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Abstract—Intelligent reflecting surfaces (IRSs) have emerged
as a promising wireless technology for the dynamic configuration
of electromagnetic waves. In this context, we study a multi-IRS
assisted two-way communication system consisting of two users
that employ full-duplex (FD) technology. More specifically, we
deal with the joint IRS location and size (i.e., the number of
reflecting elements) optimization in order to minimize an upper
bound of system outage probability under various constraints.
First, the problem is formulated as a discrete optimization
problem and, then, a lower bound on the optimum value is
computed by solving a linear-programming relaxation (LPR)
problem. Subsequently, we design a polynomial-time greedy
algorithm based on the LPR solution. The proposed algorithm
always computes a feasible solution for which (a posteriori)
performance guarantee can be provided. Finally, numerical
simulations demonstrate the superiority of the greedy algorithm
compared to a baseline scheme and provide useful comparisons
between FD and conventional half-duplex (HD) systems.

Index Terms—Intelligent reflecting surface (IRS), IRS deploy-
ment, full-duplex (FD) communication, discrete optimization,
linear-programming relaxation, greedy algorithm.

I. INTRODUCTION

Intelligent reflecting surface (IRS) is a planar surface which
is installed on the walls or ceilings of buildings so as to
create virtual line-of-sight (LoS) links between the transmitters
and receivers, thus overcoming the physical obstacles between
them. In particular, IRS consists of passive reflecting elements
that can independently induce a controllable phase shift on
the incident electromagnetic wave [1], [2]. On the other hand,
full-duplex (FD) wireless technology has the potential to
double the spectral efficiency, compared to its half-duplex
(HD) counterpart, by allowing simultaneous transmission and
reception within the same frequency band [3]. Recently, there
is a growing interest in combining IRSs with FD systems in
order to exploit their benefits and advantages [4]–[6].

In addition, the single-IRS deployment problem, where an
access point communicates with multiple users via the IRS,
has been investigated in [7]. Specifically, the weighted sum
rate maximization problem has been formulated and solved
for three different multiple access schemes. Furthermore, the
problem of joint IRS deployment, phase-shift design as well
as power allocation for maximizing the energy efficiency of a
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non-orthogonal multiple access (NOMA) network has been re-
cently formulated and solved using machine learning methods
[8]. As concerns the coverage of an IRS-assisted network with
one base station and one user equipment, [9] has examined
the IRS placement problem to maximize the cell coverage by
optimizing the IRS orientation and horizontal distance from
the base station. Finally, [10], [11] have developed efficient
optimization algorithms for the deployment of ground stations
in satellite networks with site diversity.

Since IRS locations have a great impact on the overall
system performance, their optimization is extremely important
and deserves its own study. The major contributions of this
paper are the following:

• Extension of the IRS system model introduced in [5] to
multi-IRS systems, including not only small-scale fading
but also large-scale path loss. In this way, we exploit the
geometric characteristics of the wireless network.

• Recent works dealing with the IRS deployment often
assume a continuous area for installing an IRS (see,
for example, [7] and [9]). Unlike previous research, in
this article we consider a predetermined and finite set of
available IRS locations, thus taking into account physical
constraints for the IRS positions. This is of great practical
interest, since IRSs are usually installed on the facades,
walls or ceilings of existing buildings.

• Mathematical formulation of a discrete optimization
problem in order to minimize an upper bound of system
outage probability, which is subject to several constraints,
namely, minimum and maximum number of reflecting
elements for each IRS, maximum number of installed
IRSs, maximum total number of reflecting elements and
maximum total IRS installation cost.

• Furthermore, we construct a linear-programming relax-
ation (LPR) so as to lower bound the optimum value.
Then, we develop a greedy algorithm whose key ingredi-
ent is the LPR solution. This algorithm is also guaranteed
to find a feasible solution in polynomial time.

The remainder of this paper is organized as follows. Section
II describes the system model, Section III formulates the
optimization problem, and Section IV develops and analyzes
the proposed algorithm. In addition, Section V presents some
numerical results, while Section VI concludes the paper.



Fig. 1. Multi-IRS system assisting two-way FD communication with recipro-
cal channels and negligible direct link. The set of available IRS locations, N ,
and the set of finally installed IRSs, I, are illustrated by the dashed-outline and
solid-outline rectangles, respectively. In each time-slot, the central controller
activates only one IRS form the set I, while the remaining IRSs are idle.

II. SYSTEM MODEL

In this paper, we deal with a multi-IRS system assisting a
two-way point-to-point (P2P) communication link, as shown
in Fig. 1. In particular, each user equipment (UE) operates in
FD mode and therefore is equipped with either a single shared-
antenna or a pair of separate antennas for signal transmission
and reception, depending on the FD implementation [3]. In
addition, N = {1, . . . , N} represents the set of available
locations for installing an IRS, while I = {i1, . . . , iI} ⊆ N
stands for the set of finally installed IRSs. In each time-slot,
we assume that exactly one IRS from the set I is active and the
remaining IRSs are idle (i.e., non-reflective). UE-1 transmits
its data to UE-2, through the active IRS, and UE-2 transmits
its data to UE-1, through the same IRS, simultaneously (i.e.,
within the same time-slot) and using the same frequency band.
The transmit power of each UE is considered fixed for all time-
slots. Since both UEs suffer from strong loop-interference (LI)
due to the FD operation, they employ the same LI-cancellation
techniques, resulting in residual LI [3].

Moreover, the total UE-to-IRS and IRS-to-UE transmission
time is within a coherence interval of the wireless channel. As
a result, the forward and backward channels between a UE and
an IRS can be regarded almost identical (reciprocal channels)
[5]. Also, the direct link between UEs is considered strongly
attenuated due to severe blockage by physical obstacles (no
direct link). We assume perfect channel state information (CSI)
and global CSI knowledge. Furthermore, there is a central
controller that performs the IRS activation, adjusts the IRS
phase-shifts and communicates the necessary CSI knowledge

between UEs.
Let Ln be the number of reflecting elements of the nth IRS.

The channel coefficient from UE-1 (UE-2) to the `th reflecting
element of the nth IRS is denoted by hn,` = |hn,`| ejϑn,`

(respectively, gn,` = |gn,`| ejψn,` ), for every n ∈ N and
` ∈ Ln = {1, . . . , Ln}. For notational convenience, the
channel coefficients corresponding to the nth IRS can be
grouped in vector form, i.e., hn = [hn,1, . . . , hn,Ln

]> and
gn = [gn,1, . . . , gn,Ln

]>. All channel coefficients are assumed
to be independent and identically distributed (i.i.d.) complex
normal/Gaussian random variables with zero mean and vari-
ance σ2, therefore, |hn,`| , |gn,`| ∼ Rayleigh(σ/

√
2). Also, the

channel coefficients are considered constant within any time-
slot. The diagonal (Ln×Ln) phase-shift matrix of the nth IRS
is given by Φn = diag(ejφn,1 , . . . , ejφn,Ln ).

Under the above assumptions and following a similar ap-
proach with [5], the received signals at UE-1 and UE-2 in
time-slot t (after the LI mitigation), when only the nth IRS is
active, are expressed as follows

y1(t) =
√
P2

√
δn,2δn,1g

>
nΦnhns2(t)

+
√
P1δn,1h

>
nΦnhns1(t) + ξ1(t) + w1(t),

(1)

y2(t) =
√
P1

√
δn,1δn,2h

>
nΦngns1(t)

+
√
P2δn,2g

>
nΦngns2(t) + ξ2(t) + w2(t),

(2)

where Pk, sk(t), ξk(t) and wk(t) are the transmit power,
information symbol, residual LI and additive white Gaussian
noise (AWGN) of UE-k, respectively, for k ∈ {1, 2}. In
addition, δn,k = A0d

−α
n,k accounts for the large-scale path loss

between the nth IRS and UE-k, where A0 is a positive constant
that depends on the carrier frequency, dn,k is their Euclidean
distance, and α is the path-loss exponent which depends on
the wireless propagation environment. Note that, in the above
equations, the first term represents the desired signal, while the
second term is the self-interference (SI) induced by the IRS
reflection of users’ own transmitted symbols. Given that UE-k
has knowledge of Pk, sk(t), δn,k, hn (required for k = 1),
gn (needed for k = 2), and Φn, it can completely remove
the SI. Moreover, the residual LI ξk(t) and AWGN wk(t) are
modeled as independent zero-mean complex Gaussian random
variables with variances σ2

LIk and σ2
wk

, respectively.
For the sake of simplicity, we assume the following: P1 =

P2 = P , E(|s1(t)|2) = E(|s2(t)|2) = 1, σ2
w1

= σ2
w2

= σ2
w and

σ2
LI1 = σ2

LI2 = σ2
LI. Consequently, the instantaneous signal-to-

interference-plus-noise ratio (SINR) at both UEs, after the SI
elimination, when communicating via the nth IRS is given by

γn = ρn

∣∣∣∣∣∑
`∈Ln

|hn,`| |gn,`| ej(φn,`+ϑn,`+ψn,`)

∣∣∣∣∣
2

, (3)

where
ρn =

Pδn
σ2

LI + σ2
w

(4)

with δn = δn,1δn,2 being the overall path-loss between the two
UEs through the nth IRS. This SINR formula is quite similar
to that in [5], except for the total path-loss term δn.



Furthermore, the IRS phase-shifts are optimally designed in
order to maximize the instantaneous SINR, i.e.,

φ?n,` = −ϑn,` − ψn,`, ∀` ∈ Ln = {1, . . . , Ln}. (5)

Note that the IRS phase-shifts are adjusted by the central con-
troller after obtaining the necessary CSI knowledge (channel
coefficients’ phases) from the UE that performs the channel
estimation. Therefore, the maximum SINR at both UEs (when
communicating via the nth IRS) is written as follows

γ?n = ρn

(∑
`∈Ln

|hn,`| |gn,`|

)2

= ρnζ
2
n, (6)

where ζn =
∑
`∈Ln

ζn,`, with ζn,` = |hn,`| |gn,`| ≥ 0,
∀` ∈ Ln. Observe that the Rayleigh-product random variables
{ζn,`}`∈Ln

are i.i.d. and, according to [5], the cumulative
distribution function (CDF) of each one can be expressed as

F (u) , Pr(ζn,` ≤ u) = 1− 2u

σ2
K1

(
2u

σ2

)
, ∀u ≥ 0, (7)

where Kν(·) is the modified Bessel function of the second
kind of order ν.

In addition, given an SINR threshold γth, the outage prob-
ability of each UE, defined as Pout,n(Ln) , Pr(γ?n ≤ γth) =
Pr(ζn ≤

√
γth/ρn), can be approximated by the CDF of the

Gamma distribution [5]. Despite being very useful for per-
formance analysis, this approximation is not flexible enough
for optimization purposes. Nevertheless, in order to achieve
mathematical tractability, we can construct an upper bound of
outage probability as follows

Pout,n(Ln) = Pr

(∑
`∈Ln

ζn,` ≤
√
γth/ρn

)
(a)
≤ Pr

(
max
`∈Ln

{ζn,`} ≤
√
γth/ρn

)
= Pr

( ⋂
`∈Ln

{ζn,` ≤
√
γth/ρn}

)
(b)
=
∏
`∈Ln

Pr(ζn,` ≤
√
γth/ρn)

(c)
=
[
F (
√
γth/ρn)

]Ln

, P out,n(Ln),

(8)

where inequality (a) is due to the fact that
∑
`∈Ln

ζn,` ≥
max`∈Ln{ζn,`}, while equalities (b) and (c) follows from the
independence of {ζn,`}`∈Ln and (7), respectively.

A. IRS Activation Policy

As we mentioned earlier, exactly one IRS is activated in
each time-slot by the central controller, while the remaining
IRSs are inactive. In particular, the central controller activates
the IRS that achieves the maximum (instantaneous) SINR at
UEs among the installed IRSs, that is,

i? ∈ arg max
i∈I

{γ?i } ⇔ γ?i? = max
i∈I
{γ?i }, (9)

where γ?i is given by (6).

B. Upper Bound of System Outage Probability

Based on the aforementioned IRS activation strategy, the
system outage probability can be computed as follows

Pout(I,L) , Pr(γ?i? ≤ γth)
(d)
= Pr

(
max
i∈I
{γ?i } ≤ γth

)
= Pr

(⋂
i∈I
{γ?i ≤ γth}

)
(e)
=
∏
i∈I

Pr(γ?i ≤ γth)

(f)
=
∏
i∈I

Pout,i(Li),

(10)

where L = [L1, . . . , LN ]> and γth is the SINR threshold.
Equalities (d), (e) and (f) follow from (9), the independence
of {γ?i }i∈I (due to the independence of {ζi}i∈I) and the
definition of Pout,i(Li) , Pr(γ?i ≤ γth), respectively.

Afterwards, by combining (10) with (8), we obtain the
following upper bound of system outage probability

Pout(I,L) ≤
∏
i∈I

[
F (
√
γth/ρi)

]Li

, P out(I,L). (11)

C. IRS Installation Cost Model

We model the installation cost of IRS n ∈ N as an affine
function of the number of reflecting elements, that is,

Cn(Ln) = cn + λnLn, (12)

where cn ≥ 0 is the fixed deployment cost and λn ≥ 0
is the cost rate (measured in cost-units per element) of the
corresponding IRS. In addition, the total installation cost is
defined as the sum of the costs of all IRSs in the set I, i.e.,

Ctot(I,L) =
∑
i∈I

Ci(Li) =
∑
i∈I

(ci + λiLi). (13)

III. OPTIMIZATION PROBLEM FORMULATION

In this section, we study the minimization of system out-
age probability under various constraints. More precisely, we
minimize the upper bound P out(I,L) given by (11) instead of
Pout(I,L) in (10); this is done for mathematical tractability
when constructing a relaxation problem. In addition, the IRS
deployment problem consists of two components, namely, the
selection of locations for installing IRSs and the determination
of IRS sizes. Herein, we consider a predetermined and finite
set of available IRS locations.

In this context, the joint IRS location and size optimization
problem is formulated as follows

min
I,L

P out(I,L) ,
∏
i∈I

[
F (
√
γth/ρi)

]Li

(14a)

s.t. I ⊆ N (14b)

Ln ∈ {Lmin
n , . . . , Lmax

n }, ∀n ∈ N (14c)
|I| ≤M (14d)

Ltot(I,L) ,
∑
i∈I

Li ≤ Lmax
tot (14e)

Ctot(I,L) ,
∑
i∈I

(ci + λiLi) ≤ Cmax
tot , (14f)



where Lmin
n , Lmax

n ≥ 0 are the minimum and maximum num-
ber of reflecting elements of the nth IRS, respectively (with
Lmin
n ≤ Lmax

n ). For example, in a specific location/building
there are some limitations on the area (dimensions) that an IRS
can occupy. Also, M ∈ {0, 1, . . . , N} is the maximum number
of installed IRSs, resulting in an IRS-cardinality constraint.
Finally, Lmax

tot , Cmax
tot ≥ 0 denote the maximum total number

of reflecting elements and the maximum total IRS installation
cost, respectively. Note that constraint (14e) implicitly imposes
an upper bound on the overall signaling overhead, which is
required for IRS activation and phase adjustments.

Now, let us introduce a vector of binary (0/1) variables
x = [x1, . . . , xN ]> such that, for all n ∈ N , xn = 1 if and
only if (iff) n ∈ I. Subsequently, the set I is replaced by the
vector x in all functions that contained it with a slight abuse
of notation. With these in mind, we can make the following

observations:1 1) P out(I,L) =
∏
n∈N

[
F (
√
γth/ρn)

]xnLn

,
2) |I| =

∑
n∈N xn, 3) Ltot(I,L) =

∑
n∈N xnLn and 4)

Ctot(I,L) =
∑
n∈N (cn + λnLn)xn. Therefore, problem (14)

can be written as follows

min
x,L

P out(x,L) ,
∏
n∈N

[
F (
√
γth/ρn)

]xnLn

(15a)

s.t. xn ∈ {0, 1}, ∀n ∈ N (15b)

Ln ∈ {Lmin
n , . . . , Lmax

n }, ∀n ∈ N (15c)∑
n∈N

xn ≤M (15d)

Ltot(x,L) ,
∑
n∈N

xnLn ≤ Lmax
tot (15e)

Ctot(x,L) ,
∑
n∈N

(cn + λnLn)xn ≤ Cmax
tot , (15f)

where x, L are the decision/optimization variables. Since
log(·) is a monotonically increasing function, we can replace
P out(x,L) with its logarithm, without altering the set of
optimal solutions. Hence, we obtain the equivalent discrete
optimization problem

min
x,L

G(x,L) , log
(
P out(x,L)

)
=
∑
n∈N

βn(xnLn) (16a)

s.t. xn ∈ {0, 1}, ∀n ∈ N (16b)

Ln ∈ {Lmin
n , . . . , Lmax

n }, ∀n ∈ N (16c)∑
n∈N

xn ≤M (16d)∑
n∈N

xnLn ≤ Lmax
tot (16e)∑

n∈N
cnxn +

∑
n∈N

λn(xnLn) ≤ Cmax
tot , (16f)

where βn = log
(
F (
√
γth/ρn)

)
≤ 0 for all n ∈ N . Let

G? be the global minimum of (16). Due to its discrete (and,

1In order to avoid the undefined quantity 00, we assume that

Pout,n(Ln) > 0, which implies
[
F (

√
γth/ρn)

]Ln
> 0, for all n ∈ N .

thus, nonconvex) structure, this problem is rather unlikely to be
globally solved in polynomial time. Note that the brute-force
exhaustive search is impractical because of its extremely high
(exponential) complexity.

Remark 1 (Feasibility): Problem (16) is always feasible,
since the solution (x,L) = (0N ,L

min), where 0N is the
N -dimensional zero vector and Lmin = [Lmin

1 , . . . , Lmin
N ]>,

satisfies all constraints.

IV. LPR-BASED GREEDY ALGORITHM

Despite the difficulty of computing the global minimum
of (16), we will show how to efficiently compute a lower
bound of G?. Firstly, by using auxiliary decision variables
z = [z1, . . . , zN ]>, problem (16) can be equivalently written
in the following form

min
x,L,z

∑
n∈N

βnzn (17a)

s.t. xn ∈ {0, 1}, ∀n ∈ N (17b)

Ln ∈ {Lmin
n , . . . , Lmax

n }, ∀n ∈ N (17c)
zn = xnLn, ∀n ∈ N (17d)∑
n∈N

xn ≤M (17e)∑
n∈N

zn ≤ Lmax
tot (17f)∑

n∈N
cnxn +

∑
n∈N

λnzn ≤ Cmax
tot . (17g)

Secondly, by relaxing the integer/discrete constraints,
xn ∈ {0, 1} and Ln ∈ {Lmin

n , . . . , Lmax
n }, we have

min
x,L,z

∑
n∈N

βnzn (18a)

s.t. 0 ≤ xn ≤ 1, ∀n ∈ N (18b)

Lmin
n ≤ Ln ≤ Lmax

n , ∀n ∈ N (18c)
zn = xnLn, ∀n ∈ N (18d)∑
n∈N

xn ≤M (18e)∑
n∈N

zn ≤ Lmax
tot (18f)∑

n∈N
cnxn +

∑
n∈N

λnzn ≤ Cmax
tot . (18g)

Notice that this problem is nonlinear due to the equality
constraints zn = xnLn. In order to obtain a linear problem,
we apply further relaxation by replacing the set of constraints
Lmin
n ≤ Ln ≤ Lmax

n and zn = xnLn with the linear
constraints Lmin

n xn ≤ zn ≤ Lmax
n xn. In this way, we can



remove the decision variable L and formulate the following
linear-programming relaxation (LPR) problem

min
x,z

∑
n∈N

βnzn (19a)

s.t. 0 ≤ xn ≤ 1, ∀n ∈ N (19b)

Lmin
n xn ≤ zn ≤ Lmax

n xn, ∀n ∈ N (19c)∑
n∈N

xn ≤M (19d)∑
n∈N

zn ≤ Lmax
tot (19e)∑

n∈N
cnxn +

∑
n∈N

λnzn ≤ Cmax
tot . (19f)

Note that the guaranteed feasibility of (16) (see Remark 1)
implies the feasibility of (17), (18) and (19). In what follows,
(x†, z†) and G† =

∑
n∈N βnz

†
n denote an optimal solution

and the global minimum of (19), respectively. Obviously,
G† ≤ G?, that is, G† is a lower bound of G?.

Finally, given that (19) has V = 2N = Θ(N) decision vari-
ables and U = 4N+3 = Θ(N) constraints, a globally optimal
solution can be computed in O((U + V )1.5V 2) = O(N3.5)
time using an interior-point method [12].

Algorithm 1 LPR-based Greedy Algorithm (LPR-GA)
Input: N , β = [β1, . . . , βN ]>, Lmin = [Lmin

1 , . . . , Lmin
N ]>,

Lmax = [Lmax
1 , . . . , Lmax

N ]>, M , Lmax
tot , c = [c1, . . . , cN ]>,

λ = [λ1, . . . , λN ]>, Cmax
tot

Output: A feasible solution (x′,L′) of discrete problem (16)
1: Solve the LPR problem (19) to obtain an optimal

solution (x†, z†).
2: . Computation of L′ = [L′

1, . . . , L
′
N ]>

3: for all n ∈ N do
4: if x†n 6= 0 then
5: L′

n := round
(
z†n/x

†
n

)
6: else
7: L′

n := round
(
1
2
(Lmin

n + Lmax
n )

)
8: end if
9: end for

10: . Computation of x′ = [x′1, . . . , x
′
N ]>

11: Sort the entries of x† in descending order. Let
(σ1, . . . , σN ) ∈ ΣN be their order after sorting, where
ΣN is the set of all permutations of N , therefore
x†σ1 ≥ · · · ≥ x

†
σN .

12: m := 1, Ltot := 0, Ctot := 0, x′ := 0N
13: while (m ≤M) ∧ (Ltot ≤ Lmax

tot ) ∧ (Ctot ≤ Cmax
tot ) do

14: i := σm, x′i := 1
15: Ltot := Ltot + L′

i, Ctot := Ctot + ci + λiL
′
i

16: m := m+ 1
17: end while
18: if (Ltot > Lmax

tot ) ∨ (Ctot > Cmax
tot ) then

19: x′i := 0
20: end if
21: return (x′,L′)

Now, we are ready to develop a greedy algorithm of poly-
nomial complexity to obtain a feasible solution for problem
(16). This procedure is given in Algorithm 1 and is called
LPR-based greedy algorithm (LPR-GA). First, the proposed

algorithm applies deterministic rounding, using the solution
of LPR, to compute the decision variable L′ (lines 3–9), i.e.,

L′n =

{
round

(
z†n/x

†
n

)
, if x†n 6= 0

round
(
1
2 (Lmin

n + Lmax
n )

)
, otherwise

, ∀n ∈ N ,

(20)
where round(y) = by + 0.5c. Observe that, if x†n 6= 0,
then Lmin

n ≤ z†n/x
†
n ≤ Lmax

n (due to the feasibility of LPR
problem) and therefore round

(
z†n/x

†
n

)
∈ {Lmin

n , . . . , Lmax
n }.

Also, the same holds for round
(
1
2 (Lmin

n + Lmax
n )

)
in case

of x†n = 0. In other words, the above deterministic rounding
guarantees that L′n ∈ {Lmin

n , . . . , Lmax
n } for all n ∈ N .

Concerning the computation of x′, the proposed algorithm
sorts the entries of x† ∈ [0, 1]N in descending order (line
11). Then, by starting from the zero vector, it successively
selects IRS locations (based on their sorting) until the vi-
olation of at least one of the constraints:

∑
n∈N xn ≤ M ,

Ltot(x,L) ≤ Lmax
tot and Ctot(x,L) ≤ Cmax

tot (lines 12–17). Fi-
nally, it removes the last selected IRS location if Ltot > Lmax

tot
or Ctot > Cmax

tot (lines 18–20); note that the IRS-cardinality
constraint is automatically satisfied due to the construction of
the while-loop, so there is no need to check it in line 18.

Obviously, the solution (x′,L′) returned by Algorithm 1 is
guaranteed to be feasible for problem (16), thus G? ≤ G′ ,
G(x′,L′), i.e., G′ is an upper bound of G?.

Remark 2 (A posteriori performance guarantee): It is pos-
sible to provide an approximation guarantee after the termi-
nation of Algorithm 1, using the already obtained solution of
LPR, as follows: 0 ≤ G′ −G? ≤ G′ −G†.

Regarding the complexity of Algorithm 1, the LPR prob-
lem can be solved in O(N3.5) time, the computation of L′

requires Θ(N) time, while the computation of x′ requires
O(N logN + N) = O(N logN) arithmetic operations in
total. Hence, the overall complexity of LPR-GA is O(N3.5 +
N + N logN) = O(N3.5). In other words, it has the same
asymptotic complexity (up to a constant) as the LPR problem.

V. NUMERICAL RESULTS

In this section, we generate random system configurations,
where UE-1 and UE-2 are constantly located at (0, 0) and
(100, 0), respectively, while each IRS location is uniformly
distributed either inside the rectangle [30, 70] × [20, 40] or
[30, 70] × [−40,−20], with probability 1/2 of being in each
rectangle. The remaining system parameters are the following:
P = 25 dBm, σ2 = 1, σ2

w = −80 dBm, path-loss model
with {A0 = 1, α = 2.7}, N = 25, M = 7, Lmax

tot = 250,
Lmin
n = Lmin = 5, Lmax

n = Lmax = 40, cn ∼ Uniform[1, 5],
λn ∼ Uniform[0.1, 0.5] for all n ∈ N . Note that, for a given
problem, the IRS locations and {cn, λn}n∈N are all fixed
(the randomization is only used for problem generation). In
addition, all figures present average values obtained from 103

independent simulation scenarios.
In order to evaluate the performance of LPR-GA, we

consider (besides LPR) a baseline scheme, namely, Average-
element greedy algorithm (AEGA), which is described as
follows. First, Ln is set equal to Lavg

n ,
⌈
1
2 (Lmin

n + Lmax
n )

⌉
∈



Fig. 2. Upper bound of system outage probability versus the maximum total
IRS installation cost, for γth = 8 dB and σ2

LI = −70 dBm.

{Lmin
n , . . . , Lmax

n } for all n ∈ N . Then, we sort the IRS
locations in ascending order in terms of the product βnL

avg
n

(≤ 0). Let (σ1, . . . , σN ) ∈ ΣN be the order of IRS locations
after sorting, where ΣN is the set of all permutations of N ,
therefore βσ1

Lavg
σ1 ≤ · · · ≤ βσN

Lavg
σN . Finally, AEGA follows

the steps 12–20 of Algorithm 1 to compute the binary vector
x. This method finds a feasible solution with computational
complexity O(N logN) because of the sorting procedure.

Fig. 2 shows the upper bound of system outage probability,
against the maximum total IRS installation cost, achieved by
AEGA, LPR and LPR-GA. As expected, the outage proba-
bility is a nonincreasing function of Cmax

tot for all algorithms,
since larger Cmax

tot translates to a less restricted feasible set.
Furthermore, the proposed algorithm achieves much higher
performance than the benchmark. It is interesting to observe
that the LPR-GA remains very close to the lower bound (and,
therefore, to the global minimum) for all values of Cmax

tot .
As concerns the comparison between FD and HD wireless

technologies, we study how the residual-LI power affects the
system outage probability.2 Based on Fig. 3, it is obvious
that LPR-GA significantly outperforms the baseline scheme,
not only in FD but also in HD scenario. Moreover, for the
FD scheme, the upper bound of system outage probability
increases rapidly with the residual-LI power. Finally, FD
performs better than HD system when σ2

LI is approximately
less than −70.4 dBm, whereas HD is preferable when σ2

LI
is greater than −70.4 dBm (regardless of the comparison
algorithm). In other words, FD is more beneficial than HD
technology, provided that the LI is sufficiently suppressed.

VI. CONCLUSION

In this paper, we have dealt with the minimization of outage
probability in a FD system assisted by multiple IRSs. In

2For the HD scheme, where each UE is equipped with a single antenna,
we should replace ρn in (4) with ρHD

n = Pδn/σ2
w (since σ2

LI = 0) and also
γth with γHD

th = (1 + γth)
2 − 1, which is obtained by equating the spectral

efficiencies of the two schemes, i.e., log(1 + γth) = 1
2
log(1 + γHD

th ). The
latter replacement is made for fair comparison between FD and HD scenarios
in terms of outage probability.

Fig. 3. Upper bound of system outage probability versus the residual-LI
power at each UE, for γth = 9 dB and Cmax

tot = 75.

particular, we have transformed the joint IRS location and size
optimization problem into a discrete problem and developed
an efficient greedy algorithm to find a near-optimal solution.
Moreover, we have observed that FD outperforms HD scheme,
provided that the LI at each UE is adequately mitigated.
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