Global Surveillance Networks and International Health Regulations in the Early Detection and Control of Epidemics
Creators
- 1. Department of Infectious Disease and Clinical Microbiology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey.
Description
Özet
Bulaşıcı hastalık tehditlerine karşı bir siper olmak üzere dünyada ayrıntılı bir küresel sağlık sistemi geliştirilmiştir. Sistem, farklı paydaşlara hizmet eden çeşitli resmi ve gayri resmi kuruluş ağlarından oluşur. Bu ağ farklı amaçlara, yöntemlere, kaynaklara ve hesap verebilirliğe sahip; farklı etki alanlarında (yerel, ulusal, bölgesel veya küresel düzeyde) faaliyet gösteren kamu kuruluşları, kâr amaçlı ve kâr amacı gütmeyen özel sektör kuruluşlarından oluşmaktadır. Mevcut küresel sağlık sistemi, insan sağlığını korumak ve iyileştirmek için önemli çalışmalar gerçekleştirmiştir. Bununla birlikte, dünya uzun süredir devam eden ve yeni ortaya çıkan veya yeniden önem kazanan bulaşıcı hastalık tehditleriyle karşı karşıya kalmaya devam etmektedir. Bu tehditler, ciddiyet durumu ve risk ihtimalleri açısından büyük farklılıklar göstermekte ve her biri için ayrı mücadele dinamikleri gerekmektedir. Ayrıca, hastalık ve ölüm oranlarında olduğu gibi, bu enfeksiyonların farklılaşan bir dizi karmaşık sosyal ve ekonomik etkileri ve sonuçları da söz konusudur. Mevcut haliyle küresel sağlık sisteminin halihazırdaki bir dizi bulaşıcı hastalık tehdidine karşı etkili koruma sağlayıp sağlayamayacağı tartışılmaktadır. Son zamanlarda ortaya çıkan Ebola, Zika, dang humması, Şiddetli Akut Solunum Sendromu (SARS), Orta Doğu Solunum Sendromu (MERS), COVID-19, grip salgınları ve artan antimikrobiyal direnç tehdidi nedeniyle bu sistem ciddi sınavlar vermektedir. Zayıf sağlık sistemleri, şehirleşme, küreselleşme, iklim değişikliği, iç savaşlar ve çatışmalar ve insan ve hayvan popülasyonları arasında patojen bulaşmasının değişen doğası, bazı riskli bölgelerdeki kontrolsüz nüfus artışı mevcut endişeleri gün geçtikçe daha da artırmaktadır. Laboratuvar kazalarından veya kasıtlı biyolojik saldırılardan kaynaklanan insan kaynaklı salgınlar ise diğer potansiyel riskler olarak değerlendirilmekte ve uluslararası iş birliği ve koordinasyonu önemli kılmaktadır. Uluslararası epidemiyolojik sürveyans sistemleri ve uluslararası sağlık tüzüğü düzenlemeleri bulaşıcı hastalıkların salgın boyutlarına ulaşmasını önlemede ve küresel riskleri en aza indirgemede kritik önem taşıyan erken müdahale uygulamaları ve araçları olarak etki alanlarını genişletirken, erken uyarı sürveyans sistemlerinin etkinliği yeni teknolojilerin de kullanılması ile geliştirilmektedir.
Abstract
An elaborate global health system has been developed around the world as a bulwark against infectious disease threats. The system consists of various networks of formal and informal organizations serving different stakeholders. This network has different purposes, methods, resources and accountability; it consists of public institutions operating in different fields of influence (at local, national, regional or global level), profit-oriented and non-profit private sector organizations. The current global health system has done important work to protect and improve human health. However, the world continues to face long-standing and emerging or re-emerging infectious disease threats. These threats vary greatly in severity and probability of risk, and each requires separate struggle dynamics. In addition, as with morbidity and mortality rates, these infections have many complex social and economic effects and consequences that differ. It is discussed whether the global health system with its current situation can provide effective protection against a number of communicable disease threats. Due to the recent emerging threats of Ebola, Zika, dengue fever, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), COVID-19, and influenza epidemics, and the increasing threat of antimicrobial resistance, this system is being put to the test. Weak health systems, urbanization, globalization, climate change, civil wars and conflicts, and the changing nature of pathogen transmission between human and animal populations, uncontrolled population growth in some risk areas aggravate current concerns. "Human-induced outbreaks resulting from laboratory accidents" or deliberate biological attacks are considered as other potential risks, making international cooperation and coordination important. International epidemiological surveillance systems and international health regulation coverage are expanding their scope as early intervention practices and tools that are critical in preventing infectious diseases from reaching epidemic levels and minimizing global risks. Also, the effectiveness of early warning surveillance systems is being improved with the use of new technologies.
Notes
Files
lms.2022.12.z.pdf
Files
(549.1 kB)
Name | Size | Download all |
---|---|---|
md5:e8a1a38fe4475a5ae310424f29fff871
|
549.1 kB | Preview Download |
Additional details
References
- 1. Connolly MA, Heymann DL. Deadly comrades: war and infectious diseases. Lancet 2002; 360 Suppl: s23-4.
- 2. Graversen VK, Hamichi SE, Gold A, Murray TG. History through the eyes of a pandemic. Curr Opin Ophthalmol 2020; 31(6): 538-48.
- 3. Peset JL. Plagues and Diseases in History. In: Wright JD (ed), International Encyclopedia of the Social & Behavioral Sciences (2nd edition). 2015, Elsevier. pp:174-9.
- 4. Henderson DA. The eradication of smallpox--an overview of the past, present, and future. Vaccine 2011; 29 Suppl 4: D7-9.
- 5. Krammer F. SARS-CoV-2 vaccines in development. Nature 2020; 586(7830): 516-27.
- 6. Nehme M, Stringhini S, Guessous I, SEROCoV-Pop Study Team. Perceptions of immunity and vaccination certificates among the general population: a nested study within a serosurvey of anti-SARS-CoV-2 antibodies (SEROCoV-POP). Swiss Med Wkly 2020; 150: w20398.
- 7. Behbehani AM. The smallpox story: life and death of an old disease. Microbiol Rev 1983; 47(4): 455-509.
- 8. Reperant LA, Osterhaus ADME. AIDS, Avian flu, SARS, MERS, Ebola, Zika… what next? Vaccine 2017; 35(35 Pt A): 4470-4.
- 9. Bloom DE, Cadarette D. Infectious Disease Threats in the Twenty-First Century: Strengthening the Global Response. Front Immunol 2019; 10: 549.
- 10. Zhukova A, Blassel L, Lemoine F, Morel M, Voznica J, Gascuel O. Origin, evolution and global spread of SARS-CoV-2. C R Biol 2020 [Epub ahead of print]
- 11. Smith KF, Goldberg M, Rosenthal S, Carlson L, Chen J, Chen C, et al. Global rise in human infectious disease outbreaks. J R Soc Interface 2014; 11(101): 20140950.
- 12. World Health Organization (WHO), Geneva, Switzerland. WHO Coronavirus Disease (COVID-19) Dashboard. Available at: https://covid19.who.int/ [Accessed January 10, 2022].
- 13. Lazcano-Ponce E, Allen B, González CC. The contribution of international agencies to the control of communicable diseases. Arch Med Res 2005; 36(6): 731-8.
- 14. World Health Organization (WHO), Geneva, Switzerland. Communicable Diseases. Available at: https://www.who.int/about/structure/organigram/htm/en/ [Accessed April 11, 2021].
- 15. Raviglione M, Maher D. Ending infectious diseases in the era of the Sustainable Development Goals. Porto Biomed J 2017; 2(5): 140-2.
- 16. Christaki E. New technologies in predicting, preventing and controlling emerging infectious diseases. Virulence 2015; 6(6): 558-65.
- 17. Rolland C, Lazarus C, Giese C, Monate B, Travert AS, Salomon J. Early Detection of Public Health Emergencies of International Concern through Undiagnosed Disease Reports in ProMED-Mail. Emerg Infect Dis 2020; 26(2): 336-9.
- 18. Mykhalovskiy E, Weir L. The Global Public Health Intelligence Network and early warning outbreak detection: a Canadian contribution to global public health. Can J Public Health 2006; 97(1): 42-4.
- 19. Şahiner F, Ardıç N. An Update on Ebolavirus Epidemiology and Experimental Modalities. Dis Mol Med 2016; 4(4): 43-50.
- 20. Hoşbul T, Şahiner F. Genomic and Biologic Characteristics of SARS-CoV-2 and Other Coronaviruses. J Mol Virol Immunol 2020; 1(1): 18-29.
- 21. Raoult D, Zumla A, Locatelli F, Ippolito G, Kroemer G. Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses. Cell Stress 2020; 4(4): 66-75.
- 22. Sümbül HE, Şahiner F. Rapid Spreading of SARS-CoV-2 Infection and Risk Factors: Epidemiological, Immunological and Virological Aspects. J Mol Virol Immunol 2020; 1(2): 36-50.
- 23. Institute of Medicine (US) Forum on Microbial Threats. Global Infectious Disease Surveillance and Detection: Assessing the Challenges, 1st ed. Washington, National Academies Press, 2007: 107-57.
- 24. Akkurt SS. Kişisel Sağlık Verilerinin İşlenmesine ve Covid19 Pandemisi Sürecinde Mobil Uygulamalarla Paylaşılmasına Hukukî Bir Bakış. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi 2020; 2 (Covid-19 Özel Ek): 142-160.
- 25. Marsh R, Pilkington P, Rice L. A guide to architecture for the public health workforce. Public Health 2020; 178: 120-3.
- 26. Durrheim DN, Andrus JK. The ethical case for global measles eradication-justice and the Rule of Rescue. Int Health 2020; 12(5): 375-7.
- 27. World Health Organization (WHO), Geneva, Switzerland. International Health Regulations (2005). Available at: https://www.who.int/publications/i/item/9789241580410. [Accessed April 11, 2021].
- 28. Davies SE. Infectious Disease Outbreak Response: Mind the Rights Gap. Med Law Rev 2017; 25(2): 270-92.
- 29. United Nations Office for the Coordination of Humanitarian Affairs (OCHA), UN, New York, USA. Report of the High-Level Panel on the Global Response to Health Crises (25 January 2016). Available at: http://reliefweb.int/sites/reliefweb.int/files/resources/2016-02-05_Final_Report_Global_Response_to_Health_Crises.pdf. [Accessed April 11, 2021].
- 30. Wong MC, Huang J, Wong SH, Yuen-Chun Teoh J. The potential effectiveness of the WHO International Health Regulations capacity requirements on control of the COVID-19 pandemic: a cross-sectional study of 114 countries. J R Soc Med 2021; 114(3): 121-31.
- 31. Güner Ö, Buzgan T. The First Three Months of the COVID-19 Pandemic: The World Health Organization's Response. J Mol Virol Immunol 2021; 2(3): 86-101.