There is a newer version of the record available.

Published January 18, 2022 | Version v1
Dataset Open

Potential and realized distribution at 30m for Olive tree (Olea europaea) in Europe for 2000 - 2020

  • 1. OpenGeoHub foundation
  • 2. Institute for Geoinformatics, Münster
  • 3. University of Bremen
  • 4. Wageningen University & Research

Description

Probability and uncertainty maps showing the potential and realized distribution for the olive tree (Olea europaea, L.) for Europe from the dataset prepared by Bonannella et al. (2022) and predicted using Ensemble Machine Learning (EML). Potential distribution map cover the period 2018 - 2020; realized distribution cover the period 2000 - 2020, split in the following time periods:

  • 2000 - 2002,
  • 2002 - 2006,
  • 2006 - 2010,
  • 2010 - 2014,
  • 2014 - 2018,
  • 2018 - 2020.

Files are named according to the following naming convention, e.g:

  • veg_olea.europaea_anv.eml_md_30m_0..0cm_2000..2002_eumap_epsg3035_v0.2

with the following fields:

  • theme: e.g. veg,
  • species code: e.g. olea.europaea,
  • species distribution type: e.g. anv (= actual natural vegetation),
  • species estimation method: e.g. eml,
  • species estimation type: e.g. md ( = model deviation),
  • resolution in meters e.g. 30m,
  • reference depths (vertical dimension): e.g. 0..0cm,
  • reference period begin end: e.g. 2000..2002,
  • reference area: e.g. eumap,
  • coordinate system: e.g. epsg3035,
  • data set version: e.g. v0.2.

For each species is then easy to identify probability and uncertainty distribution maps:

  • veg_olea.europaea_anv.eml_md: model uncertainty for realized distribution
  • veg_olea.europaea_anv.eml_p: probability for realized distribution
  • veg_olea.europaea_pnv.eml_md: model uncertainty for potential distribution
  • veg_olea.europaea_pnv.eml_p: probability for potential distribution

Files are provided as Cloud Optimized GeoTIFFs and projected in the Coordinate Reference System ETRS89 / LAEA Europe (= EPSG code 3035). Styling files are provided in both SLD and QML format.

If you would like to know more about the creation of the maps and the modeling:

  • watch the talk at Open Data Science Workshop 2021 (TIB AV-PORTAL)
  • access the repository with our R/Python scripts and follow the instructions (GitLab)
  • access the repository with the training dataset (Zenodo)

A publication describing, in detail, all processing steps, accuracy assessment and general analysis of species distribution maps is under preparation. You can access the preprint on ResearchSquare. To suggest any improvement/fix use https://gitlab.com/geoharmonizer_inea/spatial-layers/-/issues.

Notes

This work is co-financed under Grant Agreement Connecting Europe Facility (CEF) Telecom project 2018-EU-IA-0095 by the European Union (https://ec.europa.eu/inea/en/connecting-europe-facility/cef-telecom/2018-eu-ia-0095).

Files

00-preview_olea.europaea.png

Files (8.0 GB)

Name Size Download all
md5:7544a5012a1d291bd746378d0bb62b4d
1.7 MB Preview Download
md5:76dd630186fa43d5e4c4fe4a3458e4d2
3.0 kB Download
md5:4196033a2e8ade19a65489cde45d22b3
1.3 kB Download
md5:b117f41661ba86bc130adbb94c1b5b7e
1.5 GB Preview Download
md5:a10cbba0af680c8e3136e520195994a5
710.3 MB Preview Download
md5:f7bf2045fb312465a1310fee1e684c1e
433.3 MB Preview Download
md5:0da86c2164d08d9b481e1ce0b6657536
559.0 MB Preview Download
md5:5f45cfdbed6b48d737c24b399bd1e675
512.5 MB Preview Download
md5:99675c07dfca608614ecb4350ad5d17e
986.1 MB Preview Download
md5:1269a551595dc9f0057c17acd856abe5
3.0 kB Download
md5:5b8ab70de57a8bf44feb4adca3af8d13
1.3 kB Download
md5:811469ab58ee32228ca05b80be21e855
942.3 MB Preview Download
md5:3fa23210f1fbab57063b4e8a912ed2b9
335.4 MB Preview Download
md5:e46deb75d850b756438bd3bc54cffd74
162.9 MB Preview Download
md5:c6e2f339763c59ffa3914608cfda95ed
214.7 MB Preview Download
md5:f2b147b03aea69bab4fb91736ea6e11a
187.3 MB Preview Download
md5:829d9caf1223b9af3a2a1bdac524c4b8
476.2 MB Preview Download
md5:76dd630186fa43d5e4c4fe4a3458e4d2
3.0 kB Download
md5:08eeaf671cd59b7550472ce6a245d09c
1.3 kB Download
md5:34a3df273913df0ed2b122fd6dbd4aaf
624.6 MB Preview Download
md5:1269a551595dc9f0057c17acd856abe5
3.0 kB Download
md5:b71898704546a370e446e2138dcacf77
1.3 kB Download
md5:dec3c23006f83b4c98a971671cbed9c9
405.9 MB Preview Download

Additional details

Related works

Is derived from
Dataset: 10.5281/zenodo.5818021 (DOI)