

The Role of Impact Metrics in Researchers' Literature Selection Processes

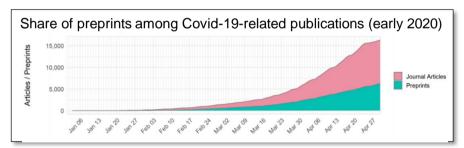
Steffen Lemke

ZBW – Leibniz Information Centre for Economics

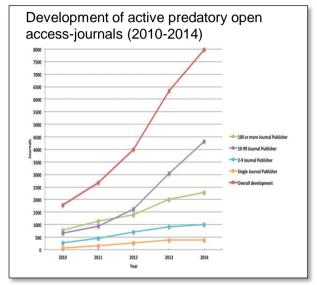
Kiel, Germany

January 23, 2022

Need for scalable methods of publication assessment

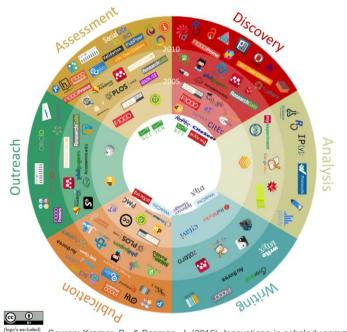

NEWS BLOG

Global scientific output doubles every nine years


07 May 2014 | 16:46 BST | Posted by Richard Van Noorden | Category: Policy, Publishing

It's a common complaint among academics: today's researchers are publishing too much, too fast. But just how fast is the mass of scientific output actually growing?

Source: http://blogs.nature.com/news/2014/05/global-scientific-output-doubles-every-nine-years.html


Source: Fraser, N., Brierley, L., Dey, G., Polka, J. K., Pálfy, M., & Coates, J. A. (2020). Preprinting a pandemic: the role of preprints in the COVID-19 pandemic. *bioRxiv*. https://doi.org/10.1101/2020.05.22.111294

Source: Shen, C., Björk, B. (2015). 'Predatory' open access: a longitudinal study of article volumes and market characteristics. *BMC Med* **13**, 230. https://doi.org/10.1186/s12916-015-0469-2

Parallel developments in scholarly working habits

- Researchers' everyday work increasingly takes place on online platforms
- As many opportunities to track and analyze various types of usage electronically as never before
- Assessing research based on quantitative data becomes even more tempting

[logo's excluded] Source: Kramer, B., & Bosman, J. (2016). Innovations in scholarly communication—Global survey on research tool usage. F1000Research, 5, 692. https://doi.org/10.12688/f1000research.8414.1

Metrics for research evaluation ('impact metrics')

Bibliometrics:

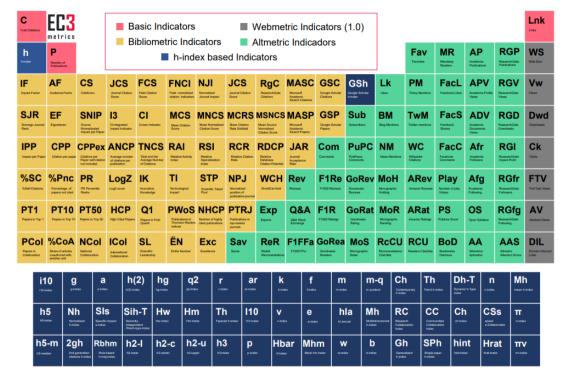
- Traditional indicators of scientific relevance
- Include indicators that apply to
 - individual articles (e.g. citation counts)
 - journals (e.g. Impact Factor)
 - researchers (e.g. h-index)
- Usually only consider formal publications

How (often) are scientific articles cited by other scientific articles?

Altmetrics and usage metrics

- Highly heterogeneous, ever-changing set of indicators
- Meant to offset some weaknesses of citations, as web-based metrics usually are
 - faster
 - applicable to more diverse outputs
 - able to reflect more types of impact
 - based on openly available data

How (often) do users interact with a scientific output online?



More types of research metrics than ever

Leibniz Information Centre

Periodic Table of Scientometric Indicators

Debate on metrics use by administration

Discussed critically in several high-profile publications, e.g.:

 Consensus: use of impact metrics for micro-level assessments is problematic for a number of reasons, e.g., metrics' biases towards certain disciplines, genders, and languages; substantial differences in publication and citation practices between disciplines; not every research career focuses on publications; etc.

Metrics use by individuals in everyday scenarios

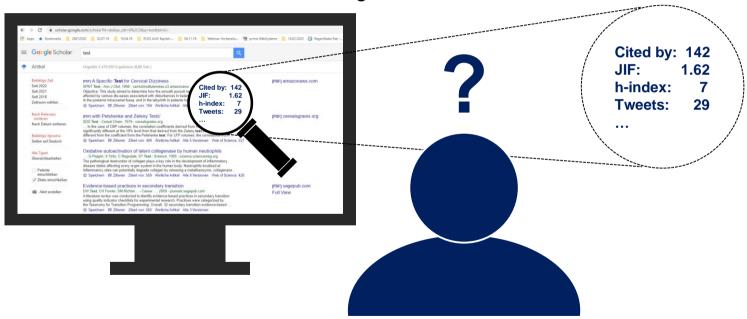
Why is it of interest, how researchers perceive and use metrics?

- Researchers' metrics usage reflects a culture that determines metrics' role within the grander picture
- To develop working strategies on how to advice researchers regarding metrics use, first establishing what they already know and think is important
- And: the usefulness of a tool also depends on the subjective perspective of its users: do they
 understand the tool, do they perceive it as helpful, do they have certain concerns regarding its use?

Context of our studies on researchers' perceptions of metrics

- Part of project *metrics (2017-2019), which had, among others, the goal to analyze how researchers perceive and use impact metrics
 - Series of focus group interviews and large-scale online surveys (article A)
 - Followed by interactive online experiment and conjoint analysis (article B)
 - Final report summarizing the whole *metrics project openly available

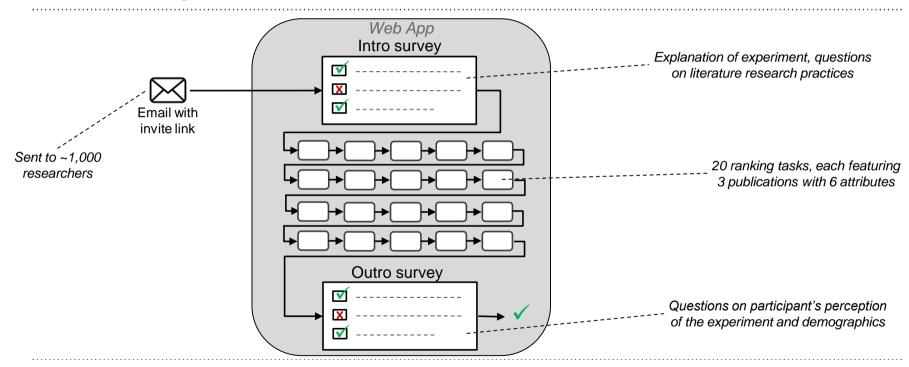
Article A (Frontiers): https://doi.org/10.3389/frma.2018.00039


Article B (JASIST): https://doi.org/10.1002/asi.24445

Final project report: https://doi.org/10.18452/22242.2

Our 'everyday scenario': literature selection

Use case we examined: metrics use during literature selection



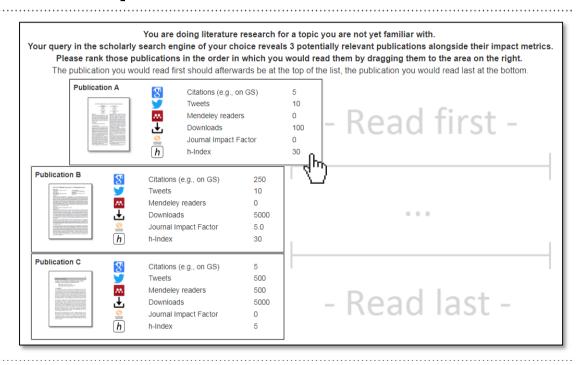
Past research on researchers' literature selection

- Tenopir et al. (2009): analyzed reading patterns of academic staff from US and Australia through survey found
 disciplines and work responsibilities to be important characteristics determining reading behavior
- Niu and Hemminger (2012): framework of demographic, psychological, role-related, and environmental factors affecting scientists' information-seeking behavior; most important determinants are academic position, gender, and discipline
- Tenopir et al. (2016): survey on how do researchers determine an article's trustworthiness? by checking soundness
 of its arguments and logic, checking if data used in the research are credible, reading the abstract
- Nicholas et al. (2020): survey aimed at early career researchers found a journal's prestige, rank and impact factor
 as well as ease of access to be influential factors for deciding what to read

Online Experiment – Procedure

Free text question from intro survey (n = 205)

"How do you usually determine which search results to read first? Are there publication features you are looking out for?"


Journal (Prestige/Ranking/IF)	84
Citation counts	48
Title	48
Abstract	47
Authors	42
Date of publication/Recency	41
Topical relevance	40
Keywords	24
Other	19
Reference-relations	16
Publisher	11
Order of appearance in search engine	10
Availability/Access	9
Content properties	8
Publication Type	5

Online Experiment – Concept

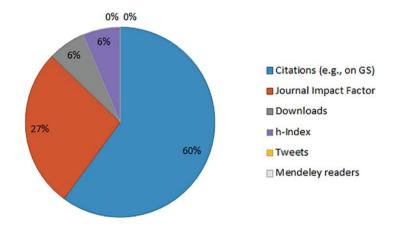
Idea: participants imagine literature search in unfamiliar field; find three publications along with their metrics – which one would they read first?

Does their selection behavior comply with their statements from surveys?

Online Experiment – Attributes

- the article's citations (e.g., on Google Scholar) as an article-level bibliometric indicator;
- the publishing journal's Journal Impact Factor as a prominent and much-debated journal-level indicator;
- the first author's h-index as a widely known author-level indicator;
- the article's number of downloads as an article-level usage indicator;
- the article's number of mentions in tweets as an altmetric drawn from a social media platform targeted at a general audience;
- the article's number of readers on Mendeley as an altmetric drawn from a social media platform targeted at scholars.

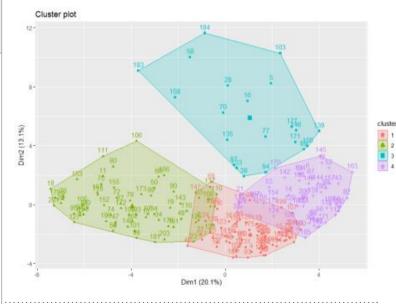
Online Experiment – Results


• Summary of logit regression model based on 7,548 choices made by 247 participants:

Variable	Estimate	SE	p
(intercept)	-0.419	0.016	<,001
Citations (e.g., on Google Scholar)	0.607	0.017	<.001
Journal impact factor	0.468	0.016	<.001
h-index	0.160	0.017	<.001
Downloads	0.247	0.016	<.001
Tweets	0.159	0.016	<.001
Mendeley readers	0.157	0.017	<.001

Online Experiment – Results

 Survey response to "If you had to choose between the metrics that were presented to you during the previous tasks, which one do you consider most helpful as a tool for deciding which publications to read?":



Online Experiment – Results

k-means clustering of participants based on ranking similarities (with k = 4):

	•	•	•	•
	Estimates			
Variable	C1	C2	С3	C4
n	65	67	20	53
Citations	0.853	0.302***	0.332	0.935
Journal impact	0.486	0.808	0.146	0.248
factor				
h-index	0.227	0.167	0.086	0.171***
Downloads	0.052	0.188	0.603	0.455
Tweets	0.097	0.171	0.148	0.286
Mendeley readers	0.083	0.274	0.104	0.167***
Cluster description	"Bibliometrics- believers"	"IF- fixated"	"Usage evidence enthusiasts"	"Open-minded citation users"

Free text question after the experiment (n = 132)

"Now after having finished the experiment, would you like to add anything to your previous answer?"

•		
Journal (Prestige/Ranking/IF)	84	+39
Citation counts	48	+61
Title	48	+1
Abstract	47	+1
Authors	42	+9
Date of publication/Recency	41	+10
Topical relevance	40	+1
Keywords	24	
Other	19	
Reference-relations	16	+3
Publisher	11	
Order of appearance in search engine	10	
Availability/Access	9	
Content properties	8	+1
Publication Type	5	

New entries - metrics:

Downloads	32
H-Index	24
Mendeley Readers	2
Tweets	4

Key findings

- Many qualitative features are important to researchers for deciding what to read, e.g., titles, abstracts, author names, recency, or topical relevance
- However: quantitative bibliometrics (esp. citations and JIF) were among the most looked out for features as well

Findings from focus group interviews and surveys

Further conclusions from interviews (n=9) and two online surveys (n=1,065; n=1,018):

https://doi.org/10.3389/frma.2018.00039

- Most researchers are aware of metrics and many seem to act with metrics in mind, e.g. for deciding what to read or cite and where to submit manuscripts
- Often little knowledge about how metrics are calculated and their relevant shortcomings
- Skepticism towards altmetrics sometimes is not applied to bibliometrics
- ➤ More widespread *metrics literacy*¹ (or *metric-wiseness*²) is needed

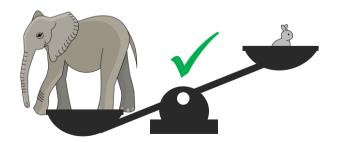
Suggested resources for achieving metrics literacy

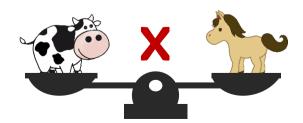
- The Parthenos Project can serve as a general introduction to research impact measurement:
 https://training.parthenos-project.eu/sample-page/intro-to-ri/research-impact/
- The best practices for the use of bibliometrics condensed within the Leiden manifesto showcase many relevant pitfalls:

http://www.leidenmanifesto.org/

- The Metrics Toolkit provides helpful explanations of many indicators and their appropriate handling: https://www.metrics-toolkit.org/
- The *IUPUI* lists more resources for further reading on responsible use of metrics:

https://researchmetrics.iupui.edu/responsible-metrics.html




Take away 'in a nutshell'

What should be communicated to any user of impact metrics:

 In any type of decision-making, ideally metrics only complement but do not replace qualitative review.

It might be helpful to think of metrics as a scale that can distinguish an elephant from a bunny, but not a horse from a cow.

Thank you very much for your attention! Questions?

Contact:

Email: s.lemke@zbw.eu

Twitter: @stl90

Website: blog.stlemke.de

References

- Fraser, N., Brierley, L., Dey, G., Polka, J. K., Pálfy, M., & Coates, J. A. (2020). Preprinting a pandemic: the role of preprints in the COVID-19 pandemic. bioRxiv. https://doi.org/10.1101/2020.05.22.111294
- Kramer, B., & Bosman, J. (2016). Innovations in scholarly communication—Global survey on research tool usage. F1000Research, 5, 692. https://doi.org/10.12688/f1000research.8414.1
- Lemke, S., Mazarakis, A., & Peters, I. (2021). Conjoint Analysis of Researchers' Hidden Preferences for Bibliometrics, Altmetrics and Usage Metrics. *Journal of the Association for Information Science and Technology (JASIS&T)*, 72, 777-792. https://doi.org/10.1002/asi.24445
- Lemke, S., Mehrazar, M., Mazarakis, A., & Peters, I. (2019). "When You Use Social Media You Are Not Working": Barriers for the Use of Metrics in Social Sciences. Frontiers in Research Metrics and Analytics, 3, 39. https://doi.org/10.3389/frma.2018.00039
- Lemke, S., Zagovora, O., Weller, K., Orth, A., Beucke, D., Stropel, J., & Peters, I. (2020). *metrics—Recommendations from the DFG *metrics project for "Measuring the Reliability and Perceptions of Indicators for Interactions with Scientific Products." https://doi.org/10.18452/22242.2
- Nicholas, D., Jamali, H. R., Herman, E., Watkinson, A., Abrizah, A., Rodríguez-Bravo, B., ... Polezhaeva, T. (2020). A global questionnaire survey of the scholarly communication attitudes and behaviours of early career researchers. *Learned Publishing*, 33(3), 198–211. https://doi.org/10.1002/leap.1286
- Niu, X., & Hemminger, B. M. (2012). A study of factors that affect the information-seeking behavior of academic scientists. *Journal of the American Society for Information Science and Technology*, 63(2), 336–353. https://doi.org/10.1002/asi.21669
- Rousseau, S., & Rousseau, R. (2017). Being metric-wise: Heterogeneity in bibliometric knowledge. El Profesional de La Información, 26(3), 480–487.
- Shen, C., Björk, B. (2015). 'Predatory' open access: a longitudinal study of article volumes and market characteristics. *BMC Med* 13, 230. https://doi.org/10.1186/s12916-015-0469-2
- Tenopir, C., King, D. W., Spencer, J., & Wu, L. (2009). Variations in article seeking and reading patterns of academics: What makes a difference? *Library & Information Science Research*, 31(3), 139–148. https://doi.org/10.1016/j.lisr.2009.02.002
- Tenopir, C., Levine, K., Allard, S., Christian, L., Volentine, R., Boehm, R., ... Watkinson, A. (2016). Trustworthiness and authority of scholarly information in a digital age: Results of an international questionnaire. *Journal of the Association for Information Science and Technology*, 67(10), 2344–2361. https://doi.org/10.1002/asi.23598

