

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 869383

Title

Work package: 1: Mapping stressors of Arctic biodiversity: Tolerance and adaptation of organisms

Deliverable No. (D1.1) – Title: Inventory of geographic distribution of relevant water column stressors of Arctic biodiversity

Lead Beneficiary (WP1): HEREON (formerly HZG)

Lead Scientist responsible for the report (Name, Institution): Helmuth Thomas, HEREON

Editors (Name, Institution):

Helmuth Thomas, HEREON

Contributors (Name, Institution): Claudia Schmidt, Daniel Bastian, Tobias Stacke, HEREON; Paulina Urban, DTU

Submission Date:

27/11/2021

Table of Contents

EXECUTIVE SUMMARY	2
OVERVIEW	2
Physical Stressors	2
CHEMICAL STRESSORS	2
BIOLOGICAL STRESSORS	2
ANTHROPOGENIC STRESSORS	3
DETAILED CONSIDERATIONS	4
Invasive Species	
TRACE METALS	
LARGE SCALE OCEANOGRAPHIC STRESSORS	
Type chapter title (level 3)	6

Executive Summary

This deliverable presents an overview about environmental stressors with the potential to impact Arctic ecosystems, or parts thereof. We report properties, which reveal such potential either through change over time or as new property introduced into the Arctic realm. We report a likely non-exhaustive list of stressors, both from observations and simulations, and give some details on geographic distributions, if known, on a subset of stressors, which appear directly relevant for ECOTIP.

Overview

We present a non-exhaustive list of properties, which can be considered as stressors in the Arctic marine realm. This list does not necessarily imply that a property does act as a stressor, neither does the list imply degree, severity or evolution (in many cases) of any particular stressor. Rather we present properties, which potentially fall into the category "stressor", some of which will be investigated more closely in ECOTIP.

2.1 PHYSICAL STRESSORS

The following physical properties or changes thereof might act as stressors:

- Temperature (shown below)
- Salinity (shown below)
- Wind
- Stratification
- Light penetration/Turbidity
- Sea ice cover
- Land ice run-off

2.2 CHEMICAL STRESSORS

The following chemical properties or changes thereof might act as stressors:

- pH, properties of the marine carbonate system (pH shown below)
- nutrients
- Hg, Fe, V, Pb, other trace metals (selected trace metals shown below)
- Oxygen

2.3 BIOLOGICAL STRESSORS

The following biological properties or changes thereof might act as stressors:

- invasive species (discussed below)
- exploitation (e.g. fishing)
- harmful blooms

2.3 ANTHROPOGENIC STRESSORS

The following anthropogenic properties or changes thereof might act as stressors:

- fishing
- mining
- fuel combustion (link to heavy metals, V, Hg)
- oil
- plastics

Detailed considerations

3.1 INVASIVE SPECIES

Invasive species are defined as species found outside of their native distribution range. If these have a negative influence on the new ecosystem then term "invasive" applies. For as long as the effect of the species on the new ecosystem is unknown they are called non-indigenous. Outside of their distribution range species need to find new ways to adapt to the ecosystem in order to survive. During this process, the species can significantly change the dynamics of the ecosystem. As such, stable and functioning ecosystems tend to be more resilient these changes s opposite to ecosystems already under pressure. Thus, introduction of invasive species can destabilize ecosystems to the degree that cascading effects are inevitable - a tipping point as we define it in ECOTIP. The work package 1 focuses on identifying invasive and non-indigenous species occurring in the Arctic, and by means of monitoring over larger geographical scale species' distribution ranges will be defined. Additionally, a series of planned experiments on selected occurring invasive species, and on some putative invasive species (expected to arrive in near future) will investigate their tolerance ranges and their resilience to the Arctic ecosystem under the known and future conditions (abiotic stressors defined under Tasks 1.1-1.2).

As of today, we have conducted a literature search identifying invasive and non-indigenous species occurring in the Atlantic Sector of the Arctic Ocean (Table 1). We extended this list by allowing for putative invasive species (.e.g. species expected to occur in near future). This catalogue of species serves for the developing of appropriate monitoring tools for the Deliverable 1.3 and as means for selecting appropriate species for the experimental work (Deliverable 1.5).

References for the compiled species list:

Chan, Farrah T., Keara Stanislawczyk, Anna C. Sneekes, Alexander Dvoretsky, Stephan Gollasch, Dan Minchin, Matej David, Anders Jelmert, Jon Albretsen, and Sarah A. Bailey. 2019. "Climate Change Opens New Frontiers for Marine Species in the Arctic: Current Trends and Future Invasion Risks." *Global Change Biology* 25: 25–38.

European Marine Observation and Data Network (EMODnet). n.d. "Alien Species."

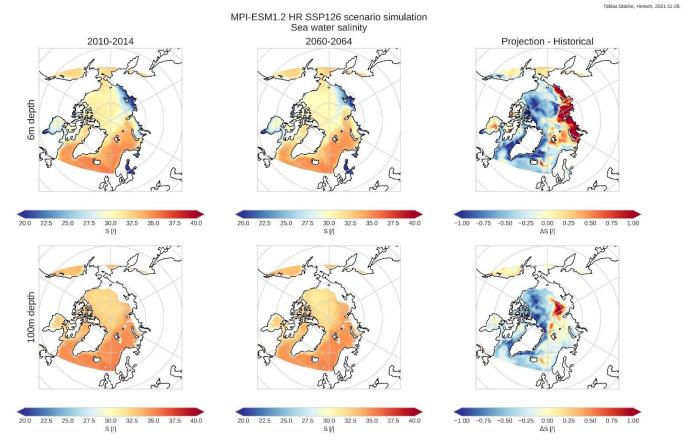
- Goldsmit, Jesica, Christopher W. McKindsey, Robert W. Schlegel, D. Bruce Stewart, and Kimberly L. Archambault, Philippe Howland. 2020. "What and Where? Predicting Invasion Hotspots in the Arctic Marine Realm." *Global Change Biology* 26 (9): 4752–71.
- Heuvel-Greve, M.J. van den, A.M. van den Brink, S.T. Glorius, G.A. de Groot, I. Laros, P.E. Renaud, R. Pettersen, J.M. Węsławski, P. Kuklinski, and A.J. Murk. 2021. "Early Detection of Marine Non-Indigenous Species on Svalbard by DNA Metabarcoding of Sediment." *Polar Biology* 44 (4): 653–65.

Table 1. List of species identified as invasive or non indigenouse in the Atlantic Sector of the Arctic Ocean. Species list contains present species and species expected to occur in the near future. A total of 92 species from 63 families were identified in a literature survey.

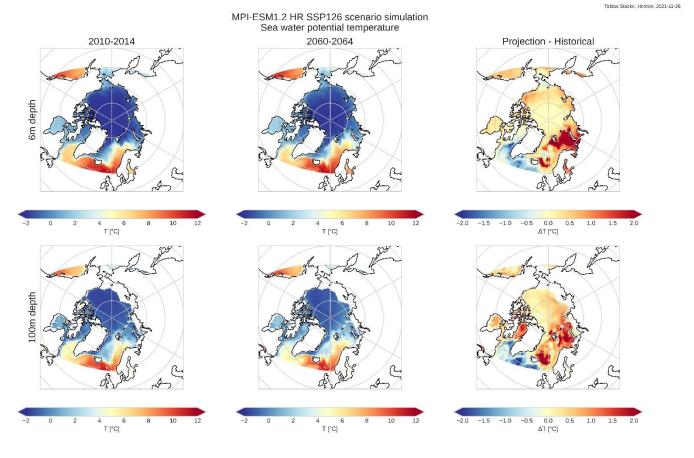
Family	Genus	Species
Sabellidae	Chone	Chone mollis
Spionidae	Spiophanes	Spiophanes kroyeri
Capitellidae	Heteromastus	Heteromastus filiformis
Podonidae	Podon	Podon leuckartii
Podonidae	Evadne	Evadne nordmanni
Acartiidae	Acartia	Acartia (Acanthacartia) tonsa
Acartiidae	Acartia	Acartia clausii
Calanoidae	Calanus	Calanus helgolandicus
Centropagidae	Centropages	Centropages hamatus
Centropagidae	Centropages	Centropages typicus
Centropagidae	Isias	Isias clavipes
Centropagidae	Sinocalanus	Sinocalanus doerrii
Clausocalanidae	Pseudocalanus	Pseudocalanus elongatus
Parapontellidae	Parapontella	Parapontella brevicornis
Pseudodiaptomidae	Pseudodiaptomus	Pseudodiaptomus forbesi
Pseudodiaptomidae	Pseudodiaptomus	Pseudodiaptomus marinus
Temoridae	Eurytemora	Eurytemora affinis
Temoridae	Eurytemora	Eurytemora americana
Temoridae	Temora	Temora longicornis
Temoridae	Temora	Temora turbinata
Tortanidae	Tortanus	Tortanus dextrilobatus
Oithonidae	Oithona	Oithona davisae
Oithonidae	Oithona	Oithona similis

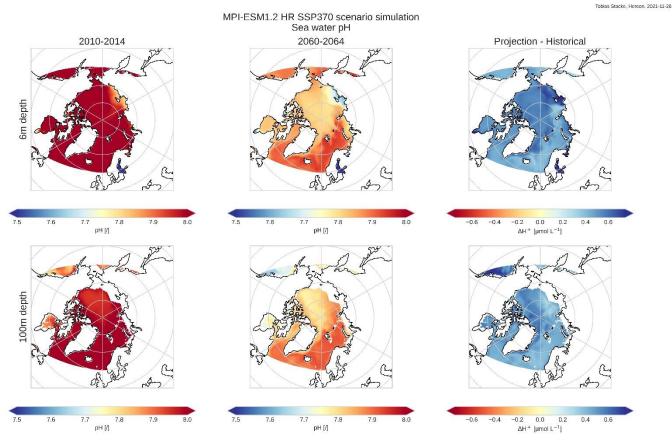
Project: ECOTIP Deliverable (D1.1 – Inv Ameiridae	entory of geographic dis Nitocra	tribution of relevant water column stressors of Arctic biodiversity: Nitocra lacustris
Laophontidae	Heterolaophonte	Heterolaophonte stroemii
		Paronychocamptus
Laophontidae	Paronychocamptu	s huntsmani
Miraciidae	Schizopera	Schizopera clandestina
Tachidiidae	Euterpina	Euterpina acutifrons
Acartiidae	Acartiella	Acartiella sinensis
Ampeliscidae	Ampelisca	Ampelisca abdita
Aoridae	Grandidierella	Grandidierella japonica
Caprellidae	Caprella	Caprella mutica
Corophiidae	Crassicorophium	Crassicorophium bonellii
Corophiidae	ocorophium	Sinocorophium heteroceratum
Corophiidae	Monocorophium	Monocorophium acherusicum
Gammaridae	Gammarus	Gammarus daiberi
Gammaridae	Gammarus	Gammarus tigrinus
Gammaridae	Gammarus	Gammarus zaddachi
Family	Genus	Species
Ischyroceridae	Jassa	Jassa marmorata
Canacridae	Cancer	Cancer irroratus
Canacridae	Cancer	Cancer pagurus
Crangonidae	Crangon	Crangon Crangon
Grapsidae	Eriocheir	Eriocheir sinesis
Lithodidae	Paralithodes	Paralithodes camtschaticus
Nephropidae	Homarus	Homarus americanus
Oregoniidae	Chionoecetes	Chionoecetes opilio
Portunidae	Carcinus	Carcinus maenas
Varunidae	Hemigrapsus	Hemigrapsus takanoi

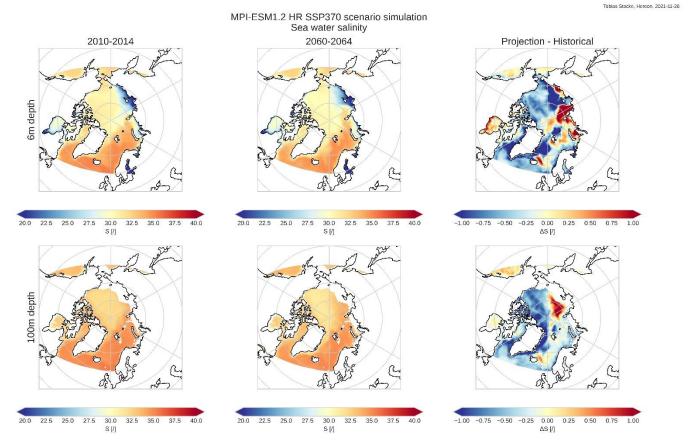
Cirolanidae	Eurydice	Eurydice pulchra
Idoteidae	Idotea	Idotea linearis
Mysidae	Mesopodopsis	Mesopodopsis slabberi
Cyclopettidae	Limnoithona	Limnoithona tetraspina
Austrobalanidae	Austrominius	Austrominius modestus
Balanidae	Amphibalanus	Amphibalanus amphitrite
Balanidae	Amphibalanus	Amphibalanus eburneus
Balanidae	Amphibalanus	Amphibalanus improvisus
Balanidae	Amphibalanus	Amphibalanus modestus
Balanidae	Amphibalanus	Amphibalanus reticulatus
Balanidae	Balanus	Balanus trigonus
Balanidae	Megabalanus	Megabalanus coccopoma
Balanidae	Megabalanus	Megabalanus spinosus
Balanidae	Megabalanus	Megabalanus tintinnabulum
Lepadidae	Conchoderma	Conchoderma virgatum
		Membranipora
Membraniporidae	Membranipora	membranacea
Schizoporellidae	Schizoporella	Schizoporella unicornis
Pleuronictidae	Platichthys	Platichthys flesus
Salmonidae	Oncorhynchus	Oncorhynchus gorbuscha
Salmonidae	Oncorhynchus	Oncorhynchus kisutch
Salmonidae	Oncorhynchus	Oncorhynchus mykiss
Salmonidae	Oncorhynchus	Oncorhynchus nerka
Molgulidae	Molgula	Molgula manhattensis
Cionidae	Ciona	Ciona intestinalis
Styelidae	Botrylloides	Botrylloides violaceus
Styelidae	Botryllus	Botryllus schlosseri
Bougainvilliidae	Calyptospadix	Calyptospadix cerulea

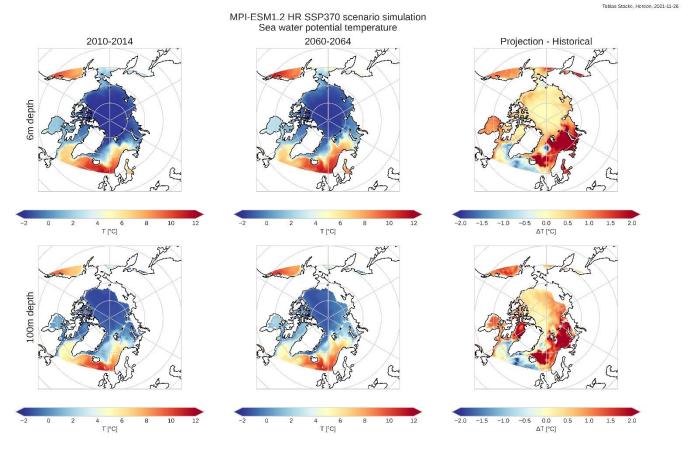

Project: ECOTIP Deliverable (D1.1 – Inv Ulmaridae	entory of geographic dis Aurelia	tribution of relevant water column stressors of Arctic biodiversity: Aurelia limbata
Bolinopsidae	Mnemiopsis	Mnemiopsis leidyi
Dinophysaceae	Dinophysis	Dinophysis caudata
Dinophysaceae	Dinophysis	Dinophysis dens
Gonyaulacaceae	Gonyaulax	Gonyaulax polygramma
Pyrocystaceae	Alexandrium	Alexandrium tamarense
Family	Genus	Species
Kareniaceae	Karenia	Karenia mikimotoi
Kryptoperidiniacea	e Kryptoperidinium	Kryptoperidinium triquetrum
Trochamminidae	Trochammina	Trochammina hadai
Cardiidae	Cerastoderma	Cerastoderma edule
Veneridae	Ruditapes	Ruditapes philippinarum
Calyptraeidae	Crepidula	Crepidula fornicata
Littorinidae	Littorina	Littorina littorea
Myidae	Муа	Mya arenaria
Chromadoridae	Prochromadora	Prochromadora orleji
Monhysteridae	Geomonhystera	Geomonhystera sp.
Clionaidae	Cliona	Cliona thoosina

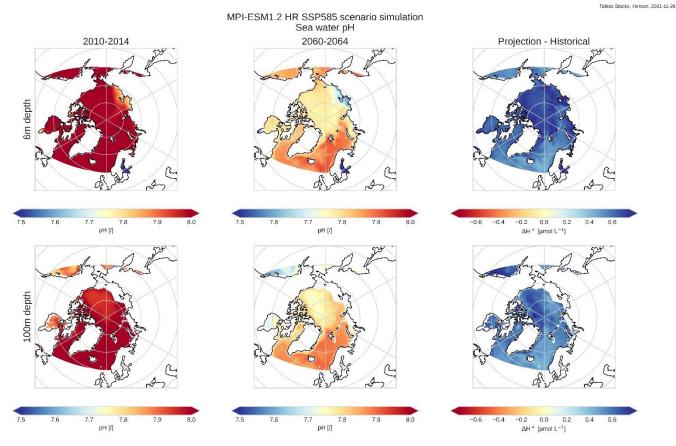
3.2 LARGE SCALE OCEANOGRAPHIC STRESSORS

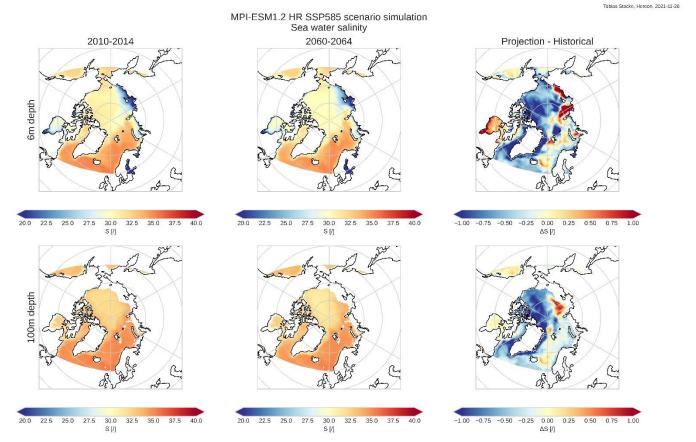

We present for the Atlantic Ocean hemisphere north of 60° N changes in pH ([Δ H⁺]), salinity and temperature for two depth levels (surface and 100m) between now and 50 years in the future. Simulations have been performed with the MPI-ESM1.2 HR model for 3 SSPs: SSP126, SSP370, SSP585. Baseline is the mean of the historical simulations 2010-2014, the future, i.e., the projections are represented as the mean of the years 2060-2064.


SSP126:

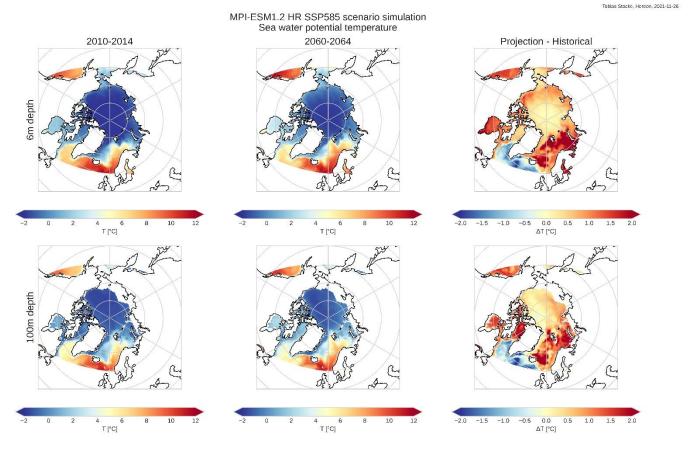

SSP126:


SSP370:


SSP370:


SSP370:

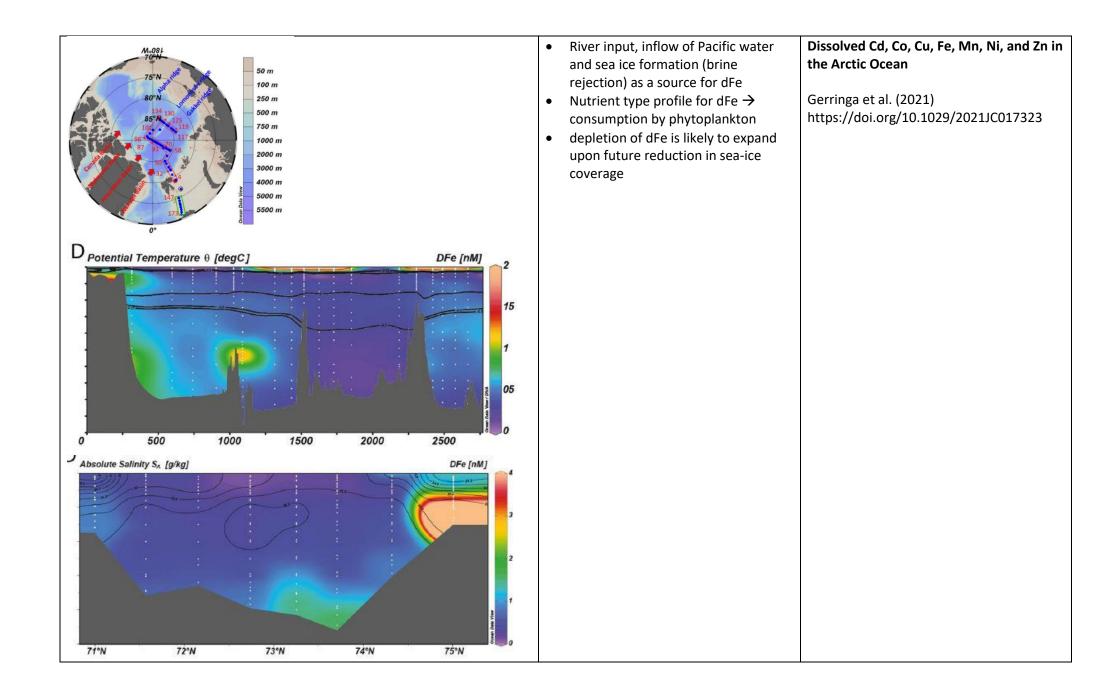
SSP585:



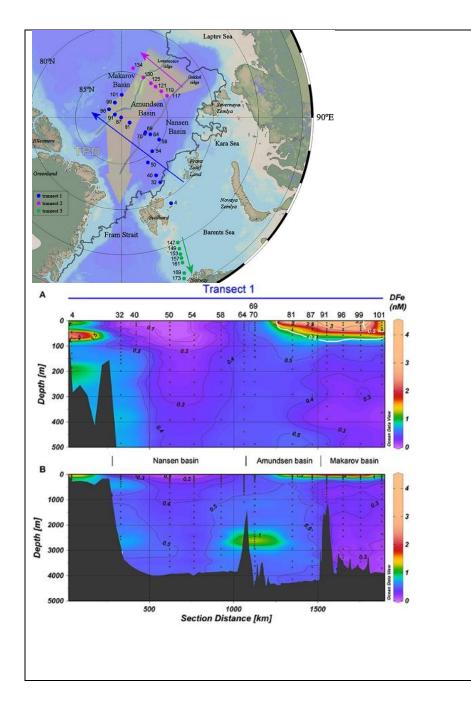
SSP585:

Date 27/11/2021

SSP585:

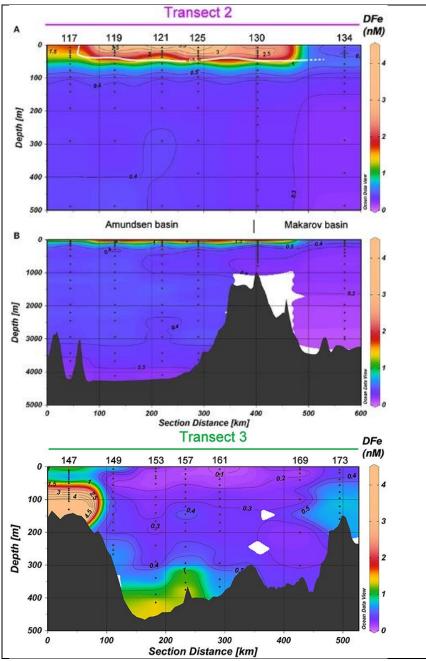

3.3 TRACE METALS

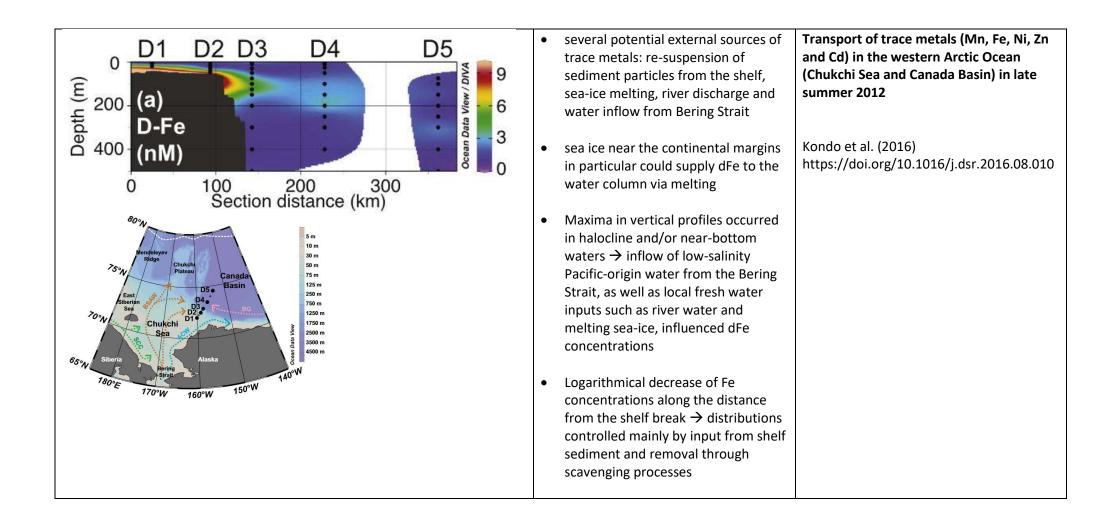
3.3. TRACE METALS

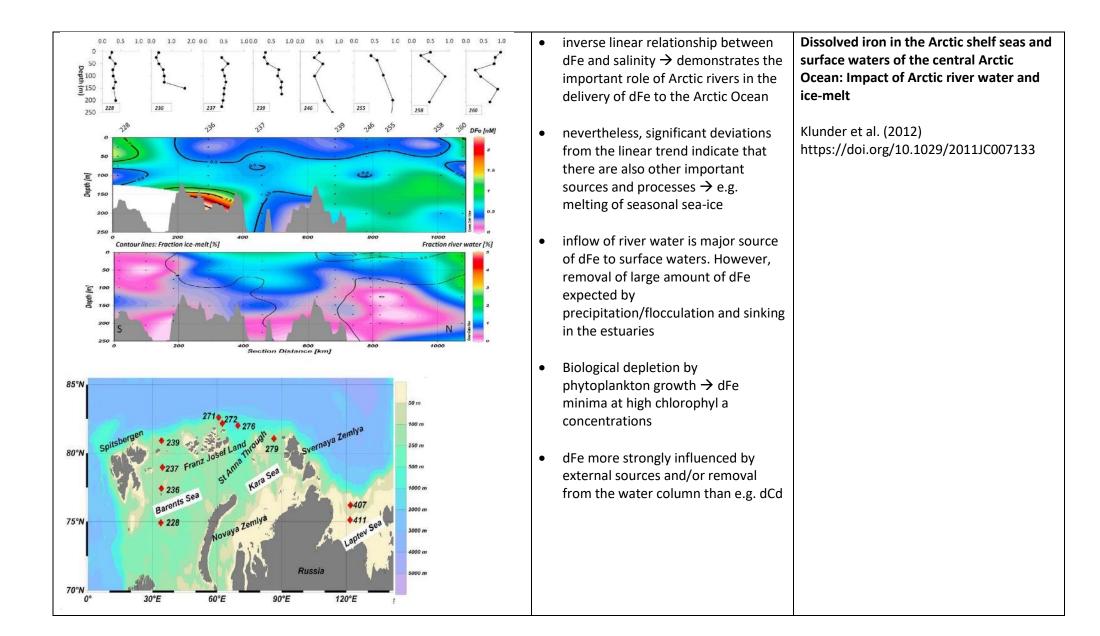

Stressors in Arctic Seas

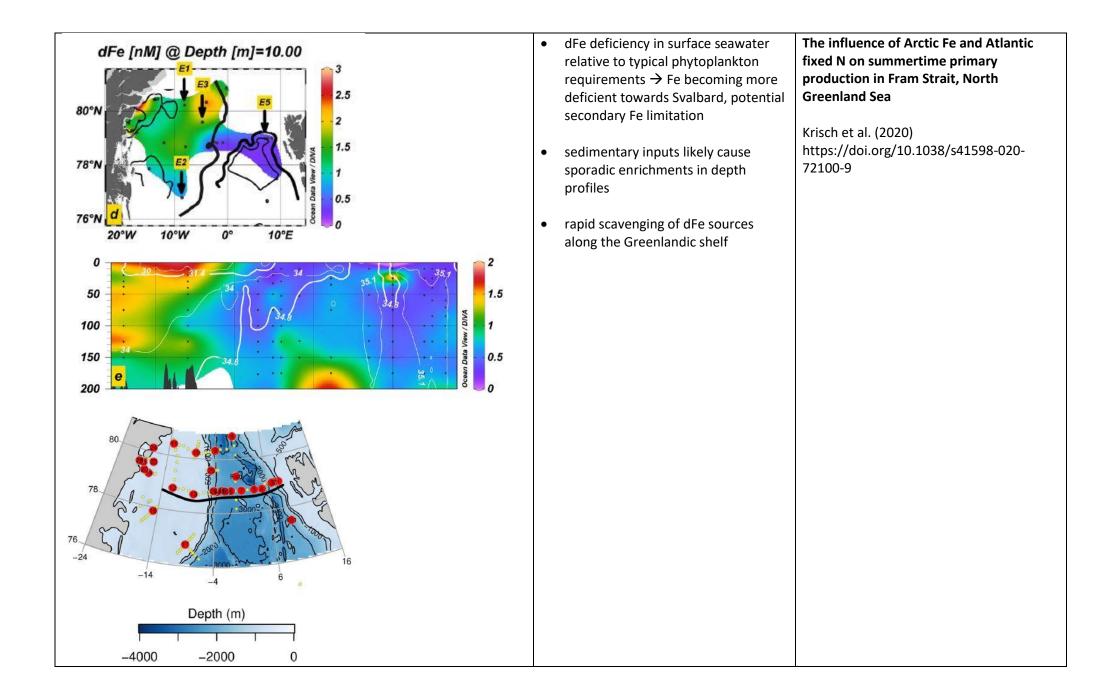
1. <u>Iron</u>

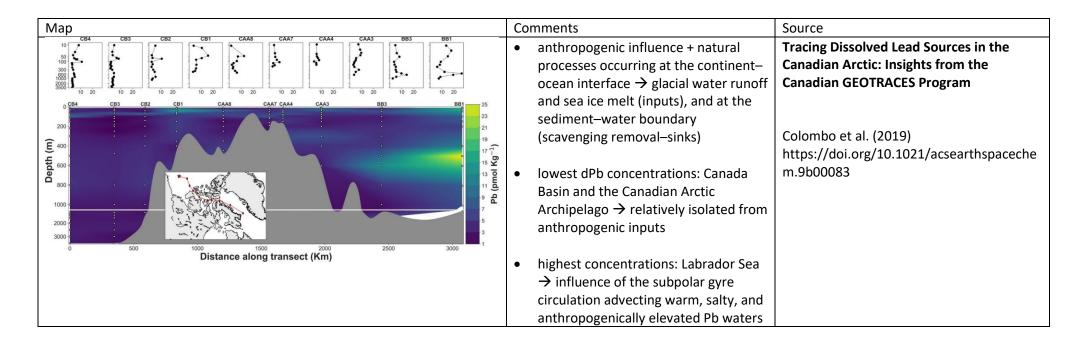
Мар	Comments	Source
<pre>dep</pre>	 anomalously high concentrations dFe in Arctic Ocean surface waters → combination of larger external sources and less biological uptake and/or scavenging removal under the sea ice riverine source that originated in the eastern Arctic Ocean largely scavenged/aggregated in the estuary and/or over the shelf before being transported offshore increase in dFe due to projected future increases in Arctic riverine discharge as well as fluxes of DOM-derived organic ligands that stabilize dissolved phase 	The Transpolar Drift as a Source of Riverine and Shelf-Derived Trace Elements to the Central Arctic Ocean Charette et al. (2020) https://doi.org/10.1029/2019JC015920
a)	 surface distributions in the Canadian Arctic Ocean controlled by fresh water sources, mostly riverine inputs high concentrations: Canadian Arctic Archipelago (CAA) → coastal region receiving a large flux of freshwater from numerous river systems low concentrations: Surface waters in the Labrador Sea → reduced freshwater inputs and increased phytoplankton uptake in the region 	Dissolved iron and manganese in the Canadian Arctic Ocean: On the biogeochemical processes controlling their distributions Colombo et al. (2020) https://doi.org/10.1016/j.gca.2020.03.012

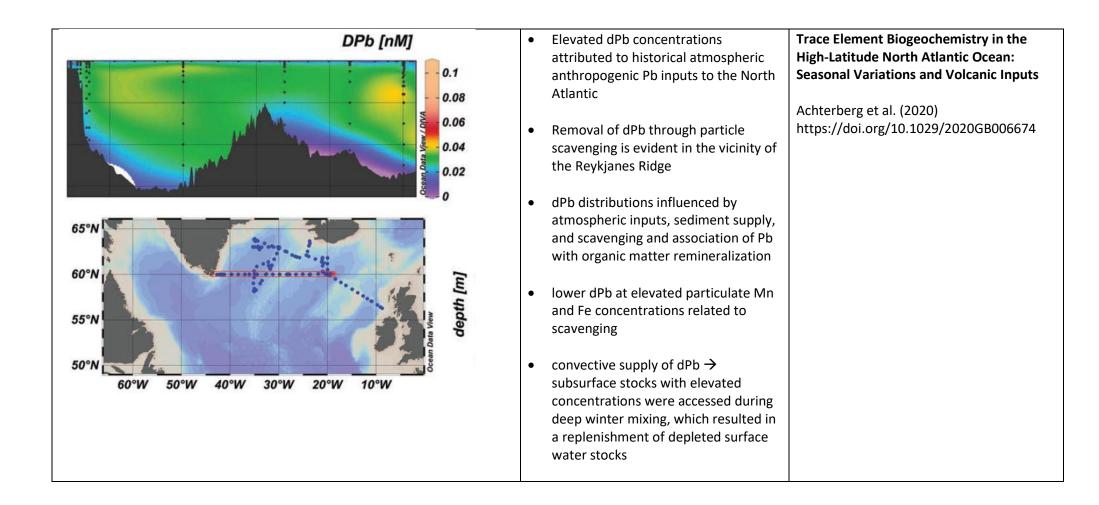

C. 0 100 200 300 C. 0 4Fe [nmol/kg] 1.5 1 0.5	 common sources and sinks for dFe: release from sediments, dust fluxes, hydrothermal venting, biological uptake, and scavenging to the particulate phase 	A comparison of marine Fe and Mn cycling: U.S. GEOTRACES GN01 Western Arctic case study
400	 Rapid decrease of dFe from shelf/strait stations to off-shelf stations, increase again at North Pole due to Transpolar Drift (TPD) Large fluxes from continental shelf, smaller contribution from sea ice Low dFe concentrations + low chlorophyll a in offshore waters → indicative of Fe limitation for surface primary producers 	Jensen et al. (2020) https://doi.org/10.1016/j.gca.2020.08.006

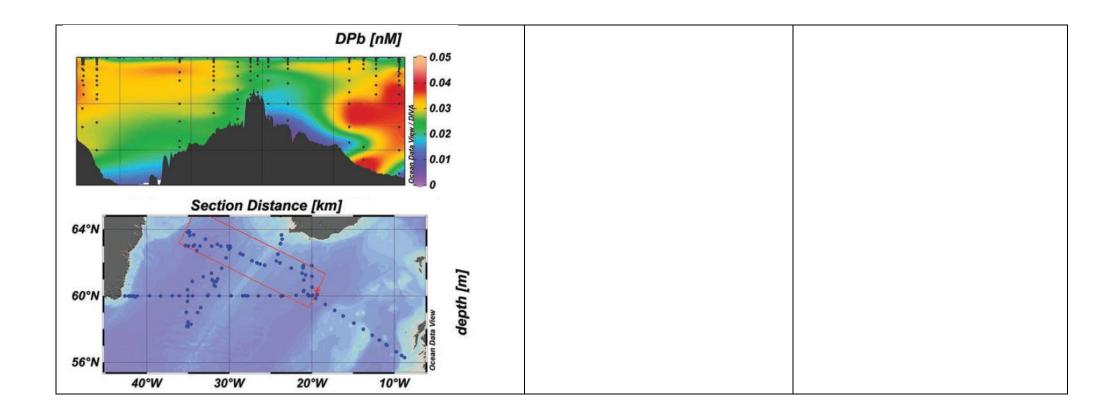

- Sources of dFe to surface Arctic Ocean: sea ice melt, atmospheric inputs, lateral input from land with rivers as the main contributor, Atlantic inflow and mixing with deep water
- Additional dFe input from melting sea ice → important for biological uptake under ice and ice edge blooms
- main source of dFe in the surface was Transpolar Drift (TPD) → lateral transport from the coast, shelves and land-fast-glaciers, with or without further transport by mesoscale eddies
- TPD as major surface current over the Arctic Ocean, transporting sea ice and river water from the Arctic shelf seas toward Fram Strait → distinct influence on the distribution of dFe
- Higher concentrations in deeper waters → resuspension on the continental slope + hydrothermal activity (Gakkel Ridge)
- Fe limitation potentially prevented up to 54% of the available nitrate and nitrite from being used for primary production → may have large consequences for primary production, Arctic ecosystem and

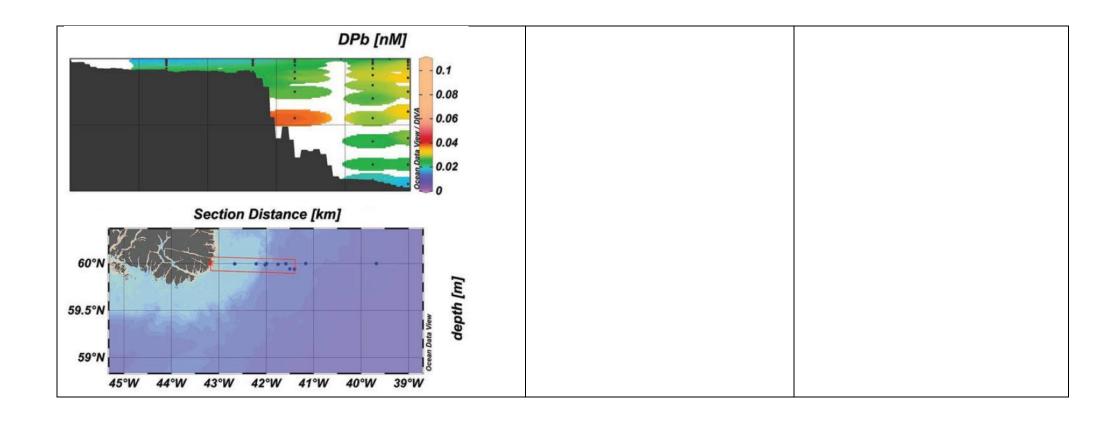

Dissolved Fe in the Deep and Upper Arctic Ocean With a Focus on Fe Limitation in the Nansen Basin


Rijkenberg et al. (2018) https://doi.org/10.3389/fmars.2018.00088

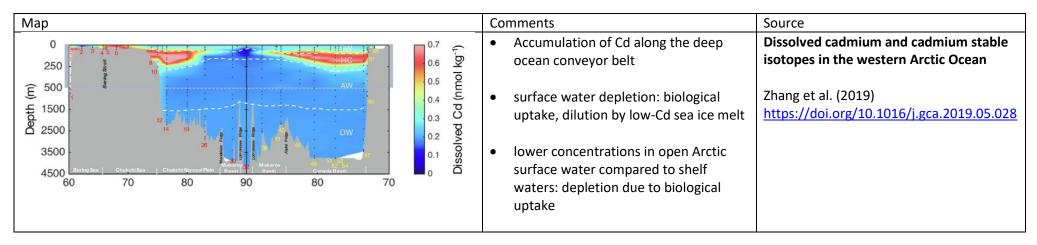

subsequent drawdown of carbon dioxide	

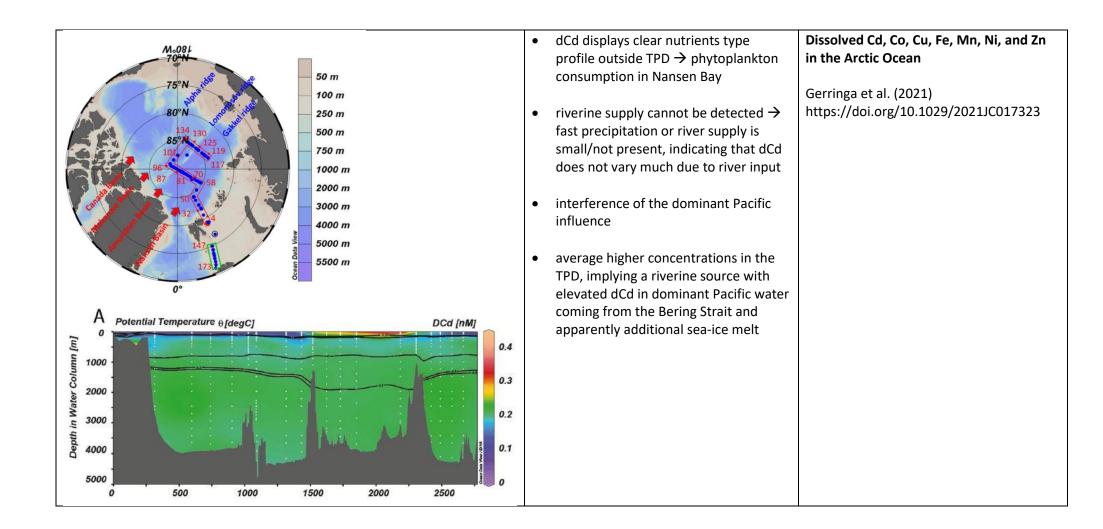


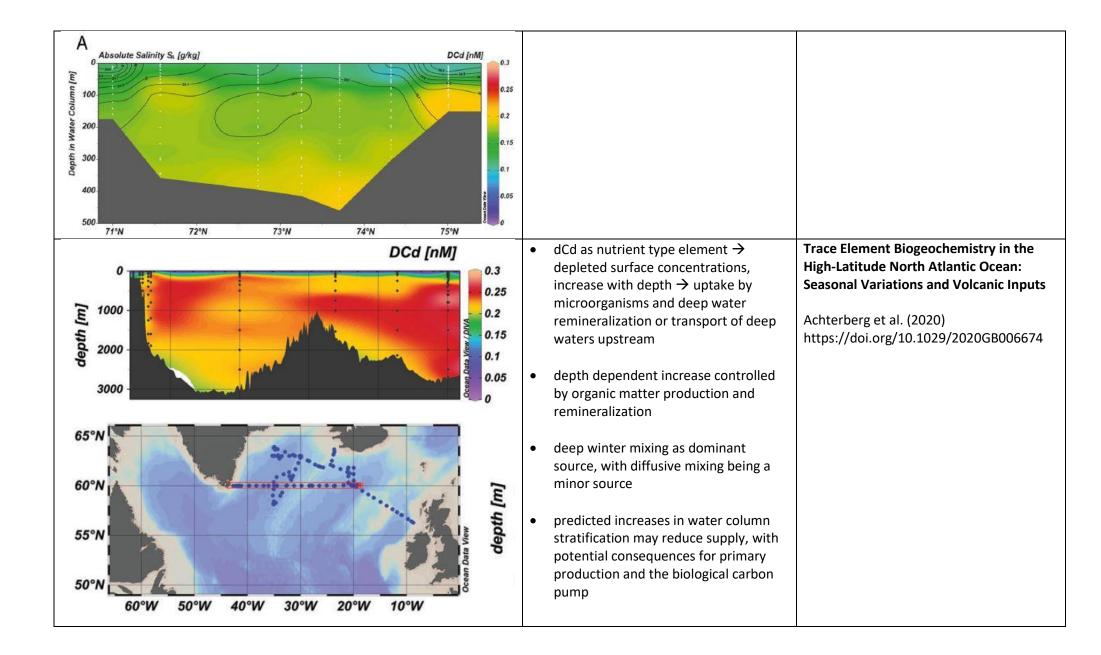


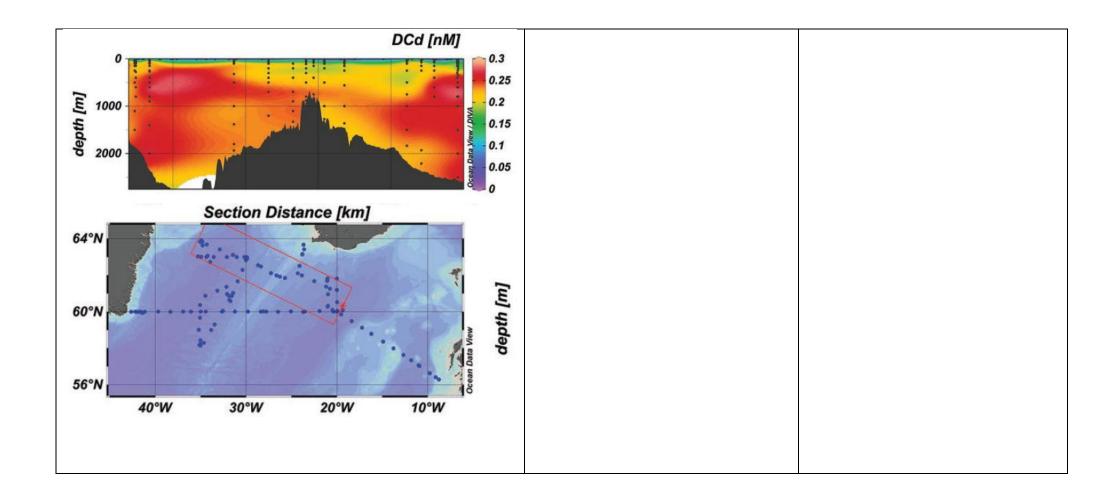


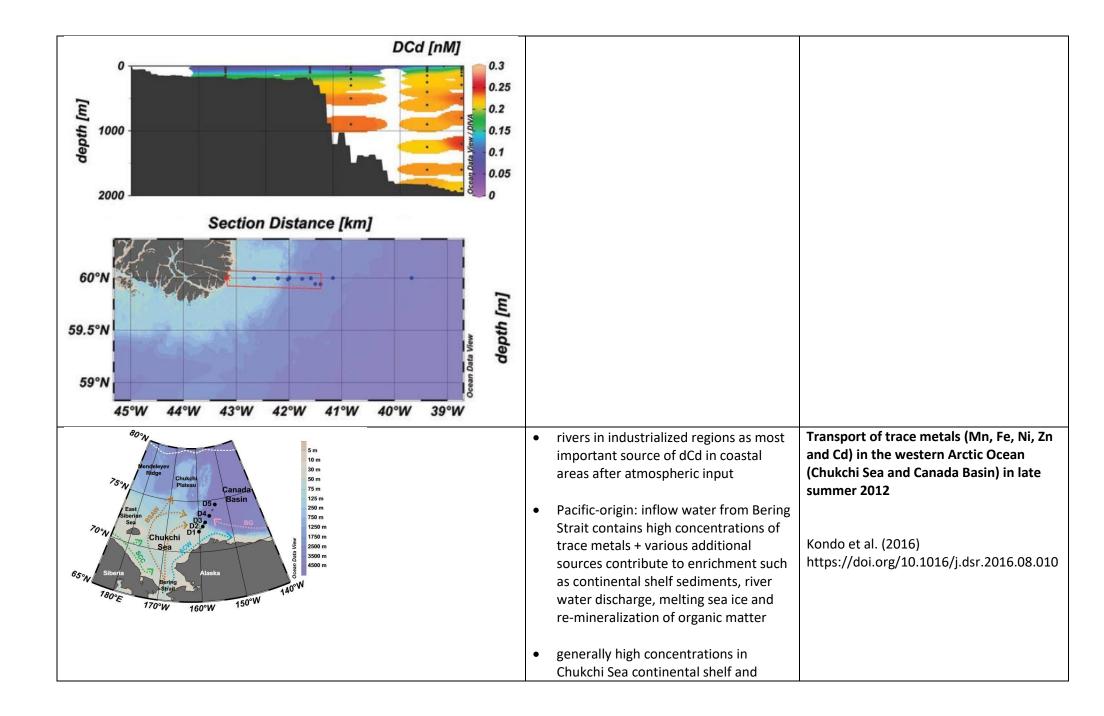
2. <u>Lead</u>

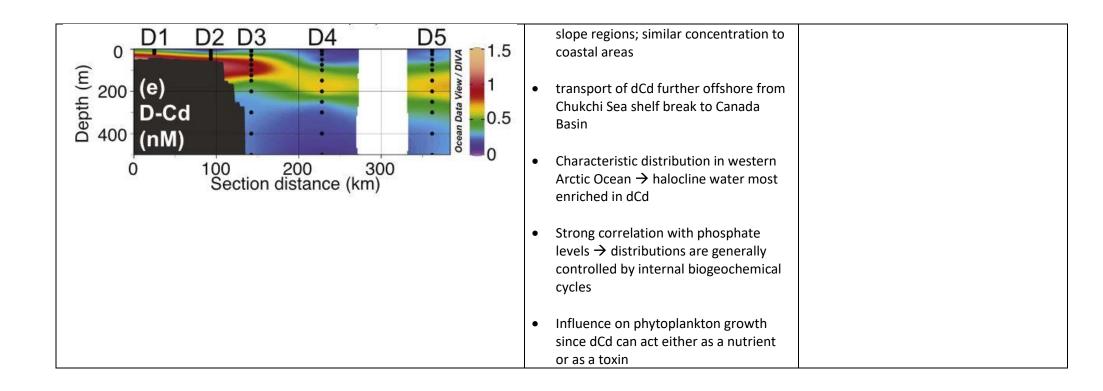


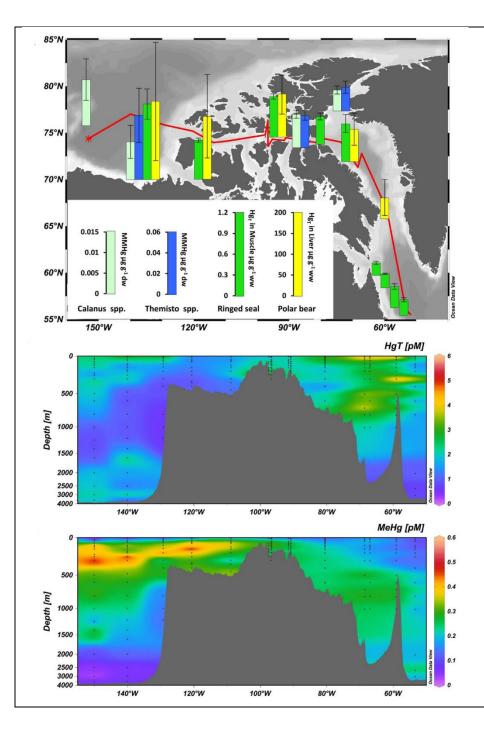


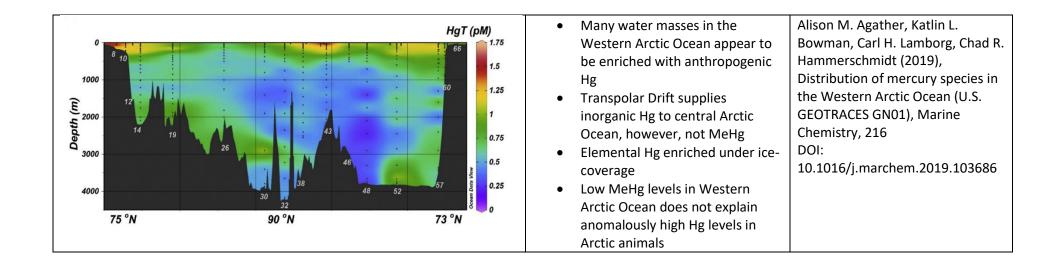

3. <u>Vanadium</u>


Мар	Comments	Source
MAKAROV BASIN CANADA BASIN Station 1 2:3456 1014 19 26 30 66 57 52 48 46 43 88 32 40 (mm/kg) 100 400 40 (mm/kg) 32 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5	 adsorption onto particles as dominar factor in dV removal dV concentrations increase with depth and are slightly higher in Pacifi halocline significant removal in estuarine and/or shelf environment surface depletion of 24–49% with 	d Ocean is influenced by shelf-basin connectivity t Whitmore et al. https://doi.org/10.1016/j.marchem.2019.1 03701


4. <u>Cadmium</u>






5. <u>Mercury</u>

Atmospheric deposition 76 91Pirasion 91Evision 91	 Annual total inflow of Hg corresponds to about 10 % of the total reservoir size (of 1900 Mg) Total Hg is relatively reactive to changes in inputs and outputs (from e.g. climate change forcing, permafrost thawing, etc.) Vertical diffusive flux to atmosphere higher than influx 	Mariia V. Petrova, Stephan Krisch, Pablo Lodeiro, Ole Valk, Aurelie Dufour, Micha J.A. Rijkenberg, Eric P. Achterberg, Benjamin Rabe, Michiel Rutgers van der Loeff, Bruno Hamelin, Jeroen E. Sonke, Cédric Garnier, Lars-Eric Heimbürger-Boavida,(2020), Mercury species export from the Arctic to the Atlantic Ocean, Marine Chemistry, 225 DOI:10.1016/j.marchem.2020.103 855
80°N 1926 Mayy 14420.37 pM 0°N 0°N 0°N 0°N 0°N 0°N 0°N 0°N	 Shallow methylmercury (MeHg) max. found in outflowing Arctic waters carrying MeHg to the North Atlantic East Greenland current: outflowing upper Arctic water displays higher surface water total Hg compared to inflowing Atlantic-water Methylated species over shelf greater than open ocean 	

- Bioaccumulative and –magnifying effect of Hg is largely resembled in Arctic marine biota
- Since decades, Hg observations in marine biota across Canadian Arctic generally show higher Hg concentrations in the west than in the east
- Total Hg concentrations are lower in the western Arctic, opposing the biotic Hg distribution
- Contrarily, MeHg concentrations exhibit distinctive subsurface max. between 100-300m
- Subsurface max. depth is inherent with habitat of zooplankton and other lower trophic-level biota thus explaining the biotic Hg concentration gradient
- Understanding the processes that generate and maintain subsurface MeHg are crucial for risk assessments of MeHg to the Arctic marine ecosystem and Indigenous Peoples

Wang, K., Munson, K.M., Beaupré-Laperrière, A. *et al.* Subsurface seawater methylmercury maximum explains biotic mercury concentrations in the Canadian Arctic. *Sci Rep* **8**, 14465 (2018). https://doi.org/10.1038/s41598-018-32760-0

