den Brink, Pj;";2012;Simulating population recovery of an aquatic isopod: Effects of timing of stress and landscape structure;https//doi.org/10.1016/j.envpol.2011.12.024;Population models;Landscape models;NA Additional;"Gegear, Rj; Heath, Kn, Ryder, Ef;";2021; Modeling scale up of anthropogenic impacts from individual pollinator behavior to pollination systems.;https://doi.org/10.1111/cobi.13754;DR and TKTD models;NA;NA Additional;"Gestin, O; Lacoue-Labarthe, T; Coquery, M; Delorme, N; Garnero, L; Dherret, L; Geffard, O; Lopes, C;";2021;One and Multi-Compartments Toxico-Kinetic Modeling To Understand Metals ' Organotropism and Fate In Gammarus Fossarum;http://dx.doi.org/10.1016/J.Envint.2021.106625;DR and TKTD models;NA;NA Additional;"Giddings, Jm; Hall, Lw; Solomon, Kr;";2000;Ecological risks of diazinon from agricultural use in the Sacramento-San Joaquin River Basins, California;https//doi.org/10.1111/0272-4332.205052;Multi-species models;NA;NA Additional;"Giddings, Jm; Wirtz, J; Campana, D; Dobbs, M;";2019; Derivation of combined species sensitivity distributions for acute toxicity of pyrethroids to aquatic animals.;https://doi.org/10.1007/s10646-019-02018-0;Multi-species models;NA;NA Additional;"Goldberg, A;";2009;The Principles of Humane Experimental Technique: Is It Relevant Today?;https://doi.org/10.14573/altex.2010.2.149;Methods;NA;NA Additional;"Gramatica, P; Sangion, A;";2016;A Historical Excursus on the Statistical Validation Parameters for QSAR Models: A Clarification Concerning Metrics and Terminology;https://doi.org/10.1021/acs.jcim.6b00088;QSARs;NA;NA Additional;"Grech, A, Tebby, C, Brochot, C, Bois, F; Bado-Nilles, A; Dorne, Jlcm; Quignot, N, Beaudouin, R;";2019; Generic physiologically-based toxicokinetic modelling for fish: Integration of environmental factors and species variability. ;https://doi.org/10.1016/j.scitotenv.2018.09.163;DR and TKTD models;NA;NA Additional;"Grech, A; Brochot, C; Dorne, Jlcm; Quignot, N; Bois, F; Beaudouin, R;";2017; Toxicokinetic models and related tools in environmental risk assessment of chemicals. ;https://doi.org/10.1016/j.scitotenv.2016.10.146;DR and TKTD models;NA;NA Additional;"Grimm, V, Johnston, Asa, Forbes, Ve, Thorbek, P;";2020; Three questions to ask before using model outputs for decision support. ;https://doi.org/10.1038/s41467-020-17785-2;DR and TKTD models;NA;NA Additional;"Grist, Ep; O'hagan, A; Crane, Mark, And, Sorokin, N; Sims, I; Whitehouse, P;";2006;Bayesian and Time-Independent Species Sensitivity Distributions For Risk Assessment Of Chemicals;https://doi.org/10.1021/es050871e;Multi-species models;NA;NA Additional;"Hamadache, M; Benkortbi, O; Hanini, S; Amrane, A;";2018;QSAR modeling in ecotoxicological risk assessment: application to the prediction of acute contact toxicity of pesticides on bees (Apis mellifera L.);https://doi.org/10.1007/s11356-017-0498-9;QSARs;NA;NA Additional;"Hanratty, Mp; Liber, K;";1996;Evaluation of model predictions of the persistence and ecological effects of diflubenzuron in a littoral ecosystem;https://doi.org/10.1016/0304-3800(95)00149-2;Multi-species models;NA;NA Additional;"Heringa, M; Brandon, E; Bessems, J; Bos, P;";2013;Integration of toxicokinetics and toxicodynamics testing essential for risk assessment.;NA;DR and TKTD models;NA;NA Additional;"Hommen, U; Poethke, Hj; Dülmer, U; Ratte, Ht;";1993;Simulation models to predict ecological risk of toxins in freshwater systems;https://doi.org/10.1006/jmsc.1993.1039;Population models;NA;NA Additional;"Iwasaki, Y; Kotani, K; Kashiwada, S; Masunaga, S;";2015;Does The Choice Of Noec Or Ec10 Affect The Hazardous Concentration For 5% Of The Species?;http://dx.doi.org/10.1021/Acs.Est.5b02069;Multi-species models;NA;NA Additional;"Jager, T; Albert, C; Preuss, T; Ashauer, R;";2011;General Unified Threshold Model Of Survival-A Toxicokinetic-Toxicodynamic Framework For Ecotoxicology;https://doi.org/10.1021/es103092a;DR and TKTD models;NA;NA Additional;"Jager, T; Ashauer, R;";2018;Modelling Survival Under Chemical Stress. A Comprehensive Guide To The Guts Framework;NA;DR and TKTD models;NA;NA Additional;"Jager, T; Barsi, A; Ducrot, V;";2013;Hormesis On Life-History Traits: Is There Such Thing As A Free Lunch?;http://dx.doi.org/10.1007/S10646-012-1022-0;DR and TKTD models;NA;NA Additional;"Jeremiah, E; Sisson, Sa; Sharma, Ashish, And, Marshall, L;";2012;Efficient Hydrological Model Parameter Optimization With Sequential Monte Carlo Sampling;https://doi.org/10.1016/j.envsoft.2012.07.001;Methods;NA;NA Additional;"Jia, Qz; Zhao, Yp; Yan, Fy; Wang, Q;";2018;QSAR model for predicting the toxicity of organic compounds to fathead minnow;http://dx.doi: 10.1007/s11356-018-3434-8.;QSARs;NA;NA Additional;"Joncour, B, Nelson, Wa;";2021; Sublethal concentration of insecticide amplifies interference competition in a tortrix moth.;https://doi.org/10.1016/j.ecoenv.2021.112324;DR and TKTD models;NA;NA Additional;"Jonker, Mj; Svendsen, C; Bedaux, Jj; Bongers, M; Kammenga, Je;";2005;Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis. ;http://doi.org/10.1897/04-431r.1;Mixture models;NA;NA Additional;"Kaikkonen, L; Parviainen, T; Rahikainen, M; Uusitalo, L; Lehikoinen, A;";2020;Bayesian Networks In Environmental Risk Assessment: A Review;http://dx.doi.org/10.1002/ieam.4332;Multi-species models;NA;NA Additional;"Kienzler, A; Barron, Mg; Belanger, Se; Beasley, A; Embry, Mr;";2017;Mode of Action (MOA) Assignment Classifications for Ecotoxicology: An Evaluation of Approaches;https://doi.org/10.1021/acs.est.7b02337;QSARs;NA;NA Additional;"Kon Kam King, G; Veber, P; Charles, S; Delignette-Muller, Ml;";2014;Mosaic-SSD: A New Web Tool For Species Sensitivity Distribution To Include Censored Data By Maximum Likelihood.;http://dx.doi.org/10.1002/Etc.2644;Multi-species models;NA;NA Additional;"Lepper, P;";2002;Towards the Derivation of Quality Standards for Priority Substances in the Context of the Water Framework Directive. Identification of quality standards for priority substances in the field of water policy;NA;Methods;NA;NA Additional;"Lilienblum, W; Dekant, W; Foth, H; Gebel, T; Hengstler, J; Kahl, R; Kramer, P; Schweinfurth, H; Wollin, K;";2008;Alternative methods to safety studies in experimental animals: Role in the risk assessment of chemicals under the new European Chemicals Legislation (REACH);http://dx.doi.org/10.1007/s00204-008-0279-9;Methods;NA;NA Additional;"Liu, C; Bednarska, Aj; Sibly, Rm; Murfitt, Rc; Edwards, P; Thorbek, P;";2014;Incorporating toxicokinetics into an individual-based model for more realistic pesticide exposure estimates: A case study of the wood mouse;http://dx.doi.org/10.1016/j.ecolmodel.2013.09.007;DR and TKTD models;NA;NA Additional;"Martin, Tm; Grulke, Cm; Young, Dm; Russom, Cl; Wang, Ny; Jackson, Cr; Barron, Mg;";2013;Prediction of Aquatic Toxicity Mode of Action Using Linear Discriminant and Random Forest Models;https://doi.org/10.1021/ci400267h;QSARs;NA;NA Additional;"Mebane, Ca; Sumpter, Jp; Fairbrother, A; Augspurger, Tp; Canfield, Tj; Goodfellow, Wl; Guiney, Pd; Lehuray, A; Maltby, L; Mayfield, Db; Others;";2019;Scientific integrity issues in Environmental Toxicology and Chemistry: Improving research reproducibility, credibility, and transparency;https://doi.org/10.1002/ieam.4119;NA;NA;NA Additional;"Mentzel, S, Grung, M, Tollefsen, Ke, Stenrod, M, Petersen, K, Moe, Aj;";2021; Development of a Bayesian network for probabilistic risk assessment of pesticides.;https://doi.org/10.1101/2021.05.20.444913;DR and TKTD models;NA;NA Additional;"Miller, Th; Gallidabino, Md; Macrae, Jl; Owen, Sf; Bury, Nr; Barron, Lp;";2019;Prediction of bioconcentration factors in fish and invertebrates using machine learning;https://doi.org/10.1016/j.scitotenv.2018.08.122;QSARs;NA;NA Additional;"Mit, C; Tebby, C; Gueganno, T; Bado-Nilles, A; Beaudouin, R;";2021; Modeling acetylcholine esterase inhibition resulting from exposure to a mixture of atrazine and chlorpyrifos using a physiologically-based kinetic model in fish.;https://doi.org/10.1016/j.scitotenv.2020.144734;DR and TKTD models;NA;NA Additional;"Mombelli, E; P, Pandard, P;";2021;Evaluation of the OECD QSAR toolbox automatic workflow for the prediction of the acute toxicity of organic chemicals to fathead minnow;https://doi.org/10.1016/j.yrtph.2021.104893;QSARs;NA;NA Additional;"Mombelli, E; Pery, Arr;";2011;A Linear Model to Predict Chronic Effects of Chemicals on Daphnia magna;https://doi.org/10.1007/s00128-011-0393-x;QSARs;NA;NA Additional;"Mombelli, E; Ringeissen, S;";2009;The computational prediction of toxicological effects in regulatory contexts Current use and future potential of (Q)SAR tools;NA;QSARs;NA;NA Additional;"More, Sj; Auteri, D; Rortais, A; Pagani, S;";2021;EFSA Is Working To Protect Bees and Shape The Future Of Environmental Risk Assessment;https://doi.org/10.2903/j.efsa.2021.e190101;Methods;NA;NA Additional;"More, Sj; Bampidis, V; Benford, D; Bennekou, Sh, Bragard, C; Halldorsson, Ti; Hernandez-Jerez, Af; Koutsoumanis, K; Naegeli, H; Schlatter, Jr; Silano, V; Nielsen, Ss; Schrenk, D; Turck, D; Younes, M; Benfenati, E; Castle, L; Cedergreen, N; Hardy, A; Laskowski, R; Leblanc, Jc; Kortenkamp, A; Ragas, A; Posthuma, L; Svendsen, C; Solecki, R; Testai, E; Dujardin, B; Kass, Gen; Manini, P; Jeddi, Mz; , Dorne, Jlcm; Hogstrand, C;";2019;Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals.;https://doi.org/10.2903/j.efsa.2019.5634;Mixture models;NA;NA Additional;"Nature, Index;";2020;The ten leading countries in natural-sciences research;https://doi.org/10.1038/d41586-020-01231-w;Methods;NA;NA Additional;"Nowierski, Rm; Zeng, Z; Jaronski, S; Delgado, F; Swearingen, W;";1996;Analysis and modeling of time-dose-mortality of Melanoplus sanguinipes, Locusta migratoria migratorioides, and Schistocerca gregaria (Oorthoptera: Acrididae) from Beauveria, Metarhizium, and Paecilomyces isolates from Madagascar;https://doi.org/10.1006/jipa.1996.0039;DR and TKTD models;NA;NA Additional;"Ockleford, C; Adriaanse, P; Berny, P;Brock, T; Duquesne, S; Grilli, S; Hernandez-Jerez, Af; Hougaard Bennekou, S, Klein, M; Kuhl, T; Laskowski, R; Machera, K; Pelkonen, O; Pieper, S; Stemmer, M; Sundh, I; Teodorovic, I; Tiktak, A; Topping, Cj; Wolterink, G; Craig, P; De Jong, F; Manachini, B; Sousa, P; Swarowsky, K; Auteri, D; Arena, M; Rob, S;";2017; Scientific Opinion addressing the state of the science on risk assessment of plant protection products for in‐soil organisms.;https://doi.org/10.2903/j.efsa.2017.4690;DR and TKTD models;NA;NA Additional;"OECD;";2012;OECD Guidelines For The Testing Of Chemicals;http://dx.doi.org/10.1787/9789264185296-En;Methods;NA;NA Additional;"OECD;";2016;Test No. 243: Lymnaea Stagnalis Reproduction Test;http://dx.doi.org/10.1787/9789264264335-En;Methods;NA;NA Additional;"OECD;";2014;Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models;https://doi.org/10.1787/9789264085442-en.;QSARs;NA;NA Additional;"Oreskes, N, Shrader-Frechette, K, Belitz, K;";1994; Verification, validation, and confirmation of numerical models in the earth sciences.;https://doi.org/10.1126/science.263.5147.641;DR and TKTD models;NA;NA Additional;"Park, R; Clough, J; Wellman, M;";2008;Aquatox: Modeling Environmental Fate and Ecological Effects In Aquatic Ecosystems;https://doi.org/10.1016/j.ecolmodel.2008.01.015;Multi-species models;NA;NA Additional;"Pavan, M; Netzeva, Tl; Worth, Ap;";2008;Review of Literature-Based Quantitative Structure–Activity Relationship Models for Bioconcentration;https://doi.org/10.1002/qsar.200710102;QSARs;NA;NA Additional;"Pelosi, C; Bertrand, C; Daniele, G; Coeurdassier, M; Benoit, P; Nélieu, S; Lafay, F; Bretagnolle, V; Gaba, S; Vulliet, E; Fritsch, C;";2021;Residues of currently used pesticides in soils and earthworms: a silent threat?;http://doi.org/10.1016/j.agee.2020.107167;Mixture models;NA;NA Additional;"Pery, Arrr; Devillers, J; Brochot, C; Mombelli, E; Palluel, O; Piccini, B; Brion, F; Beaudoin, R;";2014;A physiologically based toxicokinetic model for the zebrafish Danio rerio;https//doi.org/10.1021/es404301q ;DR and TKTD models;NA;NA Additional;"Posthuma, L, De Zwart, D;";2006; Predicted effects of toxicant mixtures are confirmed by changes in fish species assemblages in Ohio, USA, rivers. ;https://doi.org/10.1897/05-305r.1;Mixture models;NA;NA Additional;"Posthuma, L; Suter, Ii, Gw; Traas, Tp;";2002;Species Sensitivity Distributions In Ecotoxicology;https://doi.org/10.1201/9781420032314 ;Multi-species models;NA;NA Additional;"Posthuma, L; Van Gils, J; Zijp, Mc; Van De Meent, D; De Zwart, D;";2019; Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12 386 chemicals.;https://doi.org/10.1002/etc.4373;Multi-species models;NA;NA Additional;"Preisler, Hk; Robertson, Jl;";1989;Analysis of Time-Dose-Mortality Data;https://doi.org/10.1093/jee/82.6.1534;DR and TKTD models;NA;NA Additional;"Ratier, A; Lopes, C; Multari, G; Mazerolles, V; Carpentier, P; Charles, S;";2021;New Perspectives On The Calculation Of Bioaccumulation Metrics For Active Substances In Living Organisms;http://dx.doi.org/10.1101/2020.07.07.185835;DR and TKTD models;NA;NA Additional;"Ritz, C; Streibig, Jc, Kniss, A;";2021; How to use statistics to claim antagonism and synergism from binary mixture experiments.;https://doi.org/10.1002/ps.6348;DR and TKTD models;NA;NA Additional;"Roesch, A,Gottard, M;Vignet, C; Cedergreen, N; Hollender, J;";2017;Mechanistic Understanding Of The Synergistic Potential Of Azole Fungicides In The Aquatic Invertebrate Gammarus Pulex;http://dx.doi.org/10.1021/Acs.Est.7b03088;;; Additional;"Rose, Ka; Swartzman, Gl; Kindig, Ac; Taub, Fb;Van Straalen, Nm; Denneman, Ca;";1988;Stepwise Iterative Calibration of a Multi-Species Phytoplankton Zooplankton Simulation-Model Using Laboratory Data;https://doi.org/10.1016/0304-3800(88)90089-0;Multi-species models;NA;NA Additional;"Royle, Ja;";2004; N-Mixture Models for Estimating Population Size from Spatially Replicated Counts.;https://doi.org/10.1111/j.0006-341X.2004.00142.x;DR and TKTD models;NA;NA Additional;"Russel, W; Burch; ";1959 ;The principles of Humane Experimental Technique;NA;Methods;NA;NA Additional;"Russom, Cl; Bradbury, Sp; Broderius, Sj; Hammermeister, De; Drummond, Ra;";1997;Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas);https://doi.org/10.1002/etc.5620160514;QSARs;NA;NA Additional;"Schipper, Am; Posthuma, L; De Zwart, D, Huijbregts, Maj;";2014; Deriving field-based species sensitivity distributions (S-SDMs).;https://doi.org/10.1021/es503223k;Multi-species models;NA;NA Additional;"Schmolke, A; Bartell, Sm; Roy, C; Desmarteau, D; Moore, A; Cox, Mj; Maples-Reynolds, Nl; Galic, N; Brain, R;";2021;Applying a Hybrid Modeling Approach to Evaluate Potential Pesticide Effects and Mitigation Effectiveness for an Endangered Fish in Simulated Oxbow Habitats;https//doi.org/10.1002/etc.5144 ;DR and TKTD models;Population models;NA Additional;"Schneckener, S; Preuss, Tg; Kuepfer, L; Witt, J;";2020;A Workflow To Build PBTK Models For Novel Species;http://dx.doi.org/10.1007/S00204-020-02922-Z;DR and TKTD models;NA;NA Additional;"Sorensen, H; Cedergreen, N; Skovgaard, Lm; Streibig, Jc;";2007;An isobole-based statistical model and test for synergism/antagonism in binary mixture toxicity experiments.;https://doi.org/10.1007/s10651-007-0022-3;Mixture models;NA;NA Additional;"Sorgog, K; Kamo, M;";2019; Quantifying the precision of ecological risk: Conventional assessment factor method vs. species sensitivity distribution method. ;https://doi.org/10.1016/j.ecoenv.2019.109494;DR and TKTD models;NA;NA Additional;"Stephenson, G; Ferris, I;, Holland, P; Nordberg, M;";2006; Glossary of terms relating to pesticides (IUPAC Recommendations 2006);https://doi.org/10.1351/pac200678112075;Methods;NA;NA Additional;"Strauss, T; Gabsi, F; Hammers-Wirtz, M; Thorbek, P; Preuss, T;";2017; The power of hybrid modelling: An example from aquatic ecosystems. ;https://doi.org/10.1016/j.ecolmodel.2017.09.019;Population models;Multi-species models;NA Additional;"Streibig, J.C; Jensen, J.E;";2000;Actions of herbicides in mixtures.;NA;Mixture models;NA;NA Additional;"Sybertz, A; Ross-Nickoll, M; Schaffer, A; Scholz-Starke, B; Daniels, B; Ottermanns, R;";2020;Mitas: A Model For Assessing The Time-Dependent Risk Of Sequential Applications Of Pesticides For Soil Organisms By Consideration Of Exposure, Degradation and Mixture Toxicity;http://dx.doi.org/10.1016/J.Mex.2019.12.004;Mixture models;NA;NA Additional;"Tan, YM; Barton, HA; Boobis, A; Brunner, R; Clewell, H; Cope R; Dawson, J; Domoradzki, J; Egeghy, P; Gulati, P; Ingle, B; Kleinstreuer, N; Lowe, K; Lowit, A; Mendez E; Miller, D; Minucci, J; Nguyen, J; Paini, A; Perron, M; Phillips, K; Qian, H; Ramanarayanan, T; Sewell, F; Villanueva, P; Wambaugh, J; Embry, M; ";2021;Opportunities and challenges related to saturation of toxicokinetic processes: Implications for risk assessment;https://doi.org/10.1016/j.yrtph.2021.105070;Methods;NA;NA Additional;Technical Guidance Document;2011;Technical Guidance for Deriving Environmental Quality Standards. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document No. 27. Prepared by EU, Member States and stakeholders;NA;Methods;NA;NA Additional;"Terry, C; Rasoulpour, R; Saghir, S; Marty, S; Gollapudi, B; Billington, R;";2014;Application of a novel integrated toxicity testing strategy incorporating ‘3R’ principles of animal research to evaluate the safety of a new agrochemical sulfoxaflor.;https://doi.org/10.3109/10408444.2014.910753;DR and TKTD models;NA;NA Additional;"Topping, Cj; Hansen, Ts; Jepsen, Ts; Nikolajsen, F; Odderskaer, P;";2003;Almass, An Agent-Based Model For Animals In Temperate European Landscapes;NA;Population models;NA;NA Additional;"US EPA;";2018; CADDIS SSD generator;NA;Multi-species models;NA;NA Additional;"US EPA;";2000; Stressor identification guidance document. ;NA;DR and TKTD models;NA;NA Additional;"Van Straalen, NM; Denneman CA";1989;Ecotoxicological evaluation of soil quality criteria;https://doi.org/10.1016/0147-6513(89)90018-3;Multi-species models;NA;NA Additional;"Van Vlaardingen, P; Traas, T; Wintersen, A; Aldenberg, T;";2004;A Program To Calculate Hazardous Concentrations And Fraction Affected, Based On Normally Distributed Toxicity Data;NA;Multi-species models;NA;NA Additional;"Verdonck, F; Jaworska, J; Thas, Olivier, And, Vanrolleghem, Pa;";2000;Uncertainty Techniques In Environmental Risk Assessment;NA;Methods;NA;NA Additional;"Wilkinson, Md; Dumontier, M; Aalbersberg, Ij; Appleton, G; Axton, M; Baak, A; Blomberg, N; Boiten, Jw; Da, Silva, Santos, Lb; Bourne, Pe; Others;";2016;The FAIR Guiding Principles for scientific data management and stewardship;https//doi.org/10.1038/sdata.2016.18;Methods;NA;NA Additional;"Zimmer, El; Preuss, Tg; Norman, S; Minten, B; Ducrot, V;";2018;Modelling effects of time-variable exposure to the pyrethroid beta-cyfluthrin on rainbow trout early life stages;https://doi.org/10.1186/s12302-018-0162-0;DR and TKTD models;NA;NA ;;;;;;;