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Abstract—In this work we perform a study of various unsupervised methods to identify mental stress in firefighter trainees

based on unlabeled heart rate variability data. We collect RR interval time series data from nearly 100 firefighter trainees that

participated in a drill. We explore and compare three methods in order to perform unsupervised stress detection: 1) traditional

K-Means clustering with engineered time and frequency domain features 2) convolutional autoencoders and 3) long short-term

memory (LSTM) autoencoders, both trained on the raw RRI measurements combined with DBSCAN clustering and K-Nearest-

Neighbors classification. We demonstrate that K-Means combined with engineered features is unable to capture meaningful

structure within the data. On the other hand, convolutional and LSTM autoencoders tend to extract varying structure from the

data pointing to different clusters with different sizes of clusters. We attempt at identifying the true stressed and normal clusters

using the HRV markers of mental stress reported in the literature. We demonstrate that the clusters produced by the

convolutional autoencoders consistently and successfully stratify stressed versus normal samples, as validated by several

established physiological stress markers such as RMSSD, Max-HR, Mean-HR and LF-HF ratio.

Index Terms— Data Mining, Unsupervised Learning, Clustering, Deep Learning, AutoEncoders, Heart Rate Variability, Mental

Stress, Occupational Safety

——————————  ——————————

1 INTRODUCTION

tress is the difficulty of an organism to maintain its ho-
meostasis, often induced by external stimuli that cause

mental or physical imbalance [1]. It is known that when an
individual is exposed to a stressor, the autonomic nervous
(ANS) system is triggered resulting in the suppression of
the parasympathetic nervous system and the activation of
sympathetic nervous system [2]. This reaction which is
known as the fight-or-flight response can involve physio-
logical manifestations such as: vasoconstriction of blood
vessels, increased blood pressure, increased muscle ten-
sion and a change in heart rate (HR) and heart rate varia-
bility (HRV) [3], [4]. Among these, HRV has become a
standard metric for the assessment of the state of body and
mind, with multiple markers derived from HRV being rou-
tinely used for identifying mental stress or lack thereof.
HRV is a time series of the variation of the heart rate over
time and is determined by calculating the difference in
time between two consecutive occurrences of QRS-com-
plexes, also known as the RR interval (RRI) [5], [6]. An op-

timal HRV points to healthy physiological function, adapt-
ability and resilience. Increased HRV (beyond normal)
may point to a disease or abnormality. Reduced HRV, on
the other hand, points to an impaired regulatory capacity
and is known to be a sign of stress, anxiety and a number
of other health problems [4], [7], [8].

Identifying stress has been the focus of much research
as an increasing body of evidence suggests a rising preva-
lence of stress-related health conditions associated with the
stressful contemporary lifestyle [9]. A significant portion
of the contemporary stress is due to the occupational
stress. Occupational stress can not only result in chronic
health conditions such as heart disease [10] but can also
have more immediate catastrophic effects such as acci-
dents, injury and even death [11], [12]. Firefighters and
smoke divers, in particular, are susceptible to acute stress
due to the sensitive nature of their work. It is imperative
that mental stress in firefighters is monitored to prevent in-
jury to personnel or the public [13], [14]. In this work, our
objective is to leverage HRV data and unsupervised ma-
chine learning methods, in order to detect mental stress in
firefighters.

With the rise of modern machine learning and deep
learning methods, these methods have been applied in the
study of heart rate variability. Machine learning and deep
learning methods have previously been used with HRV
and electrocardiography (ECG) data for various applica-
tions such as: fatigue and stress detection [15]–[20], student
stress prediction [21], congestive heart failure detection
[17], [22], cardiac arrhythmia classification [23], [24]. The
vast majority of prior arts, however, are supervised or
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based on labeled public datasets as opposed to unlabeled
real-world data. There have been few previous attempts at
unsupervised detection of mental stress, from ECG data,
using for instance, self organizing maps (SOMs) [25] or tra-
ditional clustering algorithms [26]. To the best of our
knowledge, deep learning based unsupervised detection
of mental stress in firefighters using short-term HRV data
has not been studied before. In this paper, we propose an
unsupervised approach using autoencoders and density-
based clustering, combined with prior knowledge, in order
to cluster and label raw HRV data collected from firefight-
ers.

Fig. 1. A) Schematic illustration of data collection and expert labeling
of stress in firefighter trainees. Each trainee wears a chest strap sen-
sor and carries a smart phone that collects and transfers the HRV data
to be analyzed, predicted or labeled. The expert labeling process,
however was proven difficult and resulted in poor labeling of the data
and the need for unsupervised classification of the collected HRV
data. B) Statistics of the subject firefighter trainees: Weight in kilo-
grams, Age, Duration of HRV data collected, Mean heart rate in beats
per minute.

In this work, we collect RRI time series data from nearly
100 fire fighter trainees. We break down the collected time
series data into 30 measurement windows prior to further
processing or modeling. Successful calculation of stress
markers from short-term HRV measurements (~10s) have
been previously demonstrated [22], [27], [28]. We then use
the HRV samples with both classical clustering methods as
well as convolutional and long short-term memory (LSTM)
autoencoders to find meaningful clusters in the context of

mental stress detection.

2 RESULTS AND DISCUSSION

2.1 Classical Feature Engineering and K-means

As a first attempt at unsupervised classification of HRV
data, we employed K-means clustering on 18 engineered
features (see supplementary table S1). The K-means clus-
tering results for k = 2 are shown in figure 2C, plotted in
two dimensions for mean heartrate (MeanHR) and root
mean square of successive differences (RMSSD), two of the
top reported biomarkers of stress in the literature[29], [30].
As shown in the figure, the identified clusters appear syn-
thetic without a clear separation in the data. This is in part
due to the high dimensionality of the data [31] as well as
the intrinsic tendency of K-means clustering algorithm to
cluster samples based on the Euclidean distance from the
centroids of clusters, regardless of true separation within
the data [32].

Fig. 2. A) The workflow for unsupervised classification of HRV data in
this work B) sliding window transformation of the RRI into non-over-
lapping windows of 30 time steps and C) the results of K-means clus-
tering with k = 2 on the samples using the 18 engineered features. As
seen in the plot K-means does not produce distinct well-separated
clusters within the data.

2.2 Convolutional and LSTM AutoEncoders

Having observed the inability of K-means clustering in
finding meaningful structure in the data, we explored au-
toencoders to compress the data and find meaningful
structures that we can leverage to identify mental stress.
We trained and evaluated two autoencoder architectures:
a convolutional autoencoder (CAE) and a LSTM autoen-
coder (LAE). The architectures of the two models are
shown in figures 3A and 3B.

We adopted a 5-fold cross-validation scheme and
trained five models for each autoencoder. The reconstruc-
tion errors across all fold for both CAE and LAE are shown
in figure 3C. The LAE has slightly lower reconstruction er-
ror and results in a smoother reconstructed signal. A re-
constructed validation sample using both CAE and LAE is
presented in figure 3D.
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Fig. 3. The architecture and comparison of convolutional and LSTM
autoencoders. A) The convolutional autoencoder with a 2D bottleneck
consisting of 1D convolutions, maxpooling and upsampling layers. B)
The LSTM autoencoder with a 2D bottleneck consisting of LSTM cells
hidden dimension of 20. C) The reconstruction error (i.e., MAE) on the
validation datasets across five folds for the CAE and the LAE. D) Re-
construction of a sample from the validation dataset by both the CAE
and LAE.

Figures 4 and 5 show the training and validation results
for the CAE and LAE models. On the top left corner of the
figures, the validation error during training is plotted for
all five models trained for five different folds. As demon-
strated in the figures, the latent representation of the data
encoded by either the CAE or the LAE exhibit separable
clusters that could potentially point to a separation be-
tween the stressed and normal samples. The clusters gen-
erated by the CAE are well-separated and there is a large
discrepancy between the sizes of the two clusters with
nearly ~8% of the validation data in one cluster (y = 1) and
the rest in the other cluster (y = 0). In addition, the CAE
clusters are uniform in size across all five folds. Con-
versely, the LAE clusters are more balanced in size and the
separation between the clusters is not significant. In addi-
tion, the sizes of LAE clusters are variable across different
folds. The poor separation combined with the variable
cluster size suggests that the LAE clusters do not represent
a reproducible underlying structure within the data. We
will investigate the meaningfulness of the clusters pro-
duced by each model shortly.

As described in section 4, in order to classify unseen
data, we used a KNN classifier with the clusters and labels
obtained from the validation results. The label prediction
results on the unseen test samples are shown in figures 4
and 5 for the CAE and LAE models respectively. As shown
in the figure 4, the test samples encoded by the CAE follow
the same cluster pattern as the validation data with the ma-
jority of the samples in cluster "0" and the remaining sam-
ples in cluster "1".

Similarly, as seen in figure 5, the test samples encoded
by the LAE follow the same pattern as the validation clus-
ters. Having the test clusters in hand, the question was
whether any of the CAE or LAE encoded clusters are
meaningful in the context of mental stress detection. To ad-
dress this question, we resorted to established HRV mark-
ers of mental stress and calculated and compared them

across the two clusters for each of the CAE and LAE mod-
els. The objective was to determine whether samples in
each cluster share specific characteristics pertaining mental
stress that separate them from the samples in the other
cluster.

Fig. 4. Training and 5-fold cross-validation results for the CAE model
as well as the predicted labels for the test dataset. The plot at the top
left illustrates the validation error during the training of CAE in each
fold. The scatter plots show the two clusters identified using DBSCAN
clustering for the encoded validation data. We arbitrarily label the clus-
ters “0” and “1”. Cluster “0” contains the majority of the data (~90%)
while the rest belong to cluster “1”. The encoded test data and their
KNN-predicted labels are superimposed with the validation clusters.
As shown in the scatter plots, for all five folds, the encoded test data
follow the same pattern as the validation data.

The mean RMSSD, a reported biomarker for mental
stress [1], [9], [29], is compared across the two models and
clusters in figure 6. As shown in figure 6, there is a signifi-
cant (two-sided t-test, p-value = 2e-6) difference between
the mean RMSSD for cluster "0" and cluster "1" of the test
data encoded by the CAE. Cluster "0" (the grey bar)
demonstrates a significantly lower RMSSD compared with
cluster "1". The low RMSSD may signify low vagal tone
and mental stress in cluster "0", as reported in the literature
[33], [34]. Conversely, cluster "1" has high RMSSD, and as
such a higher vagal tone indicating normal parasympa-
thetic function [35].

On the other hand, the difference in mean RMSSD be-
tween the two LAE clusters are insignificant (two-sided t-
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test, p-value = 0.22), as shown in figure 6. The low discrep-
ancy between the RMSSD of the LAE clusters further so-
lidifies the hypothesis that the LAE-encoded clusters are
not meaningful in the context of mental stress detection
while the CAE-encoded clusters successfully stratify
stressed versus normal samples. To further verify this hy-
pothesis, we calculated and compared other HRV markers
of stress across different clusters and models.

Fig. 5. Training and 5-fold cross-validation results for the LAE model
as well as the predicted labels for the test dataset. The plot at the top
left illustrates the validation error during the training of LAE in each
fold. The scatter plots show the two clusters identified using DBSCAN
clustering for the encoded validation data. We arbitrarily labeled the
clusters “0” and “1”. In comparison with the CAE results, the LAE-en-
coded clusters exhibit poor separation. In addition, the cluster sizes
are more balanced with significant variability across different folds.
The encoded test data and their KNN-predicted labels are superim-
posed with the validation clusters. As shown in the scatter plots, for all
five folds, the encoded test data follow the same pattern as the vali-
dation data.

The remaining barplots in figure 6, demonstrate a com-
parison between three other crucial HRV markers across
the clusters given by the CAE and LAE model. Three fea-
tures namely, maximum heart rate (Max-HR), mean RRI
(Mean-RR) and low frequency (LF) to high frequency (HF)
ratio (LF-HF Ratio) were selected based on their reported
importance in detecting mental stress from HRV data [27],
[29], [30]. As shown in figure 6, the CAE values show a sta-
tistically significant discrepancy between the two clusters
for all three features: Max-HR (p-value = 7.2e-11), Mean-

RR (p-value = 3.7e-8) and LF-HF Ratio (p-value = 4.8e-10).
We observed that Max-HR is higher in CAE cluster "1" ver-
sus cluster "0" which is consistent with the reported corre-
lation between Max-HR and RMSSD in the literature [3].
Interestingly, Mean-RR is lower in cluster "1" compared to
cluster "0". This is while Mean-RR has been reported to de-
crease with the induction of mental stress compared with
the resting state [2]. However, it should be noted that in
our experiment, none of the subjects are in the resting state
as they are all actively participating in a drill. LF-HF ratio
is higher in cluster 0 than in cluster "1". Increased LF-HF
ratio has been linked to mental stress in the literature [5].
In summary, two of the three HRV markers of stress sug-
gest impaired vagal tone in cluster "0" and normal vagal
tone for cluster "1". This is in agreement with the RMSSD
results discussed earlier. Based on the results in figures 4
and 6, we postulate that the CAE cluster "1" corresponds to
individuals that are physically stressed, as indicated by a
high Max-HR and a slightly lower Mean-RR, but mentally
relaxed, as indicated by a much higher RMSSD and a lower
LF-HF ratio. CAE cluster "0", on the other hand, corre-
sponds to samples experiencing both physical (i.e. high
Max-HR and low Mean-RR) and mental stress (low
RMSSD and high LF-HF Ratio).

Fig. 6. Comparison of four HRV markers of stress across the clusters
given by the CAE and LAE models. The CAE clusters show significant
discrepancy in the HRV markers between the two clusters while the
LAE clusters exhibit insignificant difference in the four HRV markers.
These results further confirm our hypothesis that the CAE clusters are
reproducible and relevant in the context of mental stress detection
while the LAE clusters fail to stratify the samples in a meaningful man-
ner.

For LAE clusters, on the other hand, HRV markers of
stress do not exhibit significant discrepancy between the
clusters: Max-HR (p-value = 0.05), Mean-RR (p-value =
0.66) and LF-HF Ratio (p-value = 0.22). As shown in figure
6, the barplots corresponding to the LAE clusters do not
demonstrate a meaningful stratification of test samples
based on the evaluated markers of mental stress. The re-
sults of figure 6 for the LAE clusters, are in line with our
earlier observations and further confirm our hypothesis
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that LAE clusters do not appear meaningful in the context
of mental stress detection.

2.3 Discussion

We studied various methods for unsupervised classifica-
tion of HRV data collected from firefighter trainees. The
objective was to detect mental stress from the HRV data.
We started with time and frequency domain HRV features
combined with traditional K-means clustering. The K-
means clusters, however, appeared arbitrary and did not
produce well-separated clusters within the data. To tackle
this problem and bring out any existing hidden patterns
within the data, we explored autoencoders (AEs). We in-
corporated two different neural net architectures namely
the convolutional and LSTM neural nets and built two dif-
ferent autoencoders that were trained and evaluated sepa-
rately. The LSTM autoencoder, LAE, achieved slightly
lower reconstruction error than the convolutional autoen-
coder, CAE. We utilized the trained AEs to encode the val-
idation samples into a 2D latent space in which the samples
could be clustered in two separate clusters using the
DBSCAN clustering algorithm. Each of the produced clus-
ters were given an arbitrary identifier label ("0" and "1"). A
K-Nearest-Neighbor classifier was fit to the validation data
and the assigned labels for each validation dataset (i.e.
fold). The resulting KNN models were used to make pre-
dictions for unseen samples. The KNN models were then
used to classify test samples that were encoded by either of
the CAE and LAE models. We observed nearly perfect
agreement between the cluster patterns in the validation
and test datasets. The clusters formed by the CAE encod-
ing differed in size while the LAE encoding resulted in
more equally sized but less separated clusters.

Having observed two separate clusters in the data for
each model, we set out to determine two points: 1) clusters
produced by which AE are the true meaningful clusters in
the context of mental stress detection and 2) which cluster
(or label) corresponds to mental stress. To answer these
questions, we took advantage of well-established HRV
markers of mental stress within the literature. We selected
and determined four HRV markers of mental stress re-
ported in the literature namely: RMSSD, Max-HR, Mean-
RR and LF-HF Ratio. We observed that, for the CAE-en-
coded clusters, the values of these four markers showed a
significant discrepancy across the clusters. In addition, the
marker values for one cluster (cluster "0") were predomi-
nantly associated with mental stress according to the liter-
ature. For instance, cluster "0" had low RMSSD and high
LF-HF ratio which are both associated with impaired vagal
tone [33]. The LAE-encoded clusters, on the other hand,
demonstrated insignificant discrepancy in the four evalu-
ated markers across the two clusters. Based on this analy-
sis, it was evident that LAE clusters fail to stratify the data
in a manner that is meaningful for the identification of
mental stress.

3 DATA ACQUISITION

The RR intervals were collected from ∼100 firefighters and
smoke divers who volunteered to participate in this study.

This study was conducted in March 2018 at the Kantonale
Zivilschutzausbildungszentrum (Cantonal Civil Emer-
gency services training center) of the Canton Aargau at
Eiken AG in Switzerland where about 150 firefighters from
various villages and public/private organizations across
the Canton of Aargau participated in a weeklong training
exercise to be certified as Smoke Diving team leaders.
Among the various training exercises they participated in
was the "Hotpot", a darkened chamber with a 3D maze
made of cages, which simulated a building structure on
fire. The goal was for firefighters to enter the maze in
groups of two or three and find their way using only the
illumination from their phosphorescent helmets. Smoke,
strobing lights and loud noises are introduced during the
exercise to disorient the participants and simulate real-
world conditions involving heightened stress. A team of
examiners observes the progress of the group from the out-
side of the chamber using infrared cameras. Along their
way, the firefighters must also report any objects they find
(cans containing chemicals, inflammable items etc.) to the
examiners via radio communication. The firefighters were
evaluated on their time of transit, their ability to find all the
objects placed in the maze beforehand and the quality of
the collaboration/team work within the group. This is an
exercise that puts the participants through a period (10-20
minutes) of intense stress, both physical and mental. The
participants were given heart rate measuring chest belts
(Polar H10) and the “communication hub” smartphones to
carry before they entered the maze. Once they finish the
exercise, the devices were returned and a quick oral feed-
back on their perception of the difficulty of the exercise
was noted. The RR interval time series were extracted from
the ECG records. No ground truth regarding the mental
stress status of the firefighters was given for the collected
RR intervals. The outliers in the data were replaced with
their nearest normal neighbors (i.e. Winsorized). The
cleaned time-series data were then divided into non-over-
lapping windows of size 30 and shuffled as shown in fig-
ure 2B. 10% of the data was randomly selected and held
out as the unseen test dataset and the remaining 90% was
split into training and validation datasets according to a 5-
fold cross-validation scheme. To enhance optimization and
convergence of AEs, each raw RRI window of size 30 was
scaled between 0 and 1 using min-max scaling. Time and
frequency domain features (see supplementary table S1)
were extracted using hrv-analysis 1.0.3 python library.

4 METHODS

4.1 K-means Clustering

The traditional K-means clustering algorithm [36] was
used to cluster the data transformed into 18 engineered
features. We employed the K-means clustering algorithm
implemented in Scikit-Learn Python library [37] with k = 2
and all other parameters set as default. However, common
distance metrics, such as the Euclidean distance used in K-
means, are not useful in finding similarity in high-dimen-
sional data [31]. As a result, we explored autoencoders
(AEs) as way to compress the raw samples into a lower di-
mensional latent space (2D in our case), and then search for
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patterns or clusters within the compressed (or encoded)
data. We discuss autoencoders in detail in the following
subsection.

4.2 AutoEncoders

Autoencoders are neural nets that ingest a sample, x, and
attempt to reconstruct the sample at the output. When the
autoencoder involves a hidden layer, h, that is of lower di-
mension than x, it is called an undercomplete autoencoder.
The idea is to encode the data into a lower dimensional, h,
which contains the most salient features of the data. The
learning process of an autoencoder involves minimizing a
loss function, J:

=ܬ ൫݂݃)ܮ ℎݓ��൯(ݔ) ݎ݁݁ �ℎ = (ݔ݂) (1)

where ݂ is the encoder,݃ is the decoder and L is a loss func-
tion that penalizes ݃(ℎ) for being dissimilar to x [38]. We
explored both mean squared error (MSE) and mean abso-
lute error (MAE) as the loss function, L, and found mean
absolute error to offer better convergence and lower recon-
struction error compared with MSE.

As shown in figure 3A, in our convolutional autoen-
coder (CAE), both the encoder and the decoder consisted
of four 1-dimensional convolution layers (kernel size = 2)
and two maxpooling layers for the encoder and two up-
sampling layers for the decoder. Relu activation was used
in all convolutional layers. The total number of trainable
weights for the CAE was 710.

The architecture of the LSTM autoencoder (LAE) is
shown in figure 3B. The encoder consists of a LSTM layer
with hidden dimension of 20 followed by a linear transfor-
mation to the 2D bottleneck. The decoder consists of a
dense transformation of the 2D bottleneck to 20 dimen-
sions followed by vector repetitions (30 times) and a LSTM
layer followed by a dense layer that reconstructs the input
sample. Elu activation [39] was used in both the encoder
and the decoder of the LAE. The total number of trainable
weights for the LAE was 5163 which is an order of magni-
tude higher than the CAE.

4.3 DBSCAN Clustering

We employed DBSCAN clustering algorithm [40] to iden-
tify clusters in the latent representation of HRV data given
by the AEs. DBSCAN is a density-based algorithm that
clusters densely-packed samples together while disregard-
ing samples in low-density areas as outliers.

4.4 Training and Evaluation

The AEs were implemented using tensorflow 1.12.0
(tf.keras) deep learning library. Adam optimizer [41] with
a learning rate of 1e-4 and a batch size of 64 was used to
train the AEs. 5-fold cross validation scheme was used to
train the models and tune the hyperparamters. Both CAE
and LAE were trained for 300 epochs. CAE loss plateaued
after nearly 150 epochs while LAE plateaued much later at
about 290 epochs. Both models were trained using a vir-
tual machine with a 12-core CPU and 24 GB of RAM.

5 CONCLUSIONS

We presented a new approach for unsupervised detection
of mental stress from raw HRV data using autoencoders.
We demonstrated that classical K-means clustering com-
bined with time and frequency domain features was not
suitable for identifying mental stress. We then explored
two different architectures of autoencoders to encode the
data and find underlying patterns that may enable us to
detect mental stress in an unsupervised manner. We
trained convolutional and LSTM autoencoders and
demonstrated that despite being more powerful and pro-
ducing lower reconstruction error, LSTM autoencoders
failed to identify useful patterns within the data. On the
other hand, the convolutional autoencoders with their
much fewer trainable weights, produced clusters that were
verifiably distinct and pointed to different levels of mental
stress according to the reported markers of mental stress.
Based on the results given by the convolutional autoen-
coder, more than 90% of the samples collected from fire-
fighter trainees during a drill were mentally stressed while
less than 10% had normal HRV. While our proposed ap-
proach offers promising preliminary results toward unsu-
pervised detection of mental stress, we recognize a number
of shortcomings that must be addressed with additional
experiments and data. For instance, our training dataset
was relatively small and additional data, including new
modalities (e.g. motion, voice, etc.), would improve the ac-
curacy of our trained models. Moreover, our method did
not take into account intrinsic differences in HRV of differ-
ent individuals which could be investigated with further
experiments and data. In addition, it is imperative that the
observed results in this work are thoroughly validated via
new experiments.
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Table S1: Time and frequency domain HRV features 

Feature Description 

HFms Absolute power of the high frequency band (0.15-0.4 Hz) 

HFnu Absolute power of the high frequency band (0.15-0.4 Hz) in normal units 

HFpeak Peak frequency of the high frequency band (0.15-0.4 Hz) 

HFrel Relative power of the high frequency band (0.15-0.4 Hz) 

LF_HF Ratio of LF to HF power 

LFms Absolute power of the low frequency band (0.0.04-0.15 Hz) 

LFnu Absolute power of the low frequency band (0.0.04-0.15 Hz) in normal units 

LFpeak Peak frequency of the low frequency band (0.0.04-0.15 Hz) 

LFrel Relative power of the low frequency band (0.0.04-0.15 Hz) 

MaxRR Maximum RR interval 

MeanHR Mean of successive heart rates 

MeanRR Mean of successive RR intervals 

MinRR Minimum RR interval 

NN50 Number of successive NN intervals that differ by more than 50 ms 

RMSSD The square root of the mean of the squares of the differences between successive RR intervals  

SDNN Mean of standard deviation for all normal RR intervals  

VLFms Absolute power of the very low frequency band (0.003 – 0.04 Hz)  

pNN50 Percentage of successive NN intervals that differ more than 50ms 

 

 

 
 


