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Abstract. InSyTo is a toolbox of algorithms for information fusion and
query relying on the conceptual graphs formalism and subgraph isomor-
phism search. InSyTo was used in order to develop many applications in
different domains. Although the framework was used in several applica-
tion domain and well received by end-users, they highlighted an urgent
need for traceability within the information fusion process. We propose
here an improvement of the toolbox, in order to embed traceability fea-
ture inside the fusion algorithm. The underlying conceptual graph repre-
sentation of the information was extended from basic conceptual graph
to Nested Typed Graphs. A lineage nested graph is added to each con-
cept of the initial information graph, that contains it’s processing history
through the several processing steps. The lineage graph contains the in-
formation concerning the initial sources of each elementary information
item (concept), as well as the fusion operations that were applied on
them. The main advantage of this new development is the capacity of
having a trustworthy framework aware of the current observed situation,
as well as the interpretations that were used to build this situation from
elementary observations coming from different sources. In this paper, af-
ter presenting the context of our work, we recall of the InSyTo toolbox
approach and functionalities. We then define the new information rep-
resentation and operations that we proposed for a matter of traceability
handling. The proposition is illustrated on an application we developed
recently.
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1 Introduction

With the aim of developing systems that use semantic information for decision
support, we chose to use the InSyTo toolbox that provides functions for soft infor-
mation fusion and management and was previously developed. InSyTo is based
on generic algorithms for semantic graphs fusion and comparison that may be
adapted to a specific application domain through the use of an ontology. It was
used in many projects in the past, as different as crisis management,marketing
content design or oceanographic observation.However, if the use of soft informa-
tion was very much appreciated by these end-users, they also expressed the need
to understand where the synthesized information comes from. They express the
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need for traceability capability within situation awareness and decision support
systems provided. Indeed, traceability is highlighted in different guidelines and
recommendations for a trustworthy AI [10] [9].

In this paper, we propose an approach for traceability handling as an exten-
sion of InSyTo. InSyTo functions rely on the use of Conceptual Graph formalism
for semantic information representation. Our approach to traceability is based
on the use of nested conceptual graphs, in order to express, for each elemen-
tary component of the information, a lineage graph that expresses the whole
‘history” of the information item throughout its evolutions regarding fusion and
aggregation processes.

The paper is organised as follows. Section 2 provides the context and related
works. It recalls the needs that we faced in previous and current projects re-
garding traceability and presents the basics of the InSyTo toolbox, emphasizing
on the fusion approach that is used, regarding which traceability is an impor-
tant issue. In section 3, we describe the evolution we have performed in order to
embed traceability capacity within the toolbox operations. After presenting the
general approach, we define formally our proposition. Section 4 finally discusses
and concludes our paper and presents future directions for our work.

2 Context

2.1 Conceptual graphs as formalism for information representation

Our aim is to develop systems for which the interaction with human operators
is crucial in order to understand the results of the different processes. These
results must be easily understandable, as well as should be the integrated analysis
processes that lead to these results, such as information aggregation and fusion.

Therefore, the knowledge representation must easily be understood. There-
fore, we propose to rely on the use of conceptual graphs. Conceptual graphs
(CG) have been formalized by Mugnier and Chein [3] as finite bipartite labelled
graphs where the building units of CG are types. Such graphs were proposed by
J. Sowa in [11] as a graphical representation of logic. They allow representing
knowledge in a easily readable manner for humans, experts of specific application
domain, but non experts of knowledge representation formalism.

Several tools exist in order to create conceptual graphs knowledge bases and
interact with them. Among them, Cogui [7] enables one to create a Conceptual
graphs knowledge base and offers imports and exports capabilities to different
semantic web formats. Cogitant [5] is a C++ platform that provides capacities
to represent the different elements of the conceptual graphs model, as well as
functions to reason over and manipulate the graphs. InSyTo is a JAVA toolbox
of algorithms for information fusion and query relying on the conceptual graphs
formalism and sub-graph isomorphism search proposed in [2]. It was further
improved with uncertainty management capabilities [4] which enable to manage
some of the imperfection that may be found on reports provided by humans.
For the information aggregation and fusion part of our work, we chose to use
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the functions provided by InSyTo for the possibility to add domain knowledge
in order to tune the functions. We describe the toolbox hereafter.

2.2 InSyTo : a toolbox for information fusion

InSyTo is a toolbox that contains several core functions. These functions can be
combined in order to provide advanced semantic information management func-
tions. InSyTo core functions are are depicted in Fig. 1 and described hereafter.

Fig. 1. InSyTo core functions

Information Synthesis Information synthesis enables one to collect and
organize information about a specific subject. Through information synthesis,
all the gathered information items are organized into a network. The redundant
part of the information items are detected and eliminated.

The fusion strategies are used within information synthesis, in order to enable
the fusion of information items that are slightly different but describe the same
situation of the real life. These discrepancies may appear when different sources



4 C. Laudy et al.

of information with potentially different levels of precision for instance, are used
to draw a picture of an on-going situation.

Information Query All the instances of information corresponding to a spec-
ified graph pattern may be found within a network of information, through the
information query function.

The specialization relationship between the query and the data graphs imply
that the structure of the query graph must be entirely found in the data graph.
The query function relies on the search for injective homomorphism between the
query graph and the data graph.

Information Fusion When a model of a situation of interest (e.g. an activ-
ity involving a specific person at a specific date) is available, one may want to
monitor the situation and trigger further processes if an instance of such a sit-
uation is happening. Therefore, different observations, potentially coming from
different sources, are filtered out in order to keep observations of interest only.
They are then assembled through information fusion in order to provide a
representation of the ongoing situation of interest, as precise as possible.

The model of situation is, within information fusion, more generic than the
observation graphs. Further more, fusion strategies may be used, as for the In-
formation Synthesis function. The use of the model constraints the structure of
the fused observation.

To implement these core function, InSyTo encompasses a generic graph-based
fusion algorithm made of two interrelated components (see Fig 2). The first
component is a generic sub-graph matching algorithm, which itself relies on
the use of fusion strategies. The graph matching component takes care of the
overall structures of the initial and fused observations. It is in charge of the
structural consistency of the fused information, regarding the structures of the
initial observations, within the fusion process.

The fusion strategy part is made of similarity, compatibility and functions
over elements of the graphs to be fused. They enable the customization of the
generic fusion algorithm according to the context in which it is used.

2.3 The need for traceability in information fusion

InSyTo is used in order to develop high level information managing functions
such as alarm raising, event detection, inconsistency detection in reports. It was
deployed on several projects ranging from crisis management to investigation and
oceanography. In many of these application, if the management of information
coming from soft information sources (social media, police reports...) was a new
and interesting topic, the need for traceability of the information was raised.

Indeed, when multiple fusions occurs on graphs, it could be necessary to
know where and how this information was constructed, to find and/or follow the
history of the fusion process and to measure the ability of the fusion system to
provide an accurate and unbroken historical record of its inputs and the chain
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Fig. 2. InSyTo algorithm

of operations that led to its conclusions. Keeping trace of a all fusion processes
in a way that is verifiable and reproducible is necessary for different use-cases.

This feature is called traceability. Traceability is known to be applicable
to measurement, supply chain, software development, healthcare and security
also. On software development, the traceability consists of following relations
between software artifacts and requirements during the development life cycle [6].
In this context, ontology is sometimes used to automatically keep a trace of
requirements [1], or artifacts between source code and documentation [13].

To the best of our knowledge, no work was proposed for handling traceability
with semantic information and information sources in the context of semantic
information fusion.

3 Tracing information Fusion with InSyTo

3.1 General approach

When keeping awareness of an on-going situation, all the reports and testimonies
about that situation are consolidated within what we call a situation graph. This
situation graph is the synthetic summary of all the information one has, provided
by all the available information sources. Furthermore, information sources each
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provide what we call initial information items. These items are aggregated and
fused together into the situation graph.

So, to keep a trace of the initial information items that resulted in a situation
graph, we need to track the successive fusion operations that were applied to
each one of its concepts. For tracking all fusions of concepts, we propose to add
a lineage graph inside each concepts node.

At the beginning, before the fusion process, the lineage graph of a specific
concept node contains specific information about the source of this information.

3.2 Background : Simple, nested and typed conceptual graphs

Conceptual graphs (CGs) [3] are a family of formalisms of knowledge repre-
sentation, made of ontological and factual knowledge. They are bipartite graphs
defined over ontological knowledge stored in the vocabulary.

The ontological part of a CG is a vocabulary, defined as a 5-tuple V =
(TC , TR, σ, I, τ). TC and TR that respectively correspond to concept and relation
types are two partially ordered disjoint finite sets, where ordering corresponds
to generalisation. An example of TC , used in the illustration below is given in
Fig. 3.2. It contains a greatest element>. TR is partitioned into subsets T 1

R . . . T
k
R,

1 . . . k (k ≥ 1) respectively, meaning that each relation type has an associated
fixed arity. σ is a mapping associating a signature to each relation. I is a set of
individual markers. τ is a mapping from I to TC .

The conceptual graphs themselves represent facts. In our work, they represent
the situations that are observed. A CG is a 4-tuple G = (C,R,E,label). G is a
bipartite labeled multi-graph as illustrated on Fig. 4. A CG is made of concept
and relation nodes. On Fig. 4, the rectangular boxes represent concept nodes and
the ovals represent relation nodes. C and R correspond to concept and relation
nodes, where elements of C are pairs from TC× I and elements of R are elements
of TC . E contains all the edges connecting elements of C and R and label is a
labelling function.

Thing

Relation

destination owned by

Concept

Object in Movement

Vessel

Boat

Location

Port

Person

Fig. 3. A simplified vocabulary example
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Fig. 4. An example of conceptual graph G1. The rectangular boxes represent concept
nodes and the ovals represent relation nodes.

Concept nodes are made of a conceptual type defined in TC and an individ-
ual marker. The term concept is used to refer to a concept node. The concepts
represent the “things” or entities that exist. A concept is labeled with two com-
ponents: the conceptual type and the individual marker.

The conceptual type defines the category to which the entity belongs. For
instance, in Fig. 4 the concept [Port: :Marseille] is an instance of the category
Port, i.e., its conceptual type is Port.

The individual marker relates a concept to a specific object of the world.
The object represented by [Port: :Marseille] has the name (or value) Marseille.
The individual markers may also be undefined. An undefined or generic individ-
ual marker is either blank or noted with a star *, if the individual object referred
to is unknown.

The term relation is used to refer to a relation node. The relation nodes of
a conceptual graph indicate the relations that hold between the different entities
of the situation that is represented. Each relation node is labeled with a relation
type that points out the kind of relation that is represented.

Nested Conceptual graphs are an extension of basic conceptual graphs.They
are used in order to provide different levels of knowledge related to concepts of a
graph. While concepts and relations linked to a concept provide external contex-
tual information about the concept, internal information about the concept may
be provided as graph, nested inside the concept. Chein and Mugnier provide the
didactic example in Fig. 5, where a drawing, made by the boy Paul sets on a
table (external contextual knowledge). Furthermore, this drawing represents a
green train (internal information).

In addition to their conceptual types and individual markers, each concept c
of a nested conceptual graph encompasses a third element called description of c
and denoted Descr(c) in [3]. Descr(c) iteself contains either a nested conceptual
graph that describes the contents of the concept c or the value ∗∗ meaning that
no further nested description is available.
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Fig. 5. A nested conceptual graph.

Nested Typed Graphs are used when the universe of discourse is broken into
independent parts. In our study, the situation graph and its set of lineage nested
graphs define different parts of knowledge that may not be mixed. Thus nested
typed graphs appear to be naturally well suited in order to represent the tracked
situation graphs, broken into the situation itself and the historical knowledge of
the fusion operations over the situation concepts.

3.3 Nested typed graphs as concepts’ lineage

As explained in the general approach, the traceability of each concept of a fused
situation graph is a property of this concept containing internal information
about the its state and its so called history through the fusion operations. Thus,
we add a nested lineage graph to each concept node of an information graph. For
each concept c of a situation graph, this lineage graph is added to the concept,
additionally to the type and marker that the basic conceptual graph already
contains, as the value of Descr(c).

The lineage graph of a concept is a nested typed graph, defined on a specific
vocabulary and with a limited number of relations that we define hereafter. The
situation graph is defined on a different vocabulary than the lineage graphs. The
two sets of graphs, situation and lineage will never be mixed during the fusion
of 2 situation graphs. However, the fusion of two situation graphs modifies the
set of lineage graphs as defined hereafter. To emphasize on this distinction, we
use typed graphs for situation and lineages graphs, each having a different type
from the set Situation, Lineage. Figure 7 presents the tree of graph types for
our tracked situation graphs.

At the beginning, before the fusion process, the lineage graph of a specific
concept node contains specific information about the source of this information.
Figure 6 depicts a example of lineage graphs before a fusion operation has occur.

In order to ease the understanding, in the following definitions we refer to
elements of a situation graph such as concepts and relations using the adjective
situation (situation concept and situation relation for instance), while we use
the adjective lineage for the elements of the lineage graph.

Definition 1 (Tracked situation Graph). A tracked situation graph S is a
nested typed basic graph. The graph S is of type Situation.
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Fig. 6. Example of the definition a concept with type: Boat, Value: TL4545 and lineage
graph. The Lineage graph is composed of type: Source, Value: AIS, that is to say the
[Boat : TL4545] cames from AIS source.

GraphType

Situation Lineage

Fig. 7. Types of graphs used within InSyTo

Definition 2 (Tracked situation concept). Each concept node of a tracked
situation graph is called a tracked situation concept. The field description of
a tracked situation concept node c contains the lineage graph of c, denoted
Lineage(c).

Definition 3 (Lineage graph). The lineage graph of a tracked situation con-
cept c is a typed basic conceptual graph denoted Lineage(c). Lineage(c) is of type
Lineage. It is defined on a vocabulary Tlineage = (CL, RL, Lineage, I), where CL

and RL are respectively the partially ordered set of concepts and relations of the
lineage graph defined defined hereafter.

It is to note that as the lineage graph of a concept c describes the evolution
of c through the sequence of fusion operations that were applied on different
instances of this concept, the c and its lineage graph share multiple co-reference
links. However, as each level of the lineage graph describes a different context
of observation of c (i.e. the successive states of c and its successive values), the
co-referent concepts should never be merged.

Definition 4 (Lineage concept types). Let Lineage(c) be the lineage graph
of the concept c and let type(c) be the type of the concept c. Lineage(c) is defined
on a vocabulary Tlineage = (CL, RL, Lineage, I) CL is the partially ordered set
of types composed of the union of the ancestor and descendant of c, type(c), the
uncomparable types Source, FusionStrategy, FusionFunction and SimilarityMea-
sure and their descendants. It is to note that the specific type FusionStrategy is
a known of the direct subtype of Source
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CL =type(c) ∪ ancestor(type(c)) ∪ descendant(type(c))
∪ Source
∪ FusionStrategy ∪ descendant((FusionStrategy))

∪ FusionFunction ∪ descendant((FusionFunction))

∪ SimilarityMeasure ∪ descendant(SimilarityMeasure))

(1)

The root part of the tree of conceptual types CL is depicted on figure 3.3.
The FusionStrategy, FusionFunction and SimilarityMeasure types may have ad-
ditional sub-types, according to the fusion strategies defined and used within
the InSyTo specific domain application. For a matter of readability, we noted
TrackedConceptType the sub tree composed of the type(c)∪ ancestor(type(c))∪
descendant(type(c)).

Thing

LineageEntity

SourceFusionStrategySimilarityMeasureThresholdFusionFunction

TrackedConceptTypeSubTree

Fig. 8. set of concept types for the lineage graphs

Definition 5 (Lineage relations). The set of lineage relation types RL is
unordered and the set of lineage relations signatures is composed as follows.

– compatibility function : FusionStrategy 7→ SimilarityMeasure * Threshold
– fusion function : FusionStrategy 7→ FusionFunction
– produced by : FusionStrategy 7→ TrackedConceptTypeeSubTree * TrackedCon-

ceptTypeeSubTree

3.4 Information fusion

Fusion strategies are heuristics that are part of the merge operation of concepts
between conceptual graphs. They are rules encoding domain knowledge and
fusion heuristics that are used to compute the fused value of two different but
compatible concept nodes. On the one hand, the fusion strategies extend the
notion of compatibility that is used in the maximal join operation. According to
some fusion strategy, two entities with two different values may be compatible
and thus fusable. On the other hand, the strategies encompass functions that
give the result of the fusion of two compatible values.
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Fusion strategies The fusion functions available in the toolbox are are ex-
pressed as the composition of two functions:

Let E be the set of concept nodes defined on a support S. Let G1 and G2 be
two conceptual graphs defined on S. A fusion strategy strategyfusion is defined
as follows :

strategyfusion = ffusion ◦ fcomp : E × E → E ∪ {E × E}

where fcomp : E ×E → {true, false} ×E ×E is a function testing the compat-
ibility of two concept nodes,
and ffusion is a fusion function upon the concepts nodes of the graphs. the
extended version of ffusion, taking into account the nested lineage graph, will
be formally defined in the next section.

The compatibility function is defined the similarity between the values (mark-
ers) of two concept nodes. This similarity is defined by domain experts, given
the requirements of the application. The similarity measure is compared to a
threshold defined by domain experts, thus the compatibility function fcomp is
then defined as follows :

fcomp(c1, c2) = sim(c1, c2) ≥ thresholdsim

The fusion strategies applied on two concept nodes result either in a fused
concept node if the initial nodes are compatible, or in the initial nodes themselves
if they are incompatible.

3.5 Tracked Fusion of situation graphs

As fusion strategies my not be a commutative operation, according to the specific
fusion functions used, there is a need for traceability when applying several fusion
operations on several situation graphs into a single situation graph. We define
hereafter the tracked fusion operation over two situation graphs. The fusion
strategies are not impacted by the tracking of fusion history into the lineage
graph, however, their use must be memorized in the lineage graph.

ffusion is a higher level function, taking into parameter three fusion functions,
each one applying on one of the element of the concept node :

– fusiontype(c1, cc2) = most general subtype(type(c1), type(cc2)) = type(c)
– fusionmarker(c1, c2 = fusion(c1, c2)) where fusion : {true, false} × E ×
E → E∪{E×E} is a fusion function upon the concepts nodes of the graphs
that is application dependant.

– fusionlineage(c1, c2) is the fusion operator on lineages defined hereafter.

Definition 6 (Lineage graphs fusion operation). Let G1 and G2 be two
situation graphs defined on V = (TC , TR, σ, I, τ).

Let G1 = (C1, R1, E1, label1) and G2 = (C2, R2, E2, label2).
Let c1 and c2 be two concepts defined of respectively G1 and G2. Let L1 and

L2 be the lineage graphs of respectively c1 and c2.
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The fusion operator over lineage graphs is defined as follows:

fusionlineage : E1 × E2 → EL,

with EL the set of concepts of the fused lineage graph L.
The result of the fusion of the two lineage graphs is as follows:

fusionlineage(c1, c2) = L

= produced by(FusionStrategy(f), c1, c2)

∧compatibility function(FusionStrategy(f),

SimilarityMeasure(sim(c1, c2)),

Threshold(thresholdsim))

∧fusion function(FusionStrategy(f),

FusionFunction(fusionmarker(c1, c2)))

L is the nested typed graph depicted on the green part of theFig.9

Fig. 9. Concept c3 (fusion of ( c1 and c2) and its lineage graph resulting from the
fusion of the two concepts c1 and c2 in the green part.
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4 Discussion and conclusion

We proposed an improvement to the InSyTo toolbox which enables traceability
capacity as the the use of nested graph with a lineage graph in order to embed
traceability feature inside the fusion algorithm. A lineage nested graph is added
to each concept of the initial information graph, that contains it’s processing
history through the several processing steps. The lineage graph contains the
information concerning the initial sources of each elementary information item
(concept), as well as the fusion operations that were applied on them.

This improvement enables the end-users to understand where the synthetic
information in the situation graph comes from. Thanks to the lineage graphs of
each concepts of the situation graph, one may rebuild the whole aggregation and
fusion process, even in cases where the fusion strategies are not commutative.
We developed a first use case and were able to visualize the operations achieved
on information items. Adding traceability to the applications developed with
the framework improves the trust end-users have on the system through the
availability of explainable elements over the underlying and aggregation fusion
processes.

However, if we provided the tools to handle traceability, there still remains
a need for easy visualisation and analysis of the trace information (for example
[12]). With that purpose in mind, the use of nested conceptual graphs has the
great advantage of enabling one to use the same analysis and manipulation
functions as for the analysis of the situation graph. Graph based and conceptual
graphs based algorithms can be used in order to provide end-users with analysis
capacities over the trace graphs. On can achieve a search for specific sources of
information, or statistics of the fusion operations used and the global level of
similarity of individual information items, for instance, using well known, tried
and tested graph algorithms.

Furthermore, representing the concept’s lineage as an nested graph has an
other advantage, regarding the easiness of manipulation of information. Indeed,
even if the traceability information and the knowledge are integrated into a single
nested graph, they can easily be isolated in two different smaller conceptual
graphs [situation, lineage]. This would be achieved by somehow ”cutting” the
nested situation graph at the first level of lineage, that is to say cutting the
lineages of the situation concepts and storing them in a separated graph data
base.

Finally, if we chose to use a reduced vocabulary in order to express the trace
information in the lineage graphs, our approach can be enriched using other
ontology (for example [8]). One can represent the lineage graph with another
vocabulary and relations if necessary. Identically, if one wants to improve the
toolbox with other operations, their application to a concept node can also be
represented in the lineage.
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