Supplementary Materials

Design of modular autoproteolytic gene switches responsive to anticoronavirus drug candidates

Nik Franko¹, Ana Palma Teixeira¹, Shuai Xue¹, Ghislaine Charpin-El Hamri², Martin Fussenegger^{1,3*}

88

¹ ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058 Basel, Switzerland.

² Département Génie Biologique, Institut Universitaire de Technologie, Université Claude Bernard Lyon 1, F-69622, Villeurbanne Cedex, France

³ University of Basel, Faculty of Life Science, Basel, Switzerland.

Correspondence: <u>fussenegger@bsse.ethz.ch</u>

Contents

- 1. Supplementary Tables 1-7
- 2. Supplementary Figures 1-10

Supplementary Table 1. PLpro cleavage sites

Cleavage site	Amino acid sequence	
$_{PLpro}CS_{NAT1} - (Nsp1/nsp2)$	RELNGGAYTRYV	
$_{PLpro}CS_{NAT2} - (Nsp2/nsp3)$	FTLKGGAPTKVT	
$_{PLpro}CS_{NAT3} - (Nsp3/nsp4)$	IALKGGKIVNNW	

Supplementary Table 2. Mpro cleavage sites

Cleavage site	Amino acid sequence
$_{Mpro}CS_{NAT1} - (Nsp4/nsp5)$	TSAVLQSGFRKM
$_{\rm Mpro}{\rm CS}_{\rm NAT2} - ({\rm Nsp5/nsp6})$	SGVTFQSAVKRT
_{Mpro} CS _{NAT3} – (Nsp6/nsp7)	KVATVQSKMSDV
$_{\rm Mpro}{\rm CS}_{\rm NAT4} - ({\rm Nsp7/nsp8})$	NRATLQAIASEF
MproCS _{NAT5} – (Nsp8/nsp9)	SAVKLQNNELSP
$_{\rm Mpro}{\rm CS}_{\rm NAT6} - ({\rm Nsp9/nsp10})$	ATVRLQAGNATE
$_{Mpro}CS_{NAT7} - (Nsp10/nsp12)$	REPMLQSADAQS
$_{Mpro}CS_{NAT8} - (Nsp12/nsp13)$	PHTVLQAVGACV
$_{Mpro}CS_{NAT9} - (Nsp13/nsp14)$	NVATLQAENVTG
$_{Mpro}CS_{NAT10} - (Nsp14/nsp15)$	TFTRLQSLENVA
MproCS _{NAT11} – (Nsp15/nsp16)	FYPKLQSSQAWQ
MproCSOPT	TTVRLQSGFRKM

Supplementary Table 3. Sequences of Mpro mutants from clinical samples

Mpro mutant	Amino acid sequence
Mpro _{C156F}	MSGFRKMAFPSGKVEGCMVQVTCGTTTLNGLWLDDVVYCPRHVICTSEDMLN PNYEDLLIRKSNHNFLVQAGNVQLRVIGHSMQNCVLKLKVDTANPKTPKYKFV RIQPGQTFSVLACYNGSPSGVYQCAMRPNFTIKGSFLNGSCGSVGFNIDYDFVSF CYMHHMELPTGVHAGTDLEGNFYGPFVDRQTAQAAGTDTTITVNVLAWLYAA VINGDRWEI NRETTTI NDENI VAMKYNYEPI TODHVDII GPI SAOTGIAVI DM
	CASLKELLQNGMNGRTILGSALLEDEFTPFDVVRQCSGVTFQ
Mpro _{G71S}	MSGFRKMAFPSGKVEGCMVQVTCGTTTLNGLWLDDVVYCPRHVICTSEDMLN PNYEDLLIRKSNHNFLVQASNVQLRVIGHSMQNCVLKLKVDTANPKTPKYKFV RIQPGQTFSVLACYNGSPSGVYQCAMRPNFTIKGSFLNGSCGSVGFNIDYDCVSF CYMHHMELPTGVHAGTDLEGNFYGPFVDRQTAQAAGTDTTITVNVLAWLYAA VINGDRWFLNRFTTTLNDFNLVAMKYNYEPLTQDHVDILGPLSAQTGIAVLDM CASLKELLQNGMNGRTILGSALLEDEFTPFDVVRQCSGVTFQ
Mpro _{R279C}	MSGFRKMAFPSGKVEGCMVQVTCGTTTLNGLWLDDVVYCPRHVICTSEDMLN PNYEDLLIRKSNHNFLVQAGNVQLRVIGHSMQNCVLKLKVDTANPKTPKYKFV RIQPGQTFSVLACYNGSPSGVYQCAMRPNFTIKGSFLNGSCGSVGFNIDYDCVSF CYMHHMELPTGVHAGTDLEGNFYGPFVDRQTAQAAGTDTTITVNVLAWLYAA VINGDRWFLNRFTTTLNDFNLVAMKYNYEPLTQDHVDILGPLSAQTGIAVLDM CASLKELLQNGMNGCTILGSALLEDEFTPFDVVRQCSGVTFQ

	MSGFRKMAFPSGKVEGCMVQVTCGTTTLNGLWLDDVVYCPRHVICTSEDMLN
	PNYEDLLIRKSNHNFLVQAGNVQLRAIGHSMQNCVLKLRVDTANPKTPKYKFV
Mana	RIQPGQTFSVLACYNGSPSGVYQCAMRPNFTIKGSFLNGSCGSVGFNIDYDCVSF
NIPPOV77A/K90R	CYMHHMELPTGVHAGTDLEGNFYGPFVDRQTAQAAGTDTTITVNVLAWLYAA
	VINGDRWFLNRFTTTLNDFNLVAMKYNYEPLTQDHVDILGPLSAQTGIAVLDM
	CASLKELLQNGMNGRTILGSALLEDEFTPFDVVRQCSGVTFQ
	MSGFRKMAFPSGKVEGCMVQVTCGTTTLNGLWLDDVVYCPRHVICTSEDMLN
	PNYEDLLIRKSNHNFLVQAGNVQLRVIGHSMQNCVLKLKVDTANPKTPKYKFV
Maaa	RIQPGQTFSVLACYNGSPSGVYQCAMRPNFTIKGSFLNGSCGSVGFNIDYDCVSF
IVIProp184L	CYMHHMELPTGVHAGTDLEGNFYGLFVDRQTAQAAGTDTTITVNVLAWLYAA
	VINGDRWFLNRFTTTLNDFNLVAMKYNYEPLTQDHVDILGPLSAQTGIAVLDM
	CASLKELLQNGMNGRTILGSALLEDEFTPFDVVRQCSGVTFQ

Supplementary Table 4. Plasmids used and designed in this study

Plasmid	Detailed description and cloning strategy	Reference
pTS1017	O _{TetR} -P _{hCMVmin} _SEAP-pA	1
	Mammalian reporter plasmid encoding O _{TetR} -P _{hCMVmin} driven expression of SEAP reporter protein.	
pLeo665	O _{TetR} -P _{hCMVmin} _ss-nanoLuc-pA	2
	Mammalian reporter plasmid encoding O _{TetR} -P _{hCMVmin} driven expression of secreted nanoLuc reporter protein.	
pDA326	P _{TREBI} Citrine-2A-SEAP-sTRSV-pA	3
	Mammalian reporter plasmid encoding for P_{TREBI} -driven Citrine-2A-SEAP expression cassette with an sTRSV ribozyme-dependent destabilization module in the 3'-UTR.	
BB3-YPet	P _{hCMV} _YPet-pA	4
	Mammalian expression plasmid encoding P _{hCMV} -driven YPet expression.	
BB3-5xUAS- SEAP	P _{5xUAS} SEAP-pA	4
SLA	Mammalian reporter plasmid encoding P_{5xUAS} driven expression of SEAP reporter protein.	
pQP-T2A	Plasmid containing DNA binding domain GAL4.	Addgene plasmid #102583
pTS1106	P _{hCMV} _TetR-pA	4
	Mammalian expression plasmid encoding P _{hCMV} -driven DNA binding domain TetR expression.	
BB3-VP16	P _{hCMV} _VP16-pA	4
	Mammalian expression plasmid encoding P_{hCMV} -driven VP16 expression.	
BB3-rTetR	P _{hCMV} _rTetR-pA	4
	Mammalian expression plasmid encoding P_{hCMV} -driven rTetR expression.	
pAB150	PhCMV_3xNLS-DcuR-VPR-pA	1

	Mammalian expression plasmid encoding P_{hCMV} -driven DcuR fused to a	
	domain.	
BB3-P _{PGK}	P _{PGK} _MCS-pA	4
	Mammalian expression plasmid encoding P _{PGK} and multi cloning site (MCS).	
pNF024	P _{hCMV} _SEAP-pA	Unpublished
	Mammalian expression plasmid encoding P_{hCMV} -driven SEAP reporter protein.	
pcDNA3.1(+)	P _{hCMV} _MCS-pA	ThermoFisher
	Cloning vector for constitutive expression of target genes	
pDF145	P _{T7} _SpAH-Env140ac	5
	In vitro RNA production plasmid without mammalian promoter activity.	
rTetR-NS3-		Addgene plasmid #112628
mCherry		#112028
pCDNA3	Plasmid containing HCV protease.	Addrene plasmid
FlipGFP(TEV		#124429
cleavage seq)		
t2A meneny		
NE110	Plasmid containing FlipGFP.	T1 1
pinf118	PhCMV_1etR-MIProCS(opt)-NLS-VP10-pA	I his work
	Mammalian expression plasmid encoding DNA binding domain TetR	
	fused to transcription activation domain VP16 with fusion linker containing optimized Mpro cleavage site and NLS. TetR was amplified	
	from pTS1106 using oNF249 and oNF251 to introduce optimised Mpro	
	cleavage site, PCR fragment was digested with EcoRI/BamHI. VP16 was amplified from BB3-VP16 using oNE11 and oNE248 to introduce NI S	
	PCR fragment was digested with BamHI/XbaI. Fragments were ligated	
NE120	into pcDNA3.1(+) (EcoRI/XbaI).	T1 1
pNF120	PhCMV_TetR-PLproCSNAT3-NLS-VP16-pA	This work
	Mammalian expression plasmid encoding DNA binding domain TetR	
	fused to transcription activation domain VP16 with fusion linker containing PL provers cleavage site and NLS. TetR was amplified from	
	pTS1106 using oNF249 and oNF253 to introduce PLpro _{NAT3} cleavage	
	site, PCR fragment was digested with EcoRI/BamHI. VP16 was	
	PCR fragment was digested with BamHI/XbaI. Fragments were ligated	
NE121	into pcDNA3.1(+) (EcoRI/XbaI).	
pNF121	PhCMV_Mpro(S2)-15gs-1etR- _{Mpro} CS _{OPT} -NLS-VP16-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to	
	N-terminal of DNA binding domain TetR fused to transcription activation domain VP16 with fusion linker containing Mproort cleavage	
	site and NLS. Mpro(S2) was amplified from synthetic gene fragment	
	DNA_twist_Mpro(S2) using oNF258 and oNF259. TetR was amplified from pTS1106 using oNF260 and oNF251 to introduce Mproore cleavage	
	site. PCR assembly reaction using oNF258 and oNF251 was used to fuse	
	Mpro(S2) and TetR-MproCS _{OPT} with 15gs linker, PCR fragment was	
	oNF11 and oNF248 to introduce NLS, PCR fragment was digested with	
NE122	BamHI/XbaI. Fragments were ligated into pcDNA3.1(+) (EcoRI/XbaI).	
pnf122	$P_{hCMV}Mpro(S2)-15gs-1etR-VP16-pA$	I his work

	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP16 with fusion linker containing NLS. Mpro(S2) was amplified from synthetic gene fragment DNA_twist_Mpro(S2) using oNF258 and oNF259. TetR was amplified from pTS1106 using oNF260 and oNF261. PCR assembly reaction, using oNF258 and oNF261 was used to fuse Mpro(S2) and TetR with 15gs linker, PCR fragment was digested with EcoRI/BamHI. VP16 was amplified from BB3-VP16 using oNF11 and oNF248 to introduce NLS, PCR fragment was digested with BamHI/XbaI. Fragments were ligated into pcDNA3.1(+) (EcoRI/XbaI).	
pNF123	PhCMV_Mpro(S2)-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro. Mpro(S2) was amplified from synthetic gene fragment DNA_twist_Mpro(S2) using oNF258 and oNF262, PCR fragment was digested with EcoRI/XbaI and ligated into pcDNA3.1(+) (EcoRI/XbaI).	
pNF124	P _{hCMV} _PLpro(S2)-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 PLpro. PLpro(S2) was amplified from synthetic gene fragment DNA_twist_PLpro(S2) using oNF263 and oNF264, PCR fragment was digested with EcoRI/XbaI and ligated into pcDNA3.1(+) (EcoRI/XbaI).	
pNF138	P _{PGK} _TetR- _{Mpro} CS _{OPT} -NLS-VP16-pA	This work
	Mammalian expression plasmid encoding DNA binding domain TetR fused to transcription activation domain VP16 with fusion linker containing optimized Mpro cleavage site and NLS. P _{PGK} was excised from bb3-P _{PGK} using MluI/EcoRI and ligated into pNF118 (MluI/EcoRI).	
pNF140	P _{PGK} _Mpro(S2)-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro. P _{PGK} was excised from bb3-P _{PGK} using MluI/EcoRI and ligated into pNF123 (MluI/EcoRI).	
pNF142	P _{PGK} PLpro(S2)-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro. P _{PGK} was excised from bb3-P _{PGK} using MluI/EcoRI and ligated into pNF124 (MluI/EcoRI).	
pNF143	P _{PGK} Mpro(S2)-15gs-TetR- _{Mpro} CS _{OPT} -NLS-VP16-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP16 with fusion linker containing Mpro _{OPT} cleavage site and NLS. P _{PGK} was excised from bb3-P _{PGK} using MluI/EcoRI and ligated into pNF121 (MluI/EcoRI).	
pNF144	P _{PGK} _Mpro(S2)-15gs-TetR-NLS-VP16-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP16 with fusion linker containing NLS. P _{PGK} was excised from BB3-P _{PGK} using MluI/EcoRI and ligated into pNF122 (MluI/EcoRI).	
pNF147	PPGK_PLpro(S2)-15gs-TetR-PLproCS _{NAT1} -NLS-VP16-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 PLpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP16 with fusion linker containing PLpro _{NAT1} cleavage site and NLS. PLpro(S2) was amplified from synthetic gene fragment DNA_twist_PLpro(S2) using oNF263 and oNF272. TetR was amplified from pTS1106 using oNF260 and oNF252 to introduce	

	PLpro _{NAT1} cleavage site. PCR assembly reaction using oNF263 and oNF252 was used to fuse PLpro(S2) and TetR- _{PLpro} CS _{NAT1} with 15gs linker, PCR fragment was digested with EcoRI/BamHI. VP16 was amplified from BB3-VP16 using oNF11 and oNF248 to introduce NLS,	
	PCR fragment was digested with BamHI/Xbal. Fragments were ligated into pNF140 (EcoRI/Xbal).	
pNF148	P _{PGK} PLpro(S2)-15gs-TetR-NLS-VP16-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 PLpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP16 with fusion linker containing NLS. PLpro(S2) was amplified from synthetic gene fragment DNA_twist_PLpro(S2) using oNF263 and oNF272. TetR was amplified from pTS1106 using oNF260 and oNF261 to introduce PLpro(nat1) cleavage site. PCR assembly reaction using oNF263 and oNF261 was used to fuse PLpro(S2) and TetR with 15gs linker, PCR fragment was digested with EcoRI/BamHI. VP16 was amplified from BB3-VP16 using oNF11 and oNF248 to introduce NLS, PCR fragment was digested with BamHI/XbaI. Fragments were ligated into pNF140 (EcoRI/XbaI).	
pNF151	OtetPhCMVmin_SS-nanoLuc_S1KSV-pA	I his work
	Mammalian reporter plasmid encoding TetR driven expression of nanoLuc with a sTRSV ribozyme-dependent destabilization module in the 3'-UTR. nanoLuc was excised from pLeo665 using EcoRI/XbaI and ligated into pDA326 (EcoRI/XbaI).	GenBank: OK425853
pNF152	P _{PGK} TetR-15gs- _{PLpro} CS _{NAT3} -NLS-VP16-pA	This work
	Mammalian expression plasmid encoding DNA binding domain TetR fused to transcription activation domain VP16 with fusion linker containing PLpro _{NAT3} cleavage site and NLS. P _{PGK} was excised from BB3-P _{PGK} using MluI and EcoRI and ligated into pNF120 (MluI/EcoRI).	
pNF153	P _{PGK} _Mpro(S2)-15gs-TetR- _{Mpro} CS _{NAT1} -NLS-VP16-pA	This work
pNE157	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP16 with fusion linker containing Mpro(nat1) cleavage site and NLS. Mpro(S2) was amplified from synthetic gene fragment DNA_twist_Mpro(S2) using oNF258 and oNF259. TetR was amplified from pTS1106 using oNF260 and oNF250 to introduce Mpro _{NAT1} cleavage site. PCR assembly reaction using oNF258 and oNF250 was used to fuse Mpro(S2) and TetR-MproCS(nat1) with 15gs linker, PCR fragment was digested with EcoRI/BamHI. VP16 was amplified from BB3-VP16 using oNF11 and oNF248 to introduce NLS, PCR fragment was digested with BamHI/XbaI. Fragments were ligated into pNF140 (EcoRI/XbaI).	This work
pinf157	P _{CMV} _Mpro(S2)-15gs-1etk- _{Mpro} CS _{OPT} -NLS-VPK-pA	I his work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VPR with fusion linker containing Mpro _{OPT} cleavage site and NLS. Mpro(S2)-TetR- _{Mpro} CS _{OPT} was amplified from pNF143 using oNF258 and oNF304. VPR was amplified from pAB150 using oNF303 and oNF305. PCR assembly reaction using oNF258 and oNF305 to obtain Mpro(S2)-TetR- _{Mpro} CS _{OPT} -NLS-VPR, PCR fragment was digested with EcoRI/XhoI and ligated into pNF024 (EcoRI/XhoI).	
pNF159	P _{PGK} _Mpro(S2)-15gs-TetR- _{Mpro} CS _{OPT} -NLS-VPR-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VPR with fusion linker containing Mpro _{OPT} cleavage	

	site and NLS. P _{PGK} was excised from bb3-P _{PGK} using MluI/EcoRI and listed into pNE157 (MluI/EcoRI)	
pNF162	P _{PGK} PLpro(S2)-15gs-TetR-PLproCS _{NAT3} -NLS-VP16-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 PLpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP16 with fusion linker containing PLpro _{NAT3} cleavage site and NLS. PLpro(S2) was amplified from synthetic gene fragment DNA_twist_PLpro(S2) using oNF263 and oNF272. TetR- PLproCS _{NAT3} -NLS-VP16 was amplified from pNF120 using oNF260 and oNF248. PCR assembly reaction using oNF263 and oNF248 was used to fuse PLpro(S2) and TetR- _{PLpro} CS _{NAT3} -NLS-VP16, PCR fragment was digested with EcoRI/XbaI. Fragments were ligated into pNF140 (EcoRI/XbaI).	GenBank: OK425852
pNF167	P _{PGK} _Mpro(S2)-15gs-TetR- _{Mpro} CS _{OPT} -NLS-VP64-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP64 with fusion linker containing Mpro _{OPT} cleavage site and NLS. VP64 was amplified from pAB150 using oNF327 and oNF328 to introduce NLS, PCR fragment was digested with BamHI/XbaI and ligated into pNF143 (BamHI/XbaI).	GenBank: OK425851
pNF168	P _{PGK} _Mpro(S2)-15gs-TetR-NLS-VP64-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP64 with fusion linker containing NLS. VP64 was amplified from pAB150 using oNF327 and oNF328 to introduce NLS, PCR fragment was digested with BamHI/XbaI and ligated into pNF144 (BamHI/XbaI).	
pNF169	P _{PGK} TetR-NLS-VP16-pA	This work
	Mammalian expression plasmid encoding DNA binding domain TetR fused to transcription activation domain VP16 with fusion linker containing NLS. TetR was amplified from pTS1106 using oNF249 and oNF261, PCR fragment was digested with EcoRI/BamHI. VP16 was amplified from BB3-VP16 using oNF11 and oNF248 to introduce NLS, PCR fragment was digested with BamHI/XbaI. Fragments were ligated into pNF140 (EcoRI/XbaI).	
pNF174	P _{PGK} _Mpro(S1)-15gs-TetR-NLS-VP64-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-1 Mpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP64 with fusion linker containing NLS. Mpro(S1) was amplified from synthetic gene fragment DNA_twist_Mpro(S1) using oNF332 and oNF333. TetR was amplified from pTS1106 using oNF260 and oNF261. PCR assembly reaction using oNF332 and oNF261 was used to fuse Mpro(S1) and TetR with 15gs linker, PCR fragment was digested with EcoRI/BamHI and ligated into pNF167 (EcoRI/BamHI).	
pNF175	P _{PGK} _PLpro(S1)-15gs-TetR-NLS-VP16-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-1 PLpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP16 with fusion linker containing NLS. PLpro(S1) was amplified from synthetic gene fragment DNA_twist_PLpro(S1) using oNF334 and oNF335. TetR was amplified from pTS1106 using oNF260 and oNF261. PCR assembly reaction using oNF334 and oNF261 was used to fuse PLpro(S1) and TetR with 15gs linker, PCR fragment was digested with EcoRI/BamHI and ligated into pNF138 (EcoRI/BamHI)	

pNF179	PPGK_Mpro(S1)-15gs-TetR-MproCSOPT-NLS-VP64-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-1 Mpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP64 with fusion linker containing Mpro _{OPT} cleavage site and NLS. Mpro(S1)-15gs-TetR- _{Mpro} CS _{OPT} was amplified from pNF174 using oNF332 and oNF251, PCR fragment was digested with EcoRI/BamHI and ligated into pNF167 (EcoRI/BamHI).	
pNF180	PPGK_PLpro(S1)-15gs-TetR-PLproCSNAT3-NLS-VP16-pA	This work
pNF186	Mammalian expression plasmid encoding SARS-CoV-1 PLpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP16 with fusion linker containing PLpro _{NAT3} cleavage site and NLS. PLpro(S1)-15gs-TetR- _{PLpro} CS _{NAT3} was amplified from pNF175 using oNF334 and oNF253, PCR fragment was digested with EcoRI/BamHI and ligated into pNF138 (EcoRI/BamHI). P _{PGK} _Mpro(S2)-15gs-GAL4BD- _{Mpro} CS _{OPT} -NLS-VP64-pA	This work
F		
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to N-terminal of DNA binding domain GAL4 fused to transcription activation domain VP64 with fusion linker containing Mpro _{OPT} cleavage site and NLS. Mpro(S2) was amplified from synthetic gene fragment DNA_twist_Mpro(S2) using oNF258 and oNF259. GAL4BD was amplified from pQP-T2A using oNF312 and oNF340 to introduce Mpro _{OPT} cleavage site. PCR assembly reaction using oNF258 and oNF340 was used to fuse Mpro(S2) and GAL4BD-MproCS(opt) with 15gs linker, PCR fragment was digested with EcoRI/BamHI and ligated into pNF167 (EcoRI/ BamHI).	
pNF182	P _{PGK} _Mpro(S2)-15gs-GAL4BD-NLS-VP64-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to N-terminal of DNA binding domain GAL4 fused to transcription activation domain VP64 with fusion linker containing NLS. Mpro(S2) was amplified from synthetic gene fragment DNA_twist_Mpro(S2) using oNF258 and oNF259. GAL4BD was amplified from pQP-T2A using oNF312 and oNF326. PCR assembly reaction using oNF258 and oNF326 was used to fuse Mpro(S2) and GAL4BD with 15gs linker, PCR fragment was digested with EcoRI/BamHI and ligated into pNF167 (EcoRI/ BamHI).	
pNF184	PPGK_Mpro(S2)-15gs-TetR-MproCSNAT1 -NLS-VP64-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP64 with fusion linker containing Mpro _{NAT1} cleavage site and NLS. VP64 was amplified from pAB150 using oNF327 and oNF328 to introduce NLS, PCR fragment was digested with BamHI/XbaI and ligated into pNF153 (BamHI/XbaI).	
pNF193	P _{PGK} _Mpro(M)-15gs-TetR- _{Mpro} CS _{OPT} -NLS-VP64-pA	This work
-NE104	Mammalian expression plasmid encoding MERS Mpro linked to N- terminal of DNA binding domain TetR fused to transcription activation domain VP64 with fusion linker containing Mpro _{OPT} cleavage site and NLS. Mpro was amplified from synthetic gene fragment DNA_twist_Mpro(M) using oNF342 and oNF343. TetR was amplified from pTS1106 using oNF260 and oNF251. PCR assembly reaction using oNF342 and oNF251 was used to fuse Mpro(M) and TetR- _{Mpro} CS _{OPT} with 15gs linker, PCR fragment was digested with EcoRI/BamHI and ligated into pNF167 (EcoRI/BamHI).	This most
pinr 194	P_{PGK}_{VI} PGK_ VI)-15gs-1etK-NLS-VP64-PA	1 IIIS WORK

	Mammalian expression plasmid encoding MERS Mpro linked to N- terminal of DNA binding domain TetR fused to transcription activation domain VP64 with fusion linker containing NLS. Mpro(M) was amplified from synthetic gene fragment DNA_twist_Mpro(M) using oNF342 and oNF343. TetR was amplified from pTS1106 using oNF260 and oNF261. PCR assembly reaction using oNF342 and oNF261 was used to fuse Mpro(M) and TetR with 15gs linker, PCR fragment was digested with EcoRI/BamHI and ligated into pNF167 (EcoRI/BamHI).	
pNF196	OtetPhCMVmin_YPet_sTRSV-pA	This work
NEGO	Mammalian reporter plasmid encoding TetR driven expression of YPet with a sTRSV ribozyme-dependent destabilization module in the 3'-UTR. Ypet was excised from bb3-YPet using EcoRI/XbaI and ligated into pNF151 (EcoRI/XbaI).	
pNF199	P _{PGK} _Mpro(S2) _{C145A} -15gs-TetR- _{Mpro} CS _{OPT} -VP64-pA	This work
pNF221	Mammalian expression plasmid encoding mutated SARS-CoV-2 Mpro _{C145A} linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP64 with fusion linker containing Mpro _{OPT} cleavage site and NLS. C145A mutation was introduced by amplifying Mpro(S2) from synthetic gene fragment DNA_twist_Mpro(S2) using oNF258 and oNF349 to amplify N-terminal and oNF348 and oNF259 to amplify C-terminal followed by PCR assembly using oNF258 and oNF259. TetR was amplified from pTS1106 using oNF260 and oNF251 to introduce Mpro _{OPT} cleavage site. PCR assembly reaction using oNF258 and oNF251 was used to fuse Mpro(S2) _{C145A} and TetR- _{Mpro} CS _{OPT} with 15gs linker, PCR fragment was digested with EcoRI/BamHI ligated into pNF167 (EcoRI/ BamHI).	This work
pmr221	PPGK_MIDIO(52)-TetR-MproCSNAT2-VP04-pA	THIS WORK
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP64 with fusion linker containing Mpro _{NAT2} cleavage site and NLS. Mpro(S2)-15gs-TetR- _{Mpro} CS _{NAT2} was amplified from pNF168 using oNF258 and oNF392 to introduce MproCS _{NAT2} , PCR fragment was digested with EcoRI/BamHI and ligated into pNF167 (EcoRI/BamHI).	
pNF222	P _{PGK} _Mpro(S2)-TetR- _{Mpro} CS _{NAT3} -VP64-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP64 with fusion linker containing Mpro _{NAT3} cleavage site and NLS. Mpro(S2)-15gs-TetR- _{Mpro} CS _{NAT3} was amplified from pNF168 using oNF258 and oNF393 to introduce _{Mpro} CS _{NAT3} , PCR fragment was digested with EcoRI/BamHI and ligated into pNF167 (EcoRI/BamHI).	
pNF223	P _{PGK} _Mpro(S2)-TetR- _{Mpro} CS _{NAT4} -VP64-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP64 with fusion linker containing Mpro _{NAT4} cleavage site and NLS. Mpro(S2)-15gs-TetR- _{Mpro} CS _{NAT4} was amplified from pNF168 using oNF258 and oNF394 to introduce _{Mpro} CS _{NAT4} , PCR fragment was digested with EcoRI/BamHI and ligated into pNF167 (EcoRI/BamHI).	
pNF224	P _{PGK} _Mpro(S2)-TetR- _{Mpro} CS _{NAT5} -VP64-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP64 with fusion linker containing Mpro _{NAT5} cleavage site and NLS. Mpro(S2)-15gs-TetR- _{Mpro} CS _{NAT5} was amplified from	

	pNF168 using oNF258 and oNF395 to introduce MproCSNAT5, PCR	
	fragment was digested with EcoRI/BamHI and ligated into pNF167	
15225	(EcoRI/BamHI).	
pNF225	P _{PGK} _Mpro(S2)-1etR- _{Mpro} CS _{NAT6} -VP64-pA	I his work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to	
	N-terminal of DNA binding domain TetR fused to transcription	
	activation domain VP64 with fusion linker containing Mpro _{NAT6} cleavage	
	site and NLS. Mpro(S2)-15gs-TetR-MproCSNAT6 was amplified from	
	pNF168 using oNF258 and oNF396 to introduce MproCS _{NAT6} , PCR	
	fragment was digested with EcoRI/BamHI and ligated into pNF167	
	(EcoRI/BamHI).	
pNF226	P _{PGK} _Mpro(S2)-1etR- _{Mpro} CS _{NAT7} -VP64-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to	
	N-terminal of DNA binding domain TetR fused to transcription	
	activation domain VP64 with fusion linker containing Mpro _{NAT7} cleavage	
	site and NLS. Mpro(S2)-15gs-TetR-MproCSNAT7 was amplified from	
	pNF168 using oNF258 and oNF397 to introduce MproCSNAT7, PCR	
	fragment was digested with EcoRI/BamHI and ligated into pNF167	
15227	(EcoRI/BamHI).	
pNF227	P _{PGK} _Mpro(S2)-1etR- _{Mpro} CS _{NAT8} -VP64-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to	
	N-terminal of DNA binding domain TetR fused to transcription	
	activation domain VP64 with fusion linker containing Mpro _{NAT8} cleavage	
	site and NLS. Mpro(S2)-15gs-TetR-MproCSNAT8 was amplified from	
	pNF168 using oNF258 and oNF398 to introduce MproCSNAT8, PCR	
	fragment was digested with EcoRI/BamHI and ligated into pNF167	
NE220	(EcoRI/BamHI).	
pNF228	PPGK_Mpro(S2)-1etR- _{Mpro} CS _{NAT9} -VP64-pA	I his work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to	
	N-terminal of DNA binding domain TetR fused to transcription	
	activation domain VP64 with fusion linker containing Mpro _{NAT9} cleavage	
	site and NLS. Mpro(S2)-15gs-TetR-MproCSNAT9 was amplified from	
	pNF168 using oNF258 and oNF399 to introduce MproCSNAT9, PCR	
	fragment was digested with EcoRI/BamHI and ligated into pNF167	
nNE220	(ECORI/BamHI).	This work
p111223	P_{GK} (VI) $(S2)$ - 1 Circ_{Mpro} $(SNAT10$ - VI $O4$ - pA	THIS WOLK
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to	
	N-terminal of DNA binding domain TetR fused to transcription	
	activation domain VP64 with fusion linker containing Mpro _{NAT10}	
	cleavage site and NLS. Mpro(S2)-15gs-TetR- _{Mpro} CS _{NAT10} was amplified	
	from pNF168 using oNF258 and oNF400 to introduce _{Mpro} CS _{NAT10} , PCR	
	(EcoRI/BamHI)	
pNF230	PPGK Mpro(S2)-TetR-MarcCSNAT11-VP64-pA	This work
r		
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to	
	N-terminal of DNA binding domain TetR fused to transcription	
	activation domain VP64 with fusion linker containing Mpro _{NAT11}	
	cleavage site and NLS. Mpro(S2)-15gs-TetR- _{Mpro} CS _{NAT11} was amplified	
	fragment was digested with EcoRI/RamHI and ligated into pNF167	
	(EcoRI/BamHI).	
pNF231	P _{PGK} _PLpro(S2)-TetR- _{PLpro} CS _{NAT2} -VP16-pA	This work
-		
	Mammalian expression plasmid encoding SARS-CoV-2 PLpro linked to	
	N-terminal of DNA binding domain TetR fused to transcription	

	activation domain VP16 with fusion linker containing PLpro _{NAT3} cleavage site and NLS. PLpro(S2)-15gs-TetR- _{PLpro} CS _{NAT2} was amplified from pNF162 using oNF263 and oNF402 to introduce _{PLpro} CS _{NAT2} , PCR fragment was digested with EcoRI/BamHI and ligated into pNF138 (EcoRI/BamHI).	
pNF236	P _{PGK} _Mpro(S2) _{C156F} -15gs-TetR- _{Mpro} CS _{OPT} -VP64-pA	This work
	Mammalian expression plasmid encoding mutated SARS-CoV-2 Mpro _{C156F} linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP64 with fusion linker containing Mpro _{OPT} cleavage site and NLS. C156F mutation was introduced by amplifying Mpro(S2) from synthetic gene fragment DNA_twist_Mpro(S2) using oNF258 and oNF440 to amplify N-terminal and oNF439 and oNF259 to amplify C-terminal followed by PCR assembly using oNF258 and oNF259. TetR was amplified from pTS1106 using oNF260 and oNF251 to introduce Mpro _{OPT} cleavage site. PCR assembly reaction using oNF258 and oNF251 was used to fuse Mpro(S2) _{C156F} and TetR- _{Mpro} CS _{OPT} with 15gs linker, PCR fragment was digested with EcoRI/BamHI ligated into pNF167 (EcoRI/ BamHI).	
pNF237	PPGK_Mpro(S2) _{G71S} -15gs-TetR-MproCS _{OPT} -VP64-pA	This work
	Mammalian expression plasmid encoding mutated SARS-CoV-2 Mpro _{G71S} linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP64 with fusion linker containing Mpro _{OPT} cleavage site and NLS. G71S mutation was introduced by amplifying Mpro(S2) from synthetic gene fragment DNA_twist_Mpro(S2) using oNF258 and oNF442 to amplify N-terminal and oNF441 and oNF259 to amplify C-terminal followed by PCR assembly using oNF258 and oNF259. TetR was amplified from pTS1106 using oNF260 and oNF251 to introduce Mpro _{OPT} cleavage site. PCR assembly reaction using oNF258 and oNF251 was used to fuse Mpro(S2) _{G71S} and TetR- _{Mpro} CS _{OPT} with 15gs linker, PCR fragment was digested with EcoRI/BamHI ligated into pNF167 (EcoRI/ BamHI).	
pNF238	P _{PGK} _Mpro(S2) _{H41A} -15gs-TetR- _{Mpro} CS _{OPT} -VP64-pA	This work
-NE220	Mammalian expression plasmid encoding mutated SARS-CoV-2 Mpro _{H41A} linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP64 with fusion linker containing Mpro _{OPT} cleavage site and NLS. H41A mutation was introduced by amplifying Mpro(S2) from synthetic gene fragment DNA_twist_Mpro(S2) using oNF258 and oNF444 to amplify N-terminal and oNF443 and oNF259 to amplify C-terminal, followed by PCR assembly using oNF258 and oNF259. TetR was amplified from pTS1106 using oNF260 and oNF251 to introduce Mpro _{OPT} cleavage site. PCR assembly reaction using oNF258 and oNF251 was used to fuse Mpro(S2) _{H41A} and TetR- _{Mpro} CS _{OPT} with 15gs linker, PCR fragment was digested with EcoRI/BamHII ligated into pNF167 (EcoRI/ BamHI).	This sec 4
pNF239	PPGK_IVIPro(S2)P184L-15gS-1etK-MproCSOPT-VP64-pA	I his work
	Mammalian expression plasmid encoding mutated SARS-CoV-2 Mpro _{P184L} linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP64 with fusion linker containing MprooPT cleavage site and NLS. P184L mutation was introduced by amplifying Mpro(S2) synthetic gene fragment DNA_twist_Mpro(S2) using oNF258 and oNF446 to amplify N-terminal and oNF445 and oNF259 to amplify C-terminal followed by PCR assembly using oNF258 and oNF259. TetR was amplified from pTS1106 using oNF260 and oNF251 to introduce MprooPT cleavage site. PCR assembly reaction using oNF258 and oNF251 was used to fuse Mpro(S2) _{P184L} and TetR-MproCSOPT with 15gs linker, PCR fragment was digested with EcoRI/BamHI ligated into pNF167 (EcoRI/ BamHI).	

pNF240	PPGK_Mpro(S2) _{R279C} -15gs-TetR-MproCSOPT-VP64-pA	This work
	Mammalian expression plasmid encoding mutated SARS-CoV-2	
	transcription activation domain VP64 with fusion linker containing	
	Mpro _{OPT} cleavage site and NLS. R279C mutation was introduced by	
	amplifying Mpro(S2) from synthetic gene fragment	
	DNA_twist_Mpro(S2) using oNF258 and oNF448 to amplify N-terminal	
	and oNF447 and oNF259 to amplify C-terminal followed by PCR	
	assembly using oNF258 and oNF259. TetR was amplified from pTS1106	
	using ONF200 and ONF251 to introduce Mpro _{OPT} cleavage site. PCK assembly reaction using oNF258 and oNF251 was used to fuse	
	Mpro(S2) _{P279C} and TetR-MaroCSOPT with 15gs linker. PCR fragment was	
	digested with EcoRI/BamHI ligated into pNF167 (EcoRI/ BamHI).	
pNF241	P _{PGK} _Mpro(S2) _{V77A/K90R} -15gs-TetR- _{Mpro} CS _{OPT} -VP64-pA	This work
	Mammalian expression plasmid encoding mutated SARS-CoV-2	
	MPFOV77A/K90R linked to N-terminal of DNA binding domain Tetr lused to transcription activation domain VP64 with fusion linker containing	
	Mpro _{OPT} cleavage site and NLS. V77A/K90R mutation was introduced	
	by amplifying Mpro(S2) from synthetic gene fragment	
	DNA_twist_Mpro(S2) using oNF258 and oNF450 to amplify N-terminal	
	and oNF449 and oNF259 to amplify C-terminal, followed by PCR	
	assembly using oNF258 and oNF259. TetR was amplified from p1S1106	
	assembly reaction using oNF258 and oNF251 was used to fuse	
	$Mpro(S2)_{V77A/K90R}$ and $TetR_{-Mpro}CS_{OPT}$ with 15gs linker, PCR fragment	
	was digested with EcoRI/BamHI ligated into pNF167 (EcoRI/ BamHI).	
pNF242	PPGK_Mpro(S2)w31A-15gs-TetR-MproCSOPT-VP64-pA	This work
	Manualian annuacian algorid anading mutated CADS CaV 2	
	Mammanan expression plasmid encoding mutated SARS-Cov-2 Moreoway linked to N-terminal of DNA binding domain TetR fused to	
	transcription activation domain VP64 with fusion linker containing	
	Mpro _{OPT} cleavage site and NLS. W31A mutation was introduced by	
	amplifying Mpro(S2) from synthetic gene fragment	
	DNA_twist_Mpro(S2) using oNF451 and oNF259. TetR was amplified	
	from p151106 using oNF260 and oNF251 to introduce Mpro _{OPT} cleavage site PCP assembly reaction using oNF451 and oNF251 was used to fuse	
	Mpro(S2) _{W21A} and TetR-MarcCSOPT with 15gs linker. PCR fragment was	
	digested with EcoRI/BamHI ligated into pNF167 (EcoRI/ BamHI).	
pNF245	P _{PGK} Mpro(S2)-15gs-rTetR- _{Mpro} CS _{OPT} -VP64-pA	This work
	Mammalian expression plasmid encoding SARS-CoV-2 Mpro linked to	
	activation domain VP64 with fusion linker containing Mproor cleavage	
	site and NLS. Mpro(S2) was amplified from synthetic gene fragment	
	DNA_twist_Mpro(S2) using oNF258 and oNF259. rTetR was amplified	
	from BB3-rTetR using oNF455 and oNF456. PCR assembly reaction	
	using oNF258 and oNF456 was used to fuse Mpro(S2) and rTetR-	
	MproCOOPT WITH 15gs INKER, PCK Tragment was digested with EcoRI/BamHI ligated into pNF167 (EcoRI/BamHI)	
pNF246	P _{PGK} PLpro(S2)-15gs-rTetR-PLproCS _{NAT2} -VP16-pA	This work
L		-
	Mammalian expression plasmid encoding SARS-CoV-2 PLpro linked to	
	N-terminal of DNA binding domain rTetR fused to transcription	
	activation domain VP16 with fusion linker containing $PLpro_{NAT2}$	
	fragment DNA twist Mpro(S2) using oNF263 and oNF272. rTetR was	
	amplified from BB3-rTetR using oNF455 and oNF457. PCR assembly	
	reaction using oNF263 and oNF457 was used to fuse PLpro(S2) and	

	rTetR- _{PLpro} CS _{NAT2} with 15gs linker, PCR fragment was digested with EcoRI/BamHI ligated into pNF138 (EcoRI/ BamHI).	
pAna225	P _{5xUAS} ss-nanoLuc_sTRSV-pA	This work
	Mammalian reporter plasmid encoding Gal4 driven expression of nanoLuc with a sTRSV ribozyme-dependent destabilization module in the 3'-UTR. P _{5xUAS} was excised from BB3-5xUAS-SEAP using BgIII/EcoRI and ligated into pNF151 (BgIII/EcoRI).	
pNF250	P _{PGK} _HCVp-TetR- _{HCVp} CS-VP64-pA	This work
	Mammalian expression plasmid encoding hepatitis C virus protease linked to N-terminal of DNA binding domain TetR fused to transcription activation domain VP64 with fusion linker containing HCVp cleavage site and NLS. HCVp was amplified from Addgene plasmid #112628 using oNF468 and oNF469. TetR was amplified from pTS1106 using oNF260 and oNF471. PCR assembly reaction using oNF468 and oNF471 was used to fuse HCVp and TetR- _{HCVp} CS with 15gs linker. The PCR fragment was digested with EcoRI/BamHI and ligated into pNF167 (EcoRI/BamHI).	
pNF256	P _{CMV} _FlipGFP-PLproCS-pA	This work
	Mammalian expression plasmid encoding FlipGFP containing PLpro cleavage site. The PLpro cleavage site was introduced by PCR-amplifying Addgene plasmid #124429 using oNF475 and oNF476 and back-ligating the fragment.	

Abbreviations

Citrine, improved version of YFP derived from Aequorea victoria

15gs, flexible linker containing 15x glycine and serine

YPet, improved version of Venus derived from *Aequorea victoria*

sTRSV, engineered hammerhead ribozyme derived from the natural ribozyme from the satellite RNA of the tobacco ringspot virus

TetR, Tet repressor protein derived from Escherichia coli transposon Tn10

rTetR, reverse TetR repressor

SEAP, human, placental secreted alkaline phosphatase

ss-nanoLuc, secreted version of nanoluc luciferase derived from deep sea shrimp *Oplophorus* gracilirostris

PTREBI, bidirectional 3G tetracycline-responsive promoter

OTetR, TetR operator consisting of 7 repeats of TetR binding sites

P_{5xUAS}, GAL4BD operator consisting of 5 repeats of GAL4BD binding sites *Saccharomyces*

cerevisiae-derived Gal4-specific upstream activator sequence

PhCMV, human cytomegalovirus immediate early promoter

 $\mathbf{P}_{hCMVmin}$, minimal human cytomegalovirus immediate early promoter

P_{mPGK}, mouse phosphoglycerate promoter

VPR, VP64-p65-Rta (a fusion of 3 transactivation domains)

VP64, 4 core repeats of VP16 transactivation domain

NLS, nuclear localization sequence

MCS, multiple cloning site

MproCSOPT, optimized cleavage site for main protease

PLproCSNAT1-3, native cleavage sites recognized by papain-like protease derived from SARS-

CoV-2 polyprotein

Mpro(S2), Main protease derived from SARS-CoV-2

PLpro(S2), Papain-like protease derived from SARS-CoV-2

MproCSNAT1-11, native cleavage sites recognized by main protease derived from SARS-CoV-2 polyprotein Mpro(S1), Main protease derived from SARS-CoV-1 PLpro(S1), Papain-like protease derived from SARS-CoV-1 GAL4BD, GAL4 DNA binding domain Mpro(M), Main protease derived from MERS pA, polyadenylation signal Env140ac, active ribozyme from environmental samples 3'UTR, three prime untranslated region VP16, herpes simplex virus-derived transactivation domain Gal4pbp, Gal4 transcription factor DNA binding domain

Supplementary Table 5. Oligonucleotides used in this study

Oligonucleo	Sequence
tide name	
oNF11	AGGAAGGATCCGGCCCAAAGAAGAAGAACGGAAGGTGGGAAGTGGTGCTCCTCCTA
	CAGATGTCAGCCTGGGGG
oNF248	GGCCCTCTAGATTACCCACCGTACTCGTCAATTC
oNF249	TGCTGGAATTCGCCACCATGTCCAGATTAGATAAAAGTAAAGTGATTAAC
oNF250	GGGCCGGATCCCATTTTCCTAAATCCGCTCTGGAGGACGGCGCTTGTACTTCCGG
	ACCCACTTTCACATTTAAG
oNF251	GGGCCGGATCCCATCTTTCTAAACCCGCTTTGGAGCCGGACTGTGGTACTTCCGG
	ACCCACTTTCACATTTAAG
oNF253	GGGCCGGATCCCCAATTATTGACAATCTTGCCGCCTTTCAGAGCGATACTTCCGG
	ACCCACTTTCACATTTAAG
oNF258	TGCTGGAATTCGCCACCATGAGCGGCTTCAGAAAAATGGC
oNF259	ACCGCCTCCGGAGCCTCCGCCCCGGAGCCTCCGCCTCCGGAACCCTGGAAGGTG
	ACGCCAG
oNF260	GGCTCCGGGGGGGGGGGGGCTCCGGAGGCGGTTCCAGATTAGATAAAAGTAAAGTG
	ATTAACAGC
oNF261	GGGCCGGATCCACTTCCGGACCCACTTTCACATTTAAGTTGTTTTTC
oNF262	GGCCCTCTAGATTACTGGAAGGTGACGCCAGAG
oNF263	CGTGAGAATTCGCCACCATGTCCTTGCGCGAAGTCCGG
oNF272	ACCGCCTCCGGAGCCTCCGCCCCGGAGCCTCCGCCTCCGGAACCTCCATCTAGC
	TTGTACGTGAC
oNF303	GGATCCGGCCCAAAGAAGAAACGGAAGGTGGGAAGTGGTGAGGCCAGCGGTTCC
	GGACGGGCTGAC
oNF304	ACCACTTCCCACCTTCCGTTTCTTTGGGCCGGATCC
oNF305	GCATGCTCGAGTTAAAACAGAGATGTGTCGAAGATGGACAG
oNF312	GGTTCCGGAGGCGGAGGCTCCGGGGGGGGGGGGGGGGGG
	CTGTCTTCTATCGAAC
oNF326	GGGCCGGATCCACTTCCCGATACAGTCAACTGTCTTTGAC
oNF327	AGATGGGATCCGGCCCAAAGAAGAAGAACGGAAGGTGGGAAGTGGTGAGGCCAGC
	GGTTCCGGACGGGCTGAC
oNF328	GGCCCTCTAGATGCATGTTACCTAGAGTTAATCAGCATGTCCAG
oNF332	AGACCGAATTCGCCACCATGTCAGGCTTTAGGAAGATGG
oNF333	ACCGCCTCCGGAGCCTCCGCCCCGGAGCCTCCGCCTCCGGAACCCTGAAATGTC
	ACACCGGAGC
oNF334	GACCGAATTCGCCACCATGGAGGTAAAGACAATTAAAGTCTTTAC
oNF335	ACCGCCTCCGGAGCCTCCGCCCCGGAGCCTCCGCCTCCGGAACCTTTGATAGTG
	GTAGTATAACTTGTTTC
oNF340	GGGCCGGATCCCATCTTTCTAAACCCGCTTTGGAGCCGGACTGTGGTACTTCCCG
	ATACAGTCAACTGTCTTTGACC

oNF342	GAGACCGAATTCGCCACCATGTCGGGGCTTGGTGAAAATG
oNF343	ACCGCCTCCGGAGCCTCCGCCCCGGAGCCTCCGCCTCCGGAACCCTGCATGACC
	ACGCCCATAATC
oNF348	CTCATTTCTGAATGGCAGCGCAGGTAGTGTGGGGGTTTAAC
oNF349	GTTAAACCCCACACTACCTGCGCTGCCATTCAGAAATGAG
oNF392	GGGCCGGATCCTGTCCTTTTCACTGCGGATTGAAATGTCACGCCTGAACTTCCGG
0111 092	ACCCACTTTCAC
oNF393	GGGCCGGATCCAACATCTGACATCTTTGACTGCACGGTCGCGACCTTACTTCCGG
	ACCCACTTTCAC
oNF394	GGGCCGGATCCGAACTCAGAAGCGATAGCTTGCAATGTTGCGCGATTACTTCCGG
	ACCCACTTTCAC
oNF395	GGGCCGGATCCGGGAGACAGTTCATTGTTTTGGAGCTTAACTGCGCTACTTCCGG
	ACCCACTTTCAC
oNF396	GGGCCGGATCCTTCCGTGGCATTGCCTGCCTGAAGCCTGACGGTAGCACTTCCGG
	ACCCACTTTCAC
oNF397	GGGCCGGATCCAGACTGTGCATCCGCAGACTGCAACATGGGCTCTCTACTTCCGG
	ACCCACTTTCAC
oNF398	GGGCCGGATCCTACGCAGGCACCCACCGCTTGCAGCACAGTGTGTGGACTTCCGG
	ACCCACTTTCAC
oNF399	GGGCCGGATCCCCCAGTTACGTTTTCAGCCTGGAGTGTAGCGACGTTACTTCCGG
	ACCCACTTTCAC
oNF400	GGGCCGGATCCCGCGACATTCTCCAAGGACTGCAGCCTGGTAAACGTACTTCCGG
	ACCCACTTTCAC
oNF401	GGGCCGGATCCTTGCCAAGCCTGAGAGCTTTGCAACTTGGGATAGAAACTTCCGG
	ACCCACTTTCAC
oNF402	GGGCCGGATCCAGTTACTTTGGTAGGAGCGCCCCCCTTCAACGTGAAACTTCCGG
	ACCCACTTTCAC
oNF439	GGGGTTTAACATTGATTACGACTTTGTTTCTTTCTGTTATATGC
oNF440	GCATATAACAGAAAGAAACAAAGTCGTAATCAATGTTAAACCCC
oNF441	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG
oNF441 oNF442	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG
oNF441 oNF442 oNF443	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGG
oNF441 oNF442 oNF443 oNF4444	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGG CCTCGCTGGTACAAATCACAGCACGGGGGC
oNF441 oNF442 oNF443 oNF444 oNF445	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGG CCTCGCTGGTACAAATCACAGCACGGGGGC GGAACTTTTACGGCCTCTTTGTGGACCGGC
oNF441 oNF442 oNF443 oNF444 oNF445 oNF446	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGG CCTCGCTGGTACAAATCACAGCACGGGGGC GGAACTTTTACGGCCTCTTTGTGGACCGGC GCCGGTCCACAAAGAGGCCGTAAAAGTTCC
oNF441 oNF442 oNF443 oNF444 oNF445 oNF446 oNF447	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGG CCTCGCTGGTACAAATCACAGCACGGGGGC GGAACTTTTACGGCCTCTTTGTGGACCGGC GCCGGTCCACAAAGAGGCCGTAAAAGTTCC GAATTGCTGCAGAACGGAATGAACGGATGCACTATTC
oNF441 oNF442 oNF443 oNF444 oNF445 oNF446 oNF447 oNF448	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGG CCTCGCTGGTACAAATCACAGCACGGGGGC GGAACTTTTACGGCCTCTTTGTGGACCGGC GCCGGTCCACAAAGAGGCCGTAAAAGTTCC GAATTGCTGCAGAACGGAATGAACGGATGCACTATTC GAATAGTGCATCCGTTCATTCCGTTCTGCAGCAGCAATTC
oNF441 oNF442 oNF443 oNF444 oNF445 oNF446 oNF447 oNF448 oNF449	CTTAGTTCAGGCTAGCAATGTGCAGTTGCGCGCAACTGCACATTGCTAGCCTGAACTAAGGCCCCCGTGCTGTGATTTGTACCAGCGAGGCCTCGCTGGTACAAATCACAGCACGGGGGCGGAACTTTTACGGCCTCTTTGTGGACCGGCGCCGGTCCACAAAGAGGCCGTAAAAGTTCCGAATTGCTGCAGAACGGAATGAACGGATGCACTATTCGAATAGTGCATCCGTTCATTCCGTTCTGCAGCAGCATTCCAGTTGCGGGCTATTGGCCACAGCATGCAACTGCGTTCTAAAACTCAGGGTAG
oNF441 oNF442 oNF443 oNF444 oNF445 oNF446 oNF447 oNF448 oNF449	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGG CCTCGCTGGTACAAATCACAGCACGGGGGC GGAACTTTTACGGCCTCTTTGTGGACCGGC GCCGGTCCACAAAGAGGCCGTAAAAGTTCC GAATTGCTGCAGAACGGAATGAACGGATGCACTATTC GAATAGTGCATCCGTTCATTCCGTTCTGCAGCAATTC CAGTTGCGGGCTATTGGCCACAGCATGCAATGCACTACGCGTTCTAAAACTCAGGGTAG ACACC
oNF441 oNF442 oNF443 oNF444 oNF445 oNF446 oNF447 oNF448 oNF449	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGG CCTCGCTGGTACAAATCACAGCACGGGGGGC GGAACTTTTACGGCCTCTTTGTGGACCGGC GCCGGTCCACAAAGAGGCCGTAAAAGTTCC GAATTGCTGCAGAACGGAATGAACGGATGCACTATTC GAATAGTGCATCCGTTCATTCCGTTCTGCAGCAATTC CAGTTGCGGGGCTATTGGCCACAGCATGCAACTGCGTTCTAAAACTCAGGGTAG ACACC GGTGTCTACCCTGAGTTTTAGAACGCAGTTTTGCATGCTGTGGCCAATAGCCCGC
oNF441 oNF442 oNF443 oNF444 oNF445 oNF446 oNF447 oNF448 oNF449 oNF450	CTTAGTTCAGGCTAGCAATGTGCAGTTGCGCGCAACTGCACATTGCTAGCCTGAACTAAGGCCCCCGTGCTGTGATTTGTACCAGCGAGGCCTCGCTGGTACAAATCACAGCACGGGGGGCGGAACTTTTACGGCCTCTTTGTGGACCGGCGCCGGTCCACAAAGAGGCCGTAAAAGTTCCGAATTGCTGCAGAACGGAATGAACGGATGCACTATTCGAATAGTGCATCCGTTCATTCCGTTCTGCAGCAGCAATTCCAGTTGCGGGGCTATTGGCCACAGCATGCAAAACTGCGTTCTAAAACTCAGGGTAGACACCGGTGTCTACCCTGAGTTTTAGAACGCAGTTTTGCATGCTGTGGCCAATAGCCCGCAACTG
oNF441 oNF442 oNF443 oNF444 oNF445 oNF446 oNF447 oNF448 oNF449 oNF450 oNF451	CTTAGTTCAGGCTAGCAATGTGCAGTTGCGCGCAACTGCACATTGCTAGCCTGAACTAAGGCCCCCGTGCTGTGATTTGTACCAGCGAGGCCTCGCTGGTACAAATCACAGCACGGGGGCGGAACTTTTACGGCCTCTTTGTGGACCGGCGCCGGTCCACAAAGAGGCCGTAAAAGTTCCGAATTGCTGCAGAACGGAATGAACGGATGCACTATTCGAATAGTGCATCCGTTCATTCCGTTCTGCAGCAGCATTCCAGTTGCGGGGCTATTGGCCACAGCATGCAAAACTGCGTTCTAAAACTCAGGGTAGACACCGGTGTCTACCCTGAGTTTTAGAACGCAGTTTTGCATGCTGTGGCCAATAGCCCGCAACTGCCGAATTCGCCACCATGAGCGGCTTCAGAAAAATGGCTTTTCCCTCGGGGCAAAGT
oNF441 oNF442 oNF443 oNF444 oNF445 oNF446 oNF447 oNF448 oNF449 oNF450	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGG CCTCGCTGGTACAAATCACAGCAGCGGGGC GGAACTTTTACGGCCTCTTTGTGGACCGGC GCCGGTCCACAAAGAGGCCGTAAAAGTTCC GAATTGCTGCAGAACGGAATGAACGGATGCACTATTC GAATAGTGCATCCGTTCATTCCGTTCTGCAGCAATTC CAGTTGCGGGGCTATTGGCCACAGCATGCAACTGCGTTCTAAAACTCAGGGTAG ACACC GGTGTCTACCCTGAGTTTTAGAACGCAGTTTTGCATGCTGTGGCCAATAGCCCGC AACTG CCGAATTCGCCACCATGAGCGGCTTCAGAAAAATGGCTTTTCCCTCGGGCAAAGT GGAGGGGTGCAATGGAGCGGCGCTCCAGAAAAATGGCTTTTCCCTCGGGCAAAGT
oNF441 oNF442 oNF443 oNF444 oNF445 oNF446 oNF447 oNF448 oNF449 oNF450	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGG CCTCGCTGGTACAAATCACAGCACGGGGGC GGAACTTTTACGGCCTCTTTGTGGACCGGC GCCGGTCCACAAAGAGGCCGTAAAAGTTCC GAATTGCTGCAGAACGGAATGAACGGATGCACTATTC GAATAGTGCATCCGTTCATTCCGTTCTGCAGCAATTC CAGTTGCGGGCTATTGGCCACAGCATGCAAAACTGCGTTCTAAAACTCAGGGTAG ACACC GGTGTCTACCCTGAGTTTTAGAACGCAGTTTTGCATGCTGTGGCCAATAGCCCGC AACTG CCGAATTCGCCACCATGAGCGGCTTCAGAAAAATGGCTTTTCCCTCGGGCAAAGT GGAGGGGGGCATGGTGCAGGTGACCTGCGGAACTACTACATTGAACGGCCTTGCT CCGAATTCGCCACCATGAGCGGCTTCAGAAAAATGGCTTTTCCCTCGGGCAAAGT GAGGGGTGCATGGTGCAGGTGACCTGCGGAACTACTACATTGAACGGCCTTGCT CTTGGATGATG
oNF441 oNF442 oNF443 oNF444 oNF445 oNF446 oNF447 oNF448 oNF449 oNF451 oNF455	CTTAGTTCAGGCTAGCAATGTGCAGTTGCGCGCAACTGCACATTGCTAGCCTGAACTAAGGCCCCCGTGCTGTGATTTGTACCAGCGAGGCCTCGCTGGTACAAATCACAGCACGGGGGCGGAACTTTTACGGCCTCTTTGTGGACCGGCGCCGGTCCACAAAGAGGCCGTAAAAGTTCCGAATTGCTGCAGAACGGAATGAACGGATGCACTATTCGAATAGTGCATCCGTTCATTCCGTTCTGCAGCAATTCCAGTTGCGGGGCTATTGGCCACAGCATGCAAAACTGCGTTCTAAAACTCAGGGTAGACACCGGTGTCTACCCTGAGTTTTAGAACGCAGTTTTGCATGCTGTGGCCAATAGCCCGCAACTGCCGAATTCGCCACCATGAGCGGCTTCAGAAAAATGGCTTTTCCCTCGGGCAAAGTGGAGGGGTGCATGGTGCAGGTGACCTGCGGAACTACTACATTGAACGGCCTTGCTCTCGATGATGGGTTCCGGAGGCGGAGGCTCCGGGGGGGGGGGGGGGGGG
oNF441 oNF442 oNF443 oNF444 oNF445 oNF446 oNF447 oNF448 oNF449 oNF450 oNF451	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGG CCTCGCTGGTACAAATCACAGCAGCGGGGGC GGAACTTTTACGGCCTCTTTGTGGACCGGC GCCGGTCCACAAAGAGGCCGTAAAAGTTCC GAATTGCTGCAGAACGGAATGAACGGATGCACTATTC GAATAGTGCATCCGTTCATTCCGTTCTGCAGCAATTC CAGTTGCGGGGCTATTGGCCACAGCATGCAAAACTGCGTTCTAAAACTCAGGGTAG ACACC GGTGTCTACCCTGAGTTTTAGAACGCAGTTTTGCATGCTGTGGCCAATAGCCCGC AACTG CCGAATTCGCCACCATGAGCGGCTTCAGAAAAATGGCTTTTCCCTCGGGCAAAGT GGAGGGTGCATGGTGCAGGTGACCTGCGGAACTACTACATTGAACGGCCTTGCT CTCGATGATG GGTTCCCGGAGGCGGAGGCTCCGGGGGCGGAGGCTCCGGAGGCGGTTCAAGACTG GACAAGAGCAAAG
oNF441 oNF442 oNF443 oNF444 oNF445 oNF445 oNF446 oNF447 oNF448 oNF450 oNF451 oNF455 oNF456	CTTAGTTCAGGCTAGCAATGTGCAGTTGCGCGCAACTGCACATTGCTAGCCTGAACTAAGGCCCCCGTGCTGTGATTTGTACCAGCGAGGCCTCGCTGGTACAAATCACAGCACGGGGGGCGGAACTTTTACGGCCTCTTTGTGGACCGGCGCCGGTCCACAAAGAGGCCGTAAAAGTTCCGAATTGCTGCAGAACGGAATGAACGGATGCACTATTCGAATAGTGCATCCGTTCATTCCGTTCTGCAGCAATTCCAGTTGCGGGCTATTGGCCACAGCATGCAAAACTGCGTTCTAAAACTCAGGGTAGACACCGGTGTCTACCCTGAGTTTTAGAACGCAGTTTTGCATGCTGTGGCCAATAGCCCGCAACTGCCGAATTCGCCACCATGAGCGGCTTCAGAAAAATGGCTTTTCCCTCGGGCAAAGTGGAGGGGTGCATGGTGCAGGTGACCTGCGGAACTACTACATTGAACGGCCTTGCTCTCGATGATGGGTTCCGGAGGCGGAGGCTCCGGGGGGGGGGGGGGGGGG
oNF441 oNF442 oNF443 oNF444 oNF445 oNF446 oNF447 oNF448 oNF449 oNF450 oNF451 oNF455 oNF456	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGG CCTCGCTGGTACAAATCACAGCACGGGGGGC GGAACTTTTACGGCCTCTTTGTGGACCGGC GCCGGTCCACAAAGAGGCCGTAAAAGTTCC GAATTGCTGCAGAACGGAATGAACGGATGCACTATTC GAATAGTGCATCCGTTCATTCCGTTCTGCAGCAATTC CAGTTGCGGGGCTATTGGCCACAGCATGCAAAACTGCGTTCTAAAACTCAGGGTAG ACACC GGTGTCTACCCTGAGTTTTAGAACGCAGTTTTGCATGCTGTGGCCAATAGCCCGC AACTG CCGAATTCGCCACCATGAGCGGCTTCAGAAAAATGGCTTTTCCCTCGGGGCAAAGT GGAGGGGGGCATGGTGCAGGCGGCGCGGAACTACTACATTGAACGGCCTTGCT CTCGATGATG GGTTCCCGGAGGCGGAGGCTCCGGGGGCGGAGGCTCCGGGAGGCGGTTCAAGACTG GGTTCCCGGAGGCGGAGGCTCCGGGGGCGGAGGCTCCGGAGGCGGTTCAAGACTG GGTCCCGCACCATCTTTCTAAACCCGCTTTGGAGCCGGACTGTGGTACTTCCGG ACCACG
oNF441 oNF442 oNF443 oNF444 oNF445 oNF446 oNF447 oNF448 oNF449 oNF450 oNF451 oNF455 oNF456 oNF457	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGGTACAAATCACAGCAGCGAGGG CCTCGCTGGTACAAATCACAGCACGGGGGGC GGAACTTTTACGGCCTCTTTGTGGACCGGC GGCACTTTTACGGCCTCTTTGTGGACCGGC GCCGGTCCACAAAGAGGCCGTAAAAGTTCC GAATTGCTGCAGAACGGAATGAACGGATGCACTATTC GAATAGTGCATCCGTTCATTCCGTTCTGCAGCAATTC CAGTTGCGGGGCTATTGGCCACAGCATGCAAAACTGCGTTCTAAAACTCAGGGTAG ACACC GGTGTCTACCCTGAGTTTTAGAACGCAGTTTTGCATGCTGTGGCCAATAGCCCGC AACTG CCGAATTCGCCACCATGAGCGGCTTCAGAAAAATGGCTTTTCCCTCGGGCAAAGT GGAGGGGTGCATGGTGCAGGTGACCTGCGGAACTACTACATTGAACGGCCTTGCT CTCGATGATG GGTTCCGGAGGCGGAGGCTCCGGGGGCGGAGGCTCCGGAGGCGGTTCAAGACTG GGTTCCGGAGGCGGAGGCTCCGGGGGCGGAGGCTCCGGAAGCTGTGGTACTTCCGG AGCCGCTTTCGCACTTTAGAACCCGCTTTGGAGCCGGACTGTGGTACTTCCGG AGCCGCTTTCGCACTTTAG
oNF441 oNF442 oNF443 oNF4443 oNF4444 oNF4455 oNF4464 oNF4474 oNF4474 oNF4474 oNF4474 oNF44755 oNF4555 oNF4566 oNF457	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGGG CCTCGCTGGTACAAATCACAGCACGGGGGGC GGAACTTTTACGGCCTCTTTGTGGACCGGC GCCGGTCCACAAAGAGGCCGTAAAAGTTCC GAATTGCTGCAGAACGGAATGAACGGATGCACTATTC GAATAGTGCATCCGTTCATTCCGTTCTGCAGCAATTC CAGTTGCGGGGCTATTGGCCACAGCATGCAAAACTGCGTTCTAAAACTCAGGGTAG ACACC GGTGTCTACCCTGAGTTTTAGAACGCAGTTTTGCATGCTGTGGCCAATAGCCCGC AACTG CCGAATTCGCCACCATGAGCGGCTTCAGAAAAATGGCTTTTCCCTCGGGCAAAGT GGAGGGGTGCATGGTGCAGGTGACCTGCGGAACTACTACATTGAACGCCTTGCT CTCGATGATG GGTTCCCGGAGGCGGAGGCTCCGGGGGCGGAAGCTACTACATTGAACGGCCTTGCT CTCGATGATG GGTCCCGCACCATCATTTTCTAAACCCGCTTTGGAGCCGGACTGTGGTACTTCCGG AGCCGCTTTCGCACTTTCTAAACCCGCTTTGGAGCCGGACTGTGGTACTTCCGG AGCCGCTTTCGCACTTTAG
oNF441 oNF442 oNF443 oNF444 oNF445 oNF446 oNF447 oNF448 oNF449 oNF450 oNF451 oNF455 oNF456 oNF457 oNF468	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGGG CCTCGCTGGTACAAATCACAGCACGGGGGGC GGAACTTTTACGGCCTCTTTGTGGACCGGC GCCGGTCCACAAAGAGGCCGTAAAAGTTCC GAATAGTGCATCCGTTCATTCCGTTCTGCAGCACTATTC GAATAGTGCATCCGTTCATTCCGTTCTGCAGCAATTC CAGTTGCGGGGCTATTGGCCACAGCATGCAAAACTGCGTTCTAAAACTCAGGGTAG ACACC GGTGTCTACCCTGAGTTTTAGAACGCAGTTTTGCATGCTGTGGCCAATAGCCCGC AACTG CCGAATTCGCCACCATGAGCGGCTTCAGAAAAATGGCTTTTCCCTCGGGCAAAGT GGAGGGGTGCATGGTGCAGGTGACCTGCGGAACTACTACATTGAACGCCTTGCT CTCGATGATG GGTTCCCGGAGGCGGAGGCTCCGGGGGCGGAGGCTCCGGAGGCGGTTCAAGACTG GGTTCCGGAGGCGGAGGCTCCGGGGGCGGAGGCTCCGGAGGCGGTTCAAGACTG GACAAGAGCAAAG GGGCCGGATCCCATCTTTCTAAACCCGCTTTGGAGCCGGACTGTGGTACTTCCGG AGCCGCTTTCGCACTTTAG GGGCCGGATCCCATCATTATTGACAATCTTGCCGCCTTTCAGAGCGATACTTCCGG AGCCGCTTTCGCACTTTAG GGACCGCTTCCGCACCATGTCCCGGGACAGGCTGCGTCATAGTGGGCAGGATC CCGAATTCCCCCACATTATTGACAATCTTGCCGCCTTTCAGAGCGATACTTCCGG AGCCGCATTCCCCACCATGTCCCGGGACAGGCTGCGTGGTCATAGTGGGCAGGATC GGCCGGATCCCCACTTTAG GGCCCGCTTCCGCACTTTAG
oNF441 oNF442 oNF443 oNF443 oNF444 oNF445 oNF446 oNF447 oNF448 oNF449 oNF450 oNF451 oNF455 oNF456 oNF457 oNF468	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGGG CCTCGCTGGTACAAATCACAGCACGGGGGGC GGAACTTTTACGGCCTCTTTGTGGACCGGC GCCGGTCCACAAAGAGGCCGTAAAAGTTCC GAATTGCTGCAGAACGGAATGAACGGATGCACTATTC GAATAGTGCATCCGTTCATTCCGTTCTGCAGCAATTC CAGTTGCGGGGCTATTGGCCACAGCATGCAAAACTGCGTTCTAAAACTCAGGGTAG ACACC GGTGTCTACCCTGAGTTTTAGAACGCAGTTTTGCATGCTGTGGCCAATAGCCCGC AACTG CCGAATTCGCCACCATGAGCGGCTTCAGAAAAATGGCTTTTCCCTCGGGGCAAAGT GGAGGGGTGCATGGTGCAGGGGCGCGGAGGCTCCGGAGGCGGTTCAAGACTG CCGAATTCGCCACCATGAGCGGCTCCGGGGAGGCTCCGGAGGCGGTTCAAGACTG GGTCTCCGGAGGCGGAGGCTCCGGGGGGGGGG
oNF441 oNF442 oNF443 oNF444 oNF445 oNF445 oNF446 oNF447 oNF448 oNF449 oNF450 oNF451 oNF455 oNF456 oNF457 oNF468 oNF469	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGGG CCTCGCTGGTACAAATCACAGCAGGGGGGC GGAACTTTTACGGCCTCTTTGTGGACCGGC GCCGGTCCACAAAGAGGCCGTAAAAGTTCC GAATTGCTGCAGAACGGAATGAACGGATGCACTATTC GAATAGTGCATCCGTTCATTCCGTTCTGCAGCAATTC CAGTTGCGGGCTATTGGCCACAGCATGCAAAACTGCGTTCTAAAACTCAGGGTAG ACACC GGTGTCTACCCTGAGTTTTAGAACGCAGTTTTGCATGCTGTGGCCAATAGCCCGC AACTG CCGAATTCGCCACCATGAGCGGCTTCAGAAAAATGGCTTTTCCCTCGGGCAAAGT GGAGGGTGCATGGTGCAGGGGGAGGCGCGGAACTACTACATTGAACGGCCTTGCT CTCGATGATG GGTTCCGGAGGCGGAGGCTCCGGGGGGGGGG
oNF441 oNF442 oNF443 oNF444 oNF445 oNF445 oNF446 oNF447 oNF448 oNF449 oNF450 oNF451 oNF455 oNF456 oNF457 oNF468 oNF469	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGG GCCCCCGTGCTGTGATTTGTACCAGCGAGG GCCGGTCCACAAAGAGGCCTTTGTGGACCGGC GGAACTTTACGGCCTCTTTGTGGACCGGC GAATTGCTGCAGAACGGAATGAACGGATGCACTATTC GAATAGTGCATCCGTTCATTCCGTTCTGCAGCAATTC CAGTTGCGGGCTATTGGCCACAGCATGCAAAACTGCGTTCTAAAACTCAGGGTAG ACACC GGTGTCTACCCTGAGTTTTAGAACGCAGTTTTGCATGCTGTGGCCAATAGCCCGC AACTG CCGAATTCGCCACCATGAGCGGCTTCAGAAAAATGGCTTTTCCCTCGGGCAAAGT GGAGGGGTGCATGGTGCAGGTGACCTGCGGAACTACTACATTGAACGGCCTTGCT CTCGATGATG GGTTCCGGAGGCGGAGGCTCCGGGGGCGGAGGCTCCGGAGGCGGTTCAAGACTG GGCCGGATCCCATCTTTCTAAACCGCTTTGGAGCCGGACTGTGGTACTTCCGG AGCCGCTTCGCACTTTAG GGGCCGGATCCCCATCTTTCTAAACCGCTTTGGAGCCGGACTGTGGTACTTCCGG AGCCGCTTTCGCACTTTAG GGCCGGATCCCCATCTTAG GGCCGGATCCCCAATTATTGACAATCTTGCCGCCTTTCAGAGCGGATACTTCCGG AGCCGCTTCGCACCTTAG GACCGCTTCGCACCTTAG GACCGCATTCGCCACCATGTCCGGGACAGGCTGCGGTGGTCATAGTGGGCCAGGATC GCCCGATTCGCCACCTTAG GACCGCTTCGCACCTTAG GACCGCTTCGCACCTTCGGGACAGGCTCCGGGAGCTCCGGAACCGAACTCCGG AGCCGCTTCGCCACCATGTCCGGGACAGGCTCCGGCAGGCTCCGGAACCGAACTCCGG AGCCGCTTCGCCCCCCGCCCCG
oNF441 oNF442 oNF443 oNF444 oNF445 oNF446 oNF447 oNF448 oNF449 oNF450 oNF451 oNF455 oNF456 oNF457 oNF468 oNF471	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGG CCTCGCTGGTACAAATCACAGCACGGGGGC GGAACTTTTACGGCCTCTTTGTGGACCGGC GCCGGTCCACAAAGAGGCCGTAAAAGTTCC GAATTGCTGCAGAACGGAATGAACGGATGCACTATTC GAATAGTGCATCCGTTCATTCCGTTCTGCAGCAGCATTC CAGTTGCGGGCTATTGGCCACAGCATGCAAAACTGCGTTCTAAAACTCAGGGTAG ACACC GGTGTCTACCCTGAGTTTTAGAACGCAGTTTTGCATGCTGTGGCCAATAGCCCGC AACTG CCGAATTCGCCACCATGAGCGGCTTCAGAAAAATGGCTTTTCCCTCGGGCAAAGT GGAGGGGTGCATGGTGCAGGGGCGCGGAGGCTCCGGAGGCGGCGAAAGT GGAGGGGGGCGAAGGCGCGCGGGGGGGGGG
oNF441 oNF442 oNF443 oNF444 oNF445 oNF446 oNF447 oNF448 oNF449 oNF450 oNF451 oNF455 oNF456 oNF457 oNF468 oNF471	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGG CCTCGCTGGTACAAATCACAGCACGGCGAGG CCTCGCTGGTACAAATCACAGCACGGCGGGGC GGAACTTTTACGGCCTCTTTGTGGACCGGC GCCGGTCCACAAAGAGGCCGTAAAAGTTCC GAATGGCGCACAAAGAGGCCGTAAAAGTCC GAATAGTGCAGCACGGAATGAACGGATGCACTATTC GAATAGTGCAGCACCGGTCATTCGCTCGCAGCAATTC CAGTTGCGGGGCTATTGGCCACAGCATGCAAAACTGCGTTCTAAAACTCAGGGTAG ACACC GGTGTCTACCCTGAGTTTTAGAACGCAGTTTTGCATGCTGTGGCCAATAGCCCGC AACTG CCGAATTCGCCACCATGAGCGGCTTCAGAAAAATGGCTTTTCCCTCGGGCAAAGT GGAGGGGGCAATGGTGCAGGGGCGCGGAGGCTCCGGAGGCGGCTCCAGGACAGT GGAGGGGGCAATGGTGCAGGTGACCTGCGGAACTACTACATTGAACGGCCTTGCT CTCGATGATG GGTCTCCGAAGGCGGAGGCTCCGGGGGCGGAGGCTCCGGAGGCGGTTCAAGACTG GACAAGAGCAAAG GGGCCGGATCCCATCTTTCTAAACCCGCTTTGGAGCCGGACTGTGGTACTTCCGG AGCCGCTTTCGCACTTTAG GACCGAATTCGCCACCATGTGCGGGACAAGCCGGCTGCGGAGGCGGATACTTCCGG AGCCGGATCCCCAATTATTGACAATCTTGCCGCCTTTCAGAGCGGATACTTCCGG AGCCGCATCCCCACTTTAG GACCGAATTCGCCACCATGTCCGGGGACAGGCTGCGGTGGTAATGTGGGCAGGATC GTCTTGTCCGGAGCCCCCCCGGAGCCCCCGCCCATC ACCGCCTCCGGAGCCTCCGGCACTCCGGCCCCCCG ACCGCCTCCGGAGCCTCCGGCCCCCCGCCCCCGGAACCGAACCGAACTCCTGG TAGAGAACCTCCC GGGCCGGATCCCGTGCTGAGAGCACTCTTCCATCTCCGGAACCGAACTCACTTCCGG TAGAGAACCTCCC GGGCCGGATCCGTGCTGAGAGCACTCTTCCATCTCATCACACTCCCGGACC CACTTTCAC
oNF441 oNF442 oNF443 oNF443 oNF444 oNF445 oNF446 oNF447 oNF448 oNF449 oNF450 oNF451 oNF455 oNF456 oNF457 oNF468 oNF469 oNF471 oNF475	CTTAGTTCAGGCTAGCAATGTGCAGTTGCG CGCAACTGCACATTGCTAGCCTGAACTAAG GCCCCCGTGCTGTGATTTGTACCAGCGAGG CCTCGCTGGTACAAATCACAGCAGCGAGG CCTCGCTGGTACAAATCACAGCAGCGGCGG GCAACTTTACGGCCTCTTGTGGACCGGC GCCGGTCCACAAAGAGGCCGTAAAAGTTCC GAATAGTGCAGCAGCAGCAGCATGCCACAATTC CAGTTGCGGGCTATTGGCCACAGCATGCCAAAACTGCGTTCTAAAACTCAGGGTAG ACACC GGTGTCTACCCTGAGTTTTAGAACGCAGTTTTGCATGCTGTGGCCCAATAGCCCGC AACTG CCGAATTCGCCACCATGAGCGGCTTCAGAAAAATGGCTTTTCCCTCGGGCAAAGT GGAGGGGTGCATGGTGCAGGTGACCTGCGGAACTACTACATTGAACGCCGCC AACTG GGTTCCGGAGGCGGAGGCTCCGGGGGGGGGG

Supplementary Table 6	. Synthetic DNA	fragments used i	n this study.
-----------------------	-----------------	------------------	---------------

Fragment	Sequence
name	
DNA_twist_	GCGGAATTCACCATGACTAGTAGCGGCTTCAGAAAAATGGCTTTTCCCTCGGGCA
Mpro(S2)	AAGTGGAGGGGTGCATGGTGCAGGTGACCTGCGGAACTACTACATTGAACGGCC
	TTTGGCTCGATGATGTAGTCTACTGCCCCCGTCACGTGATTTGTACCAGCGAGGAT
	ATGCTCAATCCTAATTACGAGGACCTGCTTATCAGGAAGTCAAACCATAATTTCTT
	AGTTCAGGCTGGTAATGTGCAGTTGCGGGTGATTGGCCACAGCATGCAAAACTGC
	GTTCTAAAACTCAAGGTAGACACCGCCAATCCCAAAACTCCAAAGTATAAGTTTG
	TCAGAATCCAGCCAGGGCAGACGTTCTCCGTCCTTGCCTGTTACAACGGCTCCCC
	CTCCGGAGTGTATCAATGTGCAATGCGCCCAAATTTCACCATAAAGGGCTCATTT
	CTGAATGGCAGCTGTGGTAGTGTGGGGGTTTAACATTGATTACGACTGTGTTTCTTT
	CTGTTATATGCATCACATGGAACTCCCTACAGGTGTTCATGCCGGGACAGACCTG
	GAGGGGAACTTTTACGGCCCTTTTGTGGACCGGCAGACAGCGCAAGCCGCAGGA
	ACAGACACAACTATCACCGTTAATGTGCTGGCCTGGCTGTATGCAGCCGTCATCA
	ACGGGGATCGCTGGTTCTTGAACCGATTTACCACGACACTAAATGATTTCAACCT
	GGTGGCAATGAAGTACAATTATGAGCCTTTAACGCAGGACCACGTCGATATCCTC
	GGACCGCTGTCCGCTCAGACTGGTATCGCCGTCCTTGATATGTGCGCTTCTCTCAA
	AGAATTGCTGCAGAACGGAATGAACGGAAGGACTATTCTGGGAAGTGCGCTGCT
	GGAAGACGAATTTACCCCATTCGACGTAGTGAGGCAATGCTCTGGCGTCACCTTC
	CAGgctagcTAAG
DNA twist	GCGGAATTCACCATGACTAGTTCCTTGCGCGAAGTCCGGACGATTAAGGTGTTTA
PLpro(S2)	CAACTGTTGATAATATAAATTTACACACCCAGGTCGTGGACATGAGCATGACATA
1 . ,	CGGACAGCAATTCGGGCCCACTTATCTGGATGGGGCCGACGTGACCAAGATAAA
	ACCCCACAATTCACACGAAGGCAAAACCTTTTACGTGTTGCCAAACGACGATACA
	CTCAGGGTGGAAGCCTTTGAGTACTACCATACCACCGACCCATCCTTCCT
	ATATATGTCGGCTCTTAATCATACTAAGAAGTGGAAATACCCCCAGGTGAACGGC
	TTGACTTCTATCAAGTGGGCTGACAATAACTGCTATCTCGCGACTGCACTCCTCAC
	CCTGCAGCAGATTGAGCTGAAATTCAATCCTCCGGCGCTGCAGGACGCATACTAT
	CGTGCCAGGGCCGGAGAAGCTGCAAACTTCTGCGCCCTGATCCTGGCTTATTGTA
	ACAAAACTGTGGGTGAGCTGGGCGACGTGAGAGAGACTATGTCATACTTGTTCCA
	GCACGCTAATCTGGATTCCTGTAAAAGAGTGTTAAACGTAGTTTGCAAGACCTGT
	GGGCAGCAGCAAACAACTCTGAAAGGGGTAGAGGCAGTCATGTATATGGGCACC
	CTGAGTTATGAACAGTTCAAGAAAGGGGTTCAGATTCCTTGCACCTGCGGCAAAC
	AGGCCACAAAGTATCTGGTCCAACAGGAGTCCCCCTTTGTTATGATGAGTGCCCC
	TCCTGCTCAATACGAGCTAAAGCACGGAACATTTACGTGTGCCAGCGAGTACACA
	GGCAACTACCAATGTGGTCATTACAAACATATCACCAGCAAGGAAACACTTTATT
	GCATTGATGGAGCACTTCTCACGAAGTCTAGCGAATATAAAGGCCCAATCACAGA
	CGTGTTTTATAAGGAGAACTCTTACACCACCACAATCAAGCCAGTCACGTACAAG
	CTAGATGGAgctagcTAAG
DNA twist	TAAGGAATTCACCATGTCAGGCTTTAGGAAGATGGCCTTTCCTTCC
Mpro(S1)	GAGGGATGCATGGTACAGGTCACCTGTGGCACTACTACATTGAATGGCCTATGGC
	TCGATGACACAGTGTACTGCCCGAGGCACGTGATTTGTACAGCGGAGGACATGCT
	CAATCCAAACTACGAAGATCTTTTGATAAGAAAGAGCAATCATAGCTTTCTGGTC
	CAGGCAGGAAACGTGCAGCTGAGAGTGATCGGACATTCGATGCAGAACTGTCTG
	TTGAGATTGAAAGTTGATACTAGCAACCCCAAGACCCCCAAATATAAATTCGTCC
	GGATTCAACCTGGCCAAACATTCAGTGTGCTCGCGTGCTACAATGGATCTCCATC
	TGGTGTTTACCAGTGTGCAATGCGACCTAACCACACCATCAAGGGGTCCTTCCT
	AATGGCTCCTGCGGTTCAGTTGGGTTCAACATCGACTACGATTGTGTGAGTTTCTG
	CTACATGCACCATATGGAATTACCCACCGGTGTGCACGCTGGCACTGATCTGGAA
	GGGAAGTTCTATGGCCCTTTCGTTGACCGCCAGACAGCACAAGCCGCCGGAACTG
	ATACCACCATAACGCTTAACGTACTGGCCTGGCTGTATGCAGCTGTCATCAATGG
	AGATCGGTGGTTCCTGAATAGGTTTACTACTACCCTAAACGACTTCAACCTTGTCG
	ΑΓΤGAGCGCCCAAACAGGGATCGCCCTGTTAGACATGTCCCCCCTCTGAACGAA
	ΓΤΩΓΤΤΓΔΩΔΑΤΩΩΔΑΤΩΩΔΑΤΩΩΟΓΩΟΛΟΩΑΤΟΓΟΙΟΙΟΙΟΙΟΙΟΙΟΙΟΙΟΙΟΑΑΟΟΑΑ
1	L SYSON COULD LE

DNA_twist_	TAAGGAATTCACCATGGAGGTAAAGACAATTAAAGTCTTTACTACTGTAGACAAT
PLpro(S1)	ACCAATCTCCATACGCAGCTGGTCGACATGTCCATGACATATGGGCAGCAATTCG
	GACCTACATATCTGGACGGTGCCGATGTAACCAAAATTAAGCCCCACGTCAATCA
	TGAGGGCAAAACATTCTTCGTCCTGCCCTCTGACGATACCCTACGATCCGAGGCT
	TTTGAATATTATCATACCCTGGACGAATCATTTCTGGGGCGGTATATGAGCGCCCT
	GAACCATACCAAGAAATGGAAGTTCCCACAGGTTGGCGGCCTCACTAGCATCAA
	GTGGGCTGATAACAACTGCTACTTGTCCTCGGTCTTGCTTG
	AGGTGAAATTCAATGCCCCCGCGCTCCAGGAGGCATACTACAGAGCAAGGGCCG
	GAGATGCCGCGAACTTCTGCGCACTGATCCTTGCGTACTCTAATAAGACAGTTGG
	AGAATTGGGCGACGTGAGGGAAACCATGACGCACCTACTGCAGCACGCCAACTT
	AGAGAGCGCAAAGCGCGTGCTGAACGTGGTTTGCAAGCACTGTGGACAGAAAAC
	CACTACTCTTACGGGTGTGGAGGCTGTGATGTACATGGGGACTTTGAGCTACGAT
	AACCTGAAAACCGGCGTGTCAATTCCTTGTGTTTGTGGCCGTGACGCTACGCAGT
	ACCTCGTGCAACAGGAATCCAGTTTTGTGATGATGTCTGCCCCACCGGCCGAGTA
	CAAGTTACAGCAAGGCACCTTTCTCTGTGCAAATGAATATACCGGGAATTACCAA
	TGCGGGCACTACACACATATCACAGCTAAGGAGACACTGTACAGAATAGACGGT
	GCCCACCTTACAAAGATGAGTGAGTATAAGGGACCTGTGACCGATGTGTTTTATA
	AAGAAACAAGTTATACTACCACTATCAAAgctagcgGATCCACCGGTgTCTAGATAA
	G
DNA_twist_	TAAGGAATTCACCATGTCGGGCTTGGTGAAAATGAGTCACCCAAGCGGGGACGT
Mpro(M)	GGAGGCATGTATGGTGCAGGTGACTTGTGGTTCTATGACTCTTAATGGACTGTGG
	CTCGACAACACTGTGTGGTGCCCTCGACATGTGATGTGCCCTGCCGATCAACTGA
	GCGACCCCAACTATGATGCCTTACTCATTTCAATGACCAATCACTCATTTAGCGTC
	CAGAAGCACATTGGGGCACCAGCCAACCTGAGAGTCGTTGGCCACGCCATGCAG
	GGCACTCTGCTAAAATTGACAGTGGATGTAGCAAATCCCTCTACCCCCGCCTACA
	CTTTCACCACAGTGAAGCCAGGAGCTGCATTCTCCGTGTTAGCCTGCTATAATGGT
	CGCCCTACAGGAACCTTCACCGTAGTCATGAGGCCGAATTACACTATAAAGGGGT
	CCTTTCTCTGCGGCAGCTGCGGAAGCGTGGGGTACACAAAGGAGGGATCTGTGAT
	CAACTTCTGTTATATGCACCAAATGGAACTGGCGAATGGCACCCATACCGGCTCT
	GCATTCGATGGGACCATGTATGGCGCTTTCATGGACAAACAA
	AGCTGACAGATAAATACTGTAGTGTGAATGTTGTGGCTTGGCTTTACGCCGCGAT
	ACTGAATGGCTGTGCTTGGTTCGTTAAGCCCAACCGGACTTCCGTAGTATCATTTA
	ACGAGTGGGCTCTGGCTAACCAGTTTACGGAATTTGTTGGAACACAGTCCGTCGA
	TATGTTGGCGGTTAAGACGGGTGTCGCCATCGAACAGCTCCTCTATGCCATCCAG
	CAGCTGTACACCGGTTTCCAAGGAAAACAAATCCTTGGGAGTACAATGCTAGAGG
	CAGCTGTACACCGGTTTCCAAGGAAAACAAATCCTTGGGAGTACAATGCTAGAGGACGAATTTACGCCTGAGGACGTTAACATGCAGATTATGGGCGTGGTCATGCAGgct

Supplementary Table 7. P-Values, t-values and degrees of freedom for two-sided T-tests

Figure	Compared groups	Fold change	P-Value	Welch-corrected t-values (t)
				and degrees of freedom (df)
2a	0 μM vs. 1 μM GRL-0617	1.4	0.0002	t=6.653, df=7.412
2a	0 μM vs. 10 μM GRL-0617	7.9	4.41 x 10 ⁻⁸	t=45.26, df=5.315
2a	0 μM vs. 25 μM GRL-0617	14	4.95 x -10 ⁻⁷	t=32.17, df=5.042
2a	0 μM vs. 50 μM GRL-0617	36	8.93 x 10 ⁻⁹	t=71.96, df=5.031
2a	0 μM vs. 100 μM GRL-0617	40	5.22 x 10 ⁻⁷	t=32.37, df=5.005
2d	2 h; 0 μM vs. 50 μM GRL-	2.1	0.0572	t=3.427, df=2.427
	0617			
2d	4 h; 0 μM vs. 50 μM GRL-	4.3	0.0047	t=13.86, df=2.051
	0617			
2d	6 h; 0 μM vs. 50 μM GRL-	9.7	0.0056	t=13.26, df=2.007
	0617			

2d	8 h; 0 μM vs. 50 μM GRL- 0617	12	0.0024	t=20.17, df=2.008
2d	10 h; 0 μM vs. 50 μM GRL- 0617	13	0.0030	t=17.79, df=2.016
2e	hMSC-TERT; 0 µM vs. 100 µM GRL-0617	10	0.0014	t=18.42, df=2.320
2e	HEK293T; 0 μM vs. 100 μM GRL-0617	38	0.0033	t=17.36, df=2.003
2e	HT-1080; 0 μM vs. 100 μM GRL-0617	2.4	0.0289	t=5.293, df=2.153
2e	BHK-21; 0 μM vs. 100 μM GRL-0617	7.0	0.0009	t=16.54, df=2.686
2e	HeLa; 0 μM vs. 100 μM GRL-0617	5.0	0.0107	t=9.586, df=2.002
2e	HepG2; 0 μM vs. 100 μM GRL-0617	6.1	0.0170	t=7.373, df=2.038
2f	0 μM vs. 2 μM GRL-0617	8.2	0.0003	t=55.20, df=2.013
2f	0 μM vs. 10 μM GRL-0617	42	0.0009	t=33.24, df=2.000
2f	0 μM vs. 25 μM GRL-0617	120	0.0029	t=18.50, df=2.000
2f	0 μM vs. 100 μM GRL-0617	106	0.0023	t=20.67, df=2.000
3a	0 μM vs. 1 μM GC-376	1.4	0.0001	t=6.287, df=9.679
3a	0 μM vs. 10 μM GC-376	3.4	2.31 x 10 ⁻⁹	t=34.42, df=7.317
3a	0 μM vs. 50 μM GC-376	7.2	4.20 x 10 ⁻⁸	t=42.21, df=5.482
3a	0 μM vs. 100 μM GC-376	13	7.93 x 10 ⁻⁹	t=63.50, df=5.287
3a	0 μM vs. 200 μM GC-376	19	1.79 x 10 ⁻⁸	t=60.07, df=5.105
3b	VP16; 0 µM vs. 200 µM GC- 376	9.6	0.0058	t=12.89, df=2.015
3b	VP64; 0 µM vs. 200 µM GC- 376	15	0.0006	t=39.89, df=2.015
3b	VPR; 0 µM vs. 200 µM GC- 376	4.7	0.0014	t=23.34, df=2.117
3c	2 h; 0 µM vs. 100 µM GC-376	1.6	0.0746	t=2.956, df=2.505
3c	4 h; 0 μM vs. 100 μM GC-376	2.5	0.0230	t=6.272, df=2.050
3c	6 h; 0 μM vs. 100 μM GC-376	4.3	0.0008	t=24.47, df=2.284
3c	8 h; 0 μM vs. 100 μM GC-376	5.4	0.0048	t=13.60, df=2.057
3c	10 h; 0 μM vs. 100 μM GC- 376	7.2	0.0001	t=41.33, df=2.467
3d	Mpro (SARS-CoV); 0 μM vs. 100 μM GC-376	10	0.0032	t=17.05, df=2.030
3d	Mpro (SARS-CoV); 0 μM vs. 200 μM GC-376	23	0.0024	t=20.08, df=2.007
3d	Mpro (MERS); 0 μM vs. 100 μM GC-376	3.7	0.0028	t=14.28, df=2.276
3d	Mpro (MERS); 0 μM vs. 200 μM GC-376	7.4	7.29 x 10 ⁻⁵	t=47.85, df=2.572
4b	WT vs. W31A	6.8	0.0104	t=9.598, df=2.019

4b	WT vs. H41A	41	0.0017	t=24.33, df=2.003
4b	WT vs. C145A	41	0.0006	t=40.70, df=2.007
4c	WT vs. C156F - US	1.8	0.0165	t=6.039, df=2.414
4c	WT vs. G71S - CH	1.7	0.0024	t=8.558, df=3.283
4c	WT vs. R279C - FR	2.0	0.0028	t=10.34, df=2.750
4c	WT vs. V77A/K90R - EN	3.9	0.0089	t=9.863, df=2.081
4c	WT vs. P184L - EN	8.5	0.0131	t=8.597, df=2.009
5g	0 μM vs. 2 μM GC-376	1.4	0.0062	t=6.524, df=3.171
5g	0 μM vs. 10 μM GC-376	3.3	0.0006	t=40.89, df=2.001
5g	0 μM vs. 100 μM GC-376	31	3.16 x 10 ⁻⁵	t=118.0, df=2.201
5g	0 μM vs. 200 μM GC-376	45	0.0005	t=45.60, df=2.013
5h	nanoLuc; (- GC-376, - GRL- 0617) vs. (+ GC-376, - GRL- 0617)	19	0.0001	t=80.27, df=2.086
5h	SEAP; (- GC-376, - GRL- 0617) vs. (+ GC-376, - GRL- 0617)	1.0	0.9212	t=0.1055, df=3.856
5h	nanoLuc; (- GC-376, - GRL- 0617) vs. (- GC-376, + GRL- 0617)	1.0	0.5302	t=0.6910, df=3.732
5h	SEAP; (- GC-376, - GRL- 0617) vs. (- GC-376, + GRL- 0617)	15	0.0020	t=21.37, df=2.029
5h	nanoLuc; (- GC-376, - GRL- 0617) vs. (+ GC-376, + GRL- 0617)	14	0.0009	t=32.29, df=2.023
5h	SEAP; (- GC-376, - GRL- 0617) vs. (+ GC-376, + GRL- 0617)	20	0.0004	t=43.09, df=2.067
6b	Vehicle vs. GRL-0617	2.4	0.0375	t=2.599, df=6.559
бс	Vehicle vs. GC-376	1.9	0.0215	t=5.624, df=2.316
6d	9 h; vehicle vs. 1 mg GRL- 0617	1.3	0.0292	t=2.566, df=9.486
6d	9 h; vehicle vs. 2.5 mg GRL- 0617	1.8	0.0017	t=4.905, df=7.078
6d	9 h; 1 mg vs. 2.5 mg GRL- 0617	1.4	0.0169	t=2.996, df=8.115
6d	12 h; vehicle vs. 1 mg GRL- 0617	1.2	0.1431	t=1.596, df=9.493
6d	12 h; vehicle vs. 2.5 mg GRL- 0617	1.4	0.0040	t=3.723, df=9.870
6d	24 h; vehicle vs. 1 mg GRL- 0617	0.9	0.4134	t=0.8722, df=6.655
6d	24 h; vehicle vs. 2.5 mg GRL- 0617	1.0	0.9888	t=0.01464, df=5.792
бе	vehicle vs. GRL-0617	16	0.0322	t=3.186, df=4.101

r				
S2	pLeo665; 0 μM vs. 25 μM GRL-0617	2.3	0.0016	t=20.66, df=2.161
S2	pNF151; 0 μM vs. 100 μM GRL-0617	25	0.0021	t=21.25, df=2.015
S4	0 μM vs. 1 μM GRL-0617	1.1	0.1486	t=1.914, df=3.099
S4	0 μM vs. 10 μM GRL-0617	0.8	0.0625	t=2.922, df=2.959
S4	0 μM vs. 25 μM GRL-0617	0.72	0.0271	t=4.086, df=2.962
S4	0 μM vs. 50 μM GRL-0617	0.62	0.0212	t=6.133, df=2.158
S4	0 μM vs. 100 μM GRL-0617	0.54	0.0147	t=7.631, df=2.093
S8	nanoLuc; (- GC-376, - GRL- 0617) vs. (+ GC-376, - GRL- 0617)	4.5	0.0001	t=38.44, df=2.524
S8	SEAP; (- GC-376, - GRL- 0617) vs. (+ GC-376, - GRL- 0617)	1.1	0.7029	t=0.4169, df=3.241
S8	nanoLuc; (- GC-376, - GRL- 0617) vs. (- GC-376, + GRL- 0617)	1.0	0.7874	t=0.2944, df=3.043
S8	SEAP; (- GC-376, - GRL- 0617) vs. (- GC-376, + GRL- 0617)	8.5	0.0003	t=29.29, df=2.479
S8	nanoLuc; (- GC-376, - GRL- 0617) vs. (+ GC-376, + GRL- 0617)	4.4	0.0002	t=35.51, df=2.484
S8	SEAP; (- GC-376, - GRL- 0617) vs. (+ GC-376, + GRL- 0617)	10.5	0.0017	t=20.56, df=2.136

Supplementary Figures

Supplementary Figure 1. *Cleavage efficiency in trans.* **a** Performance of the PLpro gene switch when PLpro is provided in trans in a separate plasmid. NanoLuc expression level from cells co-expressing PLpro and synTF containing either a cognate CS (TetR-_{PLpro}CS_{NAT3}-VP16) or a non-cognate CS (TetR-_{Mpro}CS_{OPT}-VP16). **b** Performance of the Mpro gene switch when Mpro is provided in trans. NanoLuc expression level from cells co-expressing Mpro and synTF containing either a cognate CS (TetR-_{Mpro}CS_{OPT}-VP16) or a non-cognate CS (TetR-_{PLpro}CS_{NAT3}-VP16). Data are shown as mean \pm SEM, with individual data points, n = 3 biological replicates. Source data for this figure is provided in a Source Data file.

Supplementary Figure 2. *Reporter optimization.* Inducibility comparison between nanoLuc reporter without destabilizing 3'UTR (pLeo665) and reporter containing sTRSV destabilizing hammerhead in the 3'UTR (pNF151). Data are shown as mean \pm SEM, with individual data points, n = 3 biological replicates. Statistical significance was calculated by means of Welch's two-tailed t test, **P < 0.01; exact P values are provided in Supplementary Table 7. The numbers above the bars indicate fold difference in reporter expression level, calculated by dividing the mean expression level in the presence of inducer by the mean reporter expression level in the absence of inducer. Source data for this figure is provided in a Source Data file.

Supplementary Figure 3. *Cleavage efficiency of SARS-CoV derived PLpro*. Luminescence from secreted nanoLuc when HEK293T cells were transfected with PLpro(S1)-based TAGS bearing CS_{NAT3} from the SARS-CoV-2 polyprotein. A PLpro(S1)-TAGS without CS was used as a control. The number above the bars indicates fold difference in reporter expression level, calculated by dividing the mean expression level in the PLpro(S1)-TAGS without CS by the mean reporter expression level in the PLpro(S1)-TAGS with CS. Data are shown as mean \pm SEM, with individual data points, n = 3 biological replicates. Source data for this figure is provided in a Source Data file.

Supplementary Figure 4. Sensitivity and dose-response of FlipGFP-PLpro to PLpro inhibitor GRL-0617. Cells transfected with pNF124 and pNF256 were treated with various concentrations of GRL-0617 for 48 h before measuring the fluorescence intensity of GFP and mCherry. AFU was calculated by dividing the GFP signal intensity by the mCherry signal intensity. Data are shown as mean \pm SEM, with individual data points, n = 3 biological replicates. Statistical significance was calculated by means of Welch's two-tailed t test, *P < 0.05, ns, not significant; exact P values are provided in Supplementary Table 7. Source data for this figure is provided in a Source Data file.

Supplementary Figure 5. *Cleavage efficiency of SARS-CoV and MERS derived Mpro*. Luminescence from secreted nanoLuc when HEK293T cells were transfected with **a** Mpro(S1) and **b** Mpro(M) based TAGS bearing CS_{OPT} from the SARS-CoV-2 polyprotein. **a** Mpro(S1) and **b** Mpro(M) TAGS without CS were used as controls. The numbers above the bars indicate fold difference in reporter expression level, calculated by dividing the mean expression level in the TAGS without CS by the mean reporter expression level in the TAGS with CS. Data are shown as mean \pm SEM, with individual data points, n = 3 biological replicates. Source data for this figure is provided in a Source Data file.

Supplementary Figure 6. *Inducibility and sensitivity of HCVp-TAGS.* HCVp-TAGStransfected cells (pNF151 and pNF250) were treated with different concentrations of the HCVp inhibitor asunaprevir for 24 h before quantifying nanoLuc expression level. Data are shown as mean \pm SEM, with individual data points, n = 3 biological replicates. Source data for this figure is provided in a Source Data file.

Supplementary Figure 7. Scoring Mpro activity in the presence of various compounds previously reported to inhibit Mpro. Mpro-TAGS-transfected HEK293T cells were treated with various concentrations of selected Mpro inhibitors for 24 h before quantifying nanoLuc expression level. Data are shown as mean \pm SEM, n = 3 biological replicates. Source data for this figure is provided in a Source Data file.

Supplementary Figure 8. *Multiplexing Mpro- and PLpro-based TAGS.* Mpro-TAGS controlling nanoLuc expression and PLpro-TAGS controlling SEAP expression were co-transfected into HEK293T cells, which were then treated with combinations of GC-376 and GRL-0617 at 10 μ M for 24 h before profiling reporter expression level. Data are shown as mean \pm SEM, with individual data points, n = 3 biological replicates. Statistical significance was calculated by means of Welch's two-tailed t test, **P < 0.01, ***P < 0.001, ns, not significant; exact P values are provided in Supplementary Table 7. Source data for this figure is provided in a Source Data file.

Supplementary Figure 9. *Mpro-TAGS performance in different plate formats*. Mpro-TAGS-transfected HEK293T cells were seeded in either 96-well or 384-well plates before induction with different GC-376 concentrations for 24 h, after which nanoLuc expression level was quantified in the media. Data are shown as mean \pm SEM, with individual data points, n = 3 biological replicates. The numbers above the bars indicate fold difference in reporter expression level, calculated by dividing the mean expression level in the presence of inducer by the mean reporter expression level in the absence of inducer. Source data for this figure is provided in a Source Data file.

Supplementary Figure 10. Z' factor values for three different cell-based assays in 384-well plate format. **a** Mpro-TAGS **b** PLpro-TAGS and **c** FlipGFP-PLproCS transfected HEK293T cells were seeded in 384-well plates before treatment with GC-376 or GRL-0617 for **a**, **b** 24 h or **c** 48 h, after which nanoLuc intensity level in the medium or fluorescence intensity was quantified in the individual wells. Data are shown as individual data points, n = 16 biological replicates. Z' factor for each assay is indicated above each plot, together with the fold difference in reporter intensity level, calculated by dividing the mean intensity level in the presence of inhibitor by the mean reporter intensity level in the absence of inhibitor. Source data for this figure is provided in a Source Data file.

References

- 1. Scheller, L. *et al.* Phosphoregulated orthogonal signal transduction in mammalian cells. *Nat. Commun.* **11**, 1–10 (2020).
- 2. Scheller, L., Strittmatter, T., Fuchs, D., Bojar, D. & Fussenegger, M. Generalized extracellular molecule sensor platform for programming cellular behavior article. *Nat. Chem. Biol.* **14**, 723–729 (2018).
- 3. Ausländer, D. *et al.* Programmable full-adder computations in communicating threedimensional cell cultures. *Nat. Methods* **15**, 57–60 (2018).
- 4. Haellman, V., Strittmatter, T., Bertschi, A., Stücheli, P. & Fussenegger, M. A versatile plasmid architecture for mammalian synthetic biology (VAMSyB). *Metab. Eng.* **66**, 41–50 (2021).
- 5. Ausländer, S., Fuchs, D., Hürlemann, S., Ausländer, D. & Fussenegger, M. Engineering a ribozyme cleavage-induced split fluorescent aptamer complementation assay. *Nucleic Acids Res.* **44**, 94 (2016).