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Abstract

Motivation: The activity of the adaptive immune system is governed by T-cells and their specific T-cell receptors
(TCR), which selectively recognize foreign antigens. Recent advances in experimental techniques have enabled
sequencing of TCRs and their antigenic targets (epitopes), allowing to research the missing link between TCR se-
quence and epitope binding specificity. Scarcity of data and a large sequence space make this task challenging, and
to date only models limited to a small set of epitopes have achieved good performance. Here, we establish a k-near-
est-neighbor (K-NN) classifier as a strong baseline and then propose Tcr epITope bimodal Attention Networks
(TITAN), a bimodal neural network that explicitly encodes both TCR sequences and epitopes to enable the independ-
ent study of generalization capabilities to unseen TCRs and/or epitopes.

Results: By encoding epitopes at the atomic level with SMILES sequences, we leverage transfer learning and data
augmentation to enrich the input data space and boost performance. TITAN achieves high performance in the pre-
diction of specificity of unseen TCRs (ROC-AUC 0.87 in 10-fold CV) and surpasses the results of the current state-of-
the-art (ImRex) by a large margin. Notably, our Levenshtein-based K-NN classifier also exhibits competitive perform-
ance on unseen TCRs. While the generalization to unseen epitopes remains challenging, we report two major break-
throughs. First, by dissecting the attention heatmaps, we demonstrate that the sparsity of available epitope data
favors an implicit treatment of epitopes as classes. This may be a general problem that limits unseen epitope per-
formance for sufficiently complex models. Second, we show that TITAN nevertheless exhibits significantly improved
performance on unseen epitopes and is capable of focusing attention on chemically meaningful molecular
structures.

Availability and implementation: The code as well as the dataset used in this study is publicly available at https://
github.com/PaccMann/TITAN.

Contact: wbr@zurich.ibm.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

T-cells are an integral part of the adaptive immune system, whose
survival, proliferation, activation and function are all governed by
the interaction of their T-cell receptor (TCR) with immunogenic
peptides (epitopes) presented on major histocompatibility complex
molecules (MHC). A large repertoire of T-cell receptors with differ-
ent specificity is needed to provide protection against a wide range
of pathogens. This repertoire is generated using stochastic gene re-
combination and can theoretically produce diversities of 1015–1020

different receptors (Laydon et al., 2015) in an individual, each with
unique binding capabilities. Due to this diversity, reliably predicting
the binding specificity of a TCR from its sequence and understand-
ing the mechanisms underlying TCR–pMHC interaction is highly
challenging. At the same time, it has enormous potential to

transform the field of immunology. A reliable prediction tool could
unlock the wealth of information encoded in a patients’ TCR reper-
toire, which reflects their immune history and could inform about
past and current infectious diseases, vaccine effectiveness or auto-
immune reactions. Additionally, it could empower the application
of therapeutic T-cells for cancer treatment, allowing the study of ef-
fectiveness and potential cross-reactivity risks in silico.

Recent advances in high-throughput sequencing techniques have
led to the generation of an increasing amount of datasets linking
TCR sequences to the epitopes they bind. However, the available
data is still extremely sparse compared to the high dimensionality of
the search space created by the TCR theoretical diversity. Moreover,
current experimental settings typically link many TCRs to a single
epitope, which leads to datasets that contain information about tens
of thousands of TCRs, but only a few hundred different epitopes.
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Nevertheless, several studies have attempted the prediction of
TCR specificity from sequence using machine learning (for a review
see Mösch et al., 2019). The most successful approaches so far are
categorical epitope models, which exploit the relative abundance of
TCR sequences to learn patterns of TCRs binding to the same epi-
tope. Various machine learning concepts were applied to this task,
including decision trees (De Neuter et al., 2018; Gielis et al., 2019),
a range of different clustering approaches (Dash et al., 2017;
Glanville et al., 2017; Jokinen et al., 2019) and Variational
Autoencoders (Sidhom et al., 2021). Many of these can successfully
predict which one of a small set of epitopes a given TCR will most
likely bind to. However, these approaches are inherently incapable
of predicting specificity to epitopes not contained in the training set
(unseen epitopes), which fundamentally limits their applicability.

The next milestone toward this challenging goal are generic
models, which explicitly encode both the TCRs and the epitopes.
These have the potential to predict binding of any TCR–epitope
pair, opening the door to the development of models that can gener-
alize to both, unseen TCRs and epitopes. Current models show
moderate performance on test data containing epitopes already
encountered in training, but cannot extrapolate to unseen epitopes
(Jurtz et al., 2018; Moris et al., 2020; Springer et al., 2019).

Tcr epITope bimodal Attention Networks (TITAN) exploits a
bimodal neural network architecture to explicitly encode both TCR
and epitope sequences. More specifically, TITAN uses convolutions
to aggregate local information and fuses the modalities, using an in-
terpretable attention mechanism from which binding probabilities
are predicted.

Since interpretability is paramount in healthcare applications
of machine learning, the use of context attention is central to our
model, as it allows us to explain the choices of the algorithm and
to analyze which amino acids or even atoms the model focuses
on. These highlighted entities can be interpreted in the context of
the underlying biochemical processes. We explore different encod-
ing strategies for the epitopes such as SMILES (Weininger et al.,
1989), a string-based, atom-level representation of molecules.
SMILES are ubiquitously utilized in chemoinformatics for a wide
range of applications, from predicting the chemical or pharmaco-
logical properties of molecules (Goh et al., 2017; Manica et al.,
2019; Schwaller et al., 2018) to generative modeling (Gómez-
Bombarelli et al., 2018). Using SMILES effectively results in a re-
formulation of the TCR–epitope binding problem as the more
general compound protein interaction (CPI) task, thus enabling
the usage of large databases of protein-ligand binding affinity for
pretraining, e.g. BindingDB including >1 M labeled samples
(Gilson et al., 2016).

2 Materials and methods

2.1 Data
In order to assemble a larger and more diverse dataset, we combine
data collected in the VDJ database (Bagaev et al., 2020) with a re-
cently published COVID-19 specific dataset published by the
ImmuneCODE project (Dines et al., 2020). Since paired chain data
is still rare, we restrict ourselves to TCRb chain sequences.

We use all human TCRb sequences downloaded from the VDJ
database (December 7, 2020), i.e. 40 438 TCR sequences assigned
to 191 peptides. Since this dataset is highly imbalanced, we exclude
epitopes with less than 15 associated TCR sequences and downsam-
ple to a limit of 400 TCRs per epitope. After these preprocessing
steps, we are left with a dataset of 10 599 examples on 87 epitopes.
We refer to this dataset as VDJ.

The COVID-19 dataset (published July 25, 2020) originally con-
tained 154 320 examples associated with 269 different epitopes or
groups of epitopes. To avoid ambiguity, we keep only samples asso-
ciated with a single unique epitope and exclude unproductive
sequences. Then we apply the same preprocessing steps as for the
VDJ dataset, downsampling to 400 TCRs/epitope and excluding
epitopes with less than 15 associated TCRs to arrive at a dataset of
12 996 examples.

We refer to the combined dataset with samples from VDJ and
the COVID-19 dataset as VDJþCOVID-19.

Since these primary datasets contain only positive examples, we
need to generate negative data. This can be achieved by shuffling the
sequences, thereby associating TCRs with epitopes that they have
not been shown to bind. Due to the low probability of a randomly
drawn TCR binding a specific epitope, this manner of generating
negative samples is established in the field (Fischer et al., 2020;
Moris et al., 2020). It has also been shown to limit overestimation
of performances in comparison to adding additional naive TCR
sequences from other sources (Moris et al., 2020). Furthermore, by
shuffling the pairing of TCRs and epitopes, we can match the num-
ber of negative examples to that of positive examples for each TCR,
avoiding unbalanced datasets. With this procedure, we build a train-
ing dataset of 46 290 examples, 50% of which are positive, encom-
passing 192 different epitopes.

To ensure a fair comparison to the state of the art model ImRex,
we also downloaded the publicly available dataset that ImRex was
trained on. This dataset is based on the VDJ database and contains
13 404 samples for 118 different epitopes, with 50% negative sam-
ples. We use it to train all models for the final comparison (see
Section 3.4). To evaluate the performances, we use an independent
test set generated from the McPAS database (Tickotsky et al., 2017)
(downloaded on November 3, 2020). We exclude non-human TCRs
and remove all samples with TCRs contained in the ImRex training
data. Then we split the McPas data into two test sets: one including
all samples with epitopes contained in the ImRex training set (seen
epitope test set) and one with epitopes not contained in the ImRex
dataset (unseen epitope test set). For both test sets, 50% negative
data is generated by shuffling. The final seen epitope test set contains
9740 samples, the unseen epitopes test set contains 1458 samples.

2.2 Models
2.2.1 Problem formulation

We are interested in learning a mapping U between the space of
receptors T and the space of epitopes E to the space of affinity scores
A, i.e U : E � T ! A. U is learned with a training dataset D ¼
fei; ti; aigN

i¼1 where ei 2 E; ti 2 T and ai 2 f0; 1g is a binary label
indicating whether binding occurred.

2.2.2 K-NN baseline

Our baseline model for the presented TCR-epitope binding predic-
tion is constituted by a k-nearest-neighbor (K-NN) classifier. As a
distance metric between samples, we utilize the sum of the length-
normalized Levenshtein distance of the respective epitope and TCR
protein primary sequences.

More formally, for the training data D ¼ fei; ti; aigN
i¼1, we choose

ei and ti to be epitope and TCR sequences, respectively (ti is the
CDR3 region). Let fej; tjg denote an unseen sample from the test

dataset DTest ¼ fei; tigNTest

i¼1 . With the goal of predicting â j to approxi-
mate the unknown aj, we first retrieve the subset of training data Dk

containing the k nearest neighbors using the distance measure

Dðei; ti; ej; tjÞ ¼
Levðei; ejÞ
jejj

þ Levðti; tjÞ
jtjj

(1)

where j � j denotes sequence length and Levð�; �Þ is the Levenshtein
distance (Levenshtein, 1966), i.e. a string-based distance measure
that measures the number of single-AA changes required to trans-
form one sequence into the other. Then, the prediction âj is trivially

computed by âj ¼
Pk

i
ai

k with ai 2 Dk. We evaluate the model on all

odd k (to avoid ties), s.t. 1 � k � 25, and choose the value for k
leading to the best ROC-AUC score for comparisons. Note that this
model is non-parametric.

2.3 Model architecture
Figure 1 shows an overview of the algorithmic steps of TITAN. To
predict binding, we devise a bimodal architecture that separately
ingests both the TCR and the peptide sequence.
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The TCR sequences are encoded with the BLOSUM62 matrix
(Henikoff and Henikoff, 1992), which is based on evolutionary
similarity of amino acids and has been widely applied in TCR spe-
cificity prediction tools (Jurtz et al., 2018; Jokinen et al., 2019).
Either the full sequence or only the CDR3 region was used as in-
put. Since the antigenic peptides are small molecules, we explore
two options to encode them: one that uses an amino acid-wise
encoding such as BLOSUM62, and one that uses an atom-level
encoding with SMILES. All sequences were padded to the same
length of 500 tokens. Advantageously, SMILES representations of
a molecule are not unique, thus facilitating data augmentation
(Bjerrum, 2017).

The remaining architecture is inspired by Manica et al. (2019)
and almost identical to the compound-protein-interaction (CPI)
model presented in Born et al. (2021). In case of pretraining on CPI
data (see below), the models are identical, otherwise, the SMILES-
encoding ligand input stream is replaced with an AA-encoding epi-
tope stream. Three parallel channels with convolutions of kernel
sizes 3, 5 and 11 are employed on the input sequences to combine in-
formation from local neighborhoods of varying spatial extend. A
fourth channel has a residual connection without convolutions (see
Fig. 1a). For each of the four channels, we utilize two attention
layers, where one modality is used as a context to compute attention
scores over the other (see Fig. 1b). This allows the model to use in-
formation from the binding partner, i.e the context, to learn the im-
portance of each token in the input sequence, i.e. the reference. The
attention weights ai are computed as:

ai ¼
expðuiÞPT
j expðujÞ

; where ~u ¼ tanh
�

X1W1 þW3ðX2W2Þ
�
~v (2)

We call X1 2 R
T�H the reference input, where T is the sequence

length and H is the number of convolutional filters. Further, X2 2
R

U�K is the context input, where U and K are sequence length and
number of convolutional filters in the other modality, respectively.
W1 2 R

H�A; W2 2 R
K�A; W3 2 R

T�U and ~v 2 R
A are learnable

parameters. Intuitively, both inputs are projected into a common at-
tention space R

A with A¼16 and then summed up, which enables
the layer to take the context into account for determining feature
relevance. ~v combines the information through a dot product, the
output of which is fed to a softmax layer to obtain the attention
weights ai, which are used to filter the inputs. Finally, both TCR and
peptide information gets passed to two dense layers with 368 and
184 nodes, respectively, which output the binding probability.

2.4 Pretraining
By using SMILES encodings of the epitopes, predicting epitope re-
ceptor binding affinity can be seen as a CPI prediction task. We
utilize BindingDB (Gilson et al., 2016), as of April 2020, to pre-
train our model. To reduce the problem complexity and potential
biases associated with the different experimental platforms to
measure affinity, we binarize the binding data and define all
entries in the database as binding, ignoring continuous affinity
measurements. We generate an equal amount of negative examples
by randomly assigning ligands to proteins (Born et al., 2021). In
order to avoid high discrepancy between sequence lengths, ligands
with a length > 250 SMILES tokens and proteins larger than
1028 amino acids are discarded. This results in 325 688 ligands
and 3351 proteins and a total of 471 017 pairs from which 90%
(423 915) are used for training and the rest for validation. To
adapt the model size to the larger available dataset, we changed
the layer sizes for pretraining by padding TCR sequences to 1028,
setting the attention space A¼256, using four convolutional chan-
nels with kernel sizes 3, 7, 9 and 13 for epitopes and 3, 7, 13, 19
for TCR and using three final dense layers with 2048, 1024 and
512 nodes.

2.5 Data splitting
We evaluate our models on a 10-fold cross-validation split. To de-
termine the generalization capabilities of the models toward unseen
TCRs and unseen epitopes separately, we use two different split
methods. In the first, we ensure that each TCR is restricted to only
one fold, which ensures that the validation datasets do not contain
TCRs which were shown in training. The epitopes, however, are dis-
tributed randomly over the folds, so that most of the epitopes in the
validation dataset were also shown during training. We refer to this
split as the TCR split. Additionally, we generate a strict split, where
we ensure that each TCR and each epitope is restricted to a single
fold, ensuring that neither TCRs nor epitopes contained in the valid-
ation dataset were shown during training. To ensure the separation
of TCRs and epitopes in their folds, we generate negative data by
shuffling within each fold. A UMap (McInnes et al., 2018) visualiza-
tion of all samples of the dataset is presented in Figure 2 and shows
the ramifications of the splitting strategy. The feature space for the
UMap dimensionality reduction was generated by embedding the
amino acid sequences using a pretrained protein language model
(Elnaggar et al., 2020).

(a) (b)

Fig. 1. Overview of TITAN architecture. (a) Our model ingests a TCR and an epitope sequence, which get encoded using BLOSUM62 for amino acid sequences or learned

embeddings for SMILES. Then, 1D convolutions of varying kernel sizes are performed on both input streams before context attention layers generate attention weights for

each amino acid of the TCR sequence given an epitope and vice versa. Finally, a stack of dense layers outputs the binding probability. Conceptually, this architecture is identi-

cal to the one proposed in Born et al. (2021) (cf. Supplementary Fig. S3) but our visualization here is more fine-grained. (b) The linchpin of the model is the bimodal context at-

tention mechanism. It ingests the convolved TCR and epitope encodings, treating one as reference and the binding partner as context. A series of transformations combines the

modalities and yields an attention vector over the reference sequence (driven by the context) that can be overlayed with the molecule like a heatmap
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2.6 Model training
All described architectures were implemented in PyTorch 1.4 and
used the pytoda package for data handling and preprocessing. The
models optimized binary cross entropy loss with Adam (Kingma and
Ba, 2015) (b1 ¼ 0.9, b2 ¼ 0.999, � ¼ 1e-8) and a learning rate of
0.0001. In the convolutional and dense layers, we employed dropout
(P¼0.5) and ReLU activation. All models were trained with a batch
size of 512 on a cluster equipped with POWER8 processors and a
single NVIDIA Tesla P100. The learning rate was tuned using the
VDJ dataset and the remaining hyperparameters were chosen care-
fully based on previous experience.

3 Results

3.1 Performance on TCR split
In Figure 3a, we compare 10-fold crossvalidation performances of dif-
ferent TITAN settings on the TCR split scenario, which allows us to
gauge the generalization capabilities of the algorithm toward unseen
TCR sequences. We explored several options to input the sequence in-
formation of TCR and epitope in our model. Following the well-estab-
lished concept of word embeddings (Mikolov et al., 2013), we can
encode the amino acids using a fixed-length vector representation (in
our case 32-dimensional), that is initialized randomly and then learned
through training. Alternatively, we can represent each amino acid as a
vector containing biophysical properties (e.g. molecular weight, residue
weight, pKa, pKb, pKx, pI and hydrophobicity at pH2). Finally, we
explored using evolutionary substitution matrices like BLOSUM62.
Each row in the BLOSUM matrix represents the probability for an
amino acid to be substituted by any of the other amino acids and can
be used as a 26-dimensional vector representation of that amino acid.

An initial comparison of these embedding options showed no
clear preference for either of them (See Table 1). Since a learned
embedding is less reproducible and biophysical feature choices can
be debated, we decided to use the BLOSUM62 matrix to embed
amino acid sequences in all model settings.

For TCRs, we have the options to either focus solely on the
hypervariable CDR3 loop, which is known to be the main peptide
binding region, or to consider the full variable region of the TCRb
sequence, which includes the V, D and J segments and encompasses
all three hypervariable loops CDR1, CDR2 and CDR3. Figure 3a
shows that the use of the full sequence information boosts the model
performance, indicating that valuable information is contained in
regions outside of the CDR3 loop.

Fig. 2. UMap Visualization of the VDJ dataset colored by the fold each sample

belongs to in the TCR split (left) and strict split (right). The UMap projection leads

to clear clusters of the samples. Coloring by fold in the TCR split reveals no connec-

tion between clusters and folds. However, coloring by fold in the strict split reveals

that all the samples in a cluster belong to the same fold. This suggests that clusters

correspond to distinct epitopes, highlighting their heterogeneity and the challenge of

good generalization for the strict split.

(a)

(b)

Performance on TCR split

Performance on strict split

Fig. 3. Performance comparison of different TITAN model settings trained or fine-tuned on the VDJþCovid dataset. (a) ROC-AUC scores and balanced accuracy on a 10-fold

crossvalidation TCR split (validation and training data share epitopes, but not TCRs). (b) ROC-AUC scores and balanced accuracy on a strict 10-fold crossvalidation split,

where validation and training data share neither epitopes, nor TCRs. All boxplots: The center of each boxplot marks the sample median, and the box extends from lower to

upper quartile. K-NN refers to the baseline model. Other abbreviations denote different settings under which TITAN was trained. AA CDR3: amino acid encoding of epitopes,

only CDR3 sequence input for TCRs; AA full: amino acid encoding of epitopes, full sequence input for TCRs; SMI CDR3: SMILES encoding of epitopes, only CDR3 sequence

input for TCRs; SMI full: SMILES encoding of epitopes, full sequence input for TCRs; Pretrained: SMILES encoding of epitopes, full sequence input for TCRs, model pre-

trained on BindingDB; Pretrained semifrozen: SMILES encoding of epitopes, full sequence input for TCRs, model pretrained on BindingDB, weights in epitope channel fixed

during fine-tuning; Pretrained aug: SMILES encoding of epitopes, full sequence input for TCRs, model pretrained on BindingDB with data augmentation; Pretrained semifro-

zen aug: SMILES encoding of epitopes, full sequence input for TCRs, model pretrained on BindingDB with data augmentation, weights in epitope channel fixed during fine-

tuning
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Since epitopes are relatively short (5 to 15 amino acids), we can
represent them in a fine-grained, atom-wise manner using SMILES
strings. We can see in Figure 3a that the SMILES representation of
epitopes further improves performance compared to an amino acid
encoding.

The combination of SMILES for epitopes and full sequence
encoding of the TCR leads to a mean ROC-AUC of 0.77 6 0.006
and a mean balanced accuracy of 0.72 6 0.005. However, we see
that even this improved model does not outperform the simple K-
NN baseline model that we included as a comparison. With k¼13,
the K-NN baseline achieves the best results with a ROC-AUC of
0.78 6 0.007 and a balanced accuracy of 0.71 6 0.008 (see
Supplementary Fig. S1). This highlights the importance of including
an appropriate baseline model, which is so far rarely observed in the
field, as simple models may outperform complex ones in a sparse
data setting. We emphasize that this is not an argument against our
neural networks, but for the K-NN baseline model, which also out-
performs the state of the art model, ImRex, a recent approach that
uses 2D CNNs (Moris et al., 2020) (see Section 3.4 for a more
detailed comparison of TITAN and ImRex). We also note that an
approach similar to our K-NN baseline, TCRMatch (Chronister et
al., 2020), was recently presented in a preprint. TCRMatch predicts
TCR specificity using only sequence similarities to previously char-
acterized receptors.

All model comparisons on the TCR split are also summarized in
Table 2. For better comparability to previously published models,
we also include scores obtained on the dataset excluding the samples
gathered from the COVID-19 dataset.

Furthermore, the results in Table 2 also indicate that the avail-
able interaction data may be too sparse to enable the models to learn
the complex interaction patterns governing TCR–epitope binding.
However, using the SMILES encoding for epitopes and the full se-
quence encoding for TCRs, we have effectively re-formulated the
task as a compound protein interaction, which allows us to use
BindingDB (Gilson et al., 2016) to pretrain the model, before we
fine-tune it on the TCR–epitope interaction data. The pretrained
model performed well on the held-out data from BindingDB (ROC-
AUC 0.895).

Regarding the pretraining, we tested two different settings, one
where all weights could be adapted during fine-tuning, and a semi-
frozen setting, where we only allowed weight changes in the TCR
channel and the final dense layers of the epitope. This was done to
prevent the model from ‘unlearning’ to recognize relevant SMILES
features due to the extremely low number of different epitopes in
the fine-tuning dataset. Figure 3 shows that pretraining severely
improves model performance in both settings. We further improved
model performance by exploiting the non-uniqueness of SMILES
strings to perform data augmentation. Augmentation is achieved by
randomly generating a valid SMILES representation of the epitope
on the fly at each training step (Born et al., 2021b). The best overall
model performance was achieved by the semifrozen pretrained
model with augmentation, with a mean ROC-AUC of 0.87 6 0.005
and a mean balanced accuracy of 0.79 6 0.005, clearly outperform-
ing the K-NN baseline by a large margin.

The high performance on validation data that does not contain
TCR sequences used in training shows that the model successfully
generalizes to unseen TCRs. Comparing the performance across
groups of TCRs with different similarities to the training data, we

find that while the model performs better for TCRs that are highly
similar to their closest partners in the training set, the performance
on the TCRs with highest distance from the training data is still high
(ROC AUC 0.84 6 0.016, balanced accuracy 0.71 6 0.008, see
Supplementary Fig. S3). Moreover, it is interesting to observe that
models pretrained on the BindingDB (Gilson et al., 2016) performed
better on the larger and more heterogeneous dataset VDJ þ
COVID-19, which suggests that pretraining might not only increase
performance, but also enable the model to better generalize to differ-
ent datasets.

3.2 Analysis of attention layers
We can investigate the decision processes of TITAN using the infor-
mation contained in the attention layers. Figure 4a shows the atten-
tion scores of TITAN in the AA CDR3 setting—a setting that clearly
outperforms previous work (see Section 3.4)—over a number of ex-
emplary CDR3 sequences. We see that while there is some prefer-
ence to focus on certain positions, the model adapts the attention to
the different sequences. The mean inter-TCR variance per token is
at 4:3� 10�5. Moreover, we find that the attention also adapts to
the context (i.e. the epitope), for which we want to predict the inter-
action. The mean variance per token within the same TCR interact-
ing with different epitopes is 1:3� 10�5. This demonstrates that the
model is capable of adapting the attention layer to both the input
and the context.

Figure 4b shows the attention of the same model (AA CDR3 set-
ting) on several exemplary epitopes. We can clearly see that the
model chooses to focus heavily on the same positions on each epi-
tope. The preferred positions are independent of the sequence of
both the input epitope and the context TCR. Comparing the atten-
tion scores across epitopes, we find that both the inter-epitope and
the intra-epitope variance of the attention are extremely small, at
4:9� 10�10 and 2:5� 10�9; respectively. This behavior indicates
that TITAN fails to learn meaningful patterns in the epitope sequen-
ces from the limited diversity of epitopes in the dataset. We conjec-
tured that the model finds a way to internally generate classes of
epitopes represented by meaningless—but unique—vectors and pre-
dict specificity of TCRs toward these. This hypothesis is supported
by the observation that compressing each epitope sequence to the
chain of amino acids with attention scores ai > 0:1 yields only a
very moderate reduction in the number of unique sequences.
Crucially, these shortened epitope sequences are still unique for 185
out of 192 epitopes in the dataset (96%). By focusing on these fixed,
invariant positions the model circumnavigates learning generic rep-
resentations of epitopes and instead internally classifies epitopes, at
the cost of losing the power to differentiate 19 epitopes.

Pretraining the models on the compound interaction task greatly
increased the diversity of sequences that were seen by the epitope
channel of the model. While most of the ligands in BindingDB are
not peptides, and may therefore exhibit structures and chemical
properties that differ strongly from the epitopes, the model may
nevertheless infer general rules of chemical interaction from them.

Table 2. Tenfold cross validation performance on TCR split

ROC-AUC

Model VDJ VDJþCOVID-19

K-NN (Baseline) 0.79 6 0.01 0.78 6 0.007

AA CDR3 0.75 6 0.02 0.74 6 0.007

AA full 0.76 6 0.007 0.75 6 0.007

SMI CDR3 0.73 6 0.007 0.76 6 0.008

SMI full 0.75 6 0.006 0.77 6 0.006

Pretrained 0.81 6 0.01 0.84 6 0.005

Pretrained aug. 0.80 6 0.01 0.86 6 0.004

Pretrained semifrozen 0.80 6 0.01 0.84 6 0.005

Pretrained semifrozen aug. 0:8260:01 0:8760:005

Note: Mean and standard deviation of each model configuration on the VDJ

dataset and the VDJ þ COVID-19 dataset. Best performance marked in bold.

Table 1. Comparison of amino acid embeddings

Embedding ROC-AUC

Biophysical features 0.76 6 0.01

Learned embedding 0.75 6 0.01

BLOSUM62 matrix 0.75 6 0.01

Note: Mean and standard deviation of the AA CDR3 model configur-

ation on 10-fold TCR split of the VDJ dataset. All tested amino acid embed-

dings show a similar performance.

TITAN: T-cell receptor specificity prediction i241

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/Supplem
ent_1/i237/6319659 by guest on 03 January 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab294#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab294#supplementary-data


This enables the model to learn more meaningful attention weights,
which may be the reason for the performance boost we observe for
pretrained models. In Figure 4b, we show a visual representation of
the attention scores over one exemplary epitope as a case study of
TITAN in the pretrained semifrozen augmented setting. The chosen
epitope CINGVCWTV was not shown during training. The atten-
tion scores therefore reflect the transferable knowledge the model
has gained during pretraining. We see that the attention patterns
align well with our expectations. The attention is high on many of
the oxygens, as well as on the two thiol groups of the cysteines.
Nevertheless, we see that while the attention layers may extract
some chemically relevant structures, they fail to capture others.
Specifically, large and hydrophobic amino acid sidechains tend to
get low attention scores, although they may be of high importance
for molecule interactions.

3.3 Performance on strict split
Figure 3b compares the performances of the different TITAN set-
tings on the strict epitope split, which measures the generalization
capabilities to unseen epitopes. As expected, model performance
drops severely across all settings. Moreover, we find that all TITAN
settings perform similarly, with mean ROC-AUC scores around 0.6,
while the K-NN baseline model shows a mean ROC-AUC of only
0.54 6 0.03 for a choice of k¼25 (see Supplementary Fig. S2 for
comparison). Compared to the unseen TCR performance, we also
see an increase in the standard deviation of the scores, with ROC-
AUC scores of over 0.7 for some folds, and 0.5 for others. All mean
ROC-AUC values are summarized in Table 3.

The best score overall is still achieved by the pretrained semifro-
zen augmented model, with a mean ROC-AUC of 0.62 6 0.06 and a
mean balanced accuracy of 0.61 6 0.05. However, its superiority
over other TITAN setting is not as large as in the TCR split scheme.
We can also see that pretraining does not strongly improve model
performance on unseen epitopes.

Another surprising result is the comparably good performance of
the TITAN AA CDR3 setting on unseen epitopes. The analysis of
the attention layer in Figure 4a shows that in this setting, TITAN
uses an attention mask to reduce the task to a TCR classification
problem. This should prevent the model to generalize to new epito-
pes. A close look at Figure 5 reveals that the best performance of the
AA CDR3 model on the strict split is achieved during the first 10 to
20 epochs of training. During this time, the attention is still uniform-
ly distributed over all input tokens, because many training epochs
are required for the model to build the static attention mask
described in Section 3.2.

Figure 5 also shows that while the ROC-AUC increases continu-
ously over the training epochs in the TCR split cross-validation, it
stagnates during training on the strict split. We hypothesize that the
underlying factor causing this phenomenon is the violation of the

(a) (c)

(b)

Fig. 4. Analysis of the context attention layers. The attention weights ai on each token are extracted from the context attention layer and represented as a colormap. In (a) and

(b), examples of the AA CDR3 setting are shown, where epitopes are input as amino acid sequences and only CDR3 sequences are input in the TCR channel. 0 denotes the

padding and 1 the <START> and <STOP> token. (a) The attention scores over three exemplary CDR3 sequences. The model adapts the attention scores based on the differ-

ent inputs. (b) The attention on three exemplary epitopes. The model fails to adapt the attention scores to different inputs. (c) Attention scores over an exemplary epitope that

was not included in the training dataset. The model was pretrained on BindingDB and fine-tuned on the training data with a frozen epitope input channel with SMILES aug-

mentations to enrich the data. The lower bound of the color scale was set to one standard deviation above the mean attention on the padding tokens.

Table 3. Tenfold cross validation performance on strict split

Model ROC-AUC

K-NN (Baseline) 0.54 6 0.03

AA CDR3 0.60 6 0.04

AA full 0.59 6 0.04

SMI CDR3 0.60 6 0.06

SMI full 0.59 6 0.06

Pretrained 0.56 6 0.04

Pretrained þ Aug. 0.59 6 0.03

Pretrained semifrozen 0.58 6 0.06

Pretrained semifrozen þ Aug. 0:6260:06

Note: Mean and standard deviation of each model configuration on the

VDJ þ COVID-19 dataset. Best performance marked in bold.

Fig. 5. Training dynamics for both splitting strategies. A key distinction between the

training on the TCR and strict splits is that the validation performance steadily con-

verges only in the TCR split case. In the strict split case, no significant improvement

is achieved even after training for more than 140 epochs. This indicates that in the

strict split scenario, training and validation data may be too distinct to enable a

proper generalization. The AA CDR3 setting was used for this plot.
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i.i.d. assumption across training and validation data. This behavior
was common during training on the strict split and again highlights
the challenge for models to generalize to unseen epitopes from the
sparsity of the current datasets.

While TITAN’s generalization capabilities to unseen epitopes are
still limited, the performance is moderately good. This suggests that,
despite their sparsity, the currently available datasets do contain
enough information to enable generalization to unseen epitopes to a
certain degree.

3.4 Comparison to ImRex model on independent test set
Moris et al. recently published ImRex (Moris et al., 2020), an image-
based generic TCR specificty prediction model, which explicitly enco-
des epitopes and can make predictions for unseen epitopes. As a direct
comparison to ImRex, we trained TITAN with different settings on the
ImRex training data and tested performance on an independent test set
generated from the McPAS database (see Section 2.1). To judge both
generalization capabilities to unseen TCRs and unseen epitopes, we
used two different subsets of the McPAS data, one where all samples
containing TCRs from the ImRex training dataset were excluded (seen
epitopes test set) and one where all samples including epitopes con-
tained in the ImRex training dataset were removed (unseen epitopes
test set). ROC-AUC scores are compared in Table 4. We emphasize
that this is not a cross-validation setting, i.e. we train on the full train-
ing set and record performance on an independent test set.

We find that all of our model settings outperform ImRex on
both independent test sets by a large margin. Moreover, our K-NN
baseline model clearly outperforms ImRex on seen epitopes.

Moreover, we see that the base models (AA CDR3, AA full, SMI
CDR3, SMI full) all perform better on the independent seen epitopes
test data than during 10-fold crossvalidation, while for the pre-
trained model settings, performance is comparable to the crossvali-
dation. For the unseen epitopes test set, we observe a similar trend
as above in the strict split cross-validation. All models show per-
formances clearly better than chance, with the pretrained semifrozen
model with augmentation even achieving a ROC-AUC of 0.78.
However, one needs to keep in mind, that the sample size for the un-
seen epitopes test is at only 1500, making especially high (or low)
scores likely to be statistical outliers.

4 Discussion

In this work, we present TITAN, a generic, bimodal, sequence-based
neural network for predicting TCR–epitope binding probability that
significantly outperforms the state-of-the-art. We compare several
settings of TITAN that differ in their inputs for TCRs and epitopes.
While we restrict ourselves to the TCRb chain, we find that input-
ting the complete variable TCR sequence boosts performance com-
pared to scenarios where only the CDR3 region is used.

Notably, we are, to the best of our knowledge, the first to formu-
late TCR-epitope binding prediction as a subclass of the commonly
investigated task of predicting compound-protein-interaction. The
concomitant change of representing epitopes as SMILES (an atomic,
more granular representation) instead of amino acid sequences
improves the predictive power of TITAN. This reformulation not
only enables data augmentation—by exploiting the non-uniqueness
of SMILES (Bjerrum, 2017)—to enrich the training data but also
positions us to leverage large-scale datasets such as BindingDB for
pretraining. Pretrained TITAN models achieve considerably higher
scores than all TITAN base models. Freezing the weights of the epi-
tope input channel coupled with SMILES augmentation gives us the
best performance with a mean ROC-AUC of 0.87 6 0.005 on the
TCR split.

To assess model performance in a more rigorous fashion, we
designed a K-NN classifier based on the Levenshtein distance as a
baseline model. Surprisingly, this simple model achieves a mean
ROC-AUC score of 0.79 6 0.007 on the TCR split crossvalidation.
This model surpassed the performance of complex neural networks
from previous publications (Moris et al., 2020) and is only outper-
formed by our pretrained TITAN models, which highlights the im-
portance of including relevant baseline models.

As a final assessment of model performance, we compare
TITAN to the current state of the art for general TCR specificity
prediction, ImRex. To ensure fair comparison, we train our models
on the ImRex training data and evaluate the performance on an in-
dependent test set derived from a different database. We demon-
strate that both pretrained and base TITAN models, as well as the
K-NN baseline, outperform ImRex by a large margin. The best re-
sult is again achieved by the pretrained semifrozen augmented
TITAN model, with a ROC-AUC of 0.87 on epitopes included in
the training data.

Finally, the main challenge for generic TCR–epitope interaction
prediction remains the generalization to unseen epitopes. Here, we
report two major breakthroughs. First, we demonstrate that TITAN
exhibits moderate performance on unseen epitopes, where the best
TITAN model achieves a ROC-AUC of 0.62 6 0.05 on a strict 10-
fold crossvalidation split, and ROC-AUC of 0.78 on an independent
test set of unseen epitopes. Second, by dissecting the attention heat-
maps we were able to identify a possible explanation for the
observed poor unseen epitope generalization capabilities. We dem-
onstrate that TITAN reduces the general TCR–epitope prediction
task to the simpler task of TCR classification, by internally treating
the epitopes as classes instead of focusing on their properties. This
shortcut could present a general problem for sufficiently complex
models, as long as the extreme sparsity of sampling of the epitope se-
quence space is not remedied. Until then, our future endeavors might
include using an enriched training dataset consisting of TCR-epitope
pairs as well as compound-protein interaction pairs from
BindingDB, or further improving the amino acid and SMILES
embeddings by training on diverse databases (UniProt Consortium,
2020; Gaulton et al., 2017). In general, our results indicate that
approaches with a focus on leveraging transfer learning techniques
to enrich the input data space may be promising to tackle the daunt-
ing task of unseen epitope-TCR specificity prediction.

Acknowledgements

The authors thank Matteo Manica and Joris Cadow for building up much of

the model architecture used, as well as for many helpful discussions.

Financial Support: The authors acknowledge funding from the European

Union’s Horizon 2020 research and innovation programme under the Marie

Sklodowska-Curie [813545 and 826121].

Conflict of Interest: none declared.

References

Bagaev,D.V. et al. (2020) VDJdb in 2019: database extension, new analysis in-

frastructure and a T-cell receptor motif compendium. Nucleic Acids Res.,

48, D1057–D1062.

Table 4. Comparison of TITAN with prior work

ROC-AUC

Model Seen epitopes Unseen epitopes

ImRex 0.61 0.50

K-NN (Baseline) 0.79 0.37

AA CDR3 0.83 0.69

AA full 0.81 0.64

SMI CDR3 0.85 0.72

SMI full 0.86 0.64

Pretrained 0.79 0.78

Pretrained þ Aug. 0.83 0.65

Pretrained semifrozen 0.77 0.69

Pretrained semifrozen þ Aug. 0.87 0.60

Note: All but the ImRex model (shaded in gray) are contributions of this

work. Models were trained on identical data and tested on an independent

test set to ensure a fair comparison. Best performance marked in bold.

TITAN: T-cell receptor specificity prediction i243

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/Supplem
ent_1/i237/6319659 by guest on 03 January 2022



Bjerrum,E.J. (2017) SMILES enumeration as data augmentation for neural

network modeling of molecules. http://arxiv.org/abs/1703.07076.

Born,J. et al. (2021) Data-driven molecular design for discovery and synthesis

of novel ligands – a case study on sars-cov-2. Mach. Learn. Sci. Technol., 2,

025024.

Born,J. et al. (2021) PaccMannRL: de novo generation of hit-like anticancer

molecules from transcriptomic data via reinforcement learning. iScience,

24, 102269.

Chronister,W.D. et al. (2021) TCRmatch: Predicting T-cell Receptor

Specificity based on Sequence Similarity to Previously Characterized

Receptors. Front. immunol., 12, 673.

Consortium,T.U. (2020) UniProt: the universal protein knowledgebase in

2021. Nucleic Acids Res., 49, D480–D489.

Dash,P. et al. (2017) Quantifiable predictive features define epitope-specific T

cell receptor repertoires. Nature, 547, 89–93.

Neuter,N.D. et al. (2018) On the feasibility of mining CD8þ T cell receptor

patterns underlying immunogenic peptide recognition. Immunogenetics, 70,

159–168.

Dines,J.N. et al. (2020) The immunerace study: a prospective multicohort study

of immune response action to covid-19 events with the immunecodeTM open

access database. medRxiv.

Elnaggar,A. et al. (2020) Prottrans: towards cracking the language of life’s

code through self-supervised deep learning and high performance comput-

ing. CoRR, abs/2007.06225, https://arxiv.org/abs/2007.06225

Fischer,D.S. et al. (2020) Predicting antigen specificity of single t cells based on

TCR cdr3 regions. Mol. Syst. Biol., 16, e9416.

Gaulton,A. et al. (2017) The ChEMBL database in. Nucleic Acids Res., 45,

D945–D954.

Gielis,S. et al. (2019) Detection of enriched T cell epitope specificity in full T

cell receptor sequence repertoires. Front Immunol., 10, 2820.

Gilson,M.K. et al. (2016) Bindingdb in 2015: a public database for medicinal

chemistry, computational chemistry and systems pharmacology. Nucleic

Acids Res., 44, D1045–D1053.

Glanville,J. et al. (2017) Identifying specificity groups in the T cell receptor

repertoire. Nature, 547, 94–98.

Goh,G.B. et al. (2017) SMILES2Vec: an interpretable general-purpose deep

neural network for predicting chemical properties. CoRR, abs/1712.02034,

http://arxiv.org/abs/1712.02034.
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